第五章 整数规划练习题答案

第五章 整数规划练习题答案
第五章 整数规划练习题答案

第五章 整数规划练习题答案

一. 判断下列说法是否正确

1. 用分枝定界法求解一个极大化的整数规划问题时,任何一个可行整数解的目标函数值是

该问题目标函数值的下界。( )

2. 用割平面法求解整数规划时,构造的割平面有可能切去一些不属于最优解的整数解。( )

3. 用割平面法求解纯整数规划时,要求包括松弛变量在内的全部变量必须取整数值。( )

4. 指派问题数学模型的形式与运输问题十分相似,故也可以用表上作业法求解。( ) 二. 设有五项工作要分派给五个工人,每人的作业产值如下表所示,为了使总产值最大,问

应如何分配这五项工作,并求得最大产值。

答案:

设原矩阵为A ,因求极大问题,令B=[M-a ij ],其中M=Max {a ij }=10,则:

1642510531404213251042510424003B 1

37521026410154062415151304502030

5

7

4

70

5

74

704

6

4

6111-??????

? ? ? ? ? ? ? ? ?=→→- ? ? ?- ? ? ? ? ? ???????

---

m 4n 5

l m 4

42

1342

132432431

541

545235234

6

4

64

6

4

6=<===???? ? ?

?? ?

?

? ?→→????→?

?

? ?

?? ? ? ? ??

?

????

???

?

???

?

031023400311540602030

3

5

3

5?? ? ? ? ? ? ???

31

23431

1

546233

5

3

5??? ?? ?

?→ ?? ? ???

?

?

??

?

m=5=n ,得最优解。解矩阵*

0001000100X 00001010001

0?? ? ? ?= ? ? ???

即,甲→D ,乙→C ,丙→E ,丁→B ,戊→A ,最大产值=10+8+9+8+8=43。

三. 对整数规划

12

121212

M a x Z 8x 5x 2x 3x 12x x 6x ,x 0,=++≤??

-≤??≥?整数

解得其松弛问题最优表如下:

答案:

(1) 产生高莫雷约束:

根据Max {f i },应选取x 1所在行为源行:134133x x x 3

884

++

=,即,134133x 0x 0x 3884?

??

?++

++=+

? ??

??

?

产生高莫雷约束为:

34313x x 0

488--

≤。

(2) 将高莫雷约束加入松弛变量x 5,写入原表最后一行形成下表并用对偶单纯形法求解:

b j

动态规划例题

例1:机器负荷分配问题 某公司新购进1000台机床,每台机床都可在高、低两种不同的负荷下进行生产,设在高负荷下生产的产量函数为g(x )=10x (单位:百件),其中x 为投入生产的机床数量,年完好率为a =0.7;在低负荷下生产的产量函数为h(y)=6y (单位:百件),其中y 为投人生产的机床数量,年完好率为b=0.9。计划连续使用5年,试问每年如何安排机床在高、低负荷下的生产计划,使在五年内生产的产品总产量达到最高。 例2:某企业通过市场调查,估计今后四个时期市场对某种产品的需要量如下表: 时期(k) 1 2 3 4 需要量(d k ) 2(单位) 3 2 4 假定不论在任何时期,生产每批产品的固定成本费为3(千元),若不生产,则为零;生产单位产品成本费为1(千元);每个时期生产能力所允许的最大生产批量为不超过6个单位,则任何时期生产x 个单位产品的成本费用为: 若 0<x ≤6 , 则生产总成本=3十1·x 若 x =0 , 则生产总成本=0 又设每个时期末未销售出去的产品,在一个时期内单位产品的库存费用为0.5(千元),同时还假定第1时期开始之初和在第4个时期之末,均无产品库存。现在我们的问题是;在满足上述给定的条件下,该厂如何安排各个时期的生产与库存,使所花的总成本费用最低? 例3:设某企业在第一年初购买一台新设备,该设备在五年内的年运行收益、年运行费用及更换新设备的净费用如下表:(单位:万元) 年份(k) 役龄(t) 运行收益()k g t 运行费用()k r t 更新费用()k c t 第一年 0 22 6 18 第二年 0 1 23 21 6 8 19 22

