2012年高考文科数学不等式

合集下载

2012年全国高考文科数学试题及解析-大纲卷

2012年全国高考文科数学试题及解析-大纲卷

2012年普通高等学校招生全国统一考试(大纲卷)数学(文科)一.选择题:每小题5分,共60分.在每小题给出的四个答案中,只有一项是符合题目要求的. 1.已知集合{}|A x x =是平行四边形,{}|B x x =是矩形,{}|C x x =是正方形,{}|D x x =是菱形,则A .AB ⊆ B .C B ⊆ C .D C ⊆ D .A D ⊆ 答案B【命题意图】本试题主要考查了集合的概念,集合的包含关系的运用。

【解析】由正方形是特殊的菱形、特殊的矩形、特殊的平行四边形,矩形是特殊的平行四边形,可知集合C 是最小的,集合A 是最大的,故选答案B 。

2.函数1)y x =≥-的反函数为A .21(0)y x x =-≥ B .21(1)y x x =-≥ C .21(0)y x x =+≥ D .21(1)y x x =+≥ 答案A【命题意图】本试题主要考查了反函数的求解,利用原函数反解x ,再互换,x y 得到结论,同时也考查了函数值域的求法。

【解析】由2211y x y x y =⇒+=⇒=-,而1x ≥-,故0y ≥互换,x y 得到21(0)y x x =-≥,故选答案A 3.若函数[]()sin(0,2)3x f x ϕϕπ+=∈是偶函数,则ϕ= A .2πB .23πC .32πD .53π答案C【命题意图】本试题主要考查了偶函数的概念与三角函数图像性质,。

【解析】由[]()sin (0,2)3x f x ϕϕπ+=∈为偶函数可知,y 轴是函数()f x 图像的对称轴,而三角函数的对称轴是在该函数取得最值时取得,故3(0)sin13()3322f k k k Z ϕϕπππϕπ==±⇒=+⇒=+∈,而[]0,2ϕπ∈,故0k =时,32πϕ=,故选答案C 。

4.已知α为第二象限角,3sin 5α=,则sin 2α= A .2425- B .1225- C .1225 D .2425答案A【命题意图】本试题主要考查了同角三角函数关系式的运用以及正弦二倍角公式的运用。

2012届高考数学不等式考点突破测试题(附答案)

2012届高考数学不等式考点突破测试题(附答案)

2012届高考数学不等式考点突破测试题(附答案)第四讲不等式一、选择题 1.a,b,c∈R,下列结论成立的是 ( ) A.a>b,则ac2>bc2 B.ac>bc,则a>b C.a3>b3,ab>0,则1a<1b D.a2>b2,ab>0,则1a<1b 解析:a3>b3⇒a3-b3>0⇒(a-b)(a2+ab+b2)>0⇒(a -b)•a+b22+34b2>0⇒a>b,而 ab>0,因此1ab>0⇒a•1ab>b•1ab⇒1a<1b. 答案:C 2.已知x=a+1a-2(a>2),y=12b2-2(b<0),则x、y之间的大小关系是 ( ) A.x>y B.x<y C.x=y D.不能确定解析:x=(a-2)+1a-2+--2+2=4(当且仅当a=3时,取“=”), y=12b2-2<12-2=4.∴x>y. 答案:A 3.若不等式x2-logax<0在0,12内恒成立,则实数a的取值范围是 ( ) A.116,1 B.0,116 C.(0,1) D.(1,+∞) 解析:不等式化为x2<logax,所以不等式x2<logax在0,12内恒成立转化为当x∈0,12 时,函数y=x2的图象在y=logax的图象的下方,由loga12=14,得a=116,由图,可知选A. 答案:A 4.(2009•天津)设x,y∈R,a>1,b>1,若ax=by=3,a+b=23,则1x+1y的最大值为( ) A.2 B.32 C.1 D.12 解析:因为a>1,b>1,ax=by=3,a+b=23,所以x=loga3,y=logb3. 1x+1y=1loga3+1logb3=log3a+log3b=log3ab ≤log3a+b22=log32322=1,当且仅当a=b时,等号成立.答案:C 5.(2010•浙江)若实数x,y满足不等式组x+3y-3≥0,2x-y-3≤0,x-my+1≥0,且x+y的最大值为9,则实数m= ( ) A.-2 B.-1 C.1 D.2 解析:画出x+3y-3≥02x-y-3≤0,表示的平面区域如图,又x-my+1=0恒过(-1,0)点,当m<0时,x+y无最大值,故选项A、B错误,因此m>0,又满足条件的可行域必须是一个三角形,联立2x-y-3=0,x-my+1=0,解得A3m+12m-1,52m-1,∴3m+12m-1+52m-1=9,解得m=1,故选C. 答案:C 二、填空题 6.(2010•江苏)设x,y为实数,满足3≤xy2≤8,4≤x2y≤9,则x3y4的最大值是________.解析:∵4≤x2y≤9,∴19≤yx2≤14,∴181≤y2x4≤116. 又∵3≤xy2≤8,而x3y4=1y4x3=1xy2•y2x4,且127≤xy2•y2x4≤12,∴2≤x3y4≤27. 答案:27 7.(2010•山东)若对任意x>0,xx3+3x+1≤a恒成立,则a的取值范围是________.解析:因为xx2+3x+1≤a恒成立,所以a≥xx2+3x+1max,而xx2+3x+1=1x+1x+3 ≤12x•1x+3=15,当且仅当x=1x时等号成立,∴a≥15. 答案:a≥15 8.(2010•安徽)设x,y满足约束条件2x-y+2≥0,8x-y-4≤0,x≥0,y≥0,若目标函数z=abx+y(a>0,b>0) 的最大值为8,则a+b的最小值为________.解析:(x,y)满足可行域如图所示,∵abx+y最大值为8(a>0,b>0),∴目标函数等值线l:y=-abx+z最大值时的最优解为2x-y+2=0,8x-y-4=0,解得A(1,4),∴8=ab+4,ab=4.[来源:] 又∵a+b≥2ab;当a=b=2时取等号,∴a+b≥4. 答案:49.(2010•天津)设函数f(x)=x2-1.对任意x∈32,+∞,fxm-4m2f(x)≤f(x-1)+4f(m) 恒成立,则实数m的取值范围是________.解析:∵fxm-4m2f(x)≤f(x-1)+4f(m),∴x2m2-1-4m2(x2-1)≤(x-1)2-1+4(m2- 1),即x2m2-4m2x2≤x2-2x-3 ∵x∈32,+∞,∴1m2-4m2≤1-2x-3x2恒成立.令g(x)=1-2x-3x2 =-31x+132+43,x∈32,+∞,1x∈0,23, g(x)min =g32=-53,∴1m2-4m2≤-53,即12m4-5m2-3≥0,∴(3m2+1)(4m2-3)≥0⇒4m2-3≥0⇒m≥32或m≤-32,∴m∈-∞,-32∪32,+∞. 答案:-∞,-32∪32,+∞ 三、解答题 10.设f(x)是定义在[-1,1]上的奇函数,且对任意a,b∈[-1,1],当a+b≠0时,都有++b>0. (1)若a>b,试比较f(a)与f(b)的大小; (2)解不等式:f(x-12)<f(x-14); (3)证明:若-1≤c≤2,则函数g(x)=f(x-c)和h(x)=f(x-c2)存在公共定义域,并求出这个公共定义域. (1)解:任取x1,x2∈[-1,1],当x1<x2时,由奇函数的定义和题设不等式,得 f(x1)-f(x2)=f(x1)+f(-x2) =+-+--x2)<0. ∴f(x)是增函数,a,b∈[-1,1],且a>b. ∴f(a)>f(b). (2)解:∵f (x)是[-1,1]上的增函数,∴f(x-12)<f(x-14)⇔-1≤x-12≤1-1≤x-14≤1⇔x-12<x-14 -12≤x≤54. ∴该不等式的解集为{x|-12≤x≤54}. (3)证明:设函数g(x)与h(x)的定义域分别为P和Q,则P=[c-1,c+1],Q= [c2-1,c2+1].∵-1≤c≤2,∴(c2-1)-(c+1)=(c-2)(c+1)≤0,即c2-1≤c+1. 又c2+1>c-1,∴g(x)定义域与h(x)定义域交集非空.当-1≤c<0,或1<c≤2时,c(c-1)>0,这时公共定义域为[c2-1,c+1],当0≤c≤1时,c(c -1)≤0,这时公共定义域为[c-1,c2+1]. 11.(2010•浙江五校联考)设x,y为正实数,a=x2+xy+y2,b=pxy,c=x+y. (1)如果p=1,则是否存在以a,b,c为三边长的三角形?请说明理由; (2)对任意的正实数x,y,试探索当存在以a,b,c为三边长的三角形时p的取值范围.解:(1)存在.当p=1时,b=xy, x+y+x2+xy+y2>xy显然成立,且x+y-x2+xy+y2=xyx+y+x2+xy+y2<xy,易知a<c,由上得a+c>bc-a<b,故当p=1时,存在以a,b,c为三边长的三角形.(2)∵a<c,∴若存在以a,b,c为三边长的三角形时,只需a+c>bc-a<b,即x+y+x2+xy+y2>pxy①x+y-x2+xy+y2<pxy ② 不等式①②两边都除以xy,令xy=t,得,这里f(t)=t+1t+ t+1t+1, g(t)=t+1t- t+1t+1,由于f(t)=t+1t+ t+1t+1≥2+2+1=2+3,当且仅当t=1时,f(t)取最小值2+3,令m=t+1t,则m≥2,g(t)=t+1t- t+1t+1=m-m2-1,易知函数φ(m)=m-m2-1在[2,+∞)上单调递减,故φ(m)max=2-3,即g(t)≤2-3,当且仅当t =1时,g(t)取最大值2-3;因此p的取值范围为2-3<p<2+3. 即p的取值范围为2-3<p<2+3时,存在以a、b、c为三边长的三角形. 12.(2010•山东枣庄)设函数f(x)=|x-a|-ax,其中a>0. (1)解不等式f(x)<0; (2)当0<a≤1时,求函数f(x)的最小值.解:(1)由f(x)<0,得|x-a|<ax,∵a>0,∴x>0,-,+当a>1时,有x>0,x>a1-a,x>a1+a,∵a1-a<a1+a,∴x>a1+a. ②当a=1时,解不等式组得x>12. ③当0<a<1时,有x>0,x<a1-a,x>a1+a,∵a1-a>a1+a,∴ a1+a<x<a1-a. 综上所述,当a≥1时,不等式的解集为a1+a,+∞;当0<a<1时,不等式的解集为a1+a,a1-a. (2)∵f(x)=|x-a|-ax =--,-++,∴当0<a<1时,函数f(x)在[a,+∞)上为增函数,在(-∞,a)上为减函数;当x=a 时,函数f(x)的最小值为f(a)=-a2;当a=1时,f(x)=-,-2x+,∴f(x)的最小值为-1.综上所述,x=a时,f(x)有最小值为-a2.。

