高考数学试题分类汇编不等式含文科理科及详细解析
不等式(原卷版)-五年(2018-2022)高考数学真题分项汇编(全国通用)

专题14不等式1.【2022年全国乙卷】若x ,y 满足约束条件+O2,+2N4,O0,则=2−的最大值是()A .−2B .4C .8D .122.【2021年乙卷文科】若,x y 满足约束条件4,2,3,x y x y y +≥⎧⎪-≤⎨⎪≤⎩则3z x y =+的最小值为()A .18B .10C .6D .43.【2021年乙卷文科】下列函数中最小值为4的是()A .224y x x =++B .4sin sin y x x=+C .222x xy -=+D .4ln ln y x x=+4.【2020年新课标3卷文科】已知函数f (x )=sin x +1sin x,则()A .f (x )的最小值为2B .f (x )的图象关于y 轴对称C .f (x )的图象关于直线x π=对称D .f (x )的图象关于直线2x π=对称5.【2019年新课标2卷理科】若a >b ,则A .ln(a −b )>0B .3a <3b C .a 3−b 3>0D .│a │>│b │6.【2022年新高考2卷】若x ,y 满足2+2−B =1,则()A .+≤1B .+≥−2C .2+2≤2D .2+2≥17.【2020年新高考1卷(山东卷)】已知a >0,b >0,且a +b =1,则()A .2212a b +≥B .122a b->C .22log log 2a b +≥-D≤8.【2020年新课标1卷理科】若x ,y 满足约束条件220,10,10,x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩则z =x +7y 的最大值为______________.9.【2020年新课标2卷文科】若x ,y 满足约束条件1121,x y x y x y +≥-⎧⎪-≥-⎨⎪-≤⎩,,则2z x y =+的最大值是__________.10.【2020年新课标3卷理科】若x ,y 满足约束条件0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩,,则z =3x +2y 的最大值为_________.11.【2020年新课标3卷理科】关于函数f (x )=1sin sin x x+有如下四个命题:①f (x )的图象关于y 轴对称.②f (x )的图象关于原点对称.③f (x )的图象关于直线x =2π对称.④f (x )的最小值为2.其中所有真命题的序号是__________.12.【2019年新课标2卷文科】若变量x ,y 满足约束条件23603020x y x y y ,,,+-≥⎧⎪+-≤⎨⎪-≤⎩则z =3x –y 的最大值是___________.13.【2018年新课标1卷理科】若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_____________.14.【2018年新课标2卷理科】若,x y 满足约束条件250,230,50,x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩则z x y =+的最大值为__________.15.【2018年新课标3卷文科】若变量x y ,满足约束条件23024020.x y x y x ++≥⎧⎪-+≥⎨⎪-≤⎩,,则13z x y =+的最大值是________.。
2022届全国高考数学真题分类(不等式)汇编(附答案)

2022届全国高考数学真题分类(不等式)汇编一、选择题1.(2022∙全国甲(文)T12) 已知910,1011,89m m m a b ==-=-,则( )A. 0a b >>B. 0a b >>C. 0b a >>D. 0b a >>2.(2022∙全国甲(理)T12) 已知3111,cos ,4sin 3244a b c ===,则( ) A. c b a >> B. b a c >> C. a b c >> D. a c b >>3.(2022∙新高考Ⅰ卷T7)设0.110.1e ,ln 0.99a b c ===-,,则( )A. a b c <<B. c b a <<C. c a b <<D.a cb <<4.(2022∙新高考Ⅱ卷T12) 对任意x ,y ,221+-=x y xy ,则( )A. 1x y +≤B. 2x y +≥-C. 222x y +≤D. 221x y +≥参考答案一、选择题1. 【答案】A【答案解析】【名师分析】根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出.【答案详解】由910m =可得9lg10log 101lg 9m ==>,而()222lg 9lg11lg 99lg 9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=. 又()222lg8lg10lg80lg8lg10lg 922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg 9lg10lg8lg 9>,即8log 9m >, 所以8log 989890m b =-<-=.综上,0a b >>.故选:A.2. 【答案】A【答案解析】 【名师分析】由14tan 4c b =结合三角函数的性质可得c b >;构造函数21()cos 1,(0,)2f x x x x =+-∈+∞,利用导数可得b a >,即可得解. 【答案详解】因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭ 所以11tan 44>,即1c b >,所以c b >; 设21()cos 1,(0,)2f x x x x =+-∈+∞, ()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增, 则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->, 所以b a >,所以c b a >>,故选:A3. 