2019上海高考数学试卷及答案word版本

2019年上海市高考数学试卷 2019.06.07 一. 填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1. 已知集合(,3)A =-∞,(2,)B =+∞,则A B =I 2. 已知z ∈C ,且满足 1i 5z =-,求z = 3. 已知向量(1,0,2)a =r ,(2,1,0)b =r ,则a r 与b r 的夹角为 4. 已知二项式5(21)x +,则展开式中含2x 项的系数为 5. 已知x 、y 满足002x y x y ≥??≥??+≤? ,求23z x y =-的最小值为 6. 已知函数()f x 周期为1,且当01x <≤,2()log f x x =,则3()2f = 7. 若,x y +∈R ,且 123y x +=,则y x 的最大值为 8. 已知数列{}n a 前n 项和为n S ,且满足2n n S a +=,则5S = 9. 过曲线24y x =的焦点F 并垂直于x 轴的直线分别与曲线24y x =交于A 、B ,A 在B 上 方,M 为抛物线上一点,(2)OM OA OB λλ=+-u u u u r u u u r u u u r ,则λ= 10. 某三位数密码,每位数字可在0-9这10个数字中任选一个,则该三位数密码中,恰有 两位数字相同的概率是 11. 已知数列{}n a 满足1n n a a +<(*n ∈N ),若(,)n n P n a (3)n ≥均在双曲线22 162 x y -=上, 则1lim ||n n n P P +→∞ = 12. 已知2()||1 f x a x =--(1x >,0a >),()f x 与x 轴交点为A ,若对于()f x 图像 上任意一点P ,在其图像上总存在另一点Q (P 、Q 异于A ),满足AP AQ ⊥,且 ||||AP AQ =,则a =

整数规划实验报告例文

整数规划实验报告例文 篇一:实验报告整数规划 一、实验名称:整数规划问题和动态规划问题 二、实验目的: 熟练使用Spreadsheet建立整数规划、动态规划模型,利用excel建立数学模型,掌握求解过程,并能对实验结果进行分析及评价 三、实验设备 计算机、Excel 四、实验内容 (一)整数规划 1、0-1整数规划 其中,D11=F2;D12=F3;D13=F4;D14=F5; B11=SUMPRODUCT($B$9:$E$9,B2:E2); B12=SUMPRODUCT($B$9:$E$9,B3:E3); B13=SUMPRODUCT($B$9:$E$9,B4:E4); B14=SUMPRODUCT($B$9:$E$9,B5:E5); H8==SUMPRODUCT($B$9:$E$9,B6:E6); 用规划求解工具求解:目标单元格为$H$8,求最大值,可变单元格为$B$9:$E$9,约束条件为 $B$11:$B$14<=$D$11:$D$14;$B$9:$E$9=二进制。在【选项】

果,实现最大利润为140. 2、整数规划 其中,D11=D2;D12=D3; B11=SUMPRODUCT($B$8:$C$8,B2:C2);B12=SUMPRODUCT($B$8:$ C$8,B3:C3); F7=SUMPRODUCT($B$8:$C$8,B4:C4); 用规划求解工具求解:设置目标单元格为F7,求最大值,可变单元格为$B$8:$C$8,约束条件为 $B$11:$B$12<=$D$11:$D$12;$B$8:$C$8=整数。在【选项】菜单中选择“采用线性模型”“假定非负”。即可进行求解得结果,实现最大利润为14. 3、指派问题 人数跟任务数相等: 其中, F11=SUM(B11:E11);F12=SUM(B12:E12);F13=SUM(B13:E13);F14=SU M(B14:E14); B15=SUM(B11:B14);C15=SUM(B11:B14);D15=SUM(B11:B14);E15=SU M(B11:B14); H11,H12,H13,H14,B17,C17,D17,E17单元格值均设为1. 用规划求解工具求解:设置目标单元格为$B$8,求最小值,可变单元格为$B$11:$E$14,约束条件为$B$11:$E$14=二进制; $B$15:$E$15=$B$17:$E$17;$F$11:$F$14=$H$11:$H$14. 在【选

第五章运筹学线性规划在管理中的应用案例

第五章线性规划在管理中的应用 某企业停止了生产一些已经不再获利的产品,这样就产生了一部分剩余生产力。管理层考虑将这些剩余生产力用于新产品Ⅰ、Ⅱ、Ⅲ的生产。可用的机器设备是限制新产品产量的主要因素,具体数据如下表: 司的利润最大化。 1、判别问题的线性规划数学模型类型。 2、描述该问题要作出决策的目标、决策的限制条件以及决策的总绩效测度。 3、建立该问题的线性规划数学模型。 4、用线性规划求解模型进行求解。 5、对求得的结果进行灵敏度分析(分别对最优解、最优值、相差值、松驰/剩余量、对偶价格、目标函数变量系数和常数项的变化范围进行详细分析)。 6、若销售部门表示,新产品Ⅰ、Ⅱ生产多少就能销售多少,而产品Ⅲ最少销售18件,请重新完成本题的1-5。 解: 1、本问题是资源分配型的线性规划数学模型。 2、该问题的决策目标是公司总的利润最大化,总利润为: + + 决策的限制条件: 8x1+ 4x2+ 6x3≤500 铣床限制条件 4x1+ 3x2≤350 车床限制条件 3x1+ x3≤150 磨床限制条件 即总绩效测试(目标函数)为: max z= + + 3、本问题的线性规划数学模型 max z= + + S.T.8x1+ 4x2+ 6x3≤500 4x1+ 3x2≤350 3x1+ x3≤150 x1≥0、x2≥0、x3≥0 4、用Excel线性规划求解模板求解结果:最优解(50,25,0),最优值:30元。 5、灵敏度分析

