高考数学专题二第三讲平面向量

合集下载

高考数学压轴专题最新备战高考《平面向量》知识点总复习附答案解析

高考数学压轴专题最新备战高考《平面向量》知识点总复习附答案解析

高中数学《平面向量》知识点归纳一、选择题 1.已知ABC V 中,2,3,60,2,AB BC ABC BD DC AE EC ==∠=︒==,则AD BE ⋅=u u u r u u u r ( )A .1B .2-C .12D .12- 【答案】C【解析】【分析】 以,BA BC u u u r u u u r 为基底,将,AD BE u u u r u u u r 用基底表示,根据向量数量积的运算律,即可求解.【详解】222,,33BD DC BD BC AD BD BA BC BA ===-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 11,22AE EC BE BC BA =∴=+u u u r u u u r u u u r , 211()()322AD BE BC BA BC BA ⋅=-⋅+u u u r u u u r u u u r u u u r u u u r u u u r 22111362BC BC BA BA =-⋅-u u u r u u u r u u u r u u u r 111123622=-⨯⨯⨯=. 故选:C.【点睛】本题考查向量的线性运算以及向量的基本定理,考查向量数量积运算,属于中档题. 2.在ABC ∆中,0OA OB OC ++=u u u r u u u r u u u r r ,2AE EB =u u u r u u u r ,AB AC λ=u u u r u u u r ,若9AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r ,则实数λ=( )A 3B 3C 6D 6【答案】D【解析】【分析】 将AO u u u r 、EC uuu r 用AB u u u r 、AC u u u r 表示,再代入9AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r 中计算即可.【详解】 由0OA OB OC ++=u u u r u u u r u u u r r ,知O 为ABC ∆的重心, 所以211()323AO AB AC =⨯+=u u u r u u u r u u u r ()AB AC +u u u r u u u r ,又2AE EB =u u u r u u u r , 所以23EC AC AE AC AB =-=-u u u r u u u r u u u r u u u r u u u r ,93()AO EC AB AC ⋅=+⋅u u u r u u u r u u u r u u u r 2()3AC AB -u u u r u u u r2223AB AC AB AC AB AC =⋅-+=⋅u u u r u u u r u u u r u u u r u u u r u u u r ,所以2223AB AC =u u u r u u u r ,||||AB AC λ===u u u r u u u r . 故选:D【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算,是一道中档题.3.下列说法中说法正确的有( ) ①零向量与任一向量平行;②若//a b r r ,则()a b R λλ=∈r r ;③()()a b c a b c ⋅⋅=⋅⋅r r r r r r ④||||||a b a b +≥+r r r r ;⑤若0AB BC CA ++=u u u r u u u r u u u r r ,则A ,B ,C为一个三角形的三个顶点;⑥一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底;A .①④B .①②④C .①②⑤D .③⑥ 【答案】A【解析】【分析】直接利用向量的基础知识的应用求出结果.【详解】对于①:零向量与任一向量平行,故①正确; 对于②:若//a b r r ,则()a b R λλ=∈r r ,必须有0b ≠r r ,故②错误;对于③:()()a b c a b c ⋅⋅=⋅⋅r r r r r r ,a r 与c r 不共线,故③错误;对于④:a b a b +≥+r r r r ,根据三角不等式的应用,故④正确;对于⑤:若0AB BC CA ++=u u u r u u r r ,则,,A B C 为一个三角形的三个顶点,也可为0r ,故⑤错误;对于⑥:一个平面内,任意一对不共线的向量都可以作为该平面内所有向量的基底,故⑥错误.综上:①④正确.故选:A.【点睛】本题考查的知识要点:向量的运算的应用以及相关的基础知识,主要考察学生的运算能力和转换能力,属于基础题.4.在平行四边形OABC 中,2OA =,OC =6AOC π∠=,动点P 在以点B 为圆心且与AC 相切的圆上,若OP OA OC λμ=+u u u r u u u r u u u r ,则43λμ+的最大值为( )A .2+B .3+C .5+D .7+ 【答案】D【解析】【分析】 先通过计算证明圆B 与AC 相切于点A ,再求出43OB OA BP OA λμ+=⋅+⋅u u u r u u u r u u u r u u u r ,再求出7OB OA ⋅=u u u r u u u r ,BP OA ⋅u u u r u u u r 的最大值为.【详解】如图所示,由2OA =,6AOC π∠=,由余弦定理得24+3221,1AC AC =-⨯=∴=, ∴90OCA BAC ∠=∠=o ,∴圆B 与AC 相切于点A ,又OP OA OC λμ=+u u u r u u u r u u u r, ∴243OP OA OA OC OA λμλμ⋅=+⋅=+u u u r u u u r u u u r u u u r u u u r; ∴()43OP OA OB BP OA OB OA BP OA λμ+=⋅=+⋅=⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ; 如图,过点B 作,BD OA ⊥连接,OB 由题得6BAD π∠=,所以3,,222AD DB OB ===∴==, 所以7cosBOA ∠==,所以27OB OA ⋅==u u u r u u u r ,因为BP OA ⋅u u u r u u u r 2cos0⨯=o ,∴43λμ+的最大值是7+.故选:D.【点睛】本题主要考查三角函数和余弦定理解三角形,考查平面向量的数量积运算和范围的求解,意在考查学生对这些知识的理解掌握水平和分析推理能力.5.如图,在梯形ABCD 中, 2DC AB =u u u r u u u r , P 为线段CD 上一点,且12DP PC =,E 为BC 的中点, 若EP AB AD λμ=+u u u r u u u r u u u r (λ, R μ∈),则λμ+的值为( )A .13B .13- C .0 D .12 【答案】B【解析】【分析】直接利用向量的线性运算,化简求得1526EP AD AB =-u u u v u u u v u u u v ,求得,λμ的值,即可得到答案. 【详解】由题意,根据向量的运算法则,可得:()1214111232326EP EC CP BC CD AC AB AB AC AB u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v =+=+=--=- ()1111522626AD AB AB AD AB =+-=-u u u v u u u v u u u v u u u v u u u v 又因为EP AB AD λμ=+u u u v u u u v u u u v ,所以51,62λμ=-=, 所以511623λμ+=-+=-,故选B. 【点睛】 本题主要考查了向量的线性运算及其应用,其中解答中熟记向量的线性运算法则,合理应用向量的三角形法则化简向量EP u u u v是解答的关键,着重考查了运算与求解能力,属于基础题.6.如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若(,)CA CE DB R λμλμ=+∈u u u r u u u r u u u r ,则λ+μ的值为( )A .65B .85C .2D .83【答案】B【解析】【分析】 建立平面直角坐标系,用坐标表示,,CA CE DB u u u r u u u r u u u r ,利用(,)CA CE DB R λμλμ=+∈u u u r u u u r u u u r ,列出方程组求解即可.【详解】建立如图所示的平面直角坐标系,则D (0,0).不妨设AB =1,则CD =AD =2,所以C (2,0),A (0,2),B (1,2),E (0,1),(2,2),(2,1),(1,2)CA CE DB ∴=-=-=u u u r u u u r u u u rCA CE DB λμ=+u u u r u u u r u u u r Q ∴(-2,2)=λ(-2,1)+μ(1,2), 2222λμλμ-+=-⎧∴⎨+=⎩解得6525λμ⎧=⎪⎪⎨⎪=⎪⎩则85λμ+=. 故选:B【点睛】本题主要考查了由平面向量线性运算的结果求参数,属于中档题.7.已知单位向量a r ,b r 的夹角为3π,(),c a b R μλμ+=λ+∈r u u r u u r ,若2λμ+=,那么c r 的最小值为( )AB C .2 D 【答案】D【解析】【分析】 利用向量的数量积的运算公式,求得12a b ⋅=r r ,再利用模的公式和题设条件,化简得到24c λμ=-u r ,最后结合基本不等式,求得1λμ≤,即可求解.【详解】由题意,向量,a b r r 为单位向量,且夹角为3π,所以11cos 11322a b a b π⋅=⋅=⨯⨯=r r r r , 又由(),c a b μλμ=λ+∈R r u u r u u r , 所以()22222222()4c a b a b λμλμλμλμλμλμλμλμ=+=++⋅=++=+-=-u r r r r r , 因为,R λμ+∈时,所以222()122λμλμ+⎛⎫≤== ⎪⎝⎭,当且仅当λμ=时取等号,所以23c ≥u r ,即c ≥u r 故选:D .【点睛】本题主要考查了平面向量的数量积的运算,以及向量的模的计算,其中解答中熟记向量的数量积和模的计算公式,以及合理应用基本不等式求解是解答的关键,着重考查了推理与运算能力.8.在ABC V 中,312AB AC ==,D 是AC 的中点,BD u u u r 在AC u u u r 方向上的投影为4-,则向量BA u u u r 与AC u u u r 的夹角为( )A .45°B .60°C .120°D .150° 【答案】C【解析】【分析】 设BDC α∠=,向量BA u u u r 与AC u u u r 的夹角为θ,BD u u u r 在AC u u u r 方向上的投影为cos =4BD α-u u u r ,利用线性代换并结合向量夹角公式即可求出夹角.【详解】312AB AC ==,D 是AC 的中点,则4AC =,2AD DC ==,向量BD u u u r 在AC u u u r 方向上的投影为4-,设BDA α∠=,向量BA u u u r 与AC u u u r的夹角为θ,则cos =4BD α-u u u r ,∴()cos ===BD DA AC BA AC BD AC DA AC BA AC BA AC BA ACθ+⋅⋅⋅+⋅⋅⋅⋅u u u r u u u r u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u r u u u r u u u r u u u r u u u r ()()cos cos180444211===1242BD AC DA AC AB AC α⋅+⋅⨯+-⨯-⨯︒⨯⋅-u u u u u r u u u r u u u u r u u u r u ur r u , 故夹角为120°,故选:C .【点睛】本题考查向量的投影,利用数量积求两个向量的夹角,属于中等题.9.已知菱形ABCD 的边长为4,60ABC ∠=︒,E 是BC 的中点2DF AF =-u u u r u u u r,则AE BF ⋅=u u u r u u u r ( )A .24B .7-C .10-D .12- 【答案】D【解析】【分析】 根据平面向量的基本定理,将AE BF ⋅u u u r u u u r 用基底,AB AD u u u r u u u r 表达,再根据平面向量的数量积公式求解即可.【详解】由已知得13AF AD =u u u r u u u r ,12BE BC =u u u r u u u r ,AD BC =u u u r u u u r ,所以1122AE AB BC AB AD =+=+u u u r u u u r u u u r u u u r u u u r ,13BF AF AB AD AB =-=-u u u r u u u r u u u r u u u r u u u r . 因为在菱形ABCD 中,60ABC ∠=︒,所以120BAD ∠=︒.又因为菱形ABCD 的边长为4,所以1||||cos1204482AB AD AB AD ⎛⎫⋅=⋅︒=⨯⨯-=- ⎪⎝⎭u u u r u u u r u u u r u u u r ,所以1123AE BF AB AD AB AD ⎛⎫⎛⎫⋅=+⋅-+= ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r 221111||||16(8)16126666AB AB AD AD --⋅+=--⨯-+⨯=-u u u r u u u r u u u r u u u r . 故选:D【点睛】本题考查平面向量的线性运算及向量的数量积,考查推理论证能力以及数形结合思想.10.已知向量m →,n →的夹角为60︒,且1m →=,m n →→-=n →=( ) A .1B .2C .3D .4 【答案】B【解析】【分析】设||n x →=,利用数量积的运算法则、性质计算即可.【详解】设||n x →=, 因为1m →=,向量m →,n →的夹角为60︒, 所以2213m n x x →→-=-+=,即220x x --=,解得2x =,或1x =-(舍去), 所以2n →=.故选:B【点睛】本题主要考查了向量的模的性质,向量数量积的运算,属于中档题.11.已知ABC V 为直角三角形,,6,82C BC AC π===,点P 为ABC V 所在平面内一点,则()PC PA PB ⋅+u u u r u u u r u u u r 的最小值为( )A .252-B .8-C .172-D .1758- 【答案】A【解析】【分析】 根据,2C π=以C 点建系, 设(,)P x y ,则22325()=2(2)222PC PA PB x y ⎛⎫⋅+-+-- ⎪⎝⎭u u u r u u u r u u u r ,即当3=2=2x y ,时,取得最小值. 【详解】如图建系,(0,0), (8,0), (0,6)C A B ,设(,)P x y ,(8,)PA x y =--u u u r ,(,6)PB x y =--u u u r ,则22()(,)(82,62)2826PC PA PB x y x y x x y y ⋅+=--⋅--=-+-u u u r u u u r u u u r22325252(2)2222x y ⎛⎫=-+--≥- ⎪⎝⎭. 故选:A.【点睛】本题考查平面向量数量积的坐标表示及其应用,根据所求关系式运用几何意义是解题的关键,属于中档题.12.如图,已知1OA OB ==u u u v u u u v ,2OC =u u u v ,4tan 3AOB ∠=-,45BOC ∠=︒,OC mOA nOB u u u v u u u v u u u v =+,则m n等于( )A .57B .75C .37D .73【答案】A【解析】【分析】依题意建立直角坐标系,根据已知角,可得点B 、C 的坐标,利用向量相等建立关于m 、n 的方程,求解即可.【详解】以OA 所在的直线为x 轴,过O 作与OA 垂直的直线为y 轴,建立直角坐标系如图所示:因为1OA OB ==u u u r u u u r ,且4tan 3AOB ∠=-,∴34cos sin 55AOB AOB ∠=-∠=,, ∴A (1,0),B (3455-,),又令θAOC ∠=,则θ=AOB BOC ∠-∠,∴413tan θ413--=-=7, 又如图点C 在∠AOB 内,∴cos θ2,sin θ72,又2OC u u u v =C (1755,), ∵OC mOA nOB =+u u u r u u u r u u u r ,(m ,n ∈R ),∴(1755,)=(m,0)+(3455n n -,)=(m 35n -,45n ) 即15= m 35n -,7455n =,解得n=74,m=54,∴57m n =, 故选A .【点睛】 本题考查了向量的坐标运算,建立直角坐标系,利用坐标解决问题是常用的处理向量运算的方法,涉及到三角函数的求值,属于中档题.13.设双曲线()222210,0x y a b a b-=>>的右焦点为F ,过点F 作x 轴的垂线交两渐近线于,A B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,225+=8λμ,则双曲线的离心率为( ) A .233 B 35 C .322 D .98【答案】A【解析】【分析】先根据已知求出,u λ,再代入225+=8λμ求出双曲线的离心率. 【详解】由题得双曲线的渐近线方程为b y x a =±,设F(c,0),则2(,),(,),(,),bc bc b A c B c P c a a a-因为(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,所以2(,)((),())b bc c u c u a aλλ=+-.所以,,bu c u cλλ+=-= 解之得,.22b c c bu c cλ+-== 因为225+=8λμ,所以22522()(),3, 3.22833b c c b c e c c a +-+=∴=∴= 故答案为A 【点睛】本题主要考查双曲线的几何性质和离心率的求法,意在考查学生对这些基础知识的掌握能力.解答本题的关键是根据(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v求出,u λ.14.已知四边形ABCD 是平行四边形,点E 为边CD 的中点,则BE =u u u rA .12AB AD -+u u ur u u u rB .12AB AD -u u ur u u u rC .12AB AD +u u u r u u u rD .12AB AD -u u u r u u u r【答案】A 【解析】 【分析】由平面向量的加法法则运算即可. 【详解】如图,过E 作//,EF BC 由向量加法的平行四边形法则可知1.2BE BF BC AB AD =+=-+u u u v u u u v u u u v u u uv u u u v故选A. 【点睛】本题考查平面向量的加法法则,属基础题.15.在ABC V 中,若2AB BC BC CA CA AB ⋅=⋅=⋅u u u v u u u v u u u v u u u v u u u v u u u v,则AB BC=u u u v u u u v ( )A .1B .22C .32D .62【答案】C 【解析】 【分析】根据题意,由AB BC BC CA ⋅=⋅uu u v uu u v uu u v uu v可以推得AB AC =,再利用向量运算的加法法则,即可求得结果. 【详解】由题意得,AB BC BC CA ⋅=⋅uu u v uu u v uu u v uu v ,即A A =0+BC B C ⋅uu u v uu u v uuu v(),设BC 的中点为D ,则AD BC ⊥,即ABC V 为等腰三角形,B=C AB AC =∠∠,又因为2BC CA CA AB ⋅=⋅uu u v uu v uu v uu u v 即2222222C C cos 2C 2C cos 112C +22232C 2AB BC CA A B AB BC B A CA B CBC A BC A BC⋅=⋅-=-+-=-+⨯=uu u v uu u v uu v uu u v uuv uu u v uu u v uu u v uu v uuvuu u v uu u v uu u v uu u v uu u v ()所以3AB BC=uu u v uu u v . 【点睛】本题主要考查平面向量的线性运算.16.如图,在圆O 中,若弦AB =3,弦AC =5,则AO uuu v ·BC uuu v的值是A .-8B .-1C .1D .8【答案】D 【解析】【分析】 【详解】因为AO AC CO AB BO =+=+u u u v u u u v u u u v u u u v u u u v,所以1()2AO AC BO AB CO =+++u u u v u u u v u u u v u u u v u u u v ,而BC AC AB BO CO =-=-u u u v u u u v u u u v u u u v u u u v,所以1()2BC AC AB BO CO =-+-u u u v u u u v u u u v u u u v u u u v ,则1()()4AO BC AC AB CO BO AC AB BO CO ⋅=+++-+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v1()()()()()()4AC AB AC AB AC AB BO CO CO BO AC AB =+-++-++-u u uv u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ()()CO BO BO CO ++-u u u v u u u v u u u v u u u v221(||4AC AB AC BO AC CO AB BO AB CO =-+⋅-⋅+⋅-⋅u u uv u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 22||)CO AC CO AB BO AC BO AB BO CO +⋅-⋅+⋅-⋅+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)()42AC AB AC BO AB CO =-+⋅-⋅u u uv u u u v u u u v u u u v u u u v u u u v 2211(||)[()]42AC AB AB BC BO AB CO =-++⋅-⋅u u uv u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)()42AC AB AB BC BC BO =-+⋅+⋅u u uv u u u v u u u v u u u v u u u v u u u v 2211(||)42AC AB AO BC =-+⋅u u u v u u u v u u uv u u u v 所以221(||)82AO BC AC AB ⋅=-=u u u v u u u v u u u v u u u v ,故选D17.已知ABC V 是边长为1的等边三角形,若对任意实数k ,不等式||1k AB tBC +>u u u r u u u r恒成立,则实数t 的取值范围是( ).A .,33⎛⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭B .,33⎛⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .3⎛⎫+∞ ⎪ ⎪⎝⎭D .,3⎛⎫+∞ ⎪ ⎪⎝⎭【答案】B 【解析】 【分析】根据向量的数量积运算,将目标式转化为关于k 的二次不等式恒成立的问题,由0<n ,即可求得结果. 【详解】因为ABC V 是边长为1的等边三角形,所以1cos1202AB BC ⋅=︒=-u u u r u u u r ,由||1k AB tBC +>u u u r u u u r 两边平方得2222()2()1k AB kt AB BC t BC +⋅+>u u u r u u u r u u u r u u u r ,即2210k kt t -+->,构造函数22()1f k k tk t =-+-, 由题意,()22410t t ∆--<=,解得3t <-或3t >. 故选:B. 【点睛】本题考查向量数量积的运算,以及二次不等式恒成立问题求参数范围的问题,属综合中档题.18.已知A ,B 是圆224+=O: x y 上的两个动点,||2AB =u u u r,1233OC OA OB =+u u u r u u u r u u u r ,若M 是线段AB 的中点,则OC OM ⋅u u u r u u u u r的值为( ).AB.C .2 D .3【答案】D 【解析】 【分析】判断出OAB ∆是等边三角形,以,OA OB u u u r u u u r 为基底表示出OM u u u u r ,由此求得OC OM ⋅u u u r u u u u r的值.【详解】圆O 圆心为()0,0,半径为2,而||2AB =u u u r,所以OAB ∆是等边三角形.由于M 是线段AB 的中点,所以1122OM OA OB =+u u u u r u u u r u u u r.所以OC OM ⋅u u u r u u u u r 12331122OA O O O B A B ⎛⎫=+⋅⎛⎫+ ⎪⎝ ⎪⎭⎝⎭u u uu u u r u u u r r u u u r 22111623OA OA OB OB=+⋅⋅+u u u r u u u r u u u r u u u r 21422cos603323=+⨯⨯⨯+=o . 故选:D【点睛】本小题主要考查用基底表示向量,考查向量的数量积运算,考查数形结合的数学思想方法,属于中档题.19.已知向量()1,3a =-v ,()3,b m =v ,若a b ⊥v v ,则2a b +vv 等于( )A .10B .16C .52D .410【答案】C 【解析】 【分析】先利用向量垂直的坐标表示求出实数m 的值,得出向量b r 的坐标,并计算出向量2a b +r r,最后利用向量模的坐标运算得出结果. 【详解】()1,3a =-r Q ,()3,b m =r ,a b ⊥r r,则1330a b m ⋅=⨯-=r r ,得1m =,()3,1b ∴=r , 则()()()221,33,15,5a b +=-+=-r r ,因此,()2225552a b +=+-=r r C.【点睛】本题考查向量垂直的坐标表示以及向量模的坐标运算,意在考查学生对这些公式的理解掌握情况,考查运算求解能力,属于中等题.20.已知单位向量,a b r r满足313a b +=r r,则a r 与b r 的夹角为A .6π B .4π C .3π D .2π 【答案】C 【解析】由3a b +=r r 22236913a b a a b b +=+⋅+=r rr r r r ,又因为单位向量,a b r r ,所以1632a ba b ⋅=⇒⋅=rr r r ,所以向量,a b r r 的夹角为1cos ,2a b a b a b ⋅〈〉==⋅r r r r r r,且,[0,]a b π〈〉∈r r ,所以,3a b π〈〉∈r r ,故选C.。

