【精品】降压、升压斩波电路、升降压斩波电路
简述升降压斩波电路的工作原理

简述升降压斩波电路的工作原理
升降压斩波电路是一种常用的电源变换电路,它可以将输入电压转换为需要的输出电压。
其工作原理是通过斩波器将输入电压转换为高频脉冲信号,再通过变压器将高频脉冲信号变换为需要的输出电压。
具体来说,升降压斩波电路由斩波器、滤波器、变压器和控制电路组成。
斩波器是升降压斩波电路的核心部件,它将输入电压转换为高频脉冲信号。
斩波器通常由开关管和控制电路组成,控制电路可以控制开关管的开关状态,从而控制输出脉冲信号的频率和占空比。
高频脉冲信号经过滤波器后,可以去除其中的高频成分,得到平滑的直流电压。
滤波器通常由电容和电感组成,电容可以去除高频成分,电感可以平滑输出电压。
变压器是升降压斩波电路的另一个重要组成部分,它可以将高频脉冲信号变换为需要的输出电压。
变压器通常由两个或多个线圈组成,输入线圈和输出线圈之间通过磁场耦合实现电压变换。
控制电路是升降压斩波电路的智能化部分,它可以根据需要调整斩波器的开关状态,从而控制输出电压的大小和稳定性。
控制电路通常由微处理器、传感器和反馈电路组成,可以实现电压稳定控制、过载保
护和短路保护等功能。
总之,升降压斩波电路是一种高效、稳定的电源变换电路,可以将输入电压转换为需要的输出电压。
其工作原理是通过斩波器将输入电压转换为高频脉冲信号,再通过变压器将高频脉冲信号变换为需要的输出电压。
控制电路可以根据需要调整斩波器的开关状态,从而控制输出电压的大小和稳定性。
升降压斩波器电路图及工作原理说明

BUCkDC/DC变换器控制模块电源设计思路发布:2011-09-07 | 作者: | 来源: ducuimei | 查看:514次 | 用户关注:直流斩波电路实验的内容包括两种最基本的斩波电路:降压斩波电路和升压斩波电路。
图1所示的是降压斩波电路的原理图。
降压斩波电路的基本原理是:在开关V导通期间,电源F向负载供电,负载电压uo=E,负载电流按指数曲线上升;在V关断期间,负载电流经二极管VD续流,负载电压1/0近似为0,负载电流呈指数曲线下降。
为了使负载电流连续且脉动小,通常使串接的电感L值较大,负载电压的平均值为:图1降压斩波电路原理图图2所示为升压斩直流斩波电路实验的内容包括两种最基本的斩波电路:降压斩波电路和升压斩波电路。
图1所示的是降压斩波电路的原理图。
降压斩波电路的基本原理是:在开关V导通期间,电源F向负载供电,负载电压uo=E,负载电流按指数曲线上升;在V关断期间,负载电流经二极管VD 续流,负载电压1/0近似为0,负载电流呈指数曲线下降。
为了使负载电流连续且脉动小,通常使串接的电感L值较大,负载电压的平均值为:图1 降压斩波电路原理图图2所示为升压斩波电路的原理图。
分析升压斩波电路的工作原理时,首先假设电路中电感L值很大,电容C值也很大,在V处于通态期间,电源E向电感L充电。
充电电流基本恒定为I1,同时电容C上的电压向负载R供电,因C值很大,基本保持输出电压uo为恒值,记为Uo。
图2 升压斩波器原理图设V处于通态的时间为ton,此时电感L上积蓄的能量为EI1ton。
当V处于断态时E和L共同向电容C充电并向负载R提供能量。
设V处于断态的时间为toff,贝刂在此期间电感L释享308PIC单片机应用开发典型模块放的能量为(UO -E)I1toff°当电路工作于稳态时,一个周期T中电感L积蓄的能量与释放的能量相等,即:升压斩波电路的输出电压高于电源电压。
控制电路需要实现的功能是产生PWM信号,利用PIC16F877的PWM模块产生该信号,用于控制斩波电路中主功率器件的通断,通过对占空比α的调节,达到控制输出电压大小的目的。
降压斩波电路