目标函数最优值为: 30 变量最优解相差值 x1 50 0 x2 25 0 x3 0 .083 约束松弛/剩余变量对偶价格 1 0 .05 2 75 0 3 0 .033 目标函数系数范围: 变量下限当前值上限 x1 .4 .5 无上限 x2 .1 .2 .25 x3 无下限.25 .333 常数项数范围: 约束下限当前值上限 1 400 500 600 2 275 350 无上限 3 150 (1)最优生产方案: 新产品Ⅰ生产50件、新产品Ⅱ生产25件、新产品Ⅲ不安排。最大利润值为30元。 (2)x3 的相差值是意味着,目前新产品Ⅲ不安排生产,是因为新产品Ⅲ的利润太低,若要使新产品Ⅲ值得生产,需要将当前新产品Ⅲ利润元/件,提高到元/件。 (3)三个约束的松弛/剩余变量0,75,0,表明铣床和磨床的可用工时已经用完,而车床的可用工时还剩余75个工时; 三个对偶价格,0,表明三种机床每增加一个工时可使公司增加的总利润额。 (4)目标函数系数范围 表明新产品Ⅰ的利润在元/件以上,新产品Ⅱ的利润在到之间,新产品Ⅲ的利润在以下,上述的最佳方案不变。 (5)常数项范围 表明铣床的可用条件在400到600工时之间、车铣床的可用条件在275工时以上、磨铣床的可用条件在到工时之间。各自每增加一个工时对总利润的贡献元,0元,元不变。 6、若产品Ⅲ最少销售18件,修改后的的数学模型是: max z= + + S.T.8x1+ 4x2+ 6x3≤500 4x1+ 3x2≤350 3x1+ x3≤150 x3≥18 x1≥0、x2≥0、x3≥0 这是一个混合型的线性规划问题。 代入求解模板得结果如下: 最优解(44,10,18),最优值:元。 灵敏度报告: 目标函数最优值为: 变量最优解相差值 x1 44 0 x2 10 0 x3 18 0 约束松弛/剩余变量对偶价格

2013—2017高考全国卷线性规划真题(含答案)

2013—2017高考全国卷线性规划真题 1.【2017全国1,文7】设x ,y 满足约束条件33,1, 0,x y x y y +≤??-≥??≥?则z =x +y 的最大值为 A .0 B .1 C .2 D .3 2.【2017全国2,文7】设,x y 满足约束条件2+330 233030x y x y y -≤??-+≥??+≥? ,则2z x y =+的最小值是 A.15- B.9- C.1 D 9 3.【2017全国3,文5】设x ,y 满足约束条件3260 0x y x y +-≤??≥??≥? ,则z x y =-的取值范围是 A .[–3,0] B .[–3,2] C .[0,2] D .[0,3] 4.(2016全国1,文16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元. 5.(2016全国2,文14)若x ,y 满足约束条件?????x -y +1≥0,x +y -3≥0,x -3≤0, 则z =x -2y 的最小值为________. 6.(2016全国3,文13)设x ,y 满足约束条件?????2x -y +1≥0,x -2y -1≤0,x ≤1, 则z =2x +3y -5的最小值为_____. 7.(2015全国1,文15)若x ,y 满足约束条件20 210220x y x y x y +-≤??-+≤??-+≥? ,则z =3x +y 的最大值为 . 8.(2015全国2,文14)设x ,y 满足约束条件50 210210x y x y x y +-≤??--≥??-+≤?,则2 z x y =+的最大值为__________. 9.(2014全国1,文11)设x ,y 满足约束条件, 1,x y a x y +≥??-≤-?且z x a y =+的最小值为7,则a = A .-5 B.3 C.-5或3 D.5或-3

第四章整数规划与分配问题

第四章 整数规划与分配问题 §4.1整数规划的特点及作用 用单纯形法求解线性规划的结果往往得到分数或小数解。但在很多实际问题中,全部或部分变量的取值必须是整数,如人或者机器设备不可分割。此外还有一些问题,如要不要在某地建设工厂,可选用一个逻辑变量x ,令1x =表示在该地建厂,0x =表示不在该地建厂,逻辑变量也只允许取整数值的一类变量。在一个整数规划中要求全部变量取整数值的,称纯整数线性规划或纯整数规划;只要求一部分变量取整数值的,称为混合整数(线性)规划;在纯整数规划问题中,若所有变量只允许取0,1两个值,则称其为0-1规划。 有人认为,对整数规划问题的求解可以先不考虑对变量的整数约束,作为一般线性规划问题来求解,当解为非整数时可用四舍五入或凑整数寻找最优解,其实这种方法是不可行的,原因有以下两点: 一、用凑整的方法计算量很大,而况还不一定能找到最优解。 如某线性规划问题的最优解为()()1 2 4.6 5.5x x =,用凑整数的方法时需比较与 12,x x 的上述数值最接近的四种组合:(4,5),(5,5),(4,6),(5,6)如果问题中有10个变量,就 要比较1021024=个整数解组合,而且最优解还不一定在这些组合中。 二、放松约束也无法求出其最优解 例 12 121212 max 322314 .0.5 4.5,0,z x x x x s t x x x x =++≤?? +≤??≥?整数 如果不考虑整数约束,称为上述线性规划问题的松弛问题,松弛问题的最优解为:

123.25, 2.5x x == 取整以后123,2x x ==是可行解,但1212123,3;4,2;4,3x x x x x x ======都不是可行解,而123,2x x ==对应的目标函数值123213z x x =+=却不是最优解,然而最优解是 12124,1,max 3214x x z x x ===+=。 直接对松弛问题进行求解都无法求得整数规划问题的最优解,这就需要对整数线性规划问题有特殊的求解方法。 此外,整数线性规划问题的数学模型的研究有着重要的意义,很多管理问题无法归纳为线性规划问题的数学模型,但却可以设置逻辑变量建立起整数规划问题的数学模型。下面举例说明逻辑变量在解决问题中的重要作用。 1.m 个约束条件中只有k 个起作用 设m 个约束条件可以表示为 1 ,(1,2,,)n ij j i j a x b i m =≤=∑L 定义 1 1,2,,)0 i i y i m i ?==??L 假设第个约束条件不起作用,(假设第个约束条件起作用 又M 为任意大的正数,则 11212 (1,2,,),,,01 n ij j i i j m m a x b My i m y y y m k y y y =?≤+=??? +++=-??=??? ∑L L L 或 因为若0i y =,则1n ij j i j a x b =≤∑条件起作用 若1i y =,则1 n ij j i j a x b M =≤+∑,1 n ij j i j a x b =≤∑条件不起作用 2.约束条件的右端项可能是r 个值12(,,,)r b b b L 中的某一个,即 121 n ij j r j a x b b b =≤∑L 或或或 定义 1 0 i i b y ?=??假定约束条件右端项为否则 由此,上述约束条件可以表示成:

2017高考全国卷及各省数学线性规划真题整理-免费(附标准答案)

2017高考全国卷及自主招生数学高考真题 线性规划专题真题整理(附答案解析) 1.(17全国卷I,文数7)设x ,y满足约束条件33,1,0,x y x y y +≤??-≥??≥? 则z =x +y 的最大值为( ) A.0 B .1 C.2 D.3 答案:D 解析:如图,由图易知当目标函数z x y =+经过 直线33x y +=和0y =(即x 轴)的交点(3,0)A 时, z 能取到最大值,把(3,0)A 代入z=x +y可得 max 303z =+=,故选D. 2.(17全国卷I ,理数14题)设x ,y满足约束条件21210x y x y x y +≤??+≥-??-≤? ,则32z x y =-的最小值 为 答案:5- 解析:不等式组21210x y x y x y +≤??+≥-??-≤? 表示的平面区域如图所示。 由32z x y =-变形得322z y x =-。要求z 的最小值, 即求直线322z y x =-的纵截距的最大值。由右图,易知 当直线322 z y x =-过图中点A 时,纵截距最大。 联立方程组2121x y x y +=-??+=?,解得A 点坐标为(1,1)-,此时3(1)215z =?--?=-。 故32z x y =-的最小值是-5.

3.(17全国卷Ⅱ,文数7、理数5)设x、y满足约束条件2+330233030x y x y y -≤??-+≥??+≥? .则2z x y =+ 的 最小值是( ) A . -15 B.-9 C . 1 D 9 答案:A 解析:不等式组2+330233030x y x y y -≤??-+≥??+≥? 表示的可行域如图所示, 易知当直线2z x y =+过到213 y x =+与3y =-交点 ()63--,时,目标函数2z x y =+取到最小值,此时有 ()()min 26315z =?-+-=-,故所求z 最小值为15-. 4.(17全国卷Ⅲ,文数5)设x,y 满足约束条件326000x y x y +-≤??≥??≥? ,则z =x -y的取值范围是 ( ) A.[-3,0] B.[-3,2] C .[0,2] D.[0,3] 答案:B 解析:绘制不等式组表示的可行域,结合目标函数 的几何意义可得目标函数z =x -y 在直线3260x y +-=与 直线0x =(即x 轴)的交点()0,3A 处取得最小值, 此时min 033z =-=-。 在点()2,0B 处取得最大值, 此时max 202z =-=.故本题选择B 选项. 5.(17全国卷Ⅲ,理数13)若x,y 满足约束条件0200x y x y y -≥??+-≤??≥? 则34=-z x y 的最小值为__ ______.