高考数学基础知识综合复习专题2平面向量的几何意义极化恒等式等和线

高考数学基础知识综合复习专题2平面向量的几何意义极化恒等式等和线

专题(2) 平面向量的几何意义、极化恒等式、等和线1.已知G 是△ABC 的重心,若GC ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +y AC ⃗⃗⃗⃗⃗ ,x ,y ∈R ,则x+y=( ) A.-1 B.1C.13D.-132.(2014新课标全国Ⅱ卷)设向量a ,b 满足|a +b |=√10,|a -b |=√6,则a ·b =( ) A.1 B.2C.3D.53.已知平面向量a ,b (a ≠b )满足|a|=1,且a 与b-a 的夹角为150°,若c =(1-t )a +t b (t ∈R ),则|c |的最小值为( ) A.1 B.14C.12D.√324.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一.每年新春佳节,我国许多地区的人们都有贴窗花的习俗,以此达到装点环境、渲染气氛的目的,并寄托着辞旧迎新、接福纳祥的愿望.图1是一张由卷曲纹和回纹构成的正六边形剪纸窗花,已知图2中正六边形ABCDEF 的边长为2,圆O 的圆心为正六边形的中心,半径为1,若点P 在正六边形的边上运动,MN 为圆O 的直径,则PM ⃗⃗⃗⃗⃗⃗ ·PN⃗⃗⃗⃗⃗⃗ 的取值范围是( )A.[2,4]B.[2,3]C.32,4D.32,35.如图,在△ABC 中,AB=2,AC=3,BC 边的垂直平分线分别与BC ,AC 交于点D ,E ,若P 是线段DE 上的动点,则PA⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ 的值为( )A.与角A 有关,且与点P 的位置有关B.与角A 有关,但与点P 的位置无关C.与角A 无关,但与点P 的位置有关D.与角A 无关,且与点P 的位置无关6.在△ABC 中,∠C=90°,AC=4,BC=3,D 是AB 的中点,E ,F 分别是边BC ,AC 上的动点,且EF=1,则DE ⃗⃗⃗⃗⃗ ·DF ⃗⃗⃗⃗⃗ 的最小值等于( ) A.√54B.154C.174D.√1747.在△ABC 中,AB=2,C=30°,则AB⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ 的取值范围是 . 8.在扇形OAB 中,∠AOB=60°,C 为弧AB 上的一个动点.若OC ⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ +y OB ⃗⃗⃗⃗⃗ ,则3x+y 的取值范围是 .9.已知△ABC 中,AB=7,AC=8,BC=9,P 是平面ABC 内一点,满足PA ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗⃗ =-7,则|PB ⃗⃗⃗⃗⃗ |的取值范围是 .10.如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BA ⃗⃗⃗⃗⃗ ·CA ⃗⃗⃗⃗⃗ =4,BF ⃗⃗⃗⃗⃗ ·CF ⃗⃗⃗⃗⃗ =-1,则BE ⃗⃗⃗⃗⃗ ·CE⃗⃗⃗⃗⃗ 的值是 .11.已知|AB⃗⃗⃗⃗⃗ |=|AC ⃗⃗⃗⃗⃗ |=1,AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 所成角为60°,点P 满足|AP ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ |≤1,若AP ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +y AC ⃗⃗⃗⃗⃗ ,则x+y 的最大值为 .12.正方形ABCD 的边长为√2,动圆Q 的半径为1,圆心在线段CB (含端点)上运动,P 是圆Q 上及其内部的动点,设向量AP ⃗⃗⃗⃗⃗ =m AB ⃗⃗⃗⃗⃗ +n AD ⃗⃗⃗⃗⃗ (m ,n ∈R ),求m+n 的取值范围.专题(2) 平面向量的几何意义、极化恒等式、等和线1.C 解析设D 是BC 中点,由重心的定义可知:AG ⃗⃗⃗⃗⃗ =23AD ⃗⃗⃗⃗⃗ =23·12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=13(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ),所以GC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AG ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −13(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=-13AB ⃗⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗⃗ .所以x+y=-13+23=13.故选C. 2.A 解析由极化恒等式可知,a ·b =(a+b)2-(a -b)24=1.3.C 解析如图所示,设AB ⃗⃗⃗⃗⃗ =a ,AC ⃗⃗⃗⃗⃗ =b ,则BC ⃗⃗⃗⃗⃗ =b-a ,可令BD ⃗⃗⃗⃗⃗⃗ =t (b-a ),则AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BD⃗⃗⃗⃗⃗⃗ =a +t (b-a )=(1-t )a +t b =c ,点D 在BC 上,因为a 与b-a 的夹角为150°,则∠ABC=30°,当AD ⊥BC 时,线段AD 最短,此时|c |取最小值, 即|c |min =|AB ⃗⃗⃗⃗⃗ |sin30°=12.故选C . 4.B 解析如图,取AF 的中点Q ,根据题意,△AOF 是边长为2的正三角形,易得|OQ|=√3,又PM ⃗⃗⃗⃗⃗⃗ ·PN⃗⃗⃗⃗⃗⃗ =(PO ⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ )·(PO ⃗⃗⃗⃗⃗ +ON ⃗⃗⃗⃗⃗⃗ )=|PO ⃗⃗⃗⃗⃗ |2+PO ⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗⃗ +PO ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗⃗ =|PO ⃗⃗⃗⃗⃗ |2+PO ⃗⃗⃗⃗⃗ ·(ON ⃗⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ )-1=|PO⃗⃗⃗⃗⃗ |2-1.根据图形可知,当点P 位于正六边形各边的中点时|PO|有最小值为√3,此时|PO ⃗⃗⃗⃗⃗ |2-1=2,当点P 位于正六边形的顶点时,|PO|有最大值为2,此时|PO⃗⃗⃗⃗⃗ |2-1=3,所以2≤PM ⃗⃗⃗⃗⃗⃗ ·PN ⃗⃗⃗⃗⃗⃗ ≤3.故选B . 5.D 解析(向量拆解)PA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =(PD ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ )·BC ⃗⃗⃗⃗⃗ =PD ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =DA ⃗⃗⃗⃗⃗ ·BC⃗⃗⃗⃗⃗ =-12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )·(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=-12(AC 2-AB 2)=-52,故PA⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ 的值与角A 无关,且与点P 的位置无关,故选D . 6.B 解析DE ⃗⃗⃗⃗⃗ ·DF ⃗⃗⃗⃗⃗ =(DE ⃗⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗)2-(DE ⃗⃗⃗⃗⃗⃗ -DF ⃗⃗⃗⃗⃗)24=DH ⃗⃗⃗⃗⃗⃗ 2−EF ⃗⃗⃗⃗⃗ 24=DH⃗⃗⃗⃗⃗⃗ 2−14(H 为EF 中点),又因为CH+DH ≥CD ,所以DH ≥CD-CH=52−12=2.所以DE ⃗⃗⃗⃗⃗ ·DF ⃗⃗⃗⃗⃗ =DH⃗⃗⃗⃗⃗⃗ 2−14≥4-14=154. 7.[-6,2] 解析由AB=2,C=30°可知△ABC 的外接圆半径r=2,AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =-|AB ⃗⃗⃗⃗⃗ ||BC ⃗⃗⃗⃗⃗ |cos B=-2×4sin A cos B=-4[sin(A+B )+sin(A-B )]=-2-4sin(A-B )∈[-6,2].8.[1,3] 解析如图,取点D 使得OD ⃗⃗⃗⃗⃗⃗ =13OA ⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ +y OB ⃗⃗⃗⃗⃗ =3x OD ⃗⃗⃗⃗⃗⃗ +y OB ⃗⃗⃗⃗⃗ ,作一系列与BD 平行的直线与圆弧相交,构造等高线模型,易知:当点C 与点A 重合时,3x+y 取最大值3,点C 位于直线BD 上时(即点C 与点B 重合时),3x+y 取得最小值1,故3x+y 的取值范围是[1,3]. 9.[4,10] 解析设AC 中点为M , 则PA ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗⃗ =(PA ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ )2-(PA ⃗⃗⃗⃗⃗ -PC⃗⃗⃗⃗⃗ )24=|PM ⃗⃗⃗⃗⃗⃗ |2-16=-7, ∴|PM⃗⃗⃗⃗⃗⃗ |=3. ∴点P 在以M 为圆心,3为半径的圆上.由平行四边形性质(2|BM|)2+|AC|2=2(|BA|2+|BC|2)知|BM|=7, ∴|PB⃗⃗⃗⃗⃗ |的取值范围是[4,10]. 10.78解析由题可知:BA ⃗⃗⃗⃗⃗ ·CA ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ 2−BC⃗⃗⃗⃗⃗ 24=4, BF ⃗⃗⃗⃗⃗ ·CF ⃗⃗⃗⃗⃗ =FB ⃗⃗⃗⃗⃗ ·FC ⃗⃗⃗⃗⃗ =FD ⃗⃗⃗⃗⃗ 2−BC ⃗⃗⃗⃗⃗ 24=AD ⃗⃗⃗⃗⃗⃗ 29−BC⃗⃗⃗⃗⃗ 24=-1,∴AD ⃗⃗⃗⃗⃗ 2=458,BC⃗⃗⃗⃗⃗ 2=132.∴BE ⃗⃗⃗⃗⃗ ·CE ⃗⃗⃗⃗⃗ =EB⃗⃗⃗⃗⃗ ·EC ⃗⃗⃗⃗⃗ =ED ⃗⃗⃗⃗⃗ 2−BC ⃗⃗⃗⃗⃗ 24=4AD ⃗⃗⃗⃗⃗⃗ 29−BC ⃗⃗⃗⃗⃗ 24=78.11.2√33+1 解析如图所示,点P 的轨迹为以C 为圆心、1为半径的圆.由等和线分析,当点P 在BC 上时x+y=1,当PC ⊥BC 时,在点P 的切线和BC 平行,此时x+y 最大.由相似性可得(x+y )max =APAD =2√33+1.12.解如图,当点P在BD上时,x+y=1;当点Q为点B时,点P在经过点A且与BD平行的直线上时,x+y=0; 当点Q为点C时,点P在经过点E且与BD平行的直线上时,x+y=3, 故x+y的取值范围是[0,3].。

2020年高考数学(理)总复习:平面向量(解析版)

2020年高考数学(理)总复习:平面向量(解析版)