2012高考数学热点考点精析52不等式选讲(新课标地区)

2012高考数学热点考点精析52不等式选讲(新课标地区)

考点52不等式选讲一、选择题1.(2011·山东高考理科·T4)不等式|x-5|+|x+3|≥10的解集是(A )[-5,7] (B )[-4,6](C )(-∞,-5]∪[7,+∞) (D )(-∞,-4]∪[6,+∞)【思路点拨】去绝对值,根据x 的取值分类讨论,也可以根据绝对值的意义来求解.【精讲精析】选D.①5≥x 时,不等式化为1035ε++ x x ,解得6εx②53<<-x 时,不等式化为1035≥++-x x ,不等式不成立 ③3-≤x 时,()1035≥+--x x ,解得4-≤x由①②③得 4-≤x 或6≥x 另解:利用绝对值的几何意义,53x x -++表示实数轴上的点x 到点3x =-与5x =的距离之和,要使点x 到点3x =-与5x =的距离之和等于10,只需4x -=或6x =,于是当6x ≥,或4x -≤时可使5310x x -++≥成立,答案应选D.二、填空题2.(2011·江西高考理科·T15)对于实数x ,y ,若1x -≤1, 2y -≤1,则21x y -+的最大值为 .【思路点拨】根据21x y -+=(x 1)2(y 2)2----,结合a b a b +≤+,易得.【精讲精析】答案:5x 2y 1(x 1)2(y 2)2x 12y 2)2x 11,y 21,x 2y 11212 5.=+-+----≤--+-≤-≤∴-+≤+⨯+=根据条件有:(3.(2011·江西高考文科·T15)对于x R ∈,不等式1028x x +--≥的解集为________【思路点拨】根据绝对值不等式的解法,采用零点分段讨论即得。

【精讲精析】答案:[)0+∞,[)x 10x 10x 28,128x 2;x 2x 10x 28,128x 20--+≤--+-≥≥≥≥≤<≥+-+≥≥∴≥∞当时,原不等式变为:即,不符合要求;当-10<x<2时,原不等式变为:x+10+x-28,即2x 0,解得0当时,原不等式变为:即,恒成立,综上所述,原不等式的解集为:,。

2012年全国卷Ⅱ高考文科数学试题word版含答案

2012年全国卷Ⅱ高考文科数学试题word版含答案

2012年普通高等学校招生全国统一考试文科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准该条形码上的准考证号、姓名和科目。

2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷....上作答无效.....。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题(1)已知集合{|A x x =是平行四边形},{|B x x =是矩形},{|C x x =是正方形},{|D x x =是菱形},则(A )A B ⊆ (B )C B ⊆ (C )D C ⊆ (D )A D ⊆【解析】根据四边形的定义和分类可知选B.【答案】B(2)函数1)y x =≥-的反函数为(A ))0(12≥-=x x y (B ))1(12≥-=x x y (C ))0(12≥+=x x y (D ))1(12≥+=x x y【解析】 因为1-≥x 所以01≥+=x y .由1+=x y 得,21y x =+,所以12-=y x ,所以反函数为)0(12≥-=x x y ,选A.),【答案】B(5)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y +=(C )22184x y += (D )221124x y +=【解析】椭圆的焦距为4,所以2,42==c c 因为准线为4-=x ,所以椭圆的焦点在x 轴上,且42-=-ca ,所以842==c a ,448222=-=-=c ab ,所以椭圆的方程为122=+y x ,选C.D )D )720种【解析】先排甲,有4种方法,剩余5人全排列有12055=A 种,所以不同的演讲次序有4801204=⨯种,选C. 【答案】C(8)已知正四棱柱1111ABCD A BC D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B (C (D )1【解析】连结BD AC ,交于点O ,连结OE ,因为E O ,是中点,所以1//AC OE ,且121AC OE =,所以BDE AC //1,即直线1AC 与平面BED 的距以D.1,)【解析】如图,在直角三角形中,521===AB CA CB ,,,则52=CD ,所以5454422=-=-=CD CA AD ,所以54=AB AD ,即5454)(5454-=-==,选D. 【答案】D(10)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,, 所以x z y <<,选D. 【答案】D(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,13AE BF ==。

不等式(十年全国高考数学真题分类汇编 (文科) )

不等式(十年全国高考数学真题分类汇编  (文科) )