摘要直流斩波电路是将直流电变成另一种固定电压或可调电压的DC-DC变换器 , 如果改变开关的动作频率,或改变直流电流接通和断开的时间比例,就可以改变加到负载上的电压、电流平均值。
在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用。
随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路。
直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。
全控型电力电子器件MOSFET在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。
关键词:Buck Chopper MOSFET Simulink 高频开关目录1 降压斩波电路主电路基本原理 (1)2 MOSFET基本性能简介 (5)2.1 电力MOSFET的结构和工作原理 (5)2.1.1 电力MOSFET的结构 (5)2.1.2 功率MOSFET的工作原理 (6)2.2 功率MOSFET的基本特性 (6)2.2.1 静态特性 (6)2.2.2 动态特性 (7)2.3 电力MOSFET的主要参数 (8)3 电力MOSFET驱动电路 (9)3.1 MOSFET的栅极驱动 (9)3.2 MOSFET驱动电路介绍及分析 (9)3.2.1 不隔离的互补驱动电路 (9)3.2.2 隔离的驱动电路 (10)3.2.3 驱动电路的设计方案比较 (13)4 保护电路设计 (15)4.1 主电路的保护电路设计 (15)4.2 MOSFET的保护设计 (15)5 仿真结果 (17)心得体会 (23)参考文献 (24)1 降压斩波电路主电路基本原理高频开关稳压电源已广泛运用于基础直流电源、交流电源、各种工业电源,通信电源、通信电源、逆变电源、计算机电源等。
它能把电网提供的强电和粗电,它是现代电子设备重要的“心脏供血系统”。
BUCK变换器是开关电源基本拓扑结构中的一种,BUCK变换器又称降压变换器,是一种对输入输出电压进行降压变换的直流斩波器,即输出电压低于输入电压,由于其具有优越的变压功能,因此可以直接用于需要直接降压的地方。
直流升压降压原理

3.1 基本斩波电路重点:最基本的2种——降压斩波电路和升压斩波电路。
3.1.1 降压斩波电路➢➢斩波电路的典型用途之一是拖动直流电动机,也可带蓄电池负载,两种情况下负载中均会出现反电动势,如图3-1中E m所示➢➢工作原理,两个阶段✧✧t=0时V导通,E向负载供电,u o=E,i o按指数曲线上升✧✧t=t1时V关断,i o经V D续流,u o近似为零,i o呈指数曲线下降✧✧为使i o连续且脉动小,通常使L值较大E图3-1 降压斩波电路的原理图及波形a)电路图b)电流连续时的波形c)电流断续时的波形➢➢数量关系电流连续时,负载电压平均值E E Tt E t t t U onoff on on o α==+=(3-1)α导通占空比,简称占空比或导通比U o 最大为E ,减小α,U o 随之减小 降压斩波电路。
也称为Buc k 变换器(Buc k Converter )。
负载电流平均值RE U I m o o -= (3-2)电流断续时,u o 平均值会被抬高,一般不希望出现➢ ➢斩波电路三种控制方式(1)脉冲宽度调制(PWM )或脉冲调宽型——T 不变,调节t o n (2)频率调制或调频型——t o n 不变,改变T (3)混合型——t o n 和T 都可调,使占空比改变 其中PWM 控制方式应用最多➢ ➢基于“分段线性”的思想,可对降压斩波电路进行解析3.1.2 升压斩波电路1. 升压斩波电路的基本原理R图3-2 升压斩波电路及其工作波形a)电路图b)波形➢➢工作原理✧✧假设L值、C值很大✧✧V通时,E向L充电,充电电流恒为I1,同时C的电压向负载供电,因C值很大,输出电压u o为恒值,记为U o。
设V通的时间为t o n,此阶段L上积蓄的能量为E I1t o n✧✧V断时,E和L共同向C充电并向负载R供电。
设V断的时间为t o f f,则此期间电感L释放能量为()off ot IEU1-✧ ✧ 稳态时,一个周期T 中L 积蓄能量与释放能量相等()off o on t I E U t EI 11-=(3-20)化简得:E t T E t t t U offoffoffon o =+=(3-21)1/≥off t T ,输出电压高于电源电压,故称升压斩波电路。
MOSFET升降压斩波电路

电力电子技术课程设计报告MOSFET升降压斩波电路设计班级:110306班姓名:***学号:********指导教师:***时间:2014年1月10日题目:MOSFET升降压斩波电路设计一、课程设计的目的1.电力电子技术的课程设计是《电力电子技术》课程的一个重要的实践教学环节。
它与理论教学和实践教学相配合,可使我们在理论联系实际,综合分析,理论计算,归纳整理和实验研究方面得到综合训练和提高,从而培养学生独立解决实际问题的能力。
2.加深理解电力电子技术的课程内容,建立正确的设计思想,熟悉工程设计的顺序和方法,提高正确使用技术资料,标准,手册等的独立工作能力。
3.为后续课程的学习打下坚实的基础。
二、设计的技术数据及要求1、交流电源:单相220V;2、前级整流输出输电压:U d=50V~80V;3、输出功率:300W;4、开关频率5KHz;5、占空比10%—90%;6、输出电压脉率:小于10%。
三、设计内容及要求1、方案的论证及方案的选择:1.1总体方案论证图11.2 方案一:MOSFET降压斩波电路MOSFET降压斩波电路原理图降压斩波电路的原理图以及工作波形如图2所示。
该电路使用一个全控型器件V,图中为MOSFET。
为在MOSFET关断时给负载中电感电流提供通道,设置了续流二极管VD。
斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等。
图2 降压斩波电路原理图MOSFET降压斩波电路工作原理图直流降压斩波电路使用一个全控型的电压驱动器件MOSFET,用控制电路和驱动电路来控制MOSFET 的导通或关断。
当t=0 时MOSFET 管被激励导通电源U向负载供电,负载电压为Uo=U,负载电流io 按指数曲线上升,当t=t1时控制MOSFET 关断负载电流经二极管VD 续流负载电压Uo 近似为零,负载电流呈指数曲线下降。
为了使负载电流连续且脉动小通常使串联的电感L较大。
电路工作时的波形图如图3所示。
IGBT升压斩波电路设计