【答案】C【答案解析】【名师分析】构造函数()ln(1)f x x x =+-, 导数判断其单调性,由此确定,,a b c 大小.【答案详解】设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++, 当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增, 所以1((0)09f f <=,所以101ln 099-<,故110ln ln 0.999>=-,即b c >, 所以1((0)010f f -<=,所以91ln +01010<,故1109e 10-<,所以11011e 109<, 故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11x x x g x x x x -+'=+=--, 令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当01x <<-时,()0h x '<,函数2()e (1)+1x h x x =-单调递减,11x <<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增, 又(0)0h =,所以当01x <<时,()0h x <,所以当01x <<时,()0g x '>,函数()e ln(1)x g x x x =+-单调递增, 所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c >故选:C.4. 【答案】BC【答案解析】【名师分析】根据基本不等式或者取特值即可判断各选项的真假. 【答案详解】因为22222a b a b ab ++⎛⎫≤≤ ⎪⎝⎭(,a b ÎR ),由221+-=x y xy 可变形为,()221332x y x y xy +⎛⎫+-=≤ ⎪⎝⎭,解得22x y -≤+≤,当且仅当1x y ==-时,2x y +=-,当且仅当1x y ==时,2x y +=,所以A 错误,B 正确;由221+-=x y xy 可变形为()222212x y x y xy ++-=≤,解得222x y +≤,当且仅当的1x y ==±时取等号,所以C 正确;因为221+-=x y xy 变形可得223124y x y ⎛⎫-+= ⎪⎝⎭,设cos ,sin 22y x y θθ-==,所以cos ,x y θθθ==,因此2222511cos sin cos 12cos 2333x y θθθθ=θ-θ+=+++ 42π2sin 2,23363θ⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎝⎭⎣⎦,所以当,33x y ==-时满足等式,但是221x y +≥不成立,所以D 错误.故选:BC .。
历年(2020-2024)全国高考数学真题分类(等式与不等式综合)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(等式与不等式综合)汇编解不等式1.(2024∙全国新Ⅰ卷∙高考真题)已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3} C .{3,1,0}-- D .{1,0,2}-2.(2024∙上海∙高考真题)已知,x ∈R 则不等式2230x x --<的解集为 .3.(2023∙全国新Ⅰ卷∙高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( )A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}24.(2020∙全国∙高考真题)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B = ( ) A .{4,1}- B .{1,5} C .{3,5}D .{1,3}基本不等式1.(2024∙北京∙高考真题)已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则( ) A .12122log 22y y x x ++< B .12122log 22y y x x ++> C .12212log 2y y x x +<+ D .12212log 2y y x x +>+ 2.(2021∙全国乙卷∙高考真题)下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .2y 22x x -=+D .4ln ln y x x=+3.(2021∙全国新Ⅰ卷∙高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13B .12C .9D .64.(2020∙全国∙高考真题)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b ab-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4B .8C .16D .32参考答案解不等式1.(2024∙全国新Ⅰ卷∙高考真题)已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3}C .{3,1,0}--D .{1,0,2}-【答案】A【详细分析】化简集合A ,由交集的概念即可得解.【答案详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-. 