2012-2021十年全国高考数学真题分类汇编 (文科)不等式(原卷版)一、选择题1.(2021年全国高考乙卷文科)若,x y 满足约束条件4,2,3,x y x y y +≥⎧⎪-≤⎨⎪≤⎩则3z x y =+的最小值为 ( )A .18B .10C .6D .42.(2019年高考数学课标Ⅰ卷文科)已知2log 0.2a =,0.22b =,0.30.2c =,则() ( )A .a b c <<B .a c b <<C .c a b <<D .b c a <<3.(2017年高考数学课标Ⅲ卷文科)设满足约束条件,则的取值范围是( )4.(2017年高考数学课标Ⅱ卷文科)设x 、y 满足约束条件.则的最小值是( )A .B .C . D5.(2017年高考数学课标Ⅰ卷文科)设满足约束条件则的最大值为 ( )A .0B .1C .2D .36.(2014年高考数学课标Ⅱ卷文科)设x ,y 满足约束条件1010330x y x y x y +-⎧⎪--⎨⎪-+⎩≥≤≥,则2z x y =+的最大值为( )A .8B .7C .2D .17.(2014年高考数学课标Ⅰ卷文科)设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =( )A .-5B .3x y ,326000x y x y +-≤⎧⎪≥⎨⎪≥⎩z x y =-.A [3,0].B [3,2].C 0,2.D 0,32330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩= 2 z x y +15-9-19,x y 33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩z x y =+C .-5或3D .5或-38.(2013年高考数学课标Ⅱ卷文科)设,x y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则23z x y =-的最小值是( )A .7-B .6-C .5-D .3- 9.(2012年高考数学课标卷文科)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(,)x y 在ABC ∆内部,则z x y =-+的取值范围是 ( )A.(1- B .(0,2) C.1,2)D.(0,1+二、填空题10.(2020年高考数学课标Ⅰ卷文科)若x ,y 满足约束条件220,10,10,x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩则z =x +7y 的最大值为______________.11.(2020年高考数学课标Ⅱ卷文科)若x ,y 满足约束条件1121,x y x y x y +≥-⎧⎪-≥-⎨⎪-≤⎩,,则2z x y =+的最大值是__________.12.(2020年高考数学课标Ⅲ卷文科)若x ,y 满足约束条件0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩, ,则z =3x +2y 的最大值为_________.13.(2019年高考数学课标Ⅱ卷文科)若变量,x y 满足约束条件23603020x y x y y ⎧⎪⎨⎪⎩+-≥+-≤-≤,,,则3z x y =-的最大值是___________.14.(2018年高考数学课标Ⅲ卷文科)若变量x y ,满足约束条件23024020.x y x y x ++⎧⎪-+⎨⎪-⎩≥,≥,≤则13z x y =+的最大值是________.15.(2018年高考数学课标Ⅱ卷文科)若,x y 满足约束条件250,230,50,x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤ 则z x y =+的最大值为__________.16.(2018年高考数学课标Ⅰ卷文科)若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.17.(2016年高考数学课标Ⅲ卷文科)设x y ,满足约束条件210,210,1,x y x y x -+⎧⎪--⎨⎪⎩≥≤≤ 则235z x y =+-的最小值为______.18.(2016年高考数学课标Ⅱ卷文科)若,x y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =-的最小值为__________.19.(2016年高考数学课标Ⅰ卷文科)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.20.(2015年高考数学课标Ⅱ卷文科)若,x y 满足约束条件50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩,则2z x y =+的最大值为 .21.(2015年高考数学课标Ⅰ卷文科)若x ,y 满足约束条件20,210,220,x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩则3z x y =+的最大值为_________________.22.(2013年高考数学课标Ⅰ卷文科)设,x y 满足约束条件 13,10x x y ≤≤⎧⎨-≤-≤⎩,则2z x y =-的最大值为______.。

2012年高考数学(文)真题及解析(陕西卷)

2012年高考数学(文)真题及解析(陕西卷)