2020年高考数学(理)总复习:平面向量题型一 平面向量的概念及线性运算 【题型要点】对于利用向量的线性运算、共线向量定理和平面向量基本定理解决“用已知向量(基向量)来表示一些未知向量”的问题.解决的关键是:①结合图形,合理运用平行四边形法则或三角形法则进行运算;②善于用待定系数法【例1】在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为( )A .3B .2 2 C. 5D .2【解析】 如图所示,建立平面直角坐标系:设A (0,1),B (0,0),C (2,0),D (2,1),P (x ,y ),根据等面积公式可得圆的半径r =25,即圆C 的方程是(x -2)2+y 2=45,AP →=(x ,y -1),AB →=(0,-1),AD →=(2,0),若满足AP →=λAB →+μAD →,即⎩⎪⎨⎪⎧x =2μy -1=-λ,μ=x 2,λ=1-y ,所以λ+μ=x 2-y +1,设z =x 2-y +1,即x 2-y +1-z =0,点P (x ,y )在圆(x -2)2+y 2=45上,所以圆心到直线的距离d ≤r ,即|2-z |14+1≤25,解得1≤z ≤3,所以z 的最大值是3,即λ+μ的最大值是3.【答案】 A【例2】.点O 为△ABC 内一点,且满足OA →+OB →+4OC →=0,设△OBC 与△ABC 的面积分别为S 1、S 2,则S 1S 2=( )A.18B.16C.14D.12【解析】 延长OC 到D ,使OD =4OC ,延长CO 交AB 于E .∵O 为△ABC 内一点,且满足OA →+OB →+4OC →=0,∴OD →+OA →+OB →=0,∴O 为△DAB 重心,E 为AB 中点,∴OD ∶OE =2∶1,∴OC ∶OE=1∶2,∴CE ∶OE =3∶2,∴S △AEC =S △BEC ,S △BOE =2S △BOC .∵△OBC 与△ABC 的面积分别为S 1、S 2,∴S 1S 2=16.故选B.【答案】 B .题组训练一 平面向量的概念及线性运算1.在梯形ABCD 中,AB →=3DC →,则BC →等于( ) A .-13AB →+23AD →B .-23AB →+43AD →C.23AB →-AD → D .-23AB →+AD →【解析】 在线段AB 上取点E ,使BE =DC ,连接DE ,则四边形BCDE 为平行四边形,则BC →=ED →=AD →-AE →=AD →-23AB →;故选D.【答案】 D2.已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足:OP →=13⎪⎭⎫ ⎝⎛++C O B O A O22121,则P 一定为△ABC 的( )A .重心B .AB 边中线的三等分点(非重心)C .AB 边中线的中点D .AB 边的中点【解析】 如图所示:设AB 的中点是E ,∵O 是三角形ABC 的重心,OP →=13⎪⎭⎫ ⎝⎛++C O B O A O 22121=13()OE →+2OC →,∵2EO →=OC →, ∴OP →=13()4EO →+OE →=EO →,∴P 在AB 边的中线上,是中线的三等分点,不是重心,故选B.【答案】 B3.设P 是△ABC 所在平面内的一点,且CP →=2P A →,则△P AB 与△PBC 的面积的比值是( )A.13B.12C.23D.34【解析】 因为CP →=2P A →,所以|CP →||P A →|=21,又△P AB 在边P A 上的高与△PBC 在边PC 上的高相等,所以S △P AB S △PBC =|P A →||CP →|=12.【答案】 B题型二 平面向量的平行与垂直 【题型要点】(1)设a =(x 1,y 1),b =(x 2,y 2): ①a ∥b ⇒a =λb (b ≠0);②a ∥b ⇔x 1y 2-x 2y 1=0.至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.(2)设非零向量a =(x 1,y 1),b =(x 2,y 2):a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0. (3)利用向量平行或垂直的充要条件可建立方程或函数是求参数的取值.【例3】已知向量a =(2,-4),b =(-3,x ),c =(1,-1),若(2a +b )⊥c ,则|b |=( )A.9 B.3C.109 D.310【解析】向量a=(2,-4),b=(-3,x),c=(1,-1),∴2a+b=(1,x-8),由(2a+b)⊥c,可得1+8-x=0,解得x=9.则|b|=(-3)2+92=310.故选D.【答案】 B【例4】.已知a=(3,2),b=(2,-1),若λa+b与a+λb平行,则λ=________.【解析】∵a=(3,2),b=(2,-1),∴λa+b=(3λ+2,2λ-1),a+λb=(3+2λ,2-λ),∵λa+b∥a+λb,∴(3λ+2)(2-λ)=(2λ-1)(3+2λ),解得λ=±1【答案】±1题组训练二平面向量的平行与垂直1.设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=________.【解析】由|a+b|2=|a|2+|b|2,得a⊥b,所以m×1+1×2=0,解得m=-2.【答案】-22.已知向量a=(3,1),b=(1,3),c=(k,-2),若(a-c)∥b,则向量a与向量c的夹角的余弦值是()A.55 B.15C.-55D.-15【解析】∵a=(3,1),b=(1,3),c=(k,-2),∴a-c=(3-k,3),∵(a-c)∥b,∴(3-k)·3=3×1,∴k=2,∴a·c=3×2+1×(-2)=4,∴|a|=10,|c|=22,∴cos 〈a ,b 〉=a ·c |a |·|c |=410·22=55,故选A. 【答案】 A题型三 平面向量的数量积 【题型要点】(1)涉及数量积和模的计算问题,通常有两种求解思路: ①直接利用数量积的定义; ②建立坐标系,通过坐标运算求解.(2)在利用数量积的定义计算时,要善于将相关向量分解为图形中模和夹角已知的向量进行计算.求平面向量的模时,常把模的平方转化为向量的平方.【例5】在平行四边形ABCD 中,|AD →|=3,|AB →|=5,AE →=23AD →,BF →=13BC →,cos A =35,则|EF →|=( )A.14 B .2 5 C .4 2D .211【解析】如图,取AE 的中点G ,连接BG ∵AE →=23AD →,BF →=13BC →,∴AG →=12AE →=13AD →=13BC →=BF →,∴EF →=GB →,∴|GB →|2=|AB →-AG |2=AB →2-2AB →·AG →+AG →2=52-2×5×1×35+1=20,∴|EF →|=|GB →|=25,故选B. 【答案】 B【例6】.已知A ,B 是圆O :x 2+y 2=4上的两个动点,|AB →|=2,OC →=53OA →-23OB →.若M是线段AB 的中点,则OC →·OM →的值为( )A .3B .2 3C .2D .-3【解析】 因为点M 是线段AB 的中点,所以OM →=12()OA →+OB →,|OA =|OB |=|AB |=2,所以△ABC 是等边三角形,即〈OA →,OB →〉=60°,OA →·OB →=2×2×cos60°=2,OC →·OM →=⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝⎛-B O A O B O A O21213235=56OA →2-13OB 2+12OA →·OB → =56×22-13×22+12×2=3,故选A. 【答案】 A题组训练三 平面向量的数量积1.已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小是( )A .-2B .-32C .-43D .-1【解析】 以BC 为x 轴,BC 的垂直平分线AD 为y 轴,D 为坐标原点建立坐标,则A (0,3),B (-1,0),C (1,0),设P (x ,y ),所以P A →=(-x ,3-y ),PB →=(-1-x ,-y ),PC →=(1-x ,-y ) 所以PB →+PC →=(-2x ,-2y ),P A →·(PB →+PC →)=2x 2-2y (3-y )=2x 2+2223⎪⎪⎭⎫ ⎝⎛-y -32≥-32 当P ⎪⎪⎭⎫ ⎝⎛23,0时,所求的最小值为-32,故选B.【答案】 B2.已知向量|OA →|=3,|OB →|=2,OC →=mOA →+nOB →,若OA →与OB 的夹角为60°,且OC →⊥AB →,则实数mn的值为( )A.16B.14 C .6D .4【解析】 OA →·OB →=3×2×cos60°=3, ∵OC →=mOA →+nOB →,OC →⊥AB →,∴(mOA →+nOB →)·AB →=(mOA →+nOB →)·(OB →-OA →)=(m -n )OA →·OB →-mOA →2+nOB →2=0,∴3(m -n )-9m +4n =0,∴m n =16,故选A.【答案】 A题型四 数与形相辅相成求解向量问题【例7】 在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的取值范围是( )A .[4,6]B .[19-1,19+1]C .[23,27]D .[7-1,7+1] 【解析】 法一:设出点D 的坐标,利用向量的坐标运算公式及向量模的运算公式求解.设D (x ,y ),则由|CD →|=1,C (3,0),得(x -3)2+y 2=1. 又∵OA →+OB →+OD →=(x -1,y +3),∴|OA →+OB →+OD →|=(x -1)2+(y +3)2.∴|OA →+OB →+OD →|的几何意义为点P (1,-3)与圆(x -3)2+y 2=1上点之间的距离,由|PC |=7知,|OA →+OB →+OD →|的最大值是1+7,最小值是7-1.故选D.法二:根据向量OA →+OB →的平行四边形法则及减法法则的几何意义,模的几何意义求解. 如图,设M (-1,3),则OA →+OB →=OM →,取N (1,-3),∴OM →=-ON →.由|CD →|=1,可知点D 在以C 为圆心,半径r =1的圆上, ∴OA →+OB →+OD →=OD →-ON →=ND →,∴|OA →+OB →+OD →|=|ND →|,∴|ND →|max =|NC →|+1=7+1,|ND →|min =7-1. 【答案】 D题组训练四 数与形相辅相成求解向量问题已知|b |=1,非零向量a 满足〈a ,b -a 〉=120°,则|a |的取值范围是________. 【解析】如图,设CA →=b ,CB →=a ,则b -a =BA →,在△ABC 中,AC =1,∠ABC =60°. 根据圆的性质:同弧所对的圆周角相等.作△ABC 的外接圆,当BC 为圆的直径时,|a |最大,此时|a |=BC =1sin 60°=233; 当B ,C 无限接近时,|a |=BC →0.故|a |的取值范围是⎥⎦⎤⎝⎛332,0 【答案】 ⎥⎦⎤⎝⎛332,0 【专题训练】 一、选择题1.已知向量a =(2,-4),b =(-3,x ),c =(1,-1),若(2a +b )⊥c ,则|b |=( ) A .9 B .3 C.109D .310【解析】 向量a =(2,-4),b =(-3,x ),c =(1,-1),∴2a +b =(1,x -8), 由(2a +b )⊥c ,可得1+8-x =0,解得x =9.