IGBT升压斩波电路设计引言在工业、能源和交通等领域中,高稳定性的直流电源得到广泛应用。
而升压斩波电路是一种常见的直流电源升压技术,在短时间内将直流电压升高到所需电压水平,同时保证电路稳定性和高效性。
因此,设计一种合理可行的IGBT升压斩波电路对于实际应用有非常重要的意义。
1.升压斩波电路原理升压斩波电路是通过改变输入电流的波形来实现电压的升高,使电压高于输入电压。
其实现原理是利用三极管的导通与截止控制,将电压进行放大、升压和限流的过程。
具体原理如下:1.在升压周期内,当输入电压低于输出电压,将三极管S1导通,使电感L储存能量。
2.当电压达到一定值时,开关S1关闭,而三极管S2导通,以使储存在电感L中的能量释放,从而产生高电压。
3.在降压周期内,当输入电压高于输出电压时,电感L将存储电流,而电容C通过三极管S2连接会被放电,以使电路中的电流保持稳定。
4.当电压下降到一定程度后,开关S2关闭,而三极管S1导通,使剩余能量继续储存于电感L中,以进行下一次升压。
2.IGBT升压斩波电路设计在设计IGBT升压斩波电路之前,需要考虑一些参数和特性,如输出电压、电流、升压斜率、升压率、升压时间、谐振频率、效率和稳定性等因素。
在设计过程中,需要根据实际需求进行合理参数选择和参数调整,针对性优化设计,以达到最佳的工作效果。
2.1 设计参数选择在设计IGBT升压斩波电路时,首先需要考虑输出电压和电流的大小,以确定升压斩波电路的类型和参数。
在选择输出电压和电流时,需要考虑实际应用环境中所需的电压范围和电流稳定性,选择合适的交流输入电压和电容参数。
此外,根据所选择的参数,还需要适当调整升压斜率、升压率和升压时间等因素,以提高效率和稳定性。
2.2 升压斩波电路拓扑结构设计针对不同的电压和电流要求,升压斩波电路有多种不同的拓扑结构,如单臂斩波、全桥斩波、半桥斩波和反平衡斩波等。
在选择拓扑结构时,需要考虑它们的优缺点和适用规律,确定最佳的设计方案。
斩波电路

第3章直流斩波电路主要内容:降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路的结构与工作原理。
重点:降压斩波电路、升压斩波电路的结构与工作原理。
难点:升压斩波电路的工作原理基本要求:掌握降压斩波电路、升压斩波电路、升降压斩波电路的结构与工作原理,了解复合斩波电路的结构与工作原理。
直流斩波电路(DC Chopper)将直流电变为另一固定电压或可调电压的直流电,也称为直接直流直流变换器(DC/DC Converter)。
直流斩波电路的种类6种基本斩波电路:降压斩波电路、升压斩波电路、升降压斩波电路、Cuk斩波电路、Sepic斩波电路和Zeta斩波电路,其中前两种是最基本的电路。
复合斩波电路——不同基本斩波电路组合多相多重斩波电路——相同结构基本斩波电路组合1 基本斩波电路重点:最基本的2种——降压斩波电路和升压斩波电路。
(1) 降压斩波电路斩波电路的典型用途之一是拖动直流电动机,也可带蓄电池负载,两种情况下负载中均会出现反电动势,如图3-1中E m所示。
为使i o连续且脉动小,通常使L值较大。
数量关系电流连续时,负载电压平均值(3-1)a——导通占空比,简称占空比或导通比U o最大为E,减小a,U o随之减小——降压斩波电路。
也称为Buck变换器。
负载电流平均值I=U d/R (3-2)电流断续时,U o平均值会被抬高,一般不希望出现斩波电路三种控制方式a 脉冲宽度调制(PWM)或脉冲调宽型——T不变,调节t on,应用最多b 频率调制或调频型——t on不变,改变Tc 混合型——t on和T都可调,使占空比改变图3-1降压斩波电路的原理图及波形a)电路图b)电流连续时的波形c)电流断续时的波形2 升压斩波电路(1) 升压斩波电路的基本原理工作原理:假设L值、C值很大,V通时,E向L充电,充电电流恒为I1,同时C的电压向负载供电,因C值很大,输出电压U o为恒值,记为U o。
设V通的时间为t on,此阶段L上积蓄的能量为EI1t onV断时,E和L共同向C充电并向负载R供电。
降压斩波电路