20122012··陕西卷(数学文科)1.[2012·陕西卷]集合M ={x |lg x >0},N ={x |x 2≤4},则M ∩N =()A .(1,2)B .[1,2)C .(1,2]D .[1,2]2.[2012·陕西卷]下列函数中,既是奇函数又是增函数的为()A .y =x +1B .y =-x 3C .y =1xD .y =x |x |3.[2012·陕西卷]对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图1-1所示),则该样本中的中位数众数极差分别是()A .46,45,56B .46,45,53C .47,45,56D .45,47,534.[2012·陕西卷]设a ,b ∈,i 是虚数单位,则“ab =0”是“复数a +b i 为纯虚数”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.[2012·陕西卷]图1-2是计算某年级500名学生期末考试(满分为100分)及格率q 的程序框图,则图中空白框内应填入()A .q =N MB .q =M NC.q=N M+ND.q=M M+N6.[2012·陕西卷]已知圆C:x2+y2-4x=0,l是过点P(3,0)的直线,则() A.l与C相交B.l与C相切C.l与C相离D.以上三个选项均有可能7.[2012·陕西卷]设向量=(1,cosθ)与=(-1,2cosθ)垂直,则cos2θ等于()A.22B.12C.0D.-18.[2012·陕西卷]将正方体(如图1-3①所示)截去两个三棱锥,得到图②所示的几何体,则该几何体的左视图为()图1-3图1-49.[2012·陕西卷]设函数f(x)=2x+ln x,则()A.x=12为f(x)的极大值点B.x=12为f(x)的极小值点C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点10.[2012·陕西卷]小王从甲地到乙地往返的时速分别为a和b(a<b),其全程的平均时速为v,则()A .a <v <abB .v =abC.ab <v <a +b 2D .v =a +b211.[2012·陕西卷]设函数f (x )x ≥0,,x <0,则f (f (-4))=________.12.[2012·陕西卷]观察下列不等式1122<32,1122+132<53,1122+132+142<74,……照此规律,第五个...不等式为________.13.[2012·陕西卷]在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .若a =2,B =π6,c =23,则b =________.14.[2012·陕西卷]图1-5是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽________米.15.[2012·陕西卷]A.(不等式选做题)若存在实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值范围是________.B.(几何证明选做题)如图1-6,在圆O 中,直径AB 与弦CD 垂直,垂足为E ,EF ⊥DB ,垂足为F ,若AB =6,AE =1,则DF ·DB =________.图1-6C.(坐标系与参数方程选做题)直线2ρcos θ=1与圆ρ=2cos θ相交的弦长为________.16.[2012·陕西卷]已知等比数列{a n}的公比q=-1 2 .(1)若a3=14,求数列{a n}的前n项和;(2)证明:对任意k∈+,a k,a k+2,a k+1成等差数列.17.[2012·陕西卷]函数f(x)=A1(A>0,ω>0)的最大值为3,其图像相π.2(1)求函数f(x)的解析式;(2)设α2,求α的值.18.[2012·陕西卷]直三棱柱ABC-A1B1C1中,AB=AA1,∠CAB=π2 .(1)证明:CB1⊥BA1;(2)已知AB=2,BC=5,求三棱锥C1-ABA1的体积.图1-719.[2012·陕西卷]假设甲乙两种品牌的同类产品在某地区市场上销售量相等,为了解它们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如下:图1-8(1)估计甲品牌产品寿命小于200小时的概率;(2)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是甲品牌的概率.20.[2012·陕西卷]已知椭圆C 1:x 24+y 2=1,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率.(1)求椭圆C 2的方程;(2)设O 为坐标原点,点A ,B 分别在椭圆C 1和C 2上,OB →=2OA →,求直线AB 的方程.21.[2012·陕西卷]设函数f(x)=x n+bx+c(n∈+,b,c∈).(1)设n≥2,b=1,c=-1,证明:f(x)(2)设n为偶数,|f(-1)|≤1,|f(1)|≤1,求b+3c的最小值和最大值;(3)设n=2,若对任意x1,x2∈[-1,1]有|f(x1)-f(x2)|≤4,求b的取值范围.1.C[解析]本小题主要考查集合的概念及基本运算以及对数函数的性质一元二次不等式的解法.解题的突破口为解对数不等式以及一元二次不等式.对于lg x>0可解得x>1;对于x2≤4可解得-2≤x≤2,根据集合的运算可得1<x≤2,故选C.2.D[解析]本小题主要考查函数的单调性奇偶性,解题的突破口为单调性的定义奇偶性的定义与函数图像的对应关系.若函数为单调增函数,其图像为从左向右依次上升;若函数为奇函数,其图像关于原点对称.经分析,A选项函数的图像不关于原点对称,不是奇函数,排除;B选项函数的图像从左向右依次下降,为单调减函数,排除;C选项函数的图像从左向右依次下降,为单调减函数,排除;故选D.其实对于选项D,我们也可利用x>0x=0x<0讨论其解析式,然后画出图像,结果符合要求,故选D.3.A[解析]本题主要考查茎叶图数据的读取和数据特征的简单计算,由所给的茎叶图可知所给出的数据共有30个,其中45出现3次为众数,处于中间位置的两数为45和47,则中位数为46;极差为68-12=56.故选A.4.B[解析]本小题主要考查充要条件的概念以及复数的相关知识,解题的突破口为弄清什么是纯虚数,然后根据充要条件的定义去判断.a+bi=a-b i,若a+bi为纯虚数,a=0且b≠0,所以ab=0不一定有a+bi为纯虚数,但a+bi为纯虚数,一定有ab=0,故“ab=0”是“复数a+bi为纯虚数”的必要不充分条件,故选B.5.D[解析]通过阅读题目所给的程序框图可知是循环结构,最终求解的是500个人的及格率,故填入的应为及格率q=M M+N.6.A[解析]本小题主要考查直线与圆的位置关系,解题的突破口为熟练掌握判断直线与圆位置关系的方法.x2+y2-4x=0是以(2,0)为圆心,以2为半径的圆,而点P(3,0)到圆心的距离为d=(3-2)2+(0-0)2=1<2,点P(3,0)恒在圆内,过点P(3,0)不管怎么样画直线,都与圆相交.故选A.7.C[解析]由向量垂直的充要条件可知,要使两向量垂直,则有1-2cos2θ=0,则cos2θ=2cos2θ-1=0.故选C.8.B[解析]分析题目中截几何体所得的新的几何体的形状,结合三视图实线和虚线的不同表示可知对应的左视图应该为B.9.D[解析]所给的原函数f(x)=2x+ln x的导函数为f′(x)=-2x2+1x,令其为0可得x=2,且验证导数为左负右正,故选D.10.A[解析]由小王从甲地往返到乙地的时速为a和b,则全程的平均时速为2s=2aba+b,取值验证可知A成立.11.4[解析]由题目所给的是一分段函数,而f(-4)=16,f(16)=4,故答案为4.12.1+122+132+142+152+162<116[解析]本小题主要考查了归纳与推理的能力,解题的关键是对给出的几个事例分析,找出规律,推出所要的结果.从几个不等式左边分析,可得出第五个式子的左边为:1122+132+142+152+162,对几个不等式右边分析,其分母依次为:2,3,4,所以第5个式子的分母应为6,而其分子依次为:3,5,7,所以第5个式子的分子应为11,所以第5个式子应为:1+122+132+142+152+162<116.13.2[解析]利用题目中所给的是两边和其对应夹角关系,可以使用余弦定理来计算,可知:b2=a2+c2-2ac cos B=4,故b=2.14.26[解析]本小题主要考查了抛物线的知识,解题的关键是建立坐标系求出抛物线的方程.以拱顶为坐标原点建立平面直角坐标系,设抛物线的方程为:x2=-2py(p>0),由题意知抛物线过点(2,-2),代入方程得p=1,则抛物线的方程为:x2=-2y,当水面下降1米时,为y=-3,代入抛物线方程得x=6,所以此时水面宽为26米.15.A:-2≤a≤4[解析]本题考查了不等式解法的相关知识,解题的突破口是理解不等式的几何意义.|x-a|+|x-1|≤3表示的几何意义是在数轴上一点x到1的距离与到a的距离之和小于或等于3个单位长度,此时我们可以以1为原点找离此点小于或等于3个单位长度的点即为a的取值范围,不难发现-2≤a≤4.B:5[解析]本题考查了射影定理的知识,解题的突破口是找出直角三角形内的射影定理.连接AD,在Rt△ABD中,DE⊥AB,所以DE2=AE×EB=5,在Rt△EBD 中,EF⊥DB,所以DE2=DF×DB=5.C :3[解析]本题考查了极坐标的相关知识,解题的突破口为把极坐标化为直角坐标.由2ρcos θ=1得2x =1①,由ρ=2cos θ得ρ2=2ρcos θ,即x 2+y 2=2x ②,联立①②得y =±32,所以弦长为 3.16.解:(1)由a 3=a 1q 2=14及q =-12,得a 1=1,所以数列{an }的前n 项和S n 1(2)证明:对任意k ∈+,2a k +2-(a k +a k +1)=2a 1q k +1-(a 1q k -1+a 1q k )=a 1q k -1(2q 2-q -1),由q =-12得2q 2-q -1=0,故2a k +2-(a k +a k +1)=0.所以,对任意k ∈+,a k ,a k +2,a k +1成等差数列.17.解:(1)∵函数f (x )的最大值为3,∴A +1=3,即A =2,π2,∴最小正周期T =π,∴ω=2,故函数f (x )的解析式为y =x 1.(2)∵1=2,即=12,∵0<α<π2,∴-π6<α-π6<π3,∴α-π6=π6,故α=π3.18.解:(1)证明:如图,连结AB 1,∵ABC -A 1B 1C 1是直三棱柱,∠CAB =π2,∴AC ⊥平面ABB 1A 1,故AC ⊥BA 1.又∵AB =AA 1,∴四边形ABB 1A 1是正方形,∴BA 1⊥AB 1,又CA ∩AB 1=A .∴BA 1⊥平面CAB 1,故CB 1⊥BA 1.(2)∵AB =AA 1=2,BC =5,∴AC =A 1C 1=1,由(1)知,A 1C 1⊥平面ABA 1,∴VC 1-ABA 1=13S △ABA 1·A 1C 1=13×2×1=23.19.解:(1)甲品牌产品寿命小于200小时的频率为5+20100=14,用频率估计概率,所以,甲品牌产品寿命小于20014.(2)根据抽样结果,寿命大于200小时的产品有75+70=145(个),其中甲品牌产品是75个,所以在样本中,寿命大于200小时的产品是甲品牌的频75145=1529,用频率估计概率,所以已使用了200小时的该产品是甲品牌的概率为1529.20.解:(1)由已知可设椭圆C 2的方程为y 2a 2+x 24=1(a >2),32,故a 2-4a =32,则a =4,故椭圆C 2的方程为y 216+x 24=1.(2)解法一:A ,B 两点的坐标分别记为(x A ,y A ),(x B ,y B ),由OB →=2OA →及(1)知,O ,A ,B 三点共线且点A ,B 不在y 轴上,因此可设直线AB 的方程为y =kx .将y =kx 代入x 24+y 2=1中,得(1+4k 2)x 2=4,所以x 2A =41+4k 2,将y =kx 代入y 216+x 24=1中,得(4+k 2)x 2=16,所以x 2B =164+k 2,又由OB →=2OA →得x 2B =4x 2A,即164+k 2=161+4k 2,解得k =±1,故直线AB 的方程为y =x 或y =-x .解法二:A ,B 两点的坐标分别记为(x A ,y A ),(x B ,y B ),由OB→=2OA →及(1)知,O ,A ,B 三点共线且点A ,B 不在y 轴上,因此可设直线AB 的方程为y =kx .将y =kx 代入x 24+y 2=1中,得(1+4k 2)x 2=4,所以x 2A =41+4k 2,由OB →=2OA →得x 2B 161+4k 2,y 2B =16k 21+4k 2,将x 2B ,y 2B 代入y 216+x 24=1中,得4+k 21+4k2=1,即4+k 2=1+4k 2,解得k =±1,故直线AB 的方程为y =x 或y =-x .21.解:(1)当b =1,c =-1,n ≥2时,f (x )=x n +x -1.∵(1)1<0.∴f (x )又当x f ′(x )=nx n -1+1>0,∴f (x )∴f (x )(2)1≤f (-1)≤1,1≤f (1)≤1,即≤b -c ≤2,2≤b +c ≤0.由图像知,b +3c 在点(0,-2)取到最小值-6,在点(0,0)取到最大值0,∴b +3c 的最小值为-6,最大值为0.解法二:由题意知-1≤f (1)=1+b +c ≤1,即-2≤b +c ≤0,①-1≤f (-1)=1-b +c ≤1,即-2≤-b +c ≤0,②①×2+②得-6≤2(b +c )+(-b +c )=b +3c ≤0,当b =0,c =-2时,b +3c =-6;当b =c =0时,b +3c =0,所以b +3c 的最小值为-6,最大值为0.-1)=1-b +c ,1)=1+b +c ,解得b =f (1)-f (-1)2,c =f (1)+f (-1)-22,∴b +3c =2f (1)+f (-1)-3.又∵-1≤f (-1)≤1,-1≤f (1)≤1,∴-6≤b +3c ≤0,所以b +3c 的最小值为-6,最大值为0.(3)当n =2时,f (x )=x 2+bx +c .对任意x 1,x 2∈[-1,1]都有|f (x 1)-f (x 2)|≤4等价于f (x )在[-1,1]上的最大值与最小值之差M ≤4.据此分类讨论如下:①当|b2|>1,即|b |>2时,M =|f (1)-f (-1)|=2|b |>4,与题设矛盾.②当-1≤b2<0,即0<b ≤2时,M =f (1)-≤4恒成立.③当0≤-b2≤1,即-2≤b ≤0时,M =f (-1)-≤4恒成立.综上可知,-2≤b ≤2.注:②,③也可合并证明如下:用max{a ,b }表示a ,b 中的较大者.当-1≤b2≤1,即-2≤b ≤2时,M =max{f (1),f (-1)}-f (-1)+f (1)2+|f (-1)-f (1)|2-=1+c +|b |-b 24+≤4恒成立.。