则|b |=(-3)2+92=310.故选D. 【答案】 D2.已知向量a =(1,k ),b =(2,2),且a +b 与a 共线,那么a ·b 的值为( ) A .1 B .2 C .3D .4【解析】 ∵向量a =(1,k ),b =(2,2), ∴a +b =(3,k +2),又a +b 与a 共线. ∴(k +2)-3k =0,解得k =1,∴a ·b =(1,1)·(2,2)=1×2+1×2=4,故选D. 【答案】 D3.设向量a ,b 满足|a |=1,|b |=2,且a ⊥(a +b ),则向量a 在向量a +2b 方向上的投影为( )A .-1313B.1313C .-113D.113【解析】∵a ⊥(a +b ),∴a ·(a +b )=1+a ·b =0,∴a ·b =-1,∴|a +2b |2=1+4a ·b +16=13,则|a +2b |=13,又a ·(a +2b )=a ·(a +b )+a ·b =-1,故向量a 在向量a +2b 方向上的投影为-113=-1313.选A.【答案】 A4.已知A ,B ,C 是圆O 上的不同的三点,线段CO 与线段AB 交于点D ,若OC →=λOA →+μOB →(λ∈R ,μ∈R ),则λ+μ的取值范围是( )A .(0,1)B .(1,+∞)C .(1,2]D .(-1,0)【解析】 由题意可得OD →=kOC →=kλOA →+kμOB →(0<k <1),又A ,D ,B 三点共线可得kλ+kμ=1,则λ+μ=1k>1,即λ+μ的取值范围是(1,+∞),故选B.【答案】 B5.在梯形ABCD 中,AD ∥BC ,已知AD =4,BC =6,若CD →=mBA →+nBC →(m ,n ∈R ),则mn=( ) A .-3 B .-13C.13D .3【解析】 过点A 作AE ∥CD ,交BC 于点E ,则BE =2,CE =4,所以mBA →+nBC →=CD →=EA →=EB →+BA →=-26BC →+BA →=-13BC →+BA →,所以m n =1-13=-3.【答案】 A6.如图,正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC →=λAM →+μBN →,则λ+μ=( )A .2 B.83 C.65D.85【解析】 法一 如图以AB ,AD 为坐标轴建立平面直角坐标系,设正方形边长为1,AM →=⎪⎭⎫ ⎝⎛21,1,BN →=⎪⎭⎫ ⎝⎛-1,21,AC →=(1,1).∵AC →=λAM →+μBN →=λ⎪⎭⎫ ⎝⎛21,1+μ⎪⎭⎫ ⎝⎛-1,21=⎪⎭⎫⎝⎛+-μλμλ2,2,∴⎩⎨⎧λ-12μ=1,λ2+μ=1,解之得⎩⎨⎧λ=65,μ=25,故λ+μ=85.法二 以AB →,AD →作为基底,∵M ,N 分别为BC ,CD 的中点,∴AM →=AB →+BM →=AB →+12AD →,BN →=BC →+CN →=AD →-12AB →,因此AC →=λAM →+μBN →=⎪⎭⎫ ⎝⎛-2μλAB →+⎪⎭⎫ ⎝⎛+μλ2AD →,又AC →=AB →+AD →,因此⎩⎨⎧λ-μ2=1,λ2+μ=1,解得λ=65且μ=25.所以λ+μ=85【答案】 D7.如图所示,直线x =2与双曲线C :x 24-y 2=1的渐近线交于E 1,E 2两点.记OE 1→=e 1,OE 2→=e 2,任取双曲线C 上的点P ,若OP →=a e 1+b e 2(a ,b ∈R ),则ab 的值为( )A.14 B .1 C.12D.18【解析】由题意易知E 1(2,1),E 2(2,-1),∴e 1=(2,1),e 2=(2,-1),故OP →=a e 1+b e 2=(2a +2b ,a -b ),又点P 在双曲线上,∴(2a +2b )24-(a -b )2=1,整理可得4ab =1,∴ab=14. 【答案】 A8.在平面直角坐标系中,向量n =(2,0),将向量n 绕点O 按逆时针方向旋转π3后得向量m ,若向量a 满足|a -m -n |=1,则|a |的最大值是( )A .23-1B .23+1C .3D.6+2+1【解析】 由题意得m =(1,3).设a =(x ,y ),则a -m -n =(x -3,y -3),∴|a -m -n |2=(x -3)2+(y -3)2=1,而(x ,y )表示圆心为(3,3)的圆上的点,求|a |的最大值,即求该圆上点到原点的距离的最大值,最大值为23+1.【答案】 B9.已知锐角△ABC 的外接圆的半径为1,∠B =π6,则BA →·BC →的取值范围为__________.【解析】 如图,设|BA →|=c ,|BC →|=a ,△ABC 的外接圆的半径为1,∠B =π6.由正弦定理得a sin A =c sin C =2,∴a =2sin A ,c =2sin C ,C =5π6-A ,由⎩⎨⎧0<A <π20<5π6-A <π2,得π3<A <π2,∴BA →·BC →=ca cos π6=4×32sin A sin C =23sin A sin ⎪⎭⎫ ⎝⎛-A 65π =23sin A ⎪⎪⎭⎫ ⎝⎛+A A sin 23cos 21=3sin A cos A +3sin 2A =32sin2A +3(1-cos2A )2=32sin2A +32cos2A +32=3sin ⎪⎭⎫ ⎝⎛-32πA +32. ∵π3<A <π2,∴π3<2A -π3<2π3,∴32<sin ⎪⎭⎫ ⎝⎛-32πA ≤1,∴3<3sin ⎪⎭⎫ ⎝⎛-32πA +32≤3+32.∴BA →·BC →的取值范围为⎥⎦⎤⎝⎛+233,3. 【答案】 ⎥⎦⎤ ⎝⎛+233,310.已知点O ,N ,P 在△ABC 所在的平面内,且|OA →|=|OB →|=|OC →|,NA →+NB →+NC →=0,P A →·PB →=PB →·PC →=PC →·P A →,则点O ,N ,P 依次是△ABC 的( )A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心【解析】 因为|OA →|=|OB →|=|OC →|,所以点O 到三角形的三个顶点的距离相等,所以O 为△ABC 的外心;由NA →+NB →+NC →=0,得NA →+NB →=-NC →=CN →,由中线的性质可知点N 在三角形AB 边的中线上,同理可得点N 在其他边的中线上,所以点N 为△ABC 的重心;由P A →·PB →=PB →·PC →=PC →·P A →,得P A →·PB →-PB →·PC →=PB →·CA →=0,则点P 在AC 边的垂线上,同理可得点P 在其他边的垂线上,所以点P 为△ABC 的垂心.【答案】 C11.设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积:a ⊗b =(a 1,a 2)⊗(b 1,b 2)=(a 1b 1,a 2b 2).已知向量m =⎪⎭⎫ ⎝⎛4,21,n =⎪⎭⎫⎝⎛0,6π,点P 在y =cos x 的图象上运动,点Q 在y =f (x )的图象上运动,且满足OQ →=m ⊗OP →+n (其中O 为坐标原点),则y =f (x )在区间⎥⎦⎤⎢⎣⎡3,6ππ上的最大值是( )A .4B .2C .2 2D .2 3【解析】 因为点P 在y =cos x 的图象上运动,所以设点P 的坐标为(x 0,cos x 0),设Q 点的坐标为(x ,y ),则OQ →=m ⊗OP →+n ⇒(x ,y )=⎪⎭⎫ ⎝⎛4,21⊗(x 0,cos x 0)+⎪⎭⎫ ⎝⎛0,6π⇒(x ,y )=⎪⎭⎫ ⎝⎛+00cos 4,621x x π⇒⎩⎪⎨⎪⎧x =12x 0+π6,y =4cos x 0,即⎪⎩⎪⎨⎧=⎪⎭⎫ ⎝⎛-=00cos 462xy x x π⇒y =4cos ⎪⎭⎫ ⎝⎛-32πx , 即f (x )=4cos ⎪⎭⎫⎝⎛-32πx ,当x ∈⎥⎦⎤⎢⎣⎡3,6ππ时, 由π6≤x ≤π3⇒π3≤2x ≤2π3⇒0≤2x -π3≤π3, 所以12≤cos ⎪⎭⎫ ⎝⎛-32πx ≤1⇒2≤4cos ⎪⎭⎫ ⎝⎛-32πx ≤4,所以函数y =f (x )在区间⎥⎦⎤⎢⎣⎡3,6ππ的最大值是4,故选A. 【答案】 A 二、填空题12.如图,在平行四边形ABCD 中,E 和F 分别在边CD 和BC 上,且DC →=3 DE →,BC →=3 BF →,若AC →=mAE →+nAF →,其中m ,n ∈R ,则m +n =________.【解析】 由题设可得AE →=AD →+DE →=AD →+13DC →=AD →+13AB →,AF →=AB →+BF →=AB →+13AD →=AB→+13AD →,又AC →=mAE →+nAF →,故AC →=mAD →+13mAB →+nAB →+13nAD →=(13m +n )AB →+(m +13n )AD →,而AC →=12(AB →+AD →),故⎩⎨⎧13m +n =12m +13n =12⇒m +n =32.故应填答案32.【答案】 3213.若函数f (x )=2sin ⎪⎭⎫⎝⎛+48ππx (-2<x <14)的图象与x 轴交于点A ,过点A 的直线l与函数f (x )的图象交于B 、C 两点,O 为坐标原点,则(OB →+OC →)·OA →=________.【解析】 ∵-2<x <14,∴f (x )=0的解为x =6,即A (6,0),而A (6,0)恰为函数f (x )图象的一个对称中心,∴B 、C 关于A 对称,∴(OB →+OC →)·OA →=2OA →·OA →=2|OA |2=2×36=72. 【答案】 7214.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点, 则|P A →|2+|PB →|2|PC →|2=________.【解析】 建立如图所示的平面直角坐标系, 设|CA →|=a ,|CB →|=b ,则A (a,0),B (0,b ) ∵点D 是斜边AB 的中点,∴D ⎪⎭⎫⎝⎛2,2b a , ∵点P 为线段CD 的中点,∴P ⎪⎭⎫⎝⎛4,4b a ∴|PC →|2=24⎪⎭⎫ ⎝⎛a +24⎪⎭⎫ ⎝⎛b =a 216+b 216|PB →|2=24⎪⎭⎫ ⎝⎛a +24⎪⎭⎫ ⎝⎛-b b =a 216+9b 216|P A →|2=24⎪⎭⎫ ⎝⎛-a a +24⎪⎭⎫ ⎝⎛b =9a 216+b 216∴|P A →|2+|PB →|2=9a 216+b 216+a 216+9b 216=10⎪⎪⎭⎫ ⎝⎛+161622b a =10|PC →|2,∴|P A →|2+|PB →|2|PC →|2=10.【答案】 1015.在△ABC 中,AB ⊥AC ,AB =1t ,AC =t ,P 是△ABC 所在平面内一点,若AP →=4AB →|AB →|+AC →|AC →|,则△PBC 面积的最小值为________.【解析】 由题意建立如图所示的坐标系,可得A (0,0),B ⎪⎭⎫ ⎝⎛0,1t ,C (0,t ),∵AP →=4AB →|AB →|+AC →|AC →|=(4,0)+(0,1)=(4,1),∴P (4,1);又|BC |=221⎪⎭⎫⎝⎛+t t ,BC 的方程为tx +y t =1,∴点P 到直线BC 的距离为d =221114⎪⎭⎫ ⎝⎛+-+t t t t ,∴△PBC 的面积为S =12·|BC |·d=12·221⎪⎭⎫ ⎝⎛+t t ·221114⎪⎭⎫ ⎝⎛+-+t t t t=12|4t +1t -1|≥12·|24t ·1t -1|=32, 当且仅当4t =1t ,即t =12时取等号,∴△PBC 面积的最小值为32.【答案】 32。