故选:A.2.(2024∙上海∙高考真题)已知,x ∈R 则不等式2230x x --<的解集为 . 【答案】{}|13x x -<<【详细分析】求出方程2230x x --=的解后可求不等式的解集. 【答案详解】方程2230x x --=的解为=1x -或3x =, 故不等式2230x x --<的解集为{}|13x x -<<, 故答案为:{}|13x x -<<.3.(2023∙全国新Ⅰ卷∙高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( )A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}2【答案】C【详细分析】方法一:由一元二次不等式的解法求出集合N ,即可根据交集的运算解出. 方法二:将集合M 中的元素逐个代入不等式验证,即可解出.【答案详解】方法一:因为{}(][)260,23,N x x x ∞∞=--≥=--⋃+,而{}2,1,0,1,2M =--,所以M N ⋂={}2-. 故选:C .方法二:因为{}2,1,0,1,2M =--,将2,1,0,1,2--代入不等式260x x --≥,只有2-使不等式成立,所以M N ⋂={}2-.故选:C .4.(2020∙全国∙高考真题)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B = ( ) A .{4,1}- B .{1,5} C .{3,5} D .{1,3}【答案】D【详细分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ⋂,得到结果. 【答案详解】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B = , 故选:D.【名师点评】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.基本不等式1.(2024∙北京∙高考真题)已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则( ) A .12122log 22y y x x ++< B .12122log 22y y x x ++> C .12212log 2y y x x +<+ D .12212log 2y y x x +>+ 【答案】B【详细分析】根据指数函数和对数函数的单调性结合基本不等式详细分析判断AB ;举例判断CD 即可. 【答案详解】由题意不妨设12x x <,因为函数2x y =是增函数,所以12022x x <<,即120y y <<,对于选项AB :可得121222222x xx x ++>=,即12122202x x y y ++>>, 根据函数2log y x =是增函数,所以121212222log log 222x x y y x x+++>=,故B 正确,A 错误;对于选项D :例如120,1x x ==,则121,2y y ==, 可得()12223log log 0,122y y +=∈,即12212log 12y y x x +<=+,故D 错误; 对于选项C :例如121,2x x =-=-,则1211,24y y ==, 可得()122223log log log 332,128y y +==-∈--,即12212log 32y y x x +>-=+,故C 错误, 故选:B.2.(2021∙全国乙卷∙高考真题)下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .2y 22x x -=+ D .4ln ln y x x=+【答案】C【详细分析】根据二次函数的性质可判断A 选项不符合题意,再根据基本不等式“一正二定三相等”,即可得出,B D 不符合题意,C 符合题意.【答案详解】对于A ,()2224133y x x x =++=++≥,当且仅当=1x -时取等号,所以其最小值为3,A 不符合题意;对于B ,因为0sin 1x <≤,4sin 4sin y x x=+≥=,当且仅当sin 2x =时取等号,等号取不到,所以其最小值不为4,B 不符合题意;对于C ,因为函数定义域为R ,而20x >,2422242x x xx y -=+=+≥=,当且仅当22x =,即1x =时取等号,所以其最小值为4,C 符合题意; 对于D ,4ln ln y x x=+,函数定义域为()()0,11,+∞ ,而ln x R ∈且ln 0x ≠,如当ln 1x =-,5y =-,D 不符合题意. 故选:C .【名师点评】本题解题关键是理解基本不等式的使用条件,明确“一正二定三相等”的意义,再结合有关函数的性质即可解出.3.(2021∙全国新Ⅰ卷∙高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C【详细分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【答案详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C . 【名师点评】4.(2020∙全国∙高考真题)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b ab-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4 B .8 C .16 D .32【答案】B【详细分析】因为2222:1(0,0)x y C a b a b -=>>,可得双曲线的渐近线方程是b y x a=±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab值,根据2c =等式,即可求得答案. 