2012年全国高考(新课标-)文科数学试卷及参考答案-2

2012年普通高等学校招生全国统一考试 (新课标文科数学试卷及参考答案)第Ⅰ卷一、选择题1.已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则( )(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅ 2.复数z =-3+i2+i的共轭复数是 ( )(A )2+i (B )2-i (C )-1+i (D )-1-i 3.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为 ( )(A )-1 (B )0 (C )12(D )14.设F 1、F 2是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦线x =3a2上一点,△F 1PF 2是底角为30°的等腰三角E 的离心率为( )(A )12 (B )23 (C )34 (D )455.已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 象限,若点(x ,y )在△ABC 内部,则z=-x+y 的取值是( )(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)6.如果执行右边的程序框图,输入正整数N(N ≥2)和数a 1,a 2,…,a N ,输出A,B ,则( ) (A )A+B 为a 1,a 2,…,a N 的和(B )A +B 2为a 1,a 2,…,a N 的算术平均数(C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的(D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的7.如图,网格纸上小正方形的边长为1,粗线画出的何体的三视图,则此几何体的体积为( ) (A )6 (B )9 (C )12 (D )188.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为 ( )(A )6π (B )43π (C )46π (D )63π9.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x 条相邻的对称轴,则φ=( )(A )π4 (B )π3 (C )π2 (D )3π410.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为( )(A ) 2 (B )2 2 (C )4 (D )811.当0<x ≤12时,4x<log a x ,则a 的取值范围是 ( )(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) 12.数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为( ) (A )3690 (B )3660 (C )1845 (D )1830 第Ⅱ卷二.填空题13.曲线y =x (3ln x +1)在点(1,1)处的切线方程为________14.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =_______ 15.已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=16.设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M+m =____三、解答题17.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c = 3a sinC -c cosA (1) 求A(2) 若a =2,△ABC 的面积为3,求b ,c 18.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。

2012年高考新课标全国卷文科数学试题(附答案)

2012年普通高等学校招生全国统一考试(新课标全国卷)文科数学试题一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={x |x 2−x −2<0},B={x |−1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅ (2)复数z =32ii-++的共轭复数是 (A )2i + (B )2i - (C )1i -+ (D )1i --(3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为(A )−1 (B )0 (C )12(D )1(4)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的左、 右焦点,P 为直线32ax =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为 (A )12 (B )23 (C )34 D .45(5)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC内部,则z x y =-+的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3) (6)如果执行右边的程序框图,输入正整数N (N ≥2)和实数1a ,2a ,…,N a ,输出A ,B ,则 (A )A +B 为1a ,2a ,…,N a 的和 (B )2A B+为1a ,2a ,…,N a 的算术平均数 (C )A 和B 分别为1a ,2a ,…,N a 中的最大数和最小数(D )A 和B 分别为1a ,2a ,…,N a 中的最小数和最大数 (7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 (A )6 (B )9 (C )12 (D )18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π (9)已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =43,则C 的实轴长为(A )2 (B )22 (C )4 (D )8 (11)当0<x ≤12时,4log xa x <,则a 的取值范围是(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) (12)数列{n a }满足1(1)21nn n a a n ++-=-,则{n a }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830二.填空题:本大题共4小题,每小题5分。

2012年高考试题分类汇编(不等式)

2012年高考试题分类汇编(不等式)考点1 不等式的基本性质1.(2012·湖南卷·文科)设1a b >>,0c <,给出下列三个结论 ①c ca b > ②c c a b < ③log ()log ()b a a c b c ->- 其中所有的正确结论的序号是A.①B.①②C.②③D.①②③ 2.(2012·四川卷·文科)设,a b 为正实数,现有下列命题:①若221a b -=,则1a b -<; ②若111b a-=,则1a b -<;1=,则1a b -<; ④若331a b -=,则1a b -<. 其中的真命题有_______.(写出所有真命题的编号)考点2 解不等式或证明不等式考法1 一元二次不等式1.(2012·课标全国卷·文科)已知集合{}220A x x x =--<,{}11B x x =-<<,则A.A B ⊂B.B A ⊂C.A B =D.A B =∅I2.(2012·浙江卷·理科)设集合{}14A x x =<<,集合{}2230B x x x =--≤,则()R A C B =A.(1,4)B.(3,4)C.(1,3)D.(1,2)(3,4) 3.(2012·北京卷·文理)已知集合{}320A x R x =∈+>,{(1)(3)B x R x x =∈+-0}>,则A B =A.(),1-∞-B.2(1)3--,C.2(,3)3- D.(3)+∞, 4.(2012·湖南卷·理科)设集合{}1,0,1M =-,{}2N x x x =≤,则M N =A.{}0B.{}0,1C.{}1,1-D.{}1,0,1- 5.(2012·陕西卷·理科)集合{lg 0}M x x =>,2{4}N x x =≤,则M N =A.()12,B.[)12,C.(]12,D.[]12,6.(2012·江西卷·文科)若全集{}24U x R x =∈≤,则{}11A x R x =∈+≤的补集U C A =A.{}02x R x ∈<<B.{}02x R x ∈≤<C.{}02x R x ∈<≤D.{}02x R x ∈≤≤7.(2012·福建卷·文科)已知关于x 的不等式220x ax a -+>在R 上恒成立,则实数a 的取值范围___. 考法2 含有绝对值符合的不等式1.(2012·天津卷·文科)集合{25}A x R x =∈-<中的最小整数为 .2.(2012·山东卷·理科)若不等式42kx -≤的解集为{}13x x ≤≤,则实数k =_______.3.(2012·天津卷·理科)已知集合{23}A x R x =∈+<,集合{()(2)0}B x R x m x =∈--<,且(1,)A B n =-则m =______,n =________. 4.(2012·广东卷·理科)不等式21x x +-≤的解集为_____. 5.(2012·湖南卷·理科)不等式21210x x +-->的解集为_______. 6.(2012·江西卷·理科)在实数范围内,不等式21216x x -++≤的解集为 . 7.(2012·陕西卷·理科)若存在实数x 使13x a x -+-≤成立,则实数a 的取值范围是 . 考法3 分式不等式1.(2012·重庆卷·理科)不等式0121≤+-x x 的解集为 A.1(,1]2- B.1[,1]2- C.1(,)[1,)2-∞-+∞ D.1(,][1,)2-∞-+∞2.(2012·重庆卷·文科)不等式102x x -<+的解集为 A.(1,)+∞ B.(,2)-∞- C.(2,1)- D.(,2)(1,)-∞-+∞3.(2012·江西卷·文科)不等式2902x x ->-的解集是_______.考法4 数的大小比较1.(2012·全国大纲卷·文理)已知ln x π=,5log 2y = , 12z e -=,则 A.x y z << B.z x y << C.z y x << D.y z x <<2.(2012·重庆卷·文科)已知22log 3log a =+22log 9log b =-3log 2c =, 则,,a b c 的大小关系是A.a b c =<B.a b c =>C.a b c <<D.a b c >>考点3 基本不等式1.(2012·福建卷·理科)下列不等式一定成立的是A.21lg()lg (0)4x x x +>>B.1sin 2 (,)sin x x k k z xπ+≥≠∈ C.212 ()x x x R +≥∈ D.211 ()1x R x >∈+ 2.(2012·陕西卷·文科)小王从甲地到乙地的时速分别为a 和b (a b <),其 全程的平均时速为v ,则A.a v <v =v <2a b + D.2a bv +=3.(2012·北京卷·文科)已知{}n a 为等比数列,下面结论中正确的是 A.1322a a a +≥ B.2221322a a a +≥ C.若13a a =,则12a a = D.若31a a >,则42a a >4.(2012·陕西卷·理科)在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值B. 2C. 12D. 12-考点4 线性规划1.(2012·课标全国卷·理科)设,x y 满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+-≥-0031y x y x y x ,则2z x y =-的取值范围为_______.2.(2012·山东卷·理科)设变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y =-的取值范围是A.3[,6]2-B.3[,1]2--C.[16]-,D.3[6]2-, 3.(2012·安徽卷·文理)若,x y 满足约束条件⎪⎩⎪⎨⎧≤+≥+≥32320y x y x x 则x y -的取值范围 .4.(2012·天津卷·文科)设变量,x y 满足约束条件22024010x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则32z x y=-的最小值为A.-5B.-4C.-2D.35.(2012·全国大纲卷·文理)若,x y 满足约束条件⎪⎩⎪⎨⎧≥-+≤-+≥+-0330301y x y x y x ,则3z x y=-的最小值为_____.6.(2012·广东卷·理科)已知变量,x y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为A.12B.11C.3D.-17.(2012·广东卷·文科)已知变量,x y 满足约束条件1110x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y =+的最大值为A.3B.1C.5-D.6-8.(2012·浙江卷·文科)设2z x y =+,其中实数,x y 满足102000x y x y x y -+≥⎧⎪+-≤⎪⎨≥⎪⎪≥⎩,则z 的取值范围是__ _.9.(2012·辽宁卷·理科)设变量,x y 满足10020015x y x y y -≤⎧⎪≤+≤⎨⎪≤≤⎩,则23x y +的最大值为A.20B.35C.45D.55 10.(2012·福建卷·理科)若函数2x y =图像上存在点(,)x y 满足约束条件30230x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩,则实数m 的最大值为 A .12 B.1 C.32D.2。

