2020年高一数学上册章节测试试题3
2019-2020学年高一数学上学期联合测试试题(含解析)

2019-2020学年高一数学上学期联合测试试题(含解析)(考试时间120分钟,总分150分)一、填空题:本题共12小题,每小题5分,共60分,请将答案填写在答卷的相应位置上.1.已知集合,,则()A. B. C.D.【答案】A【解析】【分析】首先求出集合中的范围,然后逐一判断选项即可.【详解】解:由已知,又则,故A正确,D错误;,故BC错误;故选:A.【点睛】本题考查集合的交集和并集的运算,是基础题.2.已知,则角的终边在A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】利用即可得结果.【详解】由已知可得,则,故的终边在第二象限,故选B.【点睛】本题主要考查弧度制的应用以及角的终边所在象限,属于基础题.3.若,则实数的取值范围是()A. B. C. D.【答案】B【解析】【分析】将不等式的右边也变为以为底的对数形式,然后对讨论,利用对数的单调性解不等式即可.【详解】解:由已知,当时,不等式明显成立;当时,,综合得:实数的取值范围是,故选:B.【点睛】本题考查简单的对数不等式,注意要对对数的底是否大于1进行讨论,是基础题.4.与向量平行的单位向量为()A. B. C. 或 D.【答案】C【解析】【分析】逐一判断选项中的向量,看是否存在实数,使,且.【详解】解:首先确定选项中的向量的模是否为1,经检验发现,选项中的向量的模均为1,又,选项C符合,故选:C.【点睛】本题考查向量平行的判断,关键是能否找到实数,使,是基础题.5.已知,且,则值为()A. B. C. D.【答案】A【解析】【分析】解:先根据所在象限,确定的符号,求出的值,进而求出的值.【详解】解:,,,,故选:A.【点睛】本题考查同角三角函数的基本关系,注意要通过角所在象限确定三角函数值的正负,是基础题.6.函数的定义域是()A. B. C. D.【答案】D【解析】【分析】根据分母不为零,被开方数不小于零,对数的真数大于零列不等式组,解出即可.【详解】解:由已知得,解得:,故选:D.【点睛】本题考查求具体函数的定义域,一般根据以下几个方面列不等式:分母不为零,被开方数不小于零,对数的真数大于零.7.已知函数的零点在区间上,则的值为()A. 0B. 1C. 2D. 3【答案】A【解析】【分析】先判断函数的单调性,再根据零点存在性定理列不等式求解.【详解】解:由已知和均为单调递增函数,故在定义域内也为单调增函数,因为,所以函数的零点在区间上,又函数的零点在区间上,所以,故选:A.【点睛】本题考查零点存在性定理,关键是要通过尝试确定零点大致在哪个区间里面,是基础题.8.已知奇函数在单调递减,且,则满足的的取值范围是()A. B. C. D.【答案】C【解析】【分析】根据题意,由函数的奇偶性可得,结合函数的单调性分析可将不等式化为,解可得答案.【详解】解:根据题意,函数为奇函数,若,则,又函数在单调递减,,,∴,解得:,故选:C.【点睛】本题考查函数的单调性与奇偶性的综合应用,涉及抽象函数的应用,关键是求出的值.9.要得到函数的图象,只需将函数的图象()A. 向左平移个单位长度B. 向左平移个单位长度C. 向右平移个单位长度D. 向右平移个单位长度【答案】D【解析】【分析】先对函数进行变形,然后根据函数图像的平移规律即可得到答案.【详解】解:,故只需将函数的图象向右平移个单位长度就可得到,故选:D.【点睛】本题考查的知识点函数的图象变换,其中熟练掌握函数图象的平移法则,“左加右减,上加下减”,是解答本题的关键.属于基础题.10.设,,,则()A. B. C. D.【答案】A【解析】【分析】利用对数函数的单调性分析得出结果.【详解】解:由已知,又,,因为,所以,即,综合得:,故选:A.【点睛】本题考查对数式的大小比较,关键是要将对数式变为同底的形式,才方便比较大小,是基础题.11.函数,的值域是()A. B. C. D.【答案】D【解析】【分析】令,将函数转化为二次函数的值域问题求解即可.【详解】解:令,则原函数转化为,当时,,当时,,值域是,故选:D.【点睛】本题考查指数型二次函数的值域问题,可以利用换元法,注意要确定新元的范围,是基础题.12.已知外接圆的半径为4,且,,则的值是()A. B. 16 C. 48 D.【答案】C【解析】【分析】运用平面向量的三角形法则,以及外心的特点,可得为的中点,三角形为直角三角形,再由勾股定理和向量的数量积定义,即可求出结果.【详解】解:如图所示,的外接圆的半径为4,且,,,∴为的中点,即;又,为等边三角形,且边长为4,,由勾股定理得,,则.故选:C.