【答案详解】 2222:1(0,0)x y C a b a b -=>> ∴双曲线的渐近线方程是b y x a=±直线x a =与双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线分别交于D ,E 两点 不妨设D 为在第一象限,E 在第四象限 联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故(,)D a b联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩ 故(,)E a b -∴||2ED b =∴ODE 面积为:1282ODE S a b ab =⨯==△双曲线2222:1(0,0)x y C a b a b-=>>∴其焦距为28c =≥==当且仅当a b ==∴C 的焦距的最小值:8故选:B.【名师点评】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了详细分析能力和计算能力,属于中档题.。
2017-2019年高考真题“不等式”全集(含详细解析)

2017-2019年高考真题“不等式”全集(含详细解析)一.选择题(共14小题)1.(2019•天津)设变量x ,y 满足约束条件20,20,1,1,x y x y x y +-⎧⎪-+⎪⎨-⎪⎪-⎩…………则目标函数4z x y =-+的最大值为( ) A .2B .3C .5D .62.(2019•浙江)若实数x ,y 满足约束条件340,340,0,x y x y x y -+⎧⎪--⎨⎪+⎩………则32z x y =+的最大值是( )A .1-B .1C .10D .123.(2019•北京)若x ,y 满足||1x y -…,且1y -…,则3x y +的最大值为( ) A .7-B .1C .5D .74.(2018•天津)设变量x ,y 满足约束条件52410x y x y x y y +⎧⎪-⎪⎨-+⎪⎪⎩…………,则目标函数35z x y =+的最大值为( ) A .6B .19C .21D .455.(2018•北京)设集合{(,)|1A x y x y =-…,4ax y +>,2}x ay -…,则( ) A .对任意实数a ,(2,1)A ∈ B .对任意实数a ,(2,1)A ∉ C .当且仅当0a <时,(2,1)A ∉D .当且仅当32a …时,(2,1)A ∉ 6.(2017•天津)设变量x ,y 满足约束条件2022003x y x y x y +⎧⎪+-⎪⎨⎪⎪⎩…………,则目标函数z x y =+的最大值为( ) A .23B .1C .32D .37.(2017•山东)已知x ,y 满足约束条件3035030x y x y x -+⎧⎪++⎨⎪+⎩………,则2z x y =+的最大值是( )A .0B .2C .5D .68.(2017•山东)若0a b >>,且1ab =,则下列不等式成立的是( ) A .21log ())2a ba ab b +<<+ B .21log ()2ab a b a b<+<+C .21log ()2a b a a b b +<+< D .21log ())2aba b a b +<+< 9.(2017•山东)已知x ,y 满足约束条件250302x y x y -+⎧⎪+⎨⎪⎩………则2z x y =+的最大值是( )A .3-B .1-C .1D .310.(2017•浙江)若x 、y 满足约束条件03020x x y x y ⎧⎪+-⎨⎪-⎩………,则2z x y =+的取值范围是( )A .[0,6]B .[0,4]C .[6,)+∞D .[4,)+∞11.(2017•北京)若x ,y 满足32x x y y x ⎧⎪+⎨⎪⎩………,则2x y +的最大值为( )A .1B .3C .5D .912.(2017•新课标Ⅱ)设x ,y 满足约束条件2330233030x y x y y +-⎧⎪-+⎨⎪+⎩………,则2z x y =+的最小值是() A .15-B .9-C .1D .913.(2017•新课标Ⅲ)设x ,y 满足约束条件326000x y x y +-⎧⎪⎨⎪⎩………则z x y =-的取值范围是( )A .[3-,0]B .[3-,2]C .[0,2]D .[0,3]14.(2017•新课标Ⅰ)设x ,y 满足约束条件3310x y x y y +⎧⎪-⎨⎪⎩………,则z x y =+的最大值为( )A .0B .1C .2D .3二.填空题(共23小题) 15.(2020•上海)不等式13x>的解集为 . 16.(2019•全国)若12log (41)2x ->-,则x 的取值范围是 .17.(2019•上海)已知x ,y 满足002x y x y ⎧⎪⎨⎪+⎩………,则23z x y =-的最小值为 . 18.(2019•上海)若x ,y R +∈,且123y x +=,则yx的最大值为 . 19.(2019•天津)设x R ∈,使不等式2320x x +-<成立的x 的取值范围为 . 20.(2019•天津)设0x >,0y >,24x y +=,则(1)(21)x y xy++的最小值为 .21.(2019•天津)设0x >,0y >,25x y +=的最小值为 .22.(2019•新课标Ⅱ)若变量x ,y 满足约束条件2360,30,20,x y x y y +-⎧⎪+-⎨⎪-⎩………则3z x y =-的最大值是 .23.(2019•北京)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当10x =时,顾客一次购买草莓和西瓜各1盒,需要支付 元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为 .24.(2019•北京)若x ,y 满足2,1,4310,x y x y ⎧⎪-⎨⎪-+⎩………则y x -的最小值为 ,最大值为 .25.