2012年高考真题试卷数学文(湖北卷)详细答案解析

2012年普通高等学校招生全国统一考试(湖北卷)数学(供文科考生使用)解析1.D 【解析】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R{}1,2=,易知{}{}|05,1,2,3,4=<<∈=N B x x x .因为⊆⊆A C B ,所以根据子集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合{}3,4的子集个数,即有224=个.故选D.【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.2.B 【解析】由频率分布表可知:样本数据落在区间[10,40)内的頻数为2+3+4=9,样本总数为23454220+++++=,故样本数据落在区间[10,40)内频率为90.4520=.故选B. 【点评】本题考查频率分布表的应用,频率的计算.对于頻数、频率等统计问题只需要弄清楚样本总数与各区间上样本的个数即可,用区间上样本的个数除以样本总数就可得到相应区间上的样本频率.来年需注意频率分布直方图与频率分布表的结合考查.3.D 【解析】由()cos 20==f x x x ,得0=x 或cos20=x ;其中,由cos 20=x ,得()22x k k ππ=+∈Z ,故()24k x k ππ=+∈Z .又因为[]0,2x ∈π,所以π3π5π7π,,,4444x =.所以零点的个数为145+=个.故选D.【点评】本题考查函数的零点,分类讨论的数学思想.判断函数的零点一般有直接法与图象法两种方法.对于三角函数的零点问题,一般需要规定自变量的取值范围;否则,如果定义域是R ,则零点将会有无数个;来年需注意数形结合法求解函数的零点个数,所在的区间等问题.4.B 【解析】根据特称命题的否定,需先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数”.故选B.【点评】本题考查特称命题的否定.求解特称命题或全称命题的否定,千万别忽视了改变量词;另外,要注意一些量词的否定的书写方法,如:“都是”的否定为“不都是”,别弄成“都不是.5.A 【解析】要使直线将圆形区域分成两部分的面积之差最大,必须使过点P 的圆的弦长达到最小,所以需该直线与直线OP 垂直即可.又已知点(1,1)P ,则1OP k =,故所求直线的斜率为-1.又所求直线过点(1,1)P ,故由点斜式得,所求直线的方程为()11y x -=--,即20+-=x y .故选A.【点评】本题考查直线、线性规划与圆的综合运用,数形结合思想.本题的解题关键是通过观察图形发现当面积之差最大时,所求直线应与直线OP 垂直,利用这一条件求出斜率,进而求得该直线的方程.来年需注意直线与圆相切的相关问题.6.B 【解析】特殊值法:当2x =时,()()()22200y f x f f =--=--=-=,故可排除D 项;当1x =时,()()()22111y f x f f =--=--=-=-,故可排除A,C 项;所以由排除法知选B.【点评】本题考查函数的图象的识别.有些函数图象题,从完整的性质并不好去判断,作为徐总你则提,可以利用特殊值法(特殊点),特性法(奇偶性,单调性,最值)结合排除法求解,既可以节约考试时间,又事半功倍.来年需注意含有xe 的指数型函数或含有ln x 的对数型函数的图象的识别. 7.C 同理7【解析】设数列{}n a 的公比为q .对于①,22112()()n n n nf a a q f a a ++==,是常数,故①符合条件;对于②,111()22()2n n n n a a a n a n f a f a ++-+==,不是常数,故②不符合条件;对于③,1()()n n f a f a +===;对于④, 11()ln ||()ln ||n n n n f a a f a a ++=,不是常数,故④不符合条件.由“保等比数列函数”的定义知应选C.【点评】本题考查等比数列的新应用,函数的概念.对于创新性问题,首先要读懂题意,然后再去利用定义求解,抓住实质是关键.来年需要注意数列的通项,等比中项的性质等. 8.D 【解析】因为,,a b c 为连续的三个正整数,且>>A B C ,可得a b c >>,所以2,1=+=+a c b c ①;又因为已知320cos =b a A ,所以3cos 20bA a=②.由余弦定理可得222cos 2+-=b c a A bc ③,则由②③可得2223202b b c a a bc +-=④,联立①④,得2713600--=c c ,解得4=c 或157=-c (舍去),则6=a ,5=b .故由正弦定理可得,sin :sin :sin ::6:5:4==A B C a b c .故应选D.【点评】本题考查正、余弦定理以及三角形中大角对大边的应用.本题最终需求解三个角的正弦的比值,明显是要利用正弦定理转化为边长的比值,因此必须求出三边长.来年需注意正余弦定理与和差角公式的结合应用.9.A 【解析】当1abc ==+=,而()()()()2a b c a b b c c a ++=+++++≥a b c ==,且1abc =,即a b c ==时等号成立),a b c+=≤++;但当取2a b c ===,显然有a b c≤++,但1abc ≠,即由a b c≤++不可以推得1abc =;综上,1abc =是a b c≤++的充分不必要条件.应选A. 【点评】本题考查充要条件的判断,不等式的证明.判断充要条件,其常规方法是首先需判断条件能否推得结论,然后需判断结论能否推得条件;来年需注意充要条件与其他知识(如向量,函数)等的结合考查. 10.C 同理8【解析】如图,不妨设扇形的半径为2a,如图,记两块白色区域的面积分别为S 1,S 2,两块阴影部分的面积分别为S 3,S 4,则S 1+S 2+S 3+S 4=S 扇形OAB =221(2)4a a ππ=①, 而S 1+S 3 与S 2+S 3的和恰好为一个半径为a 的圆,即S 1+S 3 +S 2+S 32a π=②. ①-②得S 3=S 4,由图可知S 3=221()2OEDC EOD S S S a a π+-=-正方形扇形扇形COD ,所以. 222S a a π=-阴影.由几何概型概率公式可得,此点取自阴影部分的概率 P=222221OABS a a S a πππ-==-阴影扇形.【点评】本题考查古典概型的应用以及观察推理的能力.本题难在如何求解阴影部分的面积,即如何巧妙地将不规则图形的面积化为规则图形的面积来求解.来年需注意几何概型在实际生活中的应用.11. 6【解析】设抽取的女运动员的人数为a ,则根据分层抽样的特性,有84256a =,解得6a =.故抽取的女运动员为6人. 【点评】本题考查分层抽样的应用.本题实际是承接2012奥运会为题材,充分展示数学知识在生活中的应用.分层抽样时,各样本抽取的比例应该是一样的,即为抽样比. 来年需注意系统抽样的考查或分层抽样在解答题中作为渗透考查. 12. 3【解析】因为31bia bi i+=+-,所以()()()31bi a bi i a b b a i +=+-=++-.又因为,a b 都为实数,故由复数的相等的充要条件得3,,a b b a b +=⎧⎨-=⎩解得0,3,a b =⎧⎨=⎩所以3a b +=.【点评】本题考查复数的相等即相关运算.本题若首先对左边的分母进行复数有理化,也可以求解,但较繁琐一些.来年需注意复数的几何意义,基本概念(共轭复数),基本运算等的考查.13.(Ⅰ)1010⎛ ⎝⎭;(Ⅱ)5- 【解析】(Ⅰ)由()()1,0,1,1a =b =,得()23,1+a b =.设与2+a b 同向的单位向量为(),x y c =,则221,30,x y y x ⎧+=⎨-=⎩且,0x y >,解得,1010x y ⎧=⎪⎪⎨⎪=⎪⎩故⎝⎭c =.即与2+a b同向的单位向量的坐标为⎝⎭.(Ⅱ)由()()1,0,1,1a =b =,得()32,1--b a =.设向量3-b a 与向量a 的夹角为θ,则()32,11,0cos 35θ--===-- b a a b a a.【点评】本题考查单位向量的概念,平面向量的坐标运算,向量的数量积等.与某向量同向的单位向量一般只有1个,但与某向量共线的单位向量一般有2个,它包含同向与反向两种.不要把两个概念弄混淆了. 来年需注意平面向量基本定理,基本概念以及创新性问题的考查.14.2 【解析】(解法一)作出不等式组1,1,33x y x y x y -≥-⎧⎪+≥⎨⎪-≤⎩所表示的可行域(如下图的ABM ∆及其内部).