用matlab求解整数规划的例子

有四个人,要指派他们分别完成四项工作,每人做各项工作所消耗的时间如表所示: 有四个人,要指派他们分别完成四项工作,每人做各项工作所消耗的时间如表所示: c=[15,18,21,24,19,23,22,18,26,17,16,19,19,21,23,17]; a=[15,18,21,24,zeros(1,12); zeros(1,4),19,23,22,18,zeros(1,8); zeros(1,8),26,17,16,19,zeros(1,4); zeros(1,12),19,21,23,17; 15,zeros(1,3),19,zeros(1,3),26,zeros(1,3),19,zeros(1,3); zeros(1,1),18,zeros(1,3),23,zeros(1,3),17,zeros(1,3),21,zeros(1,2); zeros(1,2),21,zeros(1,3),22,zeros(1,3),16,zeros(1,3),23,0; zeros(1,3),24,zeros(1,3),18,zeros(1,3),19,zeros(1,3),17]; b=[24;23;26;23;26;23;23;24]; A=[ones(1,4),zeros(1,12); zeros(1,4),ones(1,4),zeros(1,8); zeros(1,8),ones(1,4),zeros(1,4); zeros(1,12),ones(1,4); 1,zeros(1,3),1,zeros(1,3),1,zeros(1,3),1,zeros(1,3); 0,1,zeros(1,3),1,zeros(1,3),1,zeros(1,3),1,zeros(1,2); 0,0,1,zeros(1,3),1,zeros(1,3),1,zeros(1,3),1,0; zeros(1,3),1,zeros(1,3),1,zeros(1,3),1,zeros(1,3),1]; B=ones(1,8);

动态规划讲解大全(含例题及答案)

动态规划讲解大全 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法。不象前面所述的那些搜索或数值计算那样,具有一个标准的数学表达式和明确清晰的解题方法。动态规划程序设计往往是针对一种最优化问题,由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的设计方法对不同的问题,有各具特色的解题方法,而不存在一种万能的动态规划算法,可以解决各类最优化问题。因此读者在学习时,除了要对基本概念和方法正确理解外,必须具体问题具体分析处理,以丰富的想象力去建立模型,用创造性的技巧去求解。我们也可以通过对若干有代表性的问题的动态规划算法进行分析、讨论,逐渐学会并掌握这一设计方法。 基本模型 多阶段决策过程的最优化问题。 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当然,各个阶段决策的选取不是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线,如图所示:(看词条图) 这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题就称为多阶段决策问题。 记忆化搜索 给你一个数字三角形, 形式如下: 1 2 3 4 5 6 7 8 9 10 找出从第一层到最后一层的一条路,使得所经过的权值之和最小或者最大. 无论对与新手还是老手,这都是再熟悉不过的题了,很容易地,我们写出状态转移方程:f(i, j)=a[i, j] + min{f(i+1, j),f(i+1, j + 1)} 对于动态规划算法解决这个问题,我们根据状态转移方程和状态转移方向,比较容易地写出动态规划的循环表示方法。但是,当状态和转移非常复杂的时候,也许写出循环式的动态规划就不是那么

线性规划练习题含答案

线性规划练习题含答案 一、选择题 1.已知不等式组 2, 1, y x y kx x ≤-+ ? ? ≥+ ? ?≥ ? 所表示的平面区域为面积等于1的三角形,则实数k的值为 A.-1 B. 1 2 - C. 1 2 D.1 【答案】B 【解析】略作出不等式组表示的可行域如右图所示阴影部分,由于AOB ?的面积为2, AOC ?的面积为1,所以当直线y=kx+1过点A(2,0),B(0,1)时符合要求,此时 1 2 k=-,故选B。 2.定义 () () max{,} a a b a b b a b ≥ ?? =? < ?? ,已知实数y x,满足1 ,1≤ ≤y x,设{} max,2 z x y x y =+-,则z的取值范围是() A、? ? ? ?? ? -2, 2 3 B、? ? ? ?? ? 2, 2 3 C、? ? ? ?? ? 3, 2 3 D、? ? ? ?? ? -3, 2 3 【答案】D 【解析】{} ,2,20 max,2 2,22,20 x y x y x y x y x y z x y x y x y x y x y x y x y ++≥-+-≤ ?? =+-== ?? -+<---> ?? , 当z=x+y时,对应的点落在直线x-2y=0的左上方,此时 3 2 2 z -≤≤;当z=2x-y时,对应的点落在直线x-2y=0的右下方, 3 3 2 z -≤≤ 3.若实数x,y满足 ? ? ? ? ? ≤ + ≥ ≥ , 12 3 4 ,0 ,0 y x y x 则 1 3 + + = x y z的取值范围是()

A . )7,4 3 ( B .??????5,32 C .?? ????7,3 2 D .?? ????7,4 3 【答案】D 【解析】作出如右图所示的可行域,由于13 ++=x y z 的几何意义是可行域内的点P(x,y)与点(-1,-3)连续的斜率,数形结合,可知3 3 , ,7,[,7]4 4 PA PB PA PB k z k k k z ≤≤==∴∈,应选D 4.设,x y ∈R 且满足1230x x y y x ≥?? -+≥??≥? ,则2z x y =+的最小值等于 ( ) A. 2 B. 3 C.5 D. 9 【答案】B 【解析】解:因为设,x y ∈R 且满足满足1 230 x x y y x ≥?? -+≥??≥? 故其可行域为 当直线Z=x+2y 过点(1,1)时,z=x+2y 取最小值3, 故选B 5.若实数,满足条件则的最大值为( ) (A ) (B ) (C ) (D ) 【答案】A 【解析】作出如右图所示的可行域,当直线z=2x-y 过点A 时,Z 取得最大值.因为A(3,-3),所以Z max =23(3)9?--=,故选A. x y 0,30,03,x y x y x +≥?? -+≥??≤≤? 2x y -9303-