(2018•上海)已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212x x y y +=,的最大值为 . 26.(2018•浙江)若x ,y 满足约束条件0262x y x y x y -⎧⎪+⎨⎪+⎩………,则3z x y =+的最小值是 ,最大值是 .27.(2018•新课标Ⅲ)若变量x ,y 满足约束条件23024020x y x y x ++⎧⎪-+⎨⎪-⎩………,则13z x y =+的最大值是 .28.(2018•北京)若x ,y 满足12x y x +剟,则2y x -的最小值是 .29.(2018•新课标Ⅱ)若x ,y 满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩………,则z x y =+的最大值为 .30.(2018•新课标Ⅰ)若x ,y 满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩………,则32z x y =+的最大值为 . 31.(2017•上海)不等式11x x->的解集为 . 32.(2017•天津)若a ,b R ∈,0ab >,则4441a b ab++的最小值为 .33.(2017•新课标Ⅰ)设x ,y 满足约束条件21210x y x y x y +⎧⎪+-⎨⎪-⎩………,则32z x y =-的最小值为 .34.(2017•江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是 . 35.(2017•山东)若直线1(0,0)x ya b a b+=>>过点(1,2),则2a b +的最小值为 . 36.(2017•北京)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: ()i 男学生人数多于女学生人数; ()ii 女学生人数多于教师人数; ()iii 教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为 . ②该小组人数的最小值为 .37.(2017•新课标Ⅲ)若x ,y 满足约束条件0200x y x y y -⎧⎪+-⎨⎪⎩………,则34z x y =-的最小值为 .三.解答题(共3小题)38.(2018•江苏)若x ,y ,z 为实数,且226x y z ++=,求222x y z ++的最小值. 39.(2017•天津)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.()I 用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域; ()II 问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?40.(2017•江苏)已知a ,b ,c ,d 为实数,且224a b +=,2216c d +=,证明8ac bd +….2017-2019年高考真题“不等式”全集(含详细解析)参考答案与试题解析一.选择题(共14小题)1.(2019•天津)设变量x ,y 满足约束条件20,20,1,1,x y x y x y +-⎧⎪-+⎪⎨-⎪⎪-⎩…………则目标函数4z x y =-+的最大值为( ) A .2B .3C .5D .6【解答】解:由约束条件20,20,1,1,x y x y x y +-⎧⎪-+⎪⎨-⎪⎪-⎩…………作出可行域如图:联立120x x y =-⎧⎨-+=⎩,解得(1,1)A -,化目标函数4z x y =-+为4y x z =+,由图可知,当直线4y x z =+过A 时,z 有最大值为5. 故选:C .2.(2019•浙江)若实数x ,y 满足约束条件340,340,0,x y x y x y -+⎧⎪--⎨⎪+⎩………则32z x y =+的最大值是( )A .1-B .1C .10D .12【解答】解:由实数x ,y 满足约束条件3403400x y x y x y -+⎧⎪--⎨⎪+⎩………作出可行域如图,联立340340x yx y-+=⎧⎨--=⎩,解得(2,2)A,化目标函数32z x y=+为3122y x z=-+,由图可知,当直线3122y x z=-+过(2,2)A时,直线在y轴上的截距最大,z有最大值:10.故选:C.3.(2019•北京)若x,y满足||1x y-…,且1y-…,则3x y+的最大值为() A.7-B.1C.5D.7【解答】解:由||11x yy-⎧⎨-⎩……作出可行域如图,联立110yx y=-⎧⎨+-=⎩,解得(2,1)A-,令3z x y=+,化为3y x z=-+,由图可知,当直线3y x z=-+过点A时,z有最大值为3215⨯-=.故选:C.4.(2018•天津)设变量x ,y 满足约束条件52410x y x y x y y +⎧⎪-⎪⎨-+⎪⎪⎩…………,则目标函数35z x y =+的最大值为( ) A .6B .19C .21D .45【解答】解:由变量x ,y 满足约束条件52410x y x y x y y +⎧⎪-⎪⎨-+⎪⎪⎩…………,得如图所示的可行域,由51x y x y +=⎧⎨-+=⎩解得(2,3)A .当目标函数35z x y =+经过A 时,直线的截距最大, z 取得最大值.将其代入得z 的值为21, 故选:C .5.(2018•北京)设集合{(,)|1A x y x y =-…,4ax y +>,2}x ay -…,则( ) A .对任意实数a ,(2,1)A ∈ B .对任意实数a ,(2,1)A ∉ C .当且仅当0a <时,(2,1)A ∉D .