2024年高考数学真题分类汇编03:复数和平面向量

2024年高考数学真题分类汇编03:复数和平面向量

复数和平面向量一、单选题1.(2024·全国)若1i 1zz =+-,则z =()A .1i--B .1i-+C .1i-D .1i+2.(2024·全国)已知向量(0,1),(2,)a b x ==,若(4)b b a ^-,则x =()A .2-B .1-C .1D .23.(2024·全国)已知1i z =--,则z =()A .0B .1C D .24.(2024·全国)已知向量,a b 满足1,22a a b =+=,且()2b a b -^,则b =()A .12B C D .15.(2024·全国)设z =,则z z ×=()A .-iB .1C .-1D .26.(2024·全国)设5i z =+,则()i z z +=()A .10iB .2iC .10D .2-7.(2024·全国)已知向量()()1,,,2a x x b x =+=,则()A .“3x =-”是“a b ^”的必要条件B .“3x =-”是“//a b ”的必要条件C .“0x =”是“a b ^”的充分条件D .“1x =-”是“//a b ”的充分条件8.(2024·北京)已知i 1iz=-,则z =().A .1i-B .i-C .1i--D .19.(2024·北京)已知向量a ,b ,则“()()·0a b a b +-=”是“a b =或a b =-”的()条件.A .必要而不充分条件B .充分而不必要条件C .充分且必要条件D .既不充分也不必要条件二、填空题10.(2024·天津)已知i 是虚数单位,复数))i 2i ×=.11.(2024·天津)在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC ==+uur uu r uu u r l m ,则l m +=;若F 为线段BE 上的动点,G 为AF 中点,则AF DG ×的最小值为.12.(2024·上海)已知()(),2,5,6,k a b k Î==R ,且//a b ,则k 的值为.13.(2024·上海)已知虚数z ,其实部为1,且()2z m m z+=ÎR ,则实数m 为.参考答案:1.C【分析】由复数四则运算法则直接运算即可求解.【解析】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.2.D【分析】根据向量垂直的坐标运算可求x 的值.【解析】因为()4b b a ^-,所以()40b b a ×-=,所以240b a b -×=即2440x x +-=,故2x =,故选:D.3.C【分析】由复数模的计算公式直接计算即可.【解析】若1i z =--,则z ==故选:C.4.B【分析】由()2b a b -^得22b a b =×,结合1,22a a b =+=,得22144164a b b b +×+=+=,由此即可得解.【解析】因为()2b a b -^,所以()20b a b -×=,即22b a b =×,又因为1,22a a b =+=,所以22144164a b b b +×+=+=,从而22=b .故选:B.5.D【分析】先根据共轭复数的定义写出z ,然后根据复数的乘法计算.【解析】依题意得,z =,故22i 2zz =-=.故选:D 6.A【分析】结合共轭复数与复数的基本运算直接求解.【解析】由5i 5i,10z z z z =+Þ=-+=,则()i 10i z z +=.故选:A 7.C【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【解析】对A ,当a b ^时,则0a b ×=,所以(1)20x x x ×++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b ==,故0a b ×=,所以a b ^,即充分性成立,故C 正确;对B ,当//a b 时,则22(1)x x +=,解得1x =±B 错误;对D ,当1x =-时,不满足22(1)x x +=,所以//a b 不成立,即充分性不立,故D 错误.故选:C.8.C【分析】直接根据复数乘法即可得到答案.【解析】由题意得()i i 11i z =-=--,故选:C.9.A【分析】根据向量数量积分析可知()()0a b a b +×-=等价于a b =,结合充分、必要条件分析判断.【解析】因为()()220a b a b a b +×-=-=,可得22a b =,即a b =,可知()()0a b a b +×-=等价于a b =,若a b =或a b =-,可得a b =,即()()0a b a b +×-=,可知必要性成立;若()()0a b a b +×-=,即a b =,无法得出a b =或a b =-,例如()()1,0,0,1a b ==,满足a b =,但a b ¹且a b ¹-,可知充分性不成立;综上所述,“()()0a b a b +×-=”是“a b ¹且a b ¹-”的必要不充分条件.故选:A.10.7【分析】借助复数的乘法运算法则计算即可得.【解析】))i 2i 527×=-+=.故答案为:7.11.43518-【分析】解法一:以{},BA BC 为基底向量,根据向量的线性运算求BE ,即可得l m +,设BF BEk =uu u r uur,求,AF DG uu u r uuu r ,结合数量积的运算律求AF DG ×的最小值;解法二:建系标点,根据向量的坐标运算求BE ,即可得l m +,设()1,3,,03F a a a éù-Î-êúëû,求,AF DG uu u r uuu r ,结合数量积的坐标运算求AF DG ×的最小值.【解析】解法一:因为12CE DE =,即23CE BA =uur uu r ,则13BE BC CE BA BC =+=+uu u r uur u uu ur r uu u r ,可得1,13l m ==,所以43l m +=;由题意可知:1,0BC BA BA BC ==×=,因为F 为线段BE 上的动点,设[]1,0,13BF k BE k BA k BC k ==+Î,则113AF AB BF AB k BE k BA k BC æö=+=+=-+ç÷èø,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC æöæö=+=-+=-+-ç÷ç÷èøèø,可得11111113232AF DG k BA k BC k BA k BC éùéùæöæöæö×=-+×-+-ç÷ç÷ç÷êúêúèøèøèøëûëû22111563112329510k k k k æöæöæö=-+-=--ç÷ç÷ç÷èøèøèø,又因为[]0,1k Î,可知:当1k =时,AF DG ×取到最小值518-;解法二:以B 为坐标原点建立平面直角坐标系,如图所示,则()()()()11,0,0,0,0,1,1,1,,13A B C D E æö---ç÷èø,可得()()11,0,0,1,,13BA BC BE æö=-==-ç÷èø,因为(),BE BA BC l m l m =+=-,则131l m ì-=-ïíï=î,所以43l m +=;因为点F 在线段1:3,,03BE y x x éù=-Î-êúëû上,设()1,3,,03F a a a éù-Î-êúëû,且G 为AF 中点,则13,22a G a -æö-ç÷èø,可得()131,3,,122a AF a a DG a +æö=+-=--ç÷èø,则()()22132331522510a AF DG a a a +æöæö×=+---=+-ç÷ç÷èøèø,且1,03a éùÎ-êúëû,所以当13a =-时,AF DG ×取到最小值为518-;故答案为:43;518-.12.15【分析】根据向量平行的坐标表示得到方程,解出即可.【解析】//a b ,256k \=´,解得15k =.故答案为:15.13.2【分析】设1i z b =+,直接根据复数的除法运算,再根据复数分类即可得到答案.【解析】设1i z b =+,b ÎR 且0b ¹.则23222231i i 1i 11b b b z b m z b b b æöæö+-+=++=+=ç÷ç÷+++èøèø,mÎR,2232310 1bmbb bbì+=ïï+\í-ï=ï+î,解得2m=,故答案为:2.。

高中高考数学专题复习平面向量含试题与详细解答

高中高考数学专题复习平面向量含试题与详细解答

高中高考数学专题复习平面向量含试题与详细解答1.平面上有一个△ABC 和一点O ,设OA a =,OB b =,OC c =,又OA 、BC 的中点分别为D 、E ,则向量DE 等于( )A.()12a b c ++ B. ()12a b c -++ C. ()12a b c -+ D. ()12a b c +-2.在平行四边形ABCD 中,E 、F 分别是CD 和BC 的中点,若AF AE AC μλ+=,其中R ∈μλ,,则μλ+的值是 A .34 B .1 C . 32 D. 31 3.若四边形ABCD 是正方形,E 是CD 的中点,且AB a =,AD b =,则BE = A.12b a +B.12a b + C.12b a - D.12a b -4.在平面内,已知31==,0=⋅OB OA ,30=∠AOC ,设n m +=,(,R m n ∈),则nm等于A .B .3±C .13±D .3±5.在等腰Rt ABC △中,90A ∠=,(1,2),(,)(0)AB AC m n n ==>,则BC = ( ) A .(-3,-1)B .(-3,1)C .(3,1)-D .(3,1)6.已知,,A B C 三点共线,且(3,6)A -,(5,2)B -,若C 点横坐标为6,则C 点 的纵坐标为( ).A .13-B .9C .9-D .137.设a 、b 、c 是非零向量,则下列说法中正确..是 A .()()a b c c b a ⋅⋅=⋅⋅ B. a b a b -≤+C .若a b a c ⋅=⋅,则b c =D .若//,//a b a c ,则//b c 8.设四边形ABCD 中,有DC =21,且||=|BC |,则这个四边形是 A.平行四边形B.等腰梯形C. 矩形D.菱形9.已知()()0,1,2,3-=-=,向量+λ与2-垂直,则实数λ的值为( ). A.17-B.17C.16- D.1610.若点M 为ABC ∆的重心,则下列各向量中与共线的是( ) A .++ B .++ C .AC AM +3 D .CM BM AM ++11.若|a |=|b |=|a -b|,则b 与a +b 的夹角为 ( )A .30°B .60°C .150°D .120°12. 已知()23,a =,47(,)b =-,则b 在a 上的投影为( )(A)(B)13.R t t ∈+===,),20cos ,20(sin ,)25sin ,25(cos 0000,则||的最小值是 A. 2 B.22C. 1D. 2114.矩阵A 1002⎛⎫=⎪⎝⎭,向量12α⎛⎫= ⎪⎝⎭,则A 10α= ( ) A .1012⎛⎫ ⎪⎝⎭ B .1112⎛⎫ ⎪⎝⎭ C .2060⎛⎫ ⎪⎝⎭ D .1122⎛⎫⎪⎝⎭15.如图,A 、B 分别是射线OM ON ,上的两点,给出下列向量:①OA OB +;②1123OA OB +;③3143OA OB +; ④3145OA OB +;⑤3145OA OB -.这些向量中以O 为起点,终点在阴影区域内的是( )A .①②B .①④C .①③D .⑤16.在△ABC 中,已知D 是AB 边上一点,若=2,=+λ,则λ等于( ) A. B. C. D.17.已知O 为空间内任意一点,P 为ABC ∆所在平面内任意一点,且2OP OA OB mCO =++ 则m 的值为( )A 、 2B 、2-C 、3D 、 3-18.设向量(cos25,sin 25),(sin 20,cos20)a b =︒︒=︒︒,若c a t b =+(t ∈R ),则()2c 的最小值为( )A.2B.1C.22 D.2119.已知20()OA x OB x OC x R ⋅+⋅-=∈,其中,,A B C 三点共线,O 是线外一点,则满足条件的x ( )A .不存在B .有一个C .有两个D .以上情况均有可能 20.平面直向坐标系中,O 为坐标原点,已知两点A (3,1) B (-1,3)若点C 满足OC OA OB αβ=+,其中α β∈R 且α+β=1,则点C 的轨迹方程为 。

2018年高考数学(理)二轮复习 :专题三 三角函数、解三角形与平面向量 第3讲 平面向量(精品)

2018年高考数学(理)二轮复习 :专题三 三角函数、解三角形与平面向量  第3讲 平面向量(精品)

D.18(a+b)
押题依据 平面向量基本定理是向量表示的基本依据,而向量表示(用基
底或坐标)是向量应用的基础.
1234
押题依据 解析 答案
2.如图,BC,DE 是半径为 1 的圆 O 的两条直径,B→F=
2F→O,则F→D·F→E等于
A.-34
√B.-89
C.-14
D.-49
押题依据 数量积是平面向量最重要的概念,平面向量数量积的运算是高
考的必考内容,和平面几何知识的结合是向量考查的常见形式.
1234
押题依据 解析 答案
3.在△ABC 中,A→B=(cos 32°,cos 58°),B→C=(sin 60°sin 118°,sin 120°sin 208°),
则△ABC 的面积为
1 A.4
√B.38
3 C. 2
3 D. 4
押题依据 平面向量作为数学解题工具,通过向量的运算给出条件解决三 角函数问题已成为近几年高考的热点.
思维升华 运算过程中重视数形结合,结合图形分析向量间的关系.
思维升华 解析 答案
跟踪演练 1 (1)(2017·河北省衡水中学三调)在△ABC 中,A→N=14N→C,P 是直
线 BN 上的一点,若A→P=mA→B+25A→C,则实数 m 的值为
A.-4
√B.-1
C二中期中)已知平面向量a=(1,2),b=(-2,m),
例 1 (1)(2017 届河南息县第一高级中学检测)已知平行四边形 ABCD 的对角
线分别为 AC,BD,且A→E=2E→C,点 F 是 BD 上靠近 D 的四等分点,则
A.F→E=-112A→B-152A→D
B.F→E=112A→B-152A→D

专题05.平面向量(2005—2014十年高考理科数学新课标2教师版)