高考全国卷及各省数学线性规划真题附答案.docx

2017 高考全国卷及自主招生数学高考真题 线性规划专题真题整理(附答案解析) x 3y 3, 1. ( 17 全国卷 I ,文数 )设 x ,y 满足约束条件 x y 1, 则 z=x+y 的最大值为( ) 7 y 0, A . 0 B . 1 C .2 D .3 答案: D 解析:如图,由图易知当目标函数 z x y 经过 直线 x 3 y 3 和 y 0 (即 x 轴)的交点 A(3,0) 时, z 能取到最大值,把 A(3,0) 代入 z=x+y 可得 z max 3 0 3 ,故选 D. x 2 y 1 2.(17 全国卷 I, 理数 14 题)设 x ,y 满足约束条件 2x y 1,则 z 3x 2 y 的最小值 x y 0 为 答案: 5 x 2 y 1 解析:不等式组 2x y 1 表示的平面区域如图所示。 x y 0 由 z 3x 2 y 变形得 y 3 x z 。要求 z 的最小值, 2 2 即求直线 y 3 x z 的纵截距的最大值。由右图,易知 2 2 当直线 y 3 x z 过图中点 A 时,纵截距最大。 2 2 联立方程组 2 x y 1 ,此时 z 3(1) 2 1 5 。 x 2 y 1 ,解得 A 点坐标为 ( 1,1) 故 z 3x 2 y 的最小值是 -5.

2x+3y 30 3. (17 全国卷Ⅱ,文数 7、理数 5)设 x、y 满足约束条件2x 3 y 3 0 .则z2x y的 y 30 最小值是() A.-15 C.1D9 答案: A 2x+3y 30 解析:不等式组2x 3y 30 表示的可行域如图所示, y30 易知当直线z 2x y 过到y 2 x 1与 y 3 交点 3 6 ,3 时,目标函数 z2x y 取到最小值,此时有 z min 26315 ,故所求z 最小值为15. )设,满足约束条件 3x 2 y60 的取值范围是 4. (17 全国卷Ⅲ,文数 5 x0,则 z=x-y x y y0 () A.[-3,0] B.[-3,2] C.[0,2] D.[0,3] 答案: B 解析:绘制不等式组表示的可行域,结合目标函数 的几何意义可得目标函数z x y 在直线3x 2y 60 与= - 直线 x0 (即x 轴)的交点A0,3处取得最小值, 此时 z min0 3 3。在点B2,0处取得最大值,此时 z max 2 0 2 . 故本题选择 B 选项 . 5.(17 全国卷Ⅲ,理数13)若 x,y 满足约束条件x y 0 x y 2 0 则z3x 4 y 的最小值为y 0 ________.

第四章整数规划

第四章 整数规划 1、用分枝界定法虬下列整数规划 (1) 12max 2z x x =+ (2) 12max z x x =+ 12x x +≤5 12x x -+≤0 1262x x +≤21 1x ,2x ≥0,整数 1x ,2x ≥0,整数 (3) 123max 45z x x x =++ (4) 12max 4090z x x =+ 1232x x +≤10 1297x x +≤56 124x x +≤11 12720x x +≤70 12333x x x ++≤1 1x ,2x ≥0,整数 1x ,2x ,3x ≥0,整数 2、用割平面法求下列整数规划 (1) 12max 32z x x =+ (2) 21max 79z x x =+ 1223x x +≤14 123x x -+≤6 s t ? 122x x +≤9 s t ? 127x x +≤35 1x ,2x ≥0,整数 1x ,2x ≥0,整数 (3) 2max 3z x = (4) 1232x x +≤7 s t ? 12x x -≥2- 1x ,2x ≥0,2x 整数 1x ,2x ,3x ,4x ≥0 1x ,2x ,3x 整数 3、解下列01-规划 (1) 12345max 2554z x x x x x =-+-+ 1234532754x x x x x -+-+≤6 12345242x x x x x -+-+≤0 0j x =或1,j =1,2,…,5 12 123 x x -+≤12951 1414x x + ≤ s t ?s t ?s t ?s t ?12341711928824x x x x ++-≤12313 15.5 44x x x -++≤123419 max 108118 z x x x x =++-s t ?s t ?