当且仅当32a …时,(2,1)A ∉ 【解答】解:当1a =-时,集合{(,)|1A x y x y =-…,4ax y +>,2}{(,)|1x ay x y x y -=-剠,4x y -+>,2}x y +…,显然(2,1)不满足,4x y -+>,2x y +…,所以A 不正确;当4a =,集合{(,)|1A x y x y =-…,4ax y +>,2}{(,)|1x ay x y x y -=-剠,44x y +>,42}x y -…,显然(2,1)在可行域内,满足不等式,所以B 不正确;当1a =,集合{(,)|1A x y x y =-…,4ax y +>,2}{(,)|1x ay x y x y -=-剠,4x y +>,2}x y -…,显然(2,1)A ∉,所以当且仅当0a <错误,所以C 不正确;故选:D .6.(2017•天津)设变量x ,y 满足约束条件2022003x y x y x y +⎧⎪+-⎪⎨⎪⎪⎩…………,则目标函数z x y =+的最大值为( ) A .23B .1C .32D .3【解答】解:变量x ,y 满足约束条件2022003x y x y x y +⎧⎪+-⎪⎨⎪⎪⎩…………的可行域如图:目标函数z x y =+结果可行域的A 点时,目标函数取得最大值, 由30y x =⎧⎨=⎩可得(0,3)A ,目标函数z x y =+的最大值为:3.故选:D .7.(2017•山东)已知x ,y 满足约束条件3035030x y x y x -+⎧⎪++⎨⎪+⎩………,则2z x y =+的最大值是( )A .0B .2C .5D .6【解答】解:画出约束条件3035030x y x y x -+⎧⎪++⎨⎪+⎩………表示的平面区域,如图所示;由30350x x y +=⎧⎨++=⎩解得(3,4)A -,此时直线1122y x z =-+在y 轴上的截距最大,所以目标函数2z x y =+的最大值为 3245max z =-+⨯=.故选:C .8.(2017•山东)若0a b >>,且1ab =,则下列不等式成立的是( ) A .21log ())2ab a a b b +<<+ B .21log ()2a b a b a b<+<+C .21log ()2a b a a b b +<+< D .21log ())2aba b a b +<+< 【解答】解:0a b >>,且1ab =,∴可取2a =,12b =. 则14a b +=,2112228a b ==,22215log ()(2)(1,2)22a b log log +=+=∈,∴21log ()2a b a b a b<+<+. 故选:B .9.(2017•山东)已知x,y满足约束条件250302x yxy-+⎧⎪+⎨⎪⎩………则2z x y=+的最大值是()A.3-B.1-C.1D.3【解答】解:x,y满足约束条件250302x yxy-+⎧⎪+⎨⎪⎩………的可行域如图:目标函数2z x y=+经过可行域的A时,目标函数取得最大值,由:2250yx y=⎧⎨-+=⎩解得(1,2)A-,目标函数的最大值为:1223-+⨯=.故选:D.10.(2017•浙江)若x、y满足约束条件3020xx yx y⎧⎪+-⎨⎪-⎩………,则2z x y=+的取值范围是()A.[0,6]B.[0,4]C.[6,)+∞D.[4,)+∞【解答】解:x、y满足约束条件3020xx yx y⎧⎪+-⎨⎪-⎩………,表示的可行域如图:目标函数2z x y=+经过C点时,函数取得最小值,由3020x yx y+-=⎧⎨-=⎩解得(2,1)C,目标函数的最小值为:4目标函数的范围是[4,)+∞.故选:D.11.(2017•北京)若x,y满足32xx yy x⎧⎪+⎨⎪⎩………,则2x y+的最大值为()A.1B.3C.5D.9【解答】解:x,y满足32xx yy x⎧⎪+⎨⎪⎩………的可行域如图:由可行域可知目标函数2z x y=+经过可行域的A时,取得最大值,由3xx y=⎧⎨=⎩,可得(3,3)A,目标函数的最大值为:3239+⨯=.故选:D.12.(2017•新课标Ⅱ)设x,y满足约束条件2330233030x yx yy+-⎧⎪-+⎨⎪+⎩………,则2z x y=+的最小值是()A .15-B .9-C .1D .9【解答】解:x 、y 满足约束条件2330233030x y x y y +-⎧⎪-+⎨⎪+⎩………的可行域如图:2z x y =+ 经过可行域的A 时,目标函数取得最小值, 由32330y x y =-⎧⎨-+=⎩解得(6,3)A --,则2z x y =+ 的最小值是:15-. 故选:A .13.(2017•新课标Ⅲ)设x ,y 满足约束条件3260x y x y +-⎧⎪⎨⎪⎩………则z x y =-的取值范围是( )A .[3-,0]B .[3-,2]C .[0,2]D .[0,3]【解答】解:x ,y 满足约束条件32600x y x y +-⎧⎪⎨⎪⎩………的可行域如图: 目标函数z x y =-,经过可行域的A ,B 时,目标函数取得最值, 由03260x x y =⎧⎨+-=⎩解得(0,3)A ,由03260y x y =⎧⎨+-=⎩解得(2,0)B ,目标函数的最大值为:2,最小值为:3-, 目标函数的取值范围:[3-,2]. 故选:B .14.(2017•新课标Ⅰ)设x,y满足约束条件331x yx yy+⎧⎪-⎨⎪⎩………,则z x y=+的最大值为()A.0B.1C.2D.3【解答】解:x,y满足约束条件331x yx yy+⎧⎪-⎨⎪⎩………的可行域如图:,则z x y=+经过可行域的A时,目标函数取得最大值,由33yx y=⎧⎨+=⎩解得(3,0)A,所以z x y=+的最大值为:3.故选:D.二.填空题(共23小题)15.(2020•上海)不等式13x>的解集为1(0,)3.【解答】解:由13x>得13xx->,则(13)0x x->,即(31)0x x-<,解得13x<<,所以不等式的解集是1(0,)3,故答案为:1(0,)3.16.