【点睛】本题考查了平面向量的三角形法则和数量积的定义应用问题,也考查了三角形的外心概念与勾股定理的运用,是基础题.二、填空题:本题共4小题,每小题5分,共20分,请将答案填写在答卷的相应位置上.13.函数的最小正周期为______.【答案】【解析】【分析】根据最小正周期的公式求解即可.【详解】解:函数的最小正周期为,故答案为:【点睛】本题考查三角函数的最小正周期公式,是基础题.14.已知某幂函数的图象经过点,那么这个幂函数的解析式为______.【答案】【解析】【分析】设出幂函数的解析式,代入点的坐标,即可得出结果.【详解】解:设幂函数为,代入点,得,解得,所以这个幂函数的解析式为,故答案为:【点睛】本题考查待定系数法求幂函数的解析式,是基础题.15.函数的单调减区间为______.【答案】【解析】【分析】先求出函数的定义域,在定域内判断的单调减区间,进而可得原函数的的单调减区间.【详解】解:由已知函数定义域为,所以在上的单调减区间为,则函数的单调减区间为,故答案为:.【点睛】本题考查对数型符合函数的单调区间,注意要先求出函数的定义域,是基础题.16.若关于的函数在内有且仅有一个零点,则实数的取值范围是______.【答案】或【解析】【分析】分讨论,另外时,通过解得实数的取值范围.【详解】解:函数在区间仅有一个零点,当时,,解得,若,方程的根为,舍去;当,方程的根为,符合题意;当时,,解得或,由题可得,,解得,又当时,,此时方程另一根为,舍去;当时,,此时方程另一根为,符合题意,综上所述:实数的取值范围是或,故答案为:或.【点睛】本题主要考查函数的零点的存在性定理,要特别注意一些特殊情况的存在性,属于中档题.三、解答题:本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.17.求下列各式的值:(1)(2)【答案】(1)1;(2)-1【解析】【分析】(1)由对数的运算性质来计算即可;(2)利用同角三角函数基本关系,诱导公式进行变形计算即可.【详解】解:(1);(2)【点睛】本题(1)考查对数的运算性质,(2)考查同角三角函数基本关系,诱导公式,注意符号的确定,是基础题.18.已知向量,,当为何值时:(1)?(2)?(3)与的夹角是钝角?【答案】(1)-1;(2)9;(3)【解析】【分析】(1)利用向量共线定理即可得出;(2)利用,即可得出.(3)利用向量数量积小于0,不反向,求出即可.【详解】解:(1),,∵,∴,解得;(2)∵,∴,解得;(3)因为与的夹角是钝角,则向量的数量积小于0,不反向,∴,解得,且,.【点睛】本题考查了向量共线定理、等基础知识,属于基础题.19.销售甲、乙两种商品所得利润分别是(单位:万元),和(单位:万元),它们与投入资金(单位:万元)的关系有经验公式,.今将3万元资金投入经营甲、乙两种商品,其中对甲种商品投资(单位:万元).(1)试建立总利润(单位:万元)关于的函数关系式;(2)求出(1)中的最大值.【答案】(1);(2)的最大值为万元【解析】【分析】(1)通过设出甲投资以及乙投资的数目,设立函数表达式,根据函数式直接写出定义域;(2)对于(1)中的函数解析式,利用换元法转化成一个二次函数的形式,最后结合二次函数的最值求法得出函数的最大值,从而解决问题.【详解】解:(1);(2)令,则,当时,的最大值为万元答:关于的函数关系式为,的最大值为万元.【点睛】本题考查函数模型的选择与应用,通过对实际问题的分析,构造数学模型从而解决问题.需要对知识熟练的掌握并应用,属于基础题.20.函数()的最大值为3,其图象相邻两条对称轴之间的距离为,(1)求函数的解析式;(2)设,则,求的值【答案】(1);(2).【解析】【详解】(1)由三角函数性质得,最大值为A+1=3,∴A=2,周期,∴f(x)=2sin(2x-)+1(2),f()=2∴2sin(-)+1=2,得sin(-)=,=此处有视频,请去附件查看】21.已知函数是上的奇函数,当时,.(1)求的解析式;(2)用定义证明:函数在为减函数.【答案】(1)(2)证明见解析【解析】【分析】(1)令则,将代入,可得函数在的解析式,又,综合可求得的解析式;(2)设,为区间上的任意两个值,且,计算为正值,即可证明函数在为减函数.【详解】(1)令则,因为函数是上的奇函数,所以因为函数是上的奇函数,所以所以;(2)设,为区间上的任意两个值,且因为所以,,,所以函数在为减函数.【点睛】本题考查奇函数解析式的求法,注意不要漏掉,以及考查函数单调性的证明,考查学生计算能力,是基础题.22.已知函数,其中且.(1)若函数是奇函数,试证明:对任意的,恒有;(2)若对于,函数在区间上的最大值是3,试求实数的值;(3)设且,问:是否存在实数,使得对任意的,都有?