2015届高考数学(理)二轮专题配套练习:专题1_第2讲_不等式与线性规划(含答案)

第2讲 不等式与线性规划 考情解读 1.在高考中主要考查利用不等式的性质进行两数的大小比较、一元二次不等式的解法、基本不等式及线性规划问题.基本不等式主要考查求最值问题,线性规划主要考查直接求最优解和已知最优解求参数的值或取值范围问题. 2.多与集合、函数等知识交汇命题,以选择、填空题的形式呈现,属中档题. 1.四类不等式的解法 (1)一元二次不等式的解法 先化为一般形式ax 2+bx +c >0(a ≠0),再求相应一元二次方程ax 2+bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集. (2)简单分式不等式的解法 ①变形?f (x )g (x )>0(<0)?f (x )g (x )>0(<0);②变形?f (x ) g (x )≥0(≤0)?f (x )g (x )≥0(≤0)且g (x )≠0. (3)简单指数不等式的解法 ①当a >1时,a f (x )>a g (x )?f (x )>g (x );②当0a g (x )?f (x )1时,log a f (x )>log a g (x )?f (x )>g (x )且f (x )>0,g (x )>0; ②当0log a g (x )?f (x )0,g (x )>0. 2.五个重要不等式 (1)|a |≥0,a 2 ≥0(a R ∈). (2)a 2+b 2≥2ab (a 、b R ∈). (3)a +b 2≥ab (a >0,b >0). (4)ab ≤(a +b 2)2 (a ,b R ∈. (5) a 2 +b 22≥a +b 2≥ab ≥2ab a +b (a >0,b >0). 3.二元一次不等式(组)和简单的线性规划 (1)线性规划问题的有关概念:线性约束条件、线性目标函数、可行域、最优解等. (2)解不含实际背景的线性规划问题的一般步骤:①画出可行域;②根据线性目标函数的几何意义确定最优解;③求出目标函数的最大值或者最小值. 4.两个常用结论 (1)ax 2+bx +c >0(a ≠0)恒成立的条件是???? ? a >0,Δ<0. (2)ax 2 +bx +c <0(a ≠0)恒成立的条件是? ???? a <0, Δ<0. 热点一 一元二次不等式的解法 例1 (1)(2013·安徽)已知一元二次不等式f (x )<0的解集为? ?? ? ??x |x <-1或x >12,则f (10x )>0的解集为( ) A .{x |x <-1或x >-lg 2} B .{x |-1-lg 2} D .{x |x <-lg 2} (2)已知函数f (x )=(x -2)(ax +b )为偶函数,且在(0,+∞)单调递增,则f (2-x )>0的解集为( ) A .{x |x >2或x <-2} B .{x |-24} D .{x |00.(2)利用f (x )是偶函数求b ,再解f (2-x )>0. 思维升华 二次函数、二次不等式是高中数学的基础知识,也是高考的热点,“三个二次”的相互转化体现了转化与化归的数学思想方法. (1)不等式x -1 2x +1 ≤0的解集为( ) A .(-12,1] B .[-1 2 ,1] C .(-∞,-12)∪[1,+∞) D .(-∞,-1 2 ]∪[1,+∞) (2)已知p :?x 0R ∈,mx 20+1≤0,q :?x R ∈,x 2+mx +1>0.若p ∧q 为真命题,则实数m 的取值范围是( ) A .(-∞,-2) B .[-2,0) C .(-2,0) D .[0,2] 热点二 基本不等式的应用 例2 (1)(2014·湖北)某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、平均车长l (单位:米)的值有关,其公式为F =76 000v v 2+18v +20l . ①如果不限定车型,l =6.05,则最大车流量为________辆/时; ②如果限定车型,l =5,则最大车流量比①中的最大车流量增加________辆/时. (2)(2013·山东)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y -2 z 的最大值为( )

第六章---运筹学-整数规划案例

第六章整数规划 用图形将一下列线性规划问题的可行域转换为纯整数问题的可行域(在图上用“×”标出)。 1、 max z=3x1+2x2 . 2x1+3x2≤12 2x1+x2≤9 x1、x2≥0 解: 2、 min f=10x1+9x2 . 5x1+3x2≥45 x1≥8 x2≤10 x1、x2≥0