※知识点※1 等量代换
所以 CD b 2CD a , 所以 CD (b 2a) 0
※知识点※1 去分母 ※知识点※1 移项;2 提取公因式
1 2 1 2 2 2 2 4 1 2 A 选项 因为 CD a b ,所以 ( a b) (b 2a) 0 a b a b b a 0 3 3 3 3 3 3 3 3
C
4 AD AB 5
4 (CB CA) 5 4 4 a b 5 5
A
※知识点※1 共线定理
D
B
※知识点※1 向量的减法;2 向量的分解
二.能力题组 1 【2014 新课标,理 3】设向量 a, b 满足 | a b | 10 , | a b | 6 ,则 a b ( A1 【答案】A 【曹亚云·解析】 | a b | 10 a 2a b b 10 ,※知识点※1 模长公式;2 完全平方和公式
CD a , | CD |
,剩余部分读者自行解答 ,剩余部分读者自行解答 ,剩余部分读者自行解答
CD b CD CB CD CA , cos CD, CB 2 | CD | | CD | | CB | | CD | | CA |

※Байду номын сангаас识点※1 夹角公式
所以
CD b CD a , 2 | CD | | CD |
| b | 2 ,则 CD (

1 2 (A) a b 3 3 【答案】B;
2 1 (B) a b 3 3
3 4 (C) a b 5 5
4 3 (D) a b 5 5
第1页
共5页
【曹亚云·解析 1】特例法(特殊图形法) 在 Rt ABC 中,设 | a | 1 , | b | 2 , B 90 ,则 C 60 , AB 3 在 Rt CBD 中, BD BC tan 30

高考数学压轴专题人教版备战高考《平面向量》技巧及练习题含答案

数学高考《平面向量》试题含答案一、选择题1.如图所示,ABC ∆中,点D 是线段BC 的中点,E 是线段AD 的靠近A 的三等分点,则AC =u u u v( )A .43AD BE +u u uv u u u vB .53AD BE +u u uv u u u vC .4132AD BE +u u uv u u u vD .5132AD BE +u u uv u u u v【答案】B 【解析】 【分析】利用向量的加减运算求解即可 【详解】 据题意,2533AC DC DA BD AD BE ED AD BE AD AD AD BE =-=+=++=++=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r.故选B . 【点睛】本题考查向量加法、减法以及向量的数乘运算,是基础题2.已知向量,a b r r 满足||3a =r ||4=r b ,且()4a b b +⋅=r r r,则a r 与b r的夹角为( ) A .6π B .3π C .23π D .56π 【答案】D 【解析】 【分析】由()4a b b +⋅=r r r ,求得12a b ⋅=-r r ,再结合向量的夹角公式,求得3cos ,2a b 〈〉=-r r ,即可求得向量a r 与b r的夹角.【详解】由题意,向量,a b r r 满足||3a =r||4=r b ,因为()4a b b +⋅=r r r,可得2164a b b a b ⋅+=⋅+=r r r r r,解得12a b ⋅=-r r,所以cos ,||||a b a b a b ⋅〈〉===r rr r r r又因a r 与b r 的夹角[0,]π∈,所以a r 与b r 的夹角为56π. 故选:D . 【点睛】本题主要考查了向量的数量积的应用,其中解答中熟记向量的数量积的计算公式,以及向量的夹角公式,准确计算是解答的关键,着重考查了计算能力.3.已知5MN a b =+u u u u r r r ,28NP a b =-+u u u r r r ,3()PQ a b =-u u u r r r ,则( )A .,,M N P 三点共线B .,,M N Q 三点共线C .,,N P Q 三点共线D .,,M P Q 三点共线【答案】B 【解析】 【分析】利用平面向量共线定理进行判断即可. 【详解】因为28NP a b =-+u u u r r r ,3()PQ a b =-u u u r r r所以()2835NQ NP PQ a b a b a b =+=-++-=+u u u r u u u r u u u r r r r r r r ,因为5MN a b =+u u u u r rr ,所以MN NQ =u u u u r u u u r由平面向量共线定理可知,MN u u u u r 与NQ uuur 为共线向量,又因为MN u u u u r 与NQ uuur 有公共点N ,所以,,M N Q 三点共线.故选: B 【点睛】本题考查利用平面向量共线定理判断三点共线;熟练掌握共线定理的内容是求解本题的关键;属于中档题、常考题型.4.在ABC ∆中,0OA OB OC ++=u u u r u u u r u u u r r ,2AE EB =u u u r u u u r,AB AC λ=u u u r u u u r ,若9AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r,则实数λ=( )ABCD【答案】D 【解析】 【分析】将AO u u u r 、EC uuu r 用AB u u u r 、AC u u u r 表示,再代入9AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r中计算即可. 【详解】由0OA OB OC ++=u u u r u u u r u u u r r,知O 为ABC ∆的重心,所以211()323AO AB AC =⨯+=u u u ru u u r u u u r ()AB AC +u u u r u u u r ,又2AE EB =u u u r u u u r ,所以23EC AC AE AC AB =-=-u u u r u u u r u u u r u u u r u u u r ,93()AO EC AB AC ⋅=+⋅u u u r u u u r u u u r u u u r 2()3AC AB -u u ur u u u r2223AB AC AB AC AB AC =⋅-+=⋅u u u r u u u r u u u r u u u r u u u r u u u r ,所以2223AB AC=u u u r u u u r ,||362||AB AC λ===u u u ru u u r . 故选:D 【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算,是一道中档题.5.在ABC ∆中,已知8AB =,4BC =,6CA =,则AB BC ⋅u u u v u u u v的值为( )A .22B .19C .-19D .-22【答案】D 【解析】由余弦定理可得22211cos 216AB BC AC B AB BC +-==⋅,又()11cos 482216AB BC AB BC B π⎛⎫⋅=⋅⋅-=⨯⨯-=- ⎪⎝⎭u u u v u u u v u u u v u u u v ,故选D.【思路点睛】本题主要考查平面向量数量积公式以、余弦定理解三角形,属于简单题.对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60ooo等特殊角的三角函数值,以便在解题中直接应用.6.如图,在ABC V 中,AD AB ⊥,3BC BD =u u u v u u u v ,1AD =u u u v ,则AC AD ⋅=u u u v u u u v( )A .3B .32C .33D 3【答案】D【解析】∵AC AB BC AB =+=u u u v u u u v u u u v u u u v u u v,∴()AC AD AB AD AB AD AD ⋅=+⋅=⋅⋅u u u v u u u v u u u v u u v u u u v u u u v u u v u u u v ,又∵AB AD ⊥,∴0AB AD ⋅=uuu r,∴cos cos AC AD AD AD ADB BD ADB AD u u u v u u u v u u v u u u v u u v u u u v u u u v u u u v⋅=⋅=⋅∠=⋅∠==, 故选D .7.在平行四边形OABC 中,2OA =,OC =6AOC π∠=,动点P 在以点B 为圆心且与AC 相切的圆上,若OP OA OC λμ=+u u u r u u u r u u u r,则43λμ+的最大值为( )A .2+B .3+C .5+D .7+【答案】D 【解析】 【分析】先通过计算证明圆B 与AC 相切于点A ,再求出43OB OA BP OA λμ+=⋅+⋅u u u r u u u r u u u r u u u r,再求出7OB OA ⋅=u u u r u u u r ,BP OA ⋅u u u r u u u r的最大值为.【详解】如图所示,由2OA =,6AOC π∠=,由余弦定理得24+3221,1AC AC =-⨯=∴=, ∴90OCA BAC ∠=∠=o , ∴圆B 与AC 相切于点A ,又OP OA OC λμ=+u u u r u u u r u u u r , ∴243OP OA OA OC OA λμλμ⋅=+⋅=+u u u r u u u r u u u r u u u r u u u r;∴()43OP OA OB BP OA OB OA BP OA λμ+=⋅=+⋅=⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r;如图,过点B 作,BD OA ⊥连接,OB 由题得6BAD π∠=,所以3,,222AD DB OB ===∴==, 所以7cosBOA ∠==,所以1327213OB OA ⋅=⨯⨯=u u u r u u u r, 因为BP OA ⋅u u u r u u u r的最大值为32cos023⨯⨯=o , ∴43λμ+的最大值是723+. 故选:D.【点睛】本题主要考查三角函数和余弦定理解三角形,考查平面向量的数量积运算和范围的求解,意在考查学生对这些知识的理解掌握水平和分析推理能力.8.若向量(1,1)a =r ,(1,3)b =-r ,(2,)c x =r 满足(3)10a b c +⋅=r r r,则x =( )A .1B .2C .3D .4【答案】A 【解析】 【分析】根据向量的坐标运算,求得(3)(2,6)a b +=rr ,再根据向量的数量积的坐标运算,即可求解,得到答案. 【详解】由题意,向量(1,1)a =r,(1,3)b =-r ,(2,)c x =r ,则向量(3)3(1,1)(1,3)(2,6)a b +=+-=rr ,所以(3)(2,6)(2,)22610a b c x x +⋅=⋅=⨯+=r r r,解得1x =,故选A.【点睛】本题主要考查了向量的坐标运算,及向量的数量积的坐标运算的应用,其中解答中熟记向量的数量积的坐标运算公式,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.9.已知a =r 2b =r ,且()(2)b a a b -⊥+r rr r ,则向量a r 在向量b r 方向上的投影为( ) A .-4 B .-2C .2D .4【答案】D 【解析】 【分析】根据向量垂直,数量积为0,求出a b r r g ,即求向量a r 在向量b r方向上的投影a b b ⋅r r r .【详解】()(2),()(2)0b a a b b a a b -⊥+∴-+=r r r r r r r r Q g , 即2220b a a b -+=r r r r g .2,8a b a b ==∴=r r r r Q g ,所以a r 在b r方向上的投影为4a b b⋅=r r r .故选:D . 【点睛】本题考查向量的投影,属于基础题.10.在ABC ∆中,已知AB =AC =D 为BC 的三等分点(靠近C),则AD BC ⋅u u u v u u u v的取值范围为( )A .()3,5 B.(C .()5,9D .()5,7【答案】C 【解析】 【分析】利用向量加法法则把所求数量积转化为向量AB AC u u u r u u u r,的数量积,再利用余弦函数求最值,得解. 【详解】如图,()()()13AD BC AC CD AC AB AC CB AC AB ⎛⎫⋅=+⋅-=+⋅- ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r()()11213333AC AB AC AC AB AC AB AC AB u u ur u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ⎛⎫⎛⎫=+-⋅-=+⋅- ⎪ ⎪⎝⎭⎝⎭22211333AC AB AB AC =--⋅u u ur u u u r u u u r u u u r=8﹣113233cos BAC -⨯⨯∠ =7﹣2cos ∠BAC ∵∠BAC ∈(0,π), ∴cos ∠BAC ∈(﹣1,1), ∴7﹣2cos ∠BAC ∈(5,9), 故选C .【点睛】此题考查了数量积,向量加减法法则,三角函数最值等,难度不大.11.已知数列{a n }的前n 项和为S n ,且a n +1=a n +a (n ∈N *,a 为常数),若平面内的三个不共线的非零向量OAOB OC u u u r u u u r u u u r,,满足10051006OC a OA a OB =+u u u r u u u r u u u r ,A ,B ,C 三点共线且该直线不过O 点,则S 2010等于( ) A .1005 B .1006C .2010D .2012【答案】A 【解析】 【分析】根据a n +1=a n +a ,可判断数列{a n }为等差数列,而根据10051006OC a OA a OB =+u u u r u u u r u u u r,及三点A ,B ,C 共线即可得出a 1+a 2010=1,从而根据等差数列的前n 项和公式即可求出S 2010的值. 【详解】由a n +1=a n +a ,得,a n +1﹣a n =a ; ∴{a n }为等差数列;由10051006OC a OA a OB =+u u u r u u u r u u u r ,所以A ,B ,C 三点共线; ∴a 1005+a 1006=a 1+a 2010=1, ∴S 2010()12010201020101100522a a +⨯===. 故选:A. 【点睛】本题主要考查等差数列的定义,其前n 项和公式以及共线向量定理,还考查运算求解的能力,属于中档题.12.在边长为1的等边三角形ABC 中,点P 是边AB 上一点,且.2BP PA =,则CP CB ⋅=u u u v u u u v( ) A .13B .12C .23D .1【答案】C 【解析】 【分析】利用向量的加减法及数乘运算用,CA CB u u u r u u u r 表示CP u u u v,再利用数量积的定义得解.【详解】依据已知作出图形如下:()11213333CP CA AP CA AB CA CB CA CA CB =+=+=+-=+u u u v u u v u u u v u u v u u u v u u v u u u v u u v u u v u u u v .所以221213333CP CB CA CB CB CA CB CB ⎛⎫+=+ ⎪⎝⎭⋅=⋅⋅u u u v u u u v u u v u u u v u u u v u u v u u u v u u u v221211cos 13333π=⨯⨯⨯+⨯= 故选C 【点睛】 本题主要考查了向量的加减法及数乘运算,还考查了数量积的定义,考查转化能力,属于中档题.13.已知椭圆C :2212x y +=的右焦点为F ,直线l :2x =,点∈A l ,线段AF 交椭圆C于点B ,若3FA FB =u u u v u u u v,则AF u u u v =( )A 2B .2C 3D .3【答案】A【分析】设点()2,A n ,()00,B x y ,易知F (1,0),根据3FA FB =u u u v u u u v,得043x =,013y n =,根据点B 在椭圆上,求得n=1,进而可求得2AF =u u u v【详解】 根据题意作图:设点()2,A n ,()00,B x y .由椭圆C :2212x y += ,知22a =,21b =,21c =,即1c =,所以右焦点F (1,0).由3FA FB =u u u v u u u v,得()()001,31,n x y =-. 所以()0131x =-,且03n y =. 所以043x =,013y n =. 将x 0,y 0代入2212x y +=,得221411233n ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭.解得21n =, 所以()2212112AF n u u u v =-+=+=故选A 【点睛】本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.14.已知AB 是圆22:(1)1C x y -+=的直径,点P 为直线10x y -+=上任意一点,则PA PB ⋅u u u v u u u v的最小值是( )A 21-B 2C .0D .1【解析】试题分析:由题意得,设,,,又因为,所以,所以PA PB ⋅u u u r u u u r的最小值为1,故答案选D.考点:1.圆的性质;2.平面向量的数量积的运算.15.已知向量m →,n →的夹角为60︒,且1m →=,3m n →→-=n →=( )A .1B .2C .3D .4【答案】B 【解析】 【分析】设||n x →=,利用数量积的运算法则、性质计算即可. 【详解】 设||n x →=,因为1m →=,向量m →,n →的夹角为60︒, 所以2213m n x x →→-=-+=, 即220x x --=,解得2x =,或1x =-(舍去), 所以2n →=. 故选:B 【点睛】本题主要考查了向量的模的性质,向量数量积的运算,属于中档题.16.在平面直角坐标系中,()1,2A -,(),1B a -,(),0C b -,,a b ∈R .当,,A B C 三点共线时,AB BC ⋅u u u r u u u r的最小值是( ) A .0 B .1C 2D .2【答案】B 【解析】 【分析】根据向量共线的坐标表示可求得12b a =-,根据数量积的坐标运算可知所求数量积为()211a -+,由二次函数性质可得结果.【详解】 由题意得:()1,1AB a =-u u u r ,(),1BC b a =--u u u r ,,,A B C Q 三点共线,()()111a b a ∴⨯-=⨯--,即12b a =-,()1,1BC a ∴=-u u u r ,()2111AB BC a ∴⋅=-+≥u u u r u u u r ,即AB BC ⋅u u u r u u u r 的最小值为1.故选:B .【点睛】本题考查平面向量的坐标运算,涉及到向量共线的坐标表示和数量积的坐标运算形式,属于基础题.17.已知A ,B 是圆224+=O: x y 上的两个动点,||2AB =u u u r ,1233OC OA OB =+u u u r u u u r u u u r ,若M 是线段AB 的中点,则OC OM ⋅u u u r u u u u r 的值为( ). AB.C .2 D .3 【答案】D【解析】【分析】 判断出OAB ∆是等边三角形,以,OA OB u u u r u u u r 为基底表示出OM u u u u r ,由此求得OC OM ⋅u u u r u u u u r 的值.【详解】 圆O 圆心为()0,0,半径为2,而||2AB =u u u r ,所以OAB ∆是等边三角形.由于M 是线段AB 的中点,所以1122OM OA OB =+u u u u r u u u r u u u r .所以OC OM ⋅u u u r u u u u r 12331122OA O O O B A B ⎛⎫=+⋅⎛⎫+ ⎪⎝ ⎪⎭⎝⎭u u uu u u r u u u r r u u u r 22111623OA OA OB OB =+⋅⋅+u u u r u u u r u u u r u u u r 21422cos603323=+⨯⨯⨯+=o . 故选:D【点睛】本小题主要考查用基底表示向量,考查向量的数量积运算,考查数形结合的数学思想方法,属于中档题.18.已知向量5(,0)2a =r ,(0,5)b =r 的起点均为原点,而终点依次对应点A ,B ,线段AB 边上的点P ,若OP AB ⊥u u u r u u u r ,OP xa yb =+u u u r r r ,则x ,y 的值分别为( )A .15,45B .43,13-C .45,15D .13-,43 【答案】C【解析】【分析】 求得向量5(,5)2OP x y =u u u r ,5(,5)2AB b a =-=-u u u r r r ,根据OP AB ⊥u u u r u u u r 和,,A B P 三点共线,列出方程组,即可求解.【详解】 由题意,向量5(,0)2a =r ,(0,5)b =r ,所以5(,5)2OP xa yb x y =+=u u u r r r , 又由5(,5)2AB b a =-=-u u u r r r , 因为OP AB ⊥u u u r u u u r ,所以252504OP AB x y ⋅=-+=u u u r u u u r ,可得4x y =, 又由,,A B P 三点共线,所以1x y +=, 联立方程组41x y x y =⎧⎨+=⎩,解得41,55x y ==.故选:C .【点睛】本题主要考查了向量的坐标运算,以及向量垂直的坐标运算和向量共线定理的应用,着重考查了运算与求解能力.19.在四边形ABCD 中,若12DC AB =u u u r u u u r ,且|AD u u u r |=|BC uuu r |,则这个四边形是( ) A .平行四边形 B .矩形C .等腰梯形D .菱形【答案】C【解析】 由12DC AB =u u u r u u u r 知DC ∥AB ,且|DC|=12|AB|,因此四边形ABCD 是梯形.又因为|AD u u u r |=|BC uuu r |,所以四边形ABCD 是等腰梯形.选C20.在OAB ∆中,已知OB =u u u v 1AB u u u v =,45AOB ∠=︒,点P 满足(),OP OA OB λμλμ=+∈R u u u v u u u v u u u v ,其中λ,μ满足23λμ+=,则OP u u u v 的最小值为( ) A.5 BC.3 D.2【答案】A【解析】【分析】根据OB =u u u r ,1AB =uu u r ,45AOB ∠=︒,由正弦定理可得OAB ∆为等腰直角三角形,进而求得点A 坐标.结合平面向量的数乘运算与坐标加法运算,用λ,μ表示出OP u u u r .再由23λμ+=,将OP u u u r 化为关于λ的二次表达式,由二次函数性质即可求得OP u u u r的最小值.【详解】 在OAB ∆中,已知OB =u u u r ,1AB =uu u r ,45AOB ∠=︒ 由正弦定理可得sin sin AB OB AOB OAB=∠∠u u u r u u u r=,解得sin 1OAB ∠= 即2OAB π∠=所以OAB ∆为等腰直角三角形以O 为原点,OB 所在直线为x 轴,以OB 的垂线为y 轴建立平面直角坐标系如下图所示:则点A 坐标为22⎝⎭所以2222OA ⎛= ⎝⎭u u u r ,)2,0OB =u u u r 因为(),OP OA OB λμλμ=+∈R u u u r u u u r u u u r 则)222,022OP λμ⎛ =+ ⎝⎭u u u r 222,22λμλ⎛⎫ ⎪ ⎪⎝⎭= 则2222222OP λμλ⎛⎫=++⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u r 2222λλμμ=++因为23λμ+=,则32μλ=-代入上式可得 ()()22322232λλλλ+-+-218518λλ-=+299555λ⎛⎫=-+ ⎪⎝⎭所以当95λ=时, min 93555OP ==u u u r 故选:A【点睛】本题考查了平面向量基本定理的应用,正弦定理判断三角形形状,平面向量的坐标运算,属于中档题.。