如果存在,请求出的取值范围;如果不存在,请说明理由.【答案】(1)证明见解析(2)(3)存在,【解析】【分析】(1)由函数是奇函数,可得,代入计算即可证明;(2),,对分类讨论,利用对数函数的单调性即可得出;(3)假设存在实数,使得对任意的,都有,则等价于对任意的,的最小值大于的最大值.令,,可得其最大值.于是问题等价于,的最小值大于1,再利用复合函数的单调性即可得出.【详解】(1)证明:因为是定义域内的奇函数,所以对任意的,恒有由,得对任意的,恒有(2)当时,在区间是增函数,所以当时在区间是减函数,无解综上所述:(3)所以又因为,所以,又因为,所以因为对任意的,都有所以的最小值大于的最大值递减,所以的最小值为令,因,所以递增,所以的最大值为所以,解得.综上所述:满足题设的实数的取值范围是【点睛】本题考查了函数的奇偶性、复合函数的单调性、分类讨论思想方法,考查了推理能力与计算能力,属于难题.2019-2020学年高一数学上学期联合测试试题(含解析)(考试时间120分钟,总分150分)一、填空题:本题共12小题,每小题5分,共60分,请将答案填写在答卷的相应位置上.1.已知集合,,则()A. B. C. D.【答案】A【解析】【分析】首先求出集合中的范围,然后逐一判断选项即可.【详解】解:由已知,又则,故A正确,D错误;,故BC错误;故选:A.【点睛】本题考查集合的交集和并集的运算,是基础题.2.已知,则角的终边在A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】利用即可得结果.【详解】由已知可得,则,故的终边在第二象限,故选B.【点睛】本题主要考查弧度制的应用以及角的终边所在象限,属于基础题.3.若,则实数的取值范围是()A. B. C. D.【答案】B【解析】【分析】将不等式的右边也变为以为底的对数形式,然后对讨论,利用对数的单调性解不等式即可.【详解】解:由已知,当时,不等式明显成立;当时,,综合得:实数的取值范围是,故选:B.【点睛】本题考查简单的对数不等式,注意要对对数的底是否大于1进行讨论,是基础题.4.与向量平行的单位向量为()A. B. C. 或 D.【答案】C【解析】【分析】逐一判断选项中的向量,看是否存在实数,使,且.【详解】解:首先确定选项中的向量的模是否为1,经检验发现,选项中的向量的模均为1,又,选项C符合,故选:C.【点睛】本题考查向量平行的判断,关键是能否找到实数,使,是基础题.5.已知,且,则值为()A. B. C. D.【答案】A【解析】【分析】解:先根据所在象限,确定的符号,求出的值,进而求出的值.【详解】解:,,,,故选:A.【点睛】本题考查同角三角函数的基本关系,注意要通过角所在象限确定三角函数值的正负,是基础题.6.函数的定义域是()A. B. C. D.【答案】D【解析】【分析】根据分母不为零,被开方数不小于零,对数的真数大于零列不等式组,解出即可.【详解】解:由已知得,解得:,故选:D.【点睛】本题考查求具体函数的定义域,一般根据以下几个方面列不等式:分母不为零,被开方数不小于零,对数的真数大于零.7.已知函数的零点在区间上,则的值为()A. 0B. 1C. 2D. 3【答案】A【解析】【分析】先判断函数的单调性,再根据零点存在性定理列不等式求解.【详解】解:由已知和均为单调递增函数,故在定义域内也为单调增函数,因为,所以函数的零点在区间上,又函数的零点在区间上,所以,故选:A.【点睛】本题考查零点存在性定理,关键是要通过尝试确定零点大致在哪个区间里面,是基础题.8.已知奇函数在单调递减,且,则满足的的取值范围是()A. B. C. D.【答案】C【解析】【分析】根据题意,由函数的奇偶性可得,结合函数的单调性分析可将不等式化为,解可得答案.【详解】解:根据题意,函数为奇函数,若,则,又函数在单调递减,,,∴,解得:,故选:C.【点睛】本题考查函数的单调性与奇偶性的综合应用,涉及抽象函数的应用,关键是求出的值.9.要得到函数的图象,只需将函数的图象()A. 向左平移个单位长度B. 向左平移个单位长度C. 向右平移个单位长度D. 向右平移个单位长度【答案】D【解析】【分析】先对函数进行变形,然后根据函数图像的平移规律即可得到答案.【详解】解:,故只需将函数的图象向右平移个单位长度就可得到,故选:D.【点睛】本题考查的知识点函数的图象变换,其中熟练掌握函数图象的平移法则,“左加右减,上加下减”,是解答本题的关键.属于基础题.10.设,,,则()A. B. C. D.【答案】A【解析】【分析】利用对数函数的单调性分析得出结果.【详解】解:由已知,又,,因为,所以,即,综合得:,故选:A.