(2019•全国)若12log (41)2x ->-,则x 的取值范围是 15(,)44 .【解答】解:1122log (41)2log 4x ->-=,∴410414x x ->⎧⎨-<⎩,∴1544x <<,x ∴的取值范围为15(,)44.故答案为:15(,)44.17.(2019•上海)已知x ,y 满足002x y x y ⎧⎪⎨⎪+⎩………,则23z x y =-的最小值为 6- . 【解答】解:作出不等式组002x y x y ⎧⎪⎨⎪+⎩………表示的平面区域, 由23z x y =-即23x zy -=,表示直线在y 轴上的截距的相反数的13倍,平移直线230x y -=,当经过点(0,2)时,23z x y =-取得最小值6-, 故答案为:6-.18.(2019•上海)若x ,y R +∈,且123y x +=,则yx的最大值为 98 .【解答】解:132y x =+…∴298y x =…;故答案为:9819.(2019•天津)设x R ∈,使不等式2320x x +-<成立的x 的取值范围为 2(1,)3- .【解答】解:2320x x +-<,将232x x +-分解因式即有: (1)(32)0x x +-<;2(1)()03x x +-<;由一元二次不等式的解法“小于取中间,大于取两边” 可得:213x -<<; 即:2{|1}3x x -<<;或2(1,)3-;故答案为:2(1,)3-;20.(2019•天津)设0x >,0y >,24x y +=,则(1)(21)x y xy ++的最小值为 92.【解答】解:0x >,0y >,24x y +=, 则(1)(21)2212552x y xy x y xy xy xy xy xy++++++===+; 0x >,0y >,24x y +=,由基本不等式有:42x y =+…, 02xy ∴<…, 552xy …, 故:5592222xy ++=…; (当且仅当22x y ==时,即:2x =,1y =时,等号成立), 故(1)(21)x y xy ++的最小值为92;故答案为:92.21.(2019•天津)设0x >,0y >,25x y +=的最小值为【解答】解:0x >,0y >,25x y +=,===;由基本不等式有:64xyxy=当且仅当时,即:3xy=,25x y+=时,即:31xy=⎧⎨=⎩或232xy=⎧⎪⎨=⎪⎩时;等号成立,的最小值为故答案为:22.(2019•新课标Ⅱ)若变量x,y满足约束条件2360,30,20,x yx yy+-⎧⎪+-⎨⎪-⎩………则3z x y=-的最大值是9.【解答】解:由约束条件2360,30,20,x yx yy+-⎧⎪+-⎨⎪-⎩………作出可行域如图:化目标函数3z x y=-为3y x z=-,由图可知,当直线3y x z=-过(3,0)A时,直线在y轴上的截距最小,z有最大值为9.故答案为:9.23.(2019•北京)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当10x =时,顾客一次购买草莓和西瓜各1盒,需要支付 130 元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为 .【解答】解:①当10x =时,顾客一次购买草莓和西瓜各1盒,可得6080140+=(元), 即有顾客需要支付14010130-=(元); ②在促销活动中,设订单总金额为m 元, 可得()80%70%m x m -⨯⨯…, 即有8mx …恒成立, 由题意可得120m …, 可得120158x =…, 则x 的最大值为15元. 故答案为:130,1524.(2019•北京)若x ,y 满足2,1,4310,x y x y ⎧⎪-⎨⎪-+⎩………则y x -的最小值为 3- ,最大值为 .【解答】解:由约束条件2,1,4310,x y x y ⎧⎪-⎨⎪-+⎩………作出可行域如图,(2,1)A -,(2,3)B ,令z y x =-,作出直线y x =,由图可知,平移直线y x =,当直线z y x =-过A 时,z 有最小值为3-,过B 时,z 有最大值1. 故答案为:3-,1.25.(2018•上海)已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212x x y y +=,【解答】解:设1(A x ,1)y ,2(B x ,2)y , 1(OA x =,1)y ,2(OB x =,2)y ,由22111x y +=,22221x y +=,121212x x y y +=, 可得A ,B 两点在圆221x y +=上, 且111cos 2OA OB AOB =⨯⨯∠=, 即有60AOB ∠=︒,即三角形OAB 为等边三角形,1AB=,的几何意义为点A ,B 两点 到直线10x y +-=的距离1d 与2d 之和,显然A ,B 在第三象限,AB 所在直线与直线1x y +=平行, 可设:0AB x y t ++=,(0)t >, 由圆心O到直线AB 的距离d =,可得1,解得t1=,+26.(2018•浙江)若x ,y 满足约束条件0262x y x y x y -⎧⎪+⎨⎪+⎩………,则3z x y =+的最小值是 2- ,最大值是 .【解答】解:作出x ,y 满足约束条件0262x y x y x y -⎧⎪+⎨⎪+⎩………表示的平面区域,如图:其中(4,2)B -,(2,2)A . 设(,)3z F x y x y ==+,将直线:3l z x y =+进行平移,观察直线在y 轴上的截距变化, 可得当l 经过点B 时,目标函数z 达到最小值.()4,22z F ∴=-=-最小值.可得当l 经过点A 时,目标函数z 达到最最大值:()2,28z F ==最大值. 故答案为:2-;8.27.(2018•新课标Ⅲ)若变量x ,y 满足约束条件23024020x y x y x ++⎧⎪-+⎨⎪-⎩………,则13z x y =+的最大值是 3 .