高考数学复习专题三第3讲 平面向量课件 理


= 17-15sin 2β≤4 2. 又(3)当证明β=-由π4时tan,α等tan号β成=立16,得所4sc以ions|βbα+=c4|s的cion最sαβ大,值为 4 2 所以 a∥b.
归纳拓展 向量与三角函数结合是高考命题的一大热点,在解 决有关向量的平行、垂直问题时,先利用向量的坐标运算,再 利用平行、垂直的充要条件即可简化运算过程.
∴P→A+3P→B=52D→A+(3-4x) D→C,
|P→A+3P→B|2=245D→A2+2×52×(3-4x) D→A·D→C+(3-4x)2·D→C2
=25+(3-4x)2D→C2≥25, ∴|P→A+3P→B|的最小值为 5.
考点整合
1.向量的概念 (1)零向量模的大小为 0,方向是任意的,它与任意非零向 量都共线,记为 0. (2)长度等于 1 个单位长度的向量叫单位向量,a 的单位向 量为±|aa|. (3)方向相同或相反的向量叫共线向量(平行向量). (4)如果直线 l 的斜率为 k,则 a=(1,k)是直线 l 的一个方 向向量.

(1)m·n=
3sin
x 4cos
4x+cos
2x 4

3 2 sin
2x+12·cos
2x+12=sin(2x+6π)+12.
又∵m·n=1,∴sin(2x+6π)=12.
cos(x+π3)=1-2sin2(2x+6π)=12,
cos(23π-x)=-cos(x+π3)=-12.
(2)∵(2a-c)cos B=bcos C,
(1)解 因为 a 与 b-2c 垂直,所以 a·(b-2c) =4cos αsin β-8cos αcos β+4sin αcos β+8sin αsin β =4sin(α+β)-8cos(α+β)=0. 因此 tan(α+β)=2. (2)解 由 b+c=(sin β+cos β,4cos β-4sin β), 得|b+c|= (sin β+cos β)2+(4cos β-4sin β)2