【点睛】本题考查对数式的大小比较,关键是要将对数式变为同底的形式,才方便比较大小,是基础题.11.函数,的值域是()A. B. C. D.【答案】D【解析】【分析】令,将函数转化为二次函数的值域问题求解即可.【详解】解:令,则原函数转化为,当时,,当时,,值域是,故选:D.【点睛】本题考查指数型二次函数的值域问题,可以利用换元法,注意要确定新元的范围,是基础题.12.已知外接圆的半径为4,且,,则的值是()A. B. 16 C. 48 D.【答案】C【解析】【分析】运用平面向量的三角形法则,以及外心的特点,可得为的中点,三角形为直角三角形,再由勾股定理和向量的数量积定义,即可求出结果.【详解】解:如图所示,的外接圆的半径为4,且,,,∴为的中点,即;又,为等边三角形,且边长为4,,由勾股定理得,,则.故选:C.【点睛】本题考查了平面向量的三角形法则和数量积的定义应用问题,也考查了三角形的外心概念与勾股定理的运用,是基础题.二、填空题:本题共4小题,每小题5分,共20分,请将答案填写在答卷的相应位置上.13.函数的最小正周期为______.【答案】【解析】【分析】根据最小正周期的公式求解即可.【详解】解:函数的最小正周期为,故答案为:【点睛】本题考查三角函数的最小正周期公式,是基础题.14.已知某幂函数的图象经过点,那么这个幂函数的解析式为______.【答案】【解析】【分析】设出幂函数的解析式,代入点的坐标,即可得出结果.【详解】解:设幂函数为,代入点,得,解得,所以这个幂函数的解析式为,故答案为:【点睛】本题考查待定系数法求幂函数的解析式,是基础题.15.函数的单调减区间为______.【答案】【解析】【分析】先求出函数的定义域,在定域内判断的单调减区间,进而可得原函数的的单调减区间.【详解】解:由已知函数定义域为,所以在上的单调减区间为,则函数的单调减区间为,故答案为:.【点睛】本题考查对数型符合函数的单调区间,注意要先求出函数的定义域,是基础题.16.若关于的函数在内有且仅有一个零点,则实数的取值范围是______.【答案】或【解析】【分析】分讨论,另外时,通过解得实数的取值范围.【详解】解:函数在区间仅有一个零点,当时,,解得,若,方程的根为,舍去;当,方程的根为,符合题意;当时,,解得或,由题可得,,解得,又当时,,此时方程另一根为,舍去;当时,,此时方程另一根为,符合题意,综上所述:实数的取值范围是或,故答案为:或.【点睛】本题主要考查函数的零点的存在性定理,要特别注意一些特殊情况的存在性,属于中档题.三、解答题:本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.17.求下列各式的值:(1)(2)【答案】(1)1;(2)-1【解析】【分析】(1)由对数的运算性质来计算即可;(2)利用同角三角函数基本关系,诱导公式进行变形计算即可.【详解】解:(1);(2)【点睛】本题(1)考查对数的运算性质,(2)考查同角三角函数基本关系,诱导公式,注意符号的确定,是基础题.18.已知向量,,当为何值时:(1)?(2)?(3)与的夹角是钝角?【答案】(1)-1;(2)9;(3)【解析】【分析】(1)利用向量共线定理即可得出;(2)利用,即可得出.(3)利用向量数量积小于0,不反向,求出即可.【详解】解:(1),,∵,∴,解得;(2)∵,∴,解得;(3)因为与的夹角是钝角,则向量的数量积小于0,不反向,∴,解得,且,.【点睛】本题考查了向量共线定理、等基础知识,属于基础题.19.销售甲、乙两种商品所得利润分别是(单位:万元),和(单位:万元),它们与投入资金(单位:万元)的关系有经验公式,.今将3万元资金投入经营甲、乙两种商品,其中对甲种商品投资(单位:万元).(1)试建立总利润(单位:万元)关于的函数关系式;(2)求出(1)中的最大值.【答案】(1);(2)的最大值为万元【解析】【分析】(1)通过设出甲投资以及乙投资的数目,设立函数表达式,根据函数式直接写出定义域;(2)对于(1)中的函数解析式,利用换元法转化成一个二次函数的形式,最后结合二次函数的最值求法得出函数的最大值,从而解决问题.【详解】解:(1);(2)令,则,当时,的最大值为万元答:关于的函数关系式为,的最大值为万元.【点睛】本题考查函数模型的选择与应用,通过对实际问题的分析,构造数学模型从而解决问题.需要对知识熟练的掌握并应用,属于基础题.20.函数()的最大值为3,其图象相邻两条对称轴之间的距离为,(1)求函数的解析式;(2)设,则,求的值【答案】(1);(2).【解析】【详解】(1)由三角函数性质得,最大值为A+1=3,∴A=2,周期,∴f(x)=2sin(2x-)+1(2),f()=2∴2sin(-)+1=2,得sin(-)=,=此处有视频,请去附件查看】21.