题目直流降压斩波电路一、直流斩波电路的技术特点及应用方面直流斩波电路作为将直流电变成另一种固定电压或可调电压的DC-DC 变换器,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用.随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路 . 直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。
全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。
直流变换技术已被广泛的应用于开关电源及直流电动机驱动中,如不间断电源(UPS)、无轨电车、地铁列车、蓄电池供电的机动车辆的无级变速及20世纪80年代兴起的电动汽车的控制。
从而使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。
直流变换系统的结构如下图-1所示。
由于变速器的输入是电网电压经不可控整流而来的直流电压,所以直流斩波不仅能起到调压的作用,同时还能起到有效地抑制网侧谐波电流的作用。
单相、REm二、分电路的原理及选择2.1 降压斩波电路工作原理电路的原理图如图2所示,图2 降压斩波电路主电路此电路使用一个全控型器件V ,图中为IGBT ,若采用晶闸管,需设置使晶闸管关断的辅助电路。
并设置了续流二极管VD ,在V 关断时给负载中电感电流提供通道。
主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等,后两种情况下负载中均会出现反电动势,如图中Em 所示。
工作原理:当t=0时刻驱动V 导通,电源E 向负载供电,负载电压uo=E ,负载电流io 按指数曲线上升。
当 t=t1时控制V 关断,二极管VD 续流,负载电压uo 近似为零,负载电流呈指数曲线下降,通常串接较大电感L 使负载电流连续且脉动小。
此电路的基本数量关系为: (1)电流连续时负载电压的平均值为 (1-1)E E Tt E t t t U onoff on on o α==+=V 1V 3V 2V 4C 1R U ~V zU 上式中,ton 为V 处于通态的时间,toff 为V 处于断态的时间,T 为开关周期,α为导通占空比,简称占空比或导通比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【精品】降压、升压斩波电路、升降压斩波电路
降压、升压和升降压斩波电路是现代电子技术中常见的一种电路方式,通过适当的电
路设计可以实现对电压的转换,满足不同的电器设备的不同电压需求,在不同的场合下实
现不同的功能。
一、降压斩波电路
降压斩波电路是将较高的电压转换为较低的电压,通常使用斩波变压器以及整流器来
实现,其中斩波变压器主要是实现电压的降压,整流器则用来将交流电转换为直流电。
斩波变压器原理:斩波变压器就是通过使用磁性相互感应原理,根据电路的转换规律
和斩波开关的控制,达到控制电路变压的目的,限制较高的电压输出,实现降压的目的。
斩波变压器具有高效率,可靠性高等特点,可以加大变换的幅度进而输出更低的电压。
而
且斩波变压器还具有输入电压范围广泛、输出电压稳定等特点。
整流器原理:整流器的作用是将交流电转换为直流电供给负载,可以使负载稳定工作。
整流器又根据输出的平均电流是否有电电流,分别可以分为半波整流和全波整流两种模式。
整流器除了转换成为直流电外,还具有滤波的作用,通过滤波能降低电压的波动,输出可
靠平滑的电信号。
升压斩波电路实现方法:斩波变压器的另一种工作原理是通过将直流电转变成为脉冲
电流,然后将脉冲电流进行叠加,放到降压变压器上面,这样就可以实现稳定的电压输出,进而实现升压的目的。
这种方法比较适合在交流电输入较低的情况下,输出需要较高电压
的情况下。
升降压斩波电路是可以实现输出电压的上升和下降,满足不同的负载云顶的需求,在
操作上要求更加灵活多样。
升降压斩波电路采用两个斩波变压器,并且可以交替工作,使
得在正常工作中可以先使用降压斩波电路,然后根据实际需要选择升压斩波电路来实现电
压互换。
升降压斩波电路实现方法:升降压斩波电路的实现需要配合转换电路和电压测量电路,在满足不同场景和不同设备电压需求的情况下,提高设备的使用价值和整体效能,实现更
高的设备效益和电器设备使用的安全性。
其中升降压斩波电路必须要对输出电压进行及时
的检测和控制,保证输出电压的平稳稳定,防止因为误差和电压波动带来不稳定的安全隐患。