可知当直线23z x y =+经过1,33x y x y +=⎧⎨-=⎩的交点()1,0M 时,23z x y =+取得最小值,且min 2z =.(解法二)作出不等式组1,1,33x y x y x y -≥-⎧⎪+≥⎨⎪-≤⎩所表示的可行域(如下图的ABM ∆及其内部).目标函数23z x y =+在ABM ∆的三个端点()()()2,3,0,1,1,0A B M 处取的值分别为13,3,2,比较可得目标函数23z x y =+的最小值为2.【点评】本题考查线性规划求解最值的应用.运用线性规划求解最值时,关键是要搞清楚目标函数所表示的直线的斜率与可行域便捷直线的斜率之间的大小关系,以好确定在哪个端点,目标函数取得最大值;在哪个端点,目标函数取得最小值.来年需注意线性规划在生活中的实际应用.15.12π【解析】由三视图可知,该几何体是由左右两个相同的圆柱(底面圆半径为2,高为1)与中间一个圆柱(底面圆半径为1,高为4)组合而成,故该几何体的体积是222121412Vπππ=⨯⨯⨯+⨯⨯=.【点评】本题考查圆柱的三视图的识别,圆柱的体积.学生们平常在生活中要多多观察身边的实物都是由什么几何形体构成的,以及它们的三视图的画法. 来年需注意以三视图为背景,考查常见组合体的表面积.16. 同理12【解析】由程序框图可知:第一次:a=1,s=0,n=1,s=s+a=1,a=a+2=3,n=1<3满足判断条件,继续循环;第二次:n=n+1=2,s=s+a=1+3=4,a=a+2=5,n=2<3满足判断条件,继续循环;第三次:n=n+1=3,s=s+a=4+5=9,a=a+2=11,n=3<3不满足判断条件,跳出循环,输出s的值.综上,输出的s值为9.【点评】本题考查程序框图及递推数列等知识.对于循环结构的输出问题,一步一步按规律写程序结果,仔细计算,一般不会出错,属于送分题.来年需注意判断条件的填充型问题.17.(Ⅰ)5030;(Ⅱ)()5512k k-【解析】由以上规律可知三角形数1,3,6,10,…,的一个通项公式为(1)2nn na+=,写出其若干项有:1,3,6,10,15,21,28,36,45,55,66,78,91,105,110,发现其中能被5整除的为10,15,45,55,105,110,故142539*********,,,,,b a b a b a b a b a b a ======.从而由上述规律可猜想:255(51)2k k k k b a +==(k 为正整数), 2151(51)(511)5(51)22k k k k k k b a ----+-===, 故201221006510065030b a a a ⨯⨯===,即2012b 是数列{}n a 中的第5030项.【点评】本题考查归纳推理,猜想的能力.归纳推理题型重在猜想,不一定要证明,但猜想需要有一定的经验与能力,不能凭空猜想.来年需注意类比推理以及创新性问题的考查.18.【解析】【点评】本题考查三角函数的最小正周期,三角恒等变形;考查转化与划归,运算求解的能力.二倍角公式,辅助角公式在三角恒等变形中应用广泛,它在三角恒等变形中占有重要的地位,可谓是百考不厌. 求三角函数的最小正周期,一般运用公式2T πω=来求解;求三角函数的值域,一般先根据自变量x 的范围确定函数x ωϕ+的范围.来年需注意三角函数的单调性,图象变换,解三角形等考查.19.【解析】【点评】本题考查线面垂直,空间几何体的表面积;考查空间想象,运算求解以及转化与划归的能力.线线垂直⇔线面垂直⇔面面垂直是有关垂直的几何问题的常用转化方法;四棱柱与四棱台的表面积都是由简单的四边形的面积而构成,只需求解四边形的各边长即可.来年需注意线线平行,面面平行特别是线面平行,以及体积等的考查.20.同理18【解析】【点评】本题考查等差数列的通项,求和,分段函数的应用等;考查分类讨论的数学思想以及运算求解的能力.求等差数列的通项一般利用通项公式()11n a a n d =+-求解;有时需要利用等差数列的定义:1n n a a c --=(c 为常数)或等比数列的定义:1'nn a c a -=('c 为常数,'0c ≠)来判断该数列是等差数列或等比数列,然后再求解通项;有些数列本身不是等差数列或等比数列,但它含有无数项却是等差数列或等比数列,这时求通项或求和都需要分段讨论.来年需注意等差数列或等比数列的简单递推或等差中项、等比中项的性质.21. 同理21 【解析】【点评】本题考查椭圆的标准方程,直线与圆锥曲线的位置关系;考查分类讨论的数学思想以及运算求解的能力.本题是一个椭圆模型,求解标准方程时注意对焦点的位置分类讨论,不要漏解;对于探讨性问题一直是高考考查的热点,一般先假设结论成立,再逆推所需要求解的条件,对运算求解能力和逻辑推理能力有较高的要求.22.【解析】七彩教育网 免费提供W ord 版教学资源七彩教育网 全国最新初中、高中试卷、课件、教案等教学资源免费下载【点评】本题考查多项式函数的求导,导数的几何意义,导数判断函数的单调性,求解函数的最值以及证明不等式等的综合应用.考查转化与划归,分类讨论的数学思想以及运算求解的能力. 导数的几何意义一般用来求曲线的切线方程,导数的应用一般用来求解函数的极值,最值,证明不等式等. 来年需注意应用导数判断函数的极值以及求解极值,最值等;另外,要注意含有,ln xe x 等的函数求导的运算及其应用考查.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年高考文科数学不等式2012年高考文科数学不等式试题分类解析一、选择题1 .(2012天津文)设变量,x y 满足约束条件⎪⎩⎪⎨⎧≤-≥+-≥-+01042022x y x y x ,则目标函数32z x y =-的最小值为()A .5-B .4-C .2-D .3 2 .(2012浙江文)若正数x,y 满足x+3y=5xy,则3x+4y的最小值是 ()A .245B .285C .5D .63 .(2012重庆文)不等式102x x -<+ 的解集是为 ( )A .(1,)+∞B .(,2)-∞-C .(-2,1)D .(,2)-∞-∪(1,)+∞4 .(2012四川文)若变量,x y 满足约束条件3,212,21200x y x y x y x y -≥-⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩,则34z x y=+的最大值是()A .12B .26C .28D .335 .(2012陕西文)小王从甲地到乙地的时速分别为a 和b(a<b),其全程的平均时速为v,则 () A .a<v<abB .abC .ab2a b+D .v=2a b+ 6.(2012课标文)已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z x y =-+的取值范围是 () A .(1-3,2) B .(0,2) C .(3-1,2)D .(0,1+3)7.(2012湖南文)设 a >b >1,0c < ,给出下列三个结论:① c a >cb ;② ca <cb ; ③ log ()log ()baa cbc ->-,其中所有的正确结论的序号是__.()A .①B .① ②C .② ③D .①②③ 8.(2012广东文)(线性规划)已知变量x 、y 满足约束条件1110x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y=+的最小值为() A .3B .1C .5-D .6-9.(2012福建文)若直线2y x =上存在点(,)x y 满足约束条件30230x y x y x m+-≤⎧⎪⎪--≤⎨⎪≥⎪⎩,则实数m 的最大值为() A .-1 B .1C .32D .210.(2012安徽文)若,x y 满足约束条件:02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩;则x y-的最小值是 ()A .3-B .0C .32D .3二、填空题11.(2012浙江文)设z=x+2y,其中实数x,y 满足102000x y x y x y -+≥⎧⎪+-≤⎪⎨≥⎪⎪≥⎩, 则z 的取值范围是_________.12.(2012四川文)设,a b 为正实数,现有下列命题: ①若221a b -=,则1a b -<; ②若111b a-=,则1a b -<; ③若|1a b =,则||1a b -<;④若33||1ab -=,则||1a b -<.其中的真命题有____________.(写出所有真命题的编号)13.(2012江西文)不等式2902x x ->-的解集是___________.14.(2012湖南文)不等式2560xx -+≤的解集为______。