已知函数是上的奇函数,当时,.(1)求的解析式;(2)用定义证明:函数在为减函数.【答案】(1)(2)证明见解析【解析】【分析】(1)令则,将代入,可得函数在的解析式,又,综合可求得的解析式;(2)设,为区间上的任意两个值,且,计算为正值,即可证明函数在为减函数.【详解】(1)令则,因为函数是上的奇函数,所以因为函数是上的奇函数,所以所以;(2)设,为区间上的任意两个值,且因为所以,,,所以函数在为减函数.【点睛】本题考查奇函数解析式的求法,注意不要漏掉,以及考查函数单调性的证明,考查学生计算能力,是基础题.22.已知函数,其中且.(1)若函数是奇函数,试证明:对任意的,恒有;(2)若对于,函数在区间上的最大值是3,试求实数的值;(3)设且,问:是否存在实数,使得对任意的,都有?如果存在,请求出的取值范围;如果不存在,请说明理由.【答案】(1)证明见解析(2)(3)存在,【解析】【分析】(1)由函数是奇函数,可得,代入计算即可证明;(2),,对分类讨论,利用对数函数的单调性即可得出;(3)假设存在实数,使得对任意的,都有,则等价于对任意的,的最小值大于的最大值.令,,可得其最大值.于是问题等价于,的最小值大于1,再利用复合函数的单调性即可得出.【详解】(1)证明:因为是定义域内的奇函数,所以对任意的,恒有由,得对任意的,恒有(2)当时,在区间是增函数,所以当时在区间是减函数,无解综上所述:(3)所以又因为,所以,又因为,所以因为对任意的,都有所以的最小值大于的最大值递减,所以的最小值为令,因,所以递增,所以的最大值为所以,解得.综上所述:满足题设的实数的取值范围是【点睛】本题考查了函数的奇偶性、复合函数的单调性、分类讨论思想方法,考查了推理能力与计算能力,属于难题.。
数学必修三习题答案

数学必修三习题答案【篇一:高一数学必修3全册各章节课堂同步习题(详解答案)】概念班次姓名[自我认知]:1.下面的结论正确的是( ).a. 一个程序的算法步骤是可逆的b. 一个算法可以无止境地运算下去的 c. 完成一件事情的算法有且只有一种 d. 设计算法要本着简单方便的原则 2.下面对算法描述正确的一项是 ( ). a.算法只能用自然语言来描述 b.算法只能用图形方式来表示 c.同一问题可以有不同的算法d.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征( ) a.抽象性 b.精确性 c.有穷性 d.唯一性4.算法的有穷性是指( )a.算法必须包含输出b.算法中每个操作步骤都是可执行的c.算法的步骤必须有限d.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤,从下列选项中选最好的一种算法() a.s1洗脸刷牙、s2刷水壶、s3烧水、s4泡面、s5吃饭、s6听广播 b.s1刷水壶、s2烧水同时洗脸刷牙、s3泡面、s4吃饭、s5听广播 c. s1刷水壶、s2烧水同时洗脸刷牙、s3泡面、s4吃饭同时听广播 d.s1吃饭同时听广播、s2泡面;s3烧水同时洗脸刷牙;s4刷水壶6.看下面的四段话,其中不是解决问题的算法是( )a.从济南到北京旅游,先坐火车,再坐飞机抵达b.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1c.方程x2?1?0有两个实根d.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15 7.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c?a,b的值;③输出斜边长c的值,其中正确的顺序是 ( ) a.①②③ b.②③①c.①③②d.②①③[课后练习]:8.若f?x?在区间?a,b?内单调,且f?a??f?b??0,则f?x?在区间?a,b?内( )a.至多有一个根 b.至少有一个根c.恰好有一个根 d.不确定9.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步:取a=89 ,b=96 ,c=99;第二步:____①______;第三步:_____②_____;第四步:输出计算的结果.10.写出求1+2+3+4+5+6+?+100的一个算法.可运用公式1+2+3+?+n= 第一步______①_______;第二步_______②________;第三步输出计算的结果.12.写出按从小到大的顺序重新排列x,y,z三个数值的算法.n(n?1)直接计算. 21.1.2程序框图[自我认知]: 1.算法的三种基本结构是()A.顺序结构、条件结构、循环结构B.