求解下列整数规划问题 1、 min f=4x1+3x2+2x3 . 2x1-5x2+3x3≤4 4x1+x2+3x3≥3 x2+x3≥1 x1、x2、x3=0或1 解:最优解(0,0,1),最优值:2 2、 min f=2x1+5x2+3x3+4x3 . -4x1+x2+x3+x4≥2 -2x1+4x2+2x2+4x2≥4 x1+x2-x2+x2≥3 x1、x2、x3、x3=0或1 解:此模型没有可行解。 3、max Z=2x1+3x2+5x3+6x4 . 5x1+3x2+3x3+x4≤30 2x1+5x2-x2+3x2≤20 -x1+3x2+5x2+3x2≤40 3x1-x2+3x2+5x2≤25 x1、x2、x3、x3=正整数 解:最优解(0,3,4,3),最优值:47 4、 min z =8x1 +4 x2+3 x3+5 x4+2 x5+3 x6+4 x7+3 x8+4 x9+9 x10+7 x11+ 5 x12 +10 x13+4 x14+2 x15+175 x16+300 x17+375 x18 +500 x19 约束条件x1 + x2+x3≤30 x4+ x5+ x6-10 x16≤0 x7+ x8+ x9-20 x17≤0 x10+ x11+ x12-30 x18≤0 x13+ x14+ x15-40 x19≤0 x1 + x4+ x7+x10+ x13=30 x2 + x5+ x8+x11+ x14=20 x3 + x6+ x9+x12+ x15=20 x i为非负数(i=1,2…..8) x i为非负整数(i=9,10…..15) x i为为0-1变量(i=16,17…..19) 解:最优解(30,0,0,0,0,0,0,0,0,0,0,0,0,20,20,0,0,0,1),最优值:860 一餐饮企业准备在全市范围内扩展业务,将从已拟定的14个点中确定8个点建立分店,由于地理位置、环境条件不同,建每个分店所用的费用将有所不同,现拟定的14个店的费用情况如下表:

动态规划习题

第七章动态规划 规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。将各个阶段的决策综合起来构成一个决策序列,称为一个策略。显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。动态规划(dynamic programming)同前面介绍过的各种优化方法不同,它不是一种算法,而是考察问题的一种途径。动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。当然,由于动态规划不是一种特定的算法,因而它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,动态规划必须对具体问题进行具体的分析处理。在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。动态规划的主要创始人是美国数学家贝尔曼(Bellman)。20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。1961年贝尔曼出版了他的第二部著作,并于1962年同杜瑞佛思(Dreyfus)合作出版了第三部著作。在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten)。爱尔思先后于1961年和1964年出版了两部关于动态规划的著作,并于1964年同尼母霍思尔(Nemhauser)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数学性质做出了巨大的贡献。 动态规划在工程技术、经济管理等社会各个领域都有着广泛的应用,并且获得了显著的效果。在经济管理方面,动态规划可以用来解决最优路径问题、资源分配问题、生产调度问题、库存管理问题、排序问题、设备更新问题以及生产过程最优控制问题等,是经济管理中一种重要的决策技术。许多规划问题用动态规划的方法来处理,常比线性规划或非线性规划更有效。特别是对于离散的问题,由于解析数学无法发挥作用,动态规划便成为了一种非常有用的工具。 动态规划可以按照决策过程的演变是否确定分为确定性动态规划和随机性动态规划;也可以按照决策变量的取值是否连续分为连续性动态规划和离散性动态规划。本教材主要介绍动态规划的基本概念、理论和方法,并通过典型的案例说明这些理论和方法的应用。 §7.1 动态规划的基本理论 1.1多阶段决策过程的数学描述 有这样一类活动过程,其整个过程可分为若干相互联系的阶段,每一阶段都要作出相应的决策,以使整个过程达到最佳的活动效果。任何一个阶段(stage,即决策点)都是由输入(input)、决策(decision)、状态转移律(transformation function)和输出(output)构成的,如图7-1(a)所示。其中输入和输出也称为状态(state),输入称为输入状态,输出称为输出状态。

高考数学(理)二轮练习【专题1】(第2讲)不等式与线性规划(含答案)

第2讲 不等式与线性规划 考情解读 1.在高考中主要考查利用不等式的性质进行两数的大小比较、一元二次不等式的解法、基本不等式及线性规划问题.基本不等式主要考查求最值问题,线性规划主要考查直接求最优解和已知最优解求参数的值或取值范围问题.2.多与集合、函数等知识交汇命题,以选择、填空题的形式呈现,属中档题. 1.四类不等式的解法 (1)一元二次不等式的解法 先化为一般形式ax 2+bx +c >0(a ≠0),再求相应一元二次方程ax 2+bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集. (2)简单分式不等式的解法 ①变形?f (x ) g (x ) >0(<0)?f (x )g (x )>0(<0); ②变形?f (x ) g (x )≥0(≤0)?f (x )g (x )≥0(≤0)且g (x )≠0. (3)简单指数不等式的解法 ①当a >1时,a f (x )>a g (x )?f (x )>g (x ); ②当0a g (x )?f (x )1时,log a f (x )>log a g (x )?f (x )>g (x )且f (x )>0,g (x )>0; ②当0log a g (x )?f (x )0,g (x )>0. 2.五个重要不等式 (1)|a |≥0,a 2≥0(a ∈R ). (2)a 2+b 2≥2ab (a 、b ∈R ). (3)a +b 2≥ab (a >0,b >0). (4)ab ≤(a +b 2)2 (a ,b ∈R ). (5) a 2+ b 22≥a +b 2≥ab ≥2ab a +b (a >0,b >0). 3.二元一次不等式(组)和简单的线性规划 (1)线性规划问题的有关概念:线性约束条件、线性目标函数、可行域、最优解等.

相关文档
最新文档