15.(2012湖北文)若变量,x y 满足约束条件1133x y x y x y -≥-⎧⎪⎪+≥⎨⎪-≤⎪⎩,则目标函数23z x y =+的最小值是________. 16.(2012大纲文)若函数1030330x y y x y x y -+≥⎧⎪=+-≤⎨⎪+-≥⎩,则3z x y =-的最小值为_____.17.(2012江苏)已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则b a的取值范围是____.参考答案一、选择题1. 【解析】做出不等式对应的可行域如图,由y x z 23-=得223z x y -=,由图象可知当直线223z x y -=经过点)2,0(C 时,直线223zx y -=的截距最大,而此时y x z 23-=最小为423-=-=y x z ,选B. 2. 【答案】C【命题意图】本题考查了基本不等式证明中的方法技巧. 【解析】Qx+3y=5xy,135y x+=,113131213(34)()()555x y x y y x y x +⋅+=++≥113236555⨯⨯+=3. 【答案】:C【解析】:10(1)(2)0212x x x x x -<⇒-+<⇒-<<+ 【考点定位】本题考查解分式不等式时,利用等价变形转化为整式不等式解. 4. [答案]C22=+y x14-=-y x42=+y xO[解析]目标函数34z x y =+可以变形为443z x y +-=,做函数x y 43-=的平行线, 当其经过点B(4,4)时截距最大时, 即z 有最大值为34z x y =+=284443=⨯+⨯. [点评]解决线性规划题目的常规步骤: 一列(列出约束条件)、 二画(画出可行域)、三作(作目标函数变形式的平行线)、 四求(求出最优解).5. 解析:设从甲地到乙地距离为s ,则全程的平均时速2211s v s s a b a b ==++,因为a b <,221111a aba aa b==<<++,故选A.6. 【命题意图】本题主要考查简单线性规划解法,是简单题.【解析】有题设知C(1+3,2),作出直线0l :0x y -+=,平移直线0l ,有图像知,直线:l z x y=-+过B 点时,maxz =2,过C时,minz =13-,∴z x y =-+取值范围为(1-3,2),故选A. 7. 【答案】D【解析】由不等式及a >b >1知11a b <,又0c <,所以c a >c b ,①正确;由指数函数的图像与性质知②正确;由a >b >1,0c <知11a c b c c ->->->,由对数函数的图像与性质知③正确. 【点评】本题考查函数概念与基本初等函数Ⅰ中的指数函数的图像与性质、对数函数的图像与性质,不等关系,考查了数形结合的思想.函数概念与基本初等函数Ⅰ是常考知识点.8. 解析:C.画出可行域,可知当代表直线过点A时,取到最小值.联立11x y x =-⎧⎨=-⎩,解得12x y =-⎧⎨=-⎩,所以2z x y=+的最小值为5-.9. 【答案】B【解析】30x y +-=与2y x =的交点为(1,2),所以只有1m ≤才能符合条件,B 正确.【考点定位】本题主要考查一元二次不等式表示平面区域,考查分析判断能力.逻辑推理能力和求解能力. 10. 【解析】选A【解析】x y -的取值范围为[3,0]- 约束条件对应ABC∆边际及内的区域:3(0,3),(0,),(1,1)2A B C 则[3,0]t x y =-∈- 二、填空题 11. 【答案】72【命题意图】本题主要考查线性规划的求解范围问题.只要作图正确,表示出区域,然后借助于直线平移大得到最值.【解析】利用不等式组,作出可行域,可知区域表示的四边形,但目标函数过点(0,0)时,目标函数最小,当目标函数过点13,22⎛⎫ ⎪⎝⎭时最大值为72. 12. [答案] ①④[解析]若a,b 都小于1,则a-b<1若a,b 中至少有一个大于等于1, 则a+b>1, 由a 2-b 2=(a+b)(a-b)=1 ,所以,a-b<1 故①正确.对于|a 3-b 3|=|(a-b)(a 2+ab+b 2)|=1,若a,b 中至少又一个大于等于1,则a 2+ab+b 2>1,则|a-b|<1若a,b 都小于1,则|a-b|<1,所以④正确. 综上,真命题有 ① ④ .[点评]此类问题考查难度较大,要求对四个备选项都要有正确的认识,需要考生具备扎实的数学基础,平时应多加强这类题的限时性练习.13. 【答案】(3,2)(3,)-⋃+∞【解析】不等式可化为(3)(2)(3)0x x x +-->采用穿针引线法解不等式即可.【考点定位】本题考查将分式不等式等价转化为高次不等式,考查高次不等式的解法. 14. 【答案】{}23x x ≤≤【解析】由x 2-5x+6≤0,得(3)(2)0x x --≤,从而的不等式x 2-5x+6≤0的解集为{}23x x ≤≤. 【点评】本题考查一元二次不等式的解法,考查简单的运算能力. 15. 2 【解析】作出不等式组1,1,33x y x y x y -≥-⎧⎪+≥⎨⎪-≤⎩所表示的可行域(如下图的ABM ∆及其内部).目标函数23=+在ABMz x y∆的三个端点()()()A B M处取的值分别为13,3,2,比较2,3,0,1,1,0可得目标函数23=+的最小值为2.z x y【点评】本题考查线性规划求解最值的应用.运用线性规划求解最值时,关键是要搞清楚目标函数所表示的直线的斜率与可行域便捷直线的斜率之间的大小关系,以好确定在哪个端点,目标函数取得最大值;在哪个端点,目标函数取得最小值. 来年需注意线性规划在生活中的实际应用.16.答案:1-【命题意图】本试题考查了线性规划最优解的求解的运用.常规题型,只要正确作图,表示出区域,然后借助于直线平移法得到最值.【解析】做出做出不等式所表示的区域如图,由y=3,平移直线xy3=,xy-xz-=3得z由图象可知当直线经过点)1,0(C时,直线=3的截距最大,此时z最小,最小值为y-xzxz.=y1-3=-17. 【解析】2-=-的取值范围为[3,3]z x y约束条件对应四边形OABC 边际及内的区域:(0,0),(0,1),(1,2),(3,0)O A B C 则2[3,3]z x y =-∈-18. 【解析】本题按照一般思路,则可分为一下两种情况:(A )2(1)1010a x x ax ≤⎧⎨≤⎩----, 无解; (B )2(1)1010a x x ax ≥⎧⎨≥⎩----, 无解. 因为受到经验的影响,会认为本题可能是错题或者解不出本题.其实在x >0的整个区间上,我们可以将其分成两个区间(为什么是两个?),在各自的区间内恒正或恒负.(如下答图)我们知道:函数y 1=(a -1)x -1,y 2=x 2-ax -1都过定点P (0,—1).考查函数y 1=(a -1)x -1:令y =0,得M (11a -,0),还可分析得:a >1;考查函数y 2=x 2-ax -1:显然过点M (11a -,0),代入得:211011a a a ⎛⎫--= ⎪--⎝⎭,解之得:302a or=,舍去0a =,得答案:32a =.【答案】32a = 19.解析:1,0()2,0x y f x xx ⎧>⎪'==⎨⎪-≤⎩,(1)1f '=,曲线()y f x =及该曲线在点(1,0)处的切线方程为1y x =-,围成的封闭区域为三角形,2z x y =-在点(0,1)-处取得最大值2.20. 【答案】[] 7e ,. 【考点】可行域. 【解析】条件4ln 53ln b c a a c cc a c b -+-≤≤≥,可化为:354a c a bc c a b c cb e c⎧⋅+≥⎪⎪⎪+≤⎨⎪⎪⎪≥⎩.设==a bx y c c,,则题目转化为: 已知x y ,满足35400x x y x y y ex >y >+≥⎧⎪+≤⎪⎨≥⎪⎪⎩,,求yx 的取值范围.作出(x y ,)所在平面区域(如图).求出=xy e 的切线的斜率e ,设过切点()00P x y ,的切线为()=0y ex m m +≥,则00000==yex m me xx x ++,要使它最小,须=0m .∴y x 的最小值在()0P x y ,处,为e .此时,点()P x y ,在=xy e 上,A B 之间.当(x y,)对应点C时,=45=205=7=7=534=2012y x y x yy x y x y xx --⎧⎧⇒⇒⇒⎨⎨--⎩⎩,∴yx 的最大值在C 处,为7.∴yx 的取值范围为[] 7e ,,即b a 的取值范围是[] 7e ,. 21. 【答案】9.【考点】函数的值域,不等式的解集. 【解析】由值域为[0)+∞,,当2=0xax b ++时有240a b =-=V ,即24a b =,∴2222()42a a f x x ax b x ax x ⎛⎫=++=++=+ ⎪⎝⎭. ∴2()2a f x x c⎛⎫=+< ⎪⎝⎭解得2ac x c -+<,22a ac x c -<. ∵不等式()f x c <的解集为(6)m m +,,∴()()2622a ac c c --==,解得9c =.。

相关文档
最新文档