顺序结构、流程结构、循环结构C.顺序结构、分支结构、流程结构D.流程结构、循环结构、分支结构2.程序框图中表示判断框的是()A.矩形框B.菱形框 d.圆形框 d.椭圆形框3.如图(1)、(2),它们都表示的是输出所有立方小于1000的正整数的程序框图,那么应分别补充的条件为( )⑴333⑵3a.⑴n≥1000 ? ⑵n<1000 ?b. ⑴n≤1000 ?⑵n≥1000 ?c. ⑴n<1000 ? ⑵n≥1000 ?d. ⑴n<1000 ?⑵n<1000 ?4.算法共有三种逻辑结构,即顺序逻辑结构,条件逻辑结构和循环逻辑结构,下列说法正确的是 ( ) a.一个算法只能含有一种逻辑结构 b.一个算法最多可以包含两种逻辑结构 c.一个算法必须含有上述三种逻辑结构d.一个算法可以含有上述三种逻辑结构的任意组合 [课后练习]:5.给出以下一个算法的程序框图(如下图所示),该程序框图的功能是( ) a.求输出a,b,c三数的最大数 b.求输出a,b,c三数的最小数3333c.将a,b,c按从小到大排列d.将a,b,c按从大到小排列第5题图第6题图6.右边的程序框图(如上图所示),能判断任意输入的数x的奇偶性:其中判断框内的条件是( )a.m?0?b.x?0 ?c.x?1 ?d.m?1?7.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构 ( ) a.顺序结构 b.条件结构和循环结构 c.顺序结构和条件结构 d.没有任何结构?x2?1(x?0)8.已知函数f?x??? ,设计一个求函数值的算法,并画出其程序框图(x?0)?2x?11.1.2程序框图(第二课时)[课后练习]:班次姓名1.如图⑴的算法的功能是____________________________.输出结果i=___,i+2=_____.2.如图⑵程序框图箭头a指向①处时,输出 s=__________. 箭头a指向②处时,输出 s=__________.3.如图⑷所示程序的输出结果为s=132, 则判断中应填a、i≥10?b、i≥11?c、i≤11? d、i≥12?4.如图(3)程序框图箭头b指向①处时,输出 s=__________. 箭头b指向②处时,输出 s=__________5、如图(5)是为求1~1000的所有偶数的和而设计的一个程序空白框图,将空白处补上。
最新2020年高一数学上册高效测评考试题4

第一章 1.1.3 第1课时(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=()A.{-2,-1,0,1}B.{-3,-2,-1,0}C.{-2,-1,0} D.{-3,-2,-1}解析:运用集合的运算求解.M∩N={-2,-1,0},故选C.答案: C2.设集合A={x|x+2=0},集合B={x|x2-4=0},则A∩B=()A.{-2} B.{2}C.{-2,2} D.∅解析:解出集合A,B后依据交集的概念求解.∵A={x|x+2=0},∴A={-2}.∵B={x|x2-4=0},∴B={-2,2}.∴A∩B={-2}.故选A.答案: A3.设集合A={x∈Z|-10≤x≤-1},B={ x∈Z||x|≤5},则A∪B中的元素个数是() A.10 B.11C.15 D.16解析:A={-10,-9,-8,-7,-6,…,-1},B={-5,-4,-3,-2,-1,0,1,2,3,4,5},∴A∪B={-10,-9,-8,…,-1,0,1,2,3,4,5},A∪B中共16个元素.答案: D4.已知集合A={x|x2-2x>0},B={x|-5<x<5},则()A.A∩B=∅B.A∪B=RC.B⊆A D.A⊆B解析:先求解集合A,再进行集合之间的运算.∵A={x|x>2或x<0},B={x|-5<x<5},∴A∩B={x|-5<x<0或2<x<5},A∪B=R.故选B.答案: B二、填空题(每小题5分,共10分)5.设集合A={x|x≥0},B={x|x<1},则A∪B=________.解析:结合数轴分析得A∪B=R.答案:R6.设集合A={x|-1<x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是________.解析:利用数轴分析可知,a>-1.答案:a>-1三、解答题(每小题10分,共20分)7.设集合A={2,-1,x2-x+1},B={2y,-4,x+4},C={-1,7},且A∩B=C,求实数x,y的值及A∪B.解析:由已知A={2,-1,x2-x+1},B={2y,-4,x+4},C={-1,7}且A∩B=C得:7∈A,7∈B且-1∈B,∴在集合A中x2-x+1=7,解得x=-2或3.