高考数学压轴专题专题备战高考《平面向量》全集汇编含答案解析

【最新】高考数学《平面向量》专题解析一、选择题1.设双曲线()222210,0x y a b a b-=>>的右焦点为F ,过点F 作x 轴的垂线交两渐近线于,A B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,225+=8λμ,则双曲线的离心率为( )A .3B C .2D .98【答案】A 【解析】 【分析】先根据已知求出,u λ,再代入225+=8λμ求出双曲线的离心率. 【详解】由题得双曲线的渐近线方程为b y x a =±,设F(c,0),则2(,),(,),(,),bc bc b A c B c P c a a a-因为(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,所以2(,)((),())b bc c u c u a aλλ=+-.所以,,bu c u cλλ+=-= 解之得,.22b c c bu c cλ+-==因为225+=8λμ,所以225()(),228b c c b c e c c a +-+=∴=∴= 故答案为A 【点睛】本题主要考查双曲线的几何性质和离心率的求法,意在考查学生对这些基础知识的掌握能力.解答本题的关键是根据(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v求出,u λ.2.已知向量a r 与向量b r 满足||2a =r ,||b =r ||||a b a b +⋅-=r r r r ,则向量a r与向量b r的夹角为( )A .4π或34πB .6π或56πC .3π或23π D .2π【答案】A 【解析】 【分析】设向量a r ,b r的夹角为θ,则2||1282cos a b θ+=+rr ,2||1282cos a b θ-=-r r,即可求出2cos θ,从而得到向量的夹角; 【详解】解:设向量a r ,b r的夹角为θ,222||||||2||||cos 4882cos a b a b a b θθ+=++=++r r r r r r1282cos θ=+,222||||||2||||cos 4882cos 1282cos a b a b a b θθθ-=+-=+-=-r r r r r r,所以2222||||144128cos (45)80a b a b θ+⋅-=-==r r r r ,21cos 2θ∴=,因为[0,)θπ∈,故4πθ=或34π,故选:A. 【点睛】本题考查平面向量的数量积的运算律,及夹角的计算,属于中档题.3.已知菱形ABCD 的边长为4,60ABC ∠=︒,E 是BC 的中点2DF AF =-u u u r u u u r,则AE BF ⋅=u u u r u u u r( )A .24B .7-C .10-D .12-【答案】D 【解析】 【分析】根据平面向量的基本定理,将AE BF ⋅u u u r u u u r用基底,AB AD u u u r u u u r 表达,再根据平面向量的数量积公式求解即可. 【详解】由已知得13AF AD =u u u r u u u r ,12BE BC =u u u r u u u r ,AD BC =u u u r u u u r,所以1122AE AB BC AB AD =+=+u u u r u u u r u u u r u u u r u u u r ,13BF AF AB AD AB =-=-u u ur u u u r u u u r u u u r u u u r .因为在菱形ABCD 中,60ABC ∠=︒,所以120BAD ∠=︒.又因为菱形ABCD 的边长为4,所以1||||cos1204482AB AD AB AD ⎛⎫⋅=⋅︒=⨯⨯-=- ⎪⎝⎭u u u r u u u r u u u r u u u r ,所以1123AE BF AB AD AB AD ⎛⎫⎛⎫⋅=+⋅-+= ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r221111||||16(8)16126666AB AB AD AD --⋅+=--⨯-+⨯=-u u u r u u u r u u u r u u u r .故选:D【点睛】本题考查平面向量的线性运算及向量的数量积,考查推理论证能力以及数形结合思想.4.如图所示,ABC ∆中,点D 是线段BC 的中点,E 是线段AD 的靠近A 的三等分点,则AC =u u u v( )A .43AD BE +u u uv u u u vB .53AD BE +u u uv u u u vC .4132AD BE +u u uv u u u vD .5132AD BE +u u uv u u u v【答案】B 【解析】 【分析】利用向量的加减运算求解即可 【详解】 据题意,2533AC DC DA BD AD BE ED AD BE AD AD AD BE =-=+=++=++=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r.故选B . 【点睛】本题考查向量加法、减法以及向量的数乘运算,是基础题5.在ABC ∆中,5,6,7AB BC AC ===,点E 为BC 的中点,过点E 作EF BC ⊥交AC 所在的直线于点F ,则向量AF u u u r在向量BC uuu r 方向上的投影为( )A .2B .32C .1D .3【答案】A 【解析】 【分析】由1()2AF AE EF AB AC EF =+=++u u u r u u u r u u u r u u u r u u u r u u u r , EF BC ⊥,得12AF BC ⋅=u u u r u u u r,然后套用公式向量AF u u u r 在向量BC uuu r 方向上的投影||AF BCBC ⋅=u u u r u u u ru u u r ,即可得到本题答案. 【详解】因为点E 为BC 的中点,所以1()2AF AE EF AB AC EF =+=++u u u r u u u r u u u r u u u r u u u r u u u r,又因为EF BC ⊥,所以()22111()()()12222AF BC AB AC BC AB AC AC AB AC AB ⋅=+⋅=+⋅-=-=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r , 所以向量AF u u u r 在向量BC uuu r 方向上的投影为2||AF BCBC ⋅=u u u r u u u ru u u r . 故选:A. 【点睛】本题主要考查向量的综合应用问题,其中涉及平面向量的线性运算及平面向量的数量积,主要考查学生的转化求解能力.6.已知单位向量a r ,b r 的夹角为3π,(),c a b R μλμ+=λ+∈r u u r u u r ,若2λμ+=,那么c r 的最小值为( )A BC D 【答案】D 【解析】 【分析】利用向量的数量积的运算公式,求得12a b ⋅=r r ,再利用模的公式和题设条件,化简得到24c λμ=-u r ,最后结合基本不等式,求得1λμ≤,即可求解.【详解】由题意,向量,a b r r 为单位向量,且夹角为3π,所以11cos 11322a b a b π⋅=⋅=⨯⨯=r r r r ,又由(),c a b μλμ=λ+∈R r u u r u u r,所以()22222222()4c a b a b λμλμλμλμλμλμλμλμ=+=++⋅=++=+-=-u r r r r r ,因为,R λμ+∈时,所以222()122λμλμ+⎛⎫≤== ⎪⎝⎭,当且仅当λμ=时取等号,所以23c ≥u r ,即c ≥u r故选:D . 【点睛】本题主要考查了平面向量的数量积的运算,以及向量的模的计算,其中解答中熟记向量的数量积和模的计算公式,以及合理应用基本不等式求解是解答的关键,着重考查了推理与运算能力.7.在ABC V 中,D 、P 分别为BC 、AD 的中点,且BP AB AC λμ=+u u u r u u u r u u u r,则λμ+=( ) A .13- B .13C .12-D .12【答案】C 【解析】 【分析】由向量的加减法运算,求得BP BD DP BD PD =+=-u u u r u u u r u u u r u u u r u u u r,进而得出()()22BP AB AC BD PD λμμλλμ=+=-++u u u r u u u r u u u r u u u r u u u r,列式分别求出λ和μ,即可求得λμ+.【详解】解:已知D 、P 分别为BC 、AD 的中点, 由向量的加减法运算, 得BP BD DP BD PD =+=-u u u r u u u r u u u r u u u r u u u r,2AB AD DB BD PD =+=-+u u u r u u u r u u u r u u u r u u u r , 2AC AD DC BD PD =+=+u u u r u u u r u u u r u u u r u u u r ,又()()22BP AB AC BD PD λμμλλμ=+=-++u u u r u u u r u u u r u u u r u u u r Q ,则1221μλλμ-=⎧⎨+=-⎩,则12λμ+=-. 故选:C.【点睛】本题考查平面向量的加减法运算以及向量的基本定理的应用.8.在菱形ABCD 中,4AC =,2BD =,E ,F 分别为AB ,BC 的中点,则DE DF ⋅=u u u r u u u r( )A .134-B .54C .5D .154【答案】B 【解析】 【分析】据题意以菱形对角线交点O 为坐标原点建立平面直角坐标系,用坐标表示出,DE DF u u u r u u u r,再根据坐标形式下向量的数量积运算计算出结果. 【详解】设AC 与BD 交于点O ,以O 为原点,BD u u u r的方向为x 轴,CA u u u r 的方向为y 轴,建立直角坐标系,则1,12E ⎛⎫- ⎪⎝⎭,1,12F ⎛⎫-- ⎪⎝⎭,(1,0)D ,3,12DE ⎛⎫=- ⎪⎝⎭u u u r ,3,12DF ⎛⎫=-- ⎪⎝⎭u u u r ,所以95144DE DF ⋅=-=u u u r u u u r .故选:B.【点睛】本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.9.已知向量m =r(1,cosθ),(sin ,2)n θ=-r,且m r ⊥n r,则sin 2θ+6cos 2θ的值为( ) A .12B .2C .2D .﹣2【答案】B 【解析】 【分析】根据m r ⊥n r 可得tanθ,而sin 2θ+6cos 2θ22226sin cos cos sin cos θθθθθ+=+,分子分母同除以cos 2θ,代入tanθ可得答案. 【详解】因为向量m =r (1,cosθ),n =r(sinθ,﹣2), 所以sin 2cos m n θθ⋅=-u r r因为m r ⊥n r,所以sin 2cos 0θθ-=,即tanθ=2,所以sin 2θ+6cos 2θ22222626226141sin cos cos tan sin cos tan θθθθθθθ++⨯+====+++ 2.故选:B. 【点睛】本题主要考查平面向量的数量积与三角恒等变换,还考查运算求解的能力,属于中档题.10.如图,在圆O 中,若弦AB =3,弦AC =5,则AO uuu v ·BC uuu v的值是A .-8B .-1C .1D .8【答案】D 【解析】 【分析】 【详解】因为AO AC CO AB BO =+=+u u u v u u u v u u u v u u u v u u u v,所以1()2AO AC BO AB CO =+++u u u v u u u v u u u v u u u v u u u v ,而BC AC AB BO CO =-=-u u u v u u u v u u u v u u u v u u u v,所以1()2BC AC AB BO CO =-+-u u u v u u u v u u u v u u u v u u u v ,则1()()4AO BC AC AB CO BO AC AB BO CO ⋅=+++-+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v1()()()()()()4AC AB AC AB AC AB BO CO CO BO AC AB =+-++-++-u u uv u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ()()CO BO BO CO ++-u u u v u u u v u u u v u u u v221(||4AC AB AC BO AC CO AB BO AB CO =-+⋅-⋅+⋅-⋅u u uv u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 22||)CO AC CO AB BO AC BO AB BO CO +⋅-⋅+⋅-⋅+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)()42AC AB AC BO AB CO =-+⋅-⋅u u uv u u u v u u u v u u u v u u u v u u u v2211(||)[()]42AC AB AB BC BO AB CO =-++⋅-⋅u u uv u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)()42AC AB AB BC BC BO =-+⋅+⋅u u uv u u u v u u u v u u u v u u u v u u u v 2211(||)42AC AB AO BC =-+⋅u u uv u u u v u u u v u u u v 所以221(||)82AO BC AC AB ⋅=-=u u u v u u u v u u u v u u u v ,故选D11.已知向量m →,n →的夹角为60︒,且1m →=,m n →→-=n →=( )A .1B .2C .3D .4【答案】B 【解析】 【分析】设||n x →=,利用数量积的运算法则、性质计算即可. 【详解】 设||n x →=,因为1m →=,向量m →,n →的夹角为60︒, 所以2213m n x x →→-=-+=, 即220x x --=,解得2x =,或1x =-(舍去), 所以2n →=. 故选:B 【点睛】本题主要考查了向量的模的性质,向量数量积的运算,属于中档题.12.设a r ,b r 不共线,3AB a b =+u u u r r r ,2BC a b =+u u ur r r ,3CD a mb =+u u u r r r ,若A ,C ,D 三点共线,则实数m 的值是( )A .23B .15C .72D .152【答案】D 【解析】 【分析】计算25AC a b =+u u u r r r,得到()253a b a mb λ+=+r r r r ,解得答案.【详解】∵3AB a b =+u u u r r r ,2BC a b =+u u u r r r ,∴25AC AB BC a b =+=+u u u r u u u r u u u r r r,∵A ,C ,D 三点共线,∴AC CD λ=u u u r u u u r,即()253a b a mb λ+=+r r r r ,∴235m λλ=⎧⎨=⎩,解得23152m λ⎧=⎪⎪⎨⎪=⎪⎩. 故选:D . 【点睛】本题考查了根据向量共线求参数,意在考查学生的计算能力和转化能力.13.如图,AB ,CD 是半径为1的圆O 的两条直径,3AE EO =u u u v u u u v ,则•EC ED u u u v u u u v的值是( )A .45-B .1516-C .14-D .58-【答案】B 【解析】 【分析】根据向量表示化简数量积,即得结果. 【详解】()()()()•••EC ED EO OC EO OD EO OC EO OC =++=+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v2221151416EO OC ⎛⎫=-=-=- ⎪⎝⎭u u u v u u u v ,选B.【点睛】本题考查向量数量积,考查基本分析求解能力,属基础题.14.已知P 为边长为2的正方形ABCD 所在平面内一点,则PC uuu r ()PB PD +⋅u u ur u u u r 的最小值为( )A.1-B.3-C.1 2-D.32-【答案】A【解析】【分析】建立坐标系,写出各点坐标,表示出对应的向量坐标,代入数量积整理后即可求解.【详解】建立如图所示坐标系,设(,)P x y,则(0,0),(2,0),(2,2),(0,2)A B C D,所以(2,2),(2,)(,2)(22,22)PC x y PB PD x y x y x y =--+=--+--=--u u u r u u u r u u u r,故223131 ()(2)(22)(2)(22)222222 PC PB PD x x y y x y⎛⎫⎛⎫⋅+=--+--=--+--⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r223322122x y⎛⎫⎛⎫=-+--⎪ ⎪⎝⎭⎝⎭所以当32x y==时,PCuuu r()PB PD+⋅u u u r u u u r的最小值为1-.故选:A.【点睛】本题考查利用坐标法求向量数量积的最值问题,涉及到向量的坐标运算,考查学生的运算求解能力,是一道中档题.15.若向量a br r,的夹角为3π,|2|||a b a b-=+r r r r,若()a ta b⊥+r r r,则实数t=()A.12-B.12C3D.3【答案】A【解析】【分析】由|2|||a b a b-=+r r r r两边平方得22b a b=⋅r r r,结合条件可得b a=r r,又由()a ta b⊥+r r r,可得20t a a b ⋅+⋅=r r r ,即可得出答案. 【详解】 由|2|||a b a b -=+r r r r 两边平方得2222442a a b b a a b b -⋅+=+⋅+r r r r r r r r .即22b a b =⋅r r r ,也即22cos 3b a b π=r r r ,所以b a =r r . 又由()a ta b ⊥+r r r ,得()0a ta b ⋅+=r r r ,即20t a a b ⋅+⋅=r r r .所以2221122b a b t a b ⋅=-=-=-r r r r r 故选:A【点睛】本题考查数量积的运算性质和根据向量垂直求参数的值,属于中档题. 16.如图,向量a b -r r 等于A .1224e e --u r u u rB .1242e e --u r u u rC .123e e -r u u rD .123e e -+r u u r 【答案】D【解析】【分析】【详解】 由向量减法的运算法则可得123a e b e -=-+r r r u u r ,17.向量1,tan 3a α⎛⎫= ⎪⎝⎭r ,()cos ,1b α=r ,且//a b r r ,则cos 2πα⎛⎫+= ⎪⎝⎭( ) A .13 B .223- C .23- D .13- 【答案】D【分析】根据向量平行的坐标运算以及诱导公式,即可得出答案.【详解】//a b ∴r r1cos tan sin 3ααα∴=⋅= 1cos sin 23παα⎛⎫∴+=-=- ⎪⎝⎭故选:D【点睛】本题主要考查了由向量平行求参数以及诱导公式的应用,属于中档题.18.已知向量a v ,b v 满足a v ||1b =v ,且2b a +=v v ,则向量a v 与b v 的夹角的余弦值为( )A B .3 C D 【答案】D【解析】【分析】 根据平方运算可求得12a b ⋅=r r ,利用cos ,a b a b a b ⋅<>=r r r r r r 求得结果. 【详解】 由题意可知:2222324b a b a b a a b +=+⋅+=+⋅=r r r r r r r r ,解得:12a b ⋅=r rcos ,a b a b a b ⋅∴<>===r r r r r r 本题正确选项:D【点睛】本题考查向量夹角的求解问题,关键是能够通过平方运算求得向量的数量积.19.已知向量5(,0)2a =r ,(0,5)b =r 的起点均为原点,而终点依次对应点A ,B ,线段AB 边上的点P ,若OP AB ⊥u u u r u u u r ,OP xa yb =+u u u r r r ,则x ,y 的值分别为( )A .15,45B .43,13-C .45,15D .13-,43【答案】C【分析】 求得向量5(,5)2OP x y =u u u r ,5(,5)2AB b a =-=-u u u r r r ,根据OP AB ⊥u u u r u u u r 和,,A B P 三点共线,列出方程组,即可求解.【详解】 由题意,向量5(,0)2a =r ,(0,5)b =r ,所以5(,5)2OP xa yb x y =+=u u u r r r , 又由5(,5)2AB b a =-=-u u u r r r , 因为OP AB ⊥u u u r u u u r ,所以252504OP AB x y ⋅=-+=u u u r u u u r ,可得4x y =, 又由,,A B P 三点共线,所以1x y +=,联立方程组41x y x y =⎧⎨+=⎩,解得41,55x y ==. 故选:C .【点睛】本题主要考查了向量的坐标运算,以及向量垂直的坐标运算和向量共线定理的应用,着重考查了运算与求解能力.20.在ABC V 中,AD 为BC 边上的中线,E 为AD 的中点,且||1,||2AB AC ==u u u r u u u r ,120BAC ∠=︒,则||EB =u u u r ( )A .4BC .2D .4【答案】A【解析】【分析】 根据向量的线性运算可得3144EB AB AC =-u u u r u u u r u u u r ,利用22||B EB E =u u r u u u r u 及||1,||2AB AC ==u u u r u u u r ,120BAC ∠=︒计算即可.【详解】 因为11131()22244EB EA AB AD AB AB AC AB AB AC =+=-+=-⨯++=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 所以22229311216441||6EB AB AB B AC AC E =-⨯=⨯⋅+u u u r u u u r u u u r u u u r u u r u u u r u 229311112()2168216=⨯-⨯⨯⨯-+⨯1916=,所以||4EB =u u u r , 故选:A【点睛】 本题主要考查了向量的线性运算,向量数量积的运算,向量数量积的性质,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档