当x=-2时,在集合B中,x+4=2,又2∈A,故2∈A∩B=C,但2∉C,故x=-2不合题意,舍去.当x=3时,在集合B中,x+4=7.故有2y=-1,解得y=-1,2经检验满足A ∩B =C .综上知,所求x =3,y =-12. 此时,A ={2,-1,7},B ={-1,-4,7},故A ∪B ={-4,-1,2,7}.8.已知A ={x |a <x ≤a +8},B ={x |x <-1,或x >5}.若A ∪B =R ,求a 的取值范围. 解析: 在数轴上标出集合A ,B ,如图.要使A ∪B =R ,则⎩⎪⎨⎪⎧ a +8≥5,a <-1,解得-3≤a <-1. 综上可知,a 的取值范围为-3≤a <-1.(10分)集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}.(1)求A ∩B ;(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围.解析: (1)∵B ={x |x ≥2},∴A ∩B ={x |2≤x <3}.(2)C =⎩⎨⎧⎭⎬⎫x ⎪⎪x >-a 2, B ∪C =C ⇒B ⊆C ,∴-a 2<2,∴a >-4.。
2020学年高一数学上学期第一次质量检测试题 新版 人教版

2019上学期高一第一次质量检测数学试卷第Ⅰ卷一.选择题:(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={0X -X |X 2=},B={ 0,1,2 },则A ∩B= ( )(A ){ 0 } (B ){ 0,1 } (C ){ 0,2 } (D ){ 0,1,2}2.若X=231+,则()2X 2+的值是( )(A )3 (B )23 (C )5 (D )33.若方程04X 8X 2=--的两个根是a,b 则b a 11+的值是( )(A )21(B )2 (C )21- (D )2-4.已知函数⎩⎨⎧<+≥-=6),2(6,4)(x x f x x x f 则=)3(f ( ) (A )1 (B) 2 (C )3 (D)45.已知集合A={X| X>2},B={X|X<M} 且A ∪B=R 则M 的可以是( )(A) -2 (B) 3 (C)2 (D) 06.设全集U=R ,B={x| |x|>2}, A={x|3x 4x 2+-<0},则图中阴影部分所表示的集合 是( )(A ){X| X<2} (B){X|-2≤X ≤2} (C ){X|-2≤X<1} (D ){X|1<X ≤2}7.设集合A={1x y |y 2-=},B={1x y |x 2-=}则下列结论中正确的是( )(A )A=B (B )B A ⊆ (C )A B ⊆ (D)A ∩B=[1,∞+)8.下列函数中与函数y=x 为同一函数的是( ).(A )y=|x| (B )33x y = (C )2x y = (D )x 1y =9.函数()1x 2+=x f ,则()[]1f f 的值等于( ).(A )2 (B )3 (C )4 (D )510.函数()x211x -+-=x f 定义域是( ). (A)[1,2) (B)[1,2)Y (2,∞+) (C)[1,∞+) (D )(∞-,2)Y (2,∞+)11.若函数[]4,2,2)(2-∈-=x x x x f ,则)(x f 的值域为( ) (A ) [-1,8] (B )[-1,16] (C ) [-2,8] (D )[-2,4]12.函数()12-x f 定义域是[-2,1],则()12+x f 定义域是( )(A )[-3,0] (B )[-3,-2] (C )[-2,0] (D )[-2,1]第Ⅱ卷二、填空题:(本大题共4小题,每小题5分.)13.若集合A={x|x-a>0},B={x|2-x<0}且A ∩B=A 则实数a 满足的条件是__________.(用集合表示)14. 不等式01x 1x 2≤+-的解集是__________.(用区间表示) 15.若函数()12-=ax x f ,a 为非零常数,且()[]11-=-f f 则a 值是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修1数学章节测试(6)—第二单元(指数函数)
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求
的,请把正确答案的代号填在题后的括号内(每小题5分,共
50分).
1.下列各式中成立的一项
( )
A.7177)(mnmn B.31243)3(
C.43433)(yxyx D.
33
39
2.化简)31()3)((656131212132bababa的结果
( )
A.a6 B.a C.a9 D.29a
3.设指数函数)1,0()(aaaxfx,则下列等式中不正确的是
( )
A.f(x+y)=f(x)·f(y) B.)()(yfxfyxf)(
C.)()]([)(Qnxfnxfn D.)()]([·)]([)(Nnyfxfxyfnnn
4.函数210)2()5(xxy
( )
A.}2,5|{xxx B.}2|{xx
C.}5|{xx D.}552|{xxx或
5.若指数函数xay在[-1,1]上的最大值与最小值的差是1,则底数a
等于 ( )
A.251 B. 251 C.251 D. 215
6.当a0时,函数yaxb和ybax的图象只可能是
( )
7.函数||2)(xxf的值域是
( )
A.]1,0( B.)1,0( C.),0( D.R
8.函数0,0,12)(21xxxxfx,满足1)(xf的x的取值范围
( )
A.)1,1( B. ),1(
C.}20|{xxx或 D.}11|{xxx或
9.函数22)21(xxy得单调递增区间是
( )
A.]21,1[ B.]1,( C.),2[ D.]2,21[
10.已知2)(xxeexf,则下列正确的是
( )
A.奇函数,在R上为增函数 B.偶函数,在R上为
增函数
C.奇函数,在R上为减函数 D.偶函数,在R上为
减函数
二、填空题:请把答案填在题中横线上(每小题6分,共24分).
11.已知函数f (x)的定义域是(1,2),则函数)2(xf的定义域
是 .
12.当a>0且a≠1时,函数f (x)=ax-2-3必过定点 .
13.计算33433233421428abaabaaba= .
14.已知-1是 .
三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分).
15.(12分)求函数yxx1511的定义域.
16.(12分)若a>0,b>0,且a+b=c,
求证:(1)当r>1时,ar+br<cr;(2)当r<1时,ar+br>cr.
17.(12分)已知函数)1(122aaayxx在区间[-1,1]上的最大值是
14,求a的值.
18.(12分)(1)已知mxfx132)(是奇函数,求常数m的值;
(2)画出函数|13|xy的图象,并利用图象回答:k为何值时,
方程|3X-1|=k无
解?有一解?有两解?
19.(14分)有一个湖泊受污染,其湖水的容量为V立方米,每天流
入湖的水量等于流出湖的水量. 现假设下雨和蒸发平衡,且污染
物和湖水均匀混合.
用)0(])0([)(perpgrptgtvr,表示某一时刻一立方米湖水中所
含污染物的克数(我们称其湖水污染质量分数),)0(g表示湖水污染
初始质量分数.
(1)当湖水污染质量分数为常数时,求湖水污染初始质量分数;
(2)分析rpg)0(时,湖水的污染程度如何.
20.(14分)已知函数11)(xxaaxf(a>1).
(1)判断函数f (x)的奇偶性;
(2)求f (x)的值域;
(3)证明f (x)在(-∞,+∞)上是增函数.
参考答案(6)
一、DCDDD AAD D A
二、11.(0,1); 12.(2,-2); 13.32a; 14.aaa3331 ;
三、
15. 解:要使函数有意义必须:
xxxxx10
1
0
1
0
∴定义域为:
xxRxx且01,
16. 解:rrrrrcbcacba,其中
10,10
cbc
a
.
当r>1时,1cbcacbcarr,所以
ar+br<cr;
当r<1时,1cbcacbcarr,所以ar+br>cr.
17.解: )1(122aaayxx, 换元为)1(122atatty,对称轴为1t.
当1a,at,即x=1时取最大值,略
解得 a=3 (a= -5舍去)
18.解: (1)常数
m=1
(2)当k<0时,直线y=k与函数|13|xy的图象无
交点,即方程无解;
当k=0或k1时, 直线y=k与函数|13|xy的图象有唯一的交点,所以方程有一解;
当0
因为)(tg为常数,)()(21tgtg,即0]][)0([21tvrtvreerpg, 则rpg)0(;
(2)设210tt,)()(21tgtg]][)0([21tvrtvreerpg
=2112])0([ttvrtvrtvreeerpg
因为0)0(rpg,210tt,)()(21tgtg. 污染越来越严重.
20.解:(1)是奇函数.(2)值域为(-1,1).(3)设x1<x2,
则
1111)()(221121xxxxaaa
a
xfxf
。=)1)(1()1)(1()1)(1(212121xxxxxxaaaaaa
∵a>1,x1<x2,∴a1x<a2x. 又∵a1x+1>0,a2x+1>0,
∴f (x1)-f (x2)<0,即f (x1)<f (x2).
函数f(x)在(-∞,+∞)上是增函数
.