【解答】解:画出变量x ,y 满足约束条件23024020x y x y x ++⎧⎪-+⎨⎪-⎩………表示的平面区域如图:由2240x x y =⎧⎨-+=⎩解得(2,3)A .13z x y =+变形为33y x z =-+,作出目标函数对应的直线,当直线过(2,3)A 时,直线的纵截距最小,z 最大, 最大值为12333+⨯=,故答案为:3.28.(2018•北京)若x ,y 满足12x y x +剟,则2y x -的最小值是 3 . 【解答】解:作出不等式组对应的平面区域如图: 设2z y x =-,则1122y x z =+, 平移1122y x z =+, 由图象知当直线1122y x z =+经过点A 时, 直线的截距最小,此时z 最小, 由12x y y x +=⎧⎨=⎩得12x y =⎧⎨=⎩,即(1,2)A ,此时2213z =⨯-=, 故答案为:329.(2018•新课标Ⅱ)若x,y满足约束条件25023050x yx yx+-⎧⎪-+⎨⎪-⎩………,则z x y=+的最大值为9.【解答】解:由x,y满足约束条件25023050x yx yx+-⎧⎪-+⎨⎪-⎩………作出可行域如图,化目标函数z x y=+为y x z=-+,由图可知,当直线y x z=-+过A时,z取得最大值,由5230xx y=⎧⎨-+=⎩,解得(5,4)A,目标函数有最大值,为9z=.故答案为:9.30.(2018•新课标Ⅰ)若x ,y 满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩………,则32z x y =+的最大值为 6 . 【解答】解:作出不等式组对应的平面区域如图: 由32z x y =+得3122y x z =-+,平移直线3122y x z =-+,由图象知当直线3122y x z =-+经过点(2,0)A 时,直线的截距最大,此时z 最大,最大值为326z =⨯=, 故答案为:631.(2017•上海)不等式11x x->的解集为 (,0)-∞ . 【解答】解:由11x x->得: 111100x x x->⇒<⇒<, 故不等式的解集为:(,0)-∞, 故答案为:(,0)-∞.32.(2017•天津)若a ,b R ∈,0ab >,则4441a b ab++的最小值为 4 .【解答】解:【解法一】a ,b R ∈,0ab >,∴4441a b ab ++2241a b ab +=144ab ab ab ab=+=…,当且仅当44414a b ab ab ⎧=⎪⎨=⎪⎩,即2222214a b a b ⎧=⎪⎨=⎪⎩,即a =,b 或a =,b =时取“=”; ∴上式的最小值为4.【解法二】a ,b R ∈,0ab >,∴44334141142222a b a b ab b a ab ab a ab ab++=+++=…, 当且仅当44414ab ab ab ⎧=⎪⎨=⎪⎩,即2222214a b ab ⎧=⎪⎨=⎪⎩,即a =,b 或a =,b =时取“=”; ∴上式的最小值为4.故答案为:4.33.(2017•新课标Ⅰ)设x ,y 满足约束条件21210x y x y x y +⎧⎪+-⎨⎪-⎩………,则32z x y =-的最小值为 5- . 【解答】解:由x ,y 满足约束条件21210x y x y x y +⎧⎪+-⎨⎪-⎩………作出可行域如图,由图可知,目标函数的最优解为A , 联立2121x y x y +=⎧⎨+=-⎩,解得(1,1)A -.32z x y ∴=-的最小值为31215-⨯-⨯=-.故答案为:5-.34.(2017•江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是 30 .【解答】解:由题意可得:一年的总运费与总存储费用之和6000644240x x =⨯+⨯=…(万元).当且仅当30x =时取等号. 故答案为:30. 35.(2017•山东)若直线1(0,0)x ya b a b+=>>过点(1,2),则2a b +的最小值为 8 . 【解答】解:直线1(0,0)x ya b a b+=>>过点(1,2),则121a b +=,由12442(2)()2244448a b a b a b a b a b b a b a +=+⨯+=+++=++++=…,当且仅当4a bb a=,即12a =,1b =时,取等号,2a b ∴+的最小值为8,故答案为:8.36.(2017•北京)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: ()i 男学生人数多于女学生人数;()ii 女学生人数多于教师人数; ()iii 教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为 6 . ②该小组人数的最小值为 .【解答】解:①设男学生女学生分别为x ,y 人, 若教师人数为4,则424x y y x >⎧⎪>⎨⎪⨯>⎩,即48y x <<<, 即x 的最大值为7,y 的最大值为6, 即女学生人数的最大值为6.②设男学生女学生分别为x ,y 人,教师人数为z , 则2x y y z z x >⎧⎪>⎨⎪>⎩,即2z y x z <<< 即z 最小为3才能满足条件, 此时x 最小为5,y 最小为4, 即该小组人数的最小值为12, 故答案为:6,1237.(2017•新课标Ⅲ)若x ,y 满足约束条件0200x y x y y -⎧⎪+-⎨⎪⎩………,则34z x y =-的最小值为 1- . 【解答】解:由34z x y =-,得344zy x =-,作出不等式对应的可行域(阴影部分), 平移直线344z y x =-,由平移可知当直线344zy x =-, 经过点(1,1)B 时,直线344zy x =-的截距最大,此时z 取得最小值, 将B 的坐标代入34341z x y =-=-=-, 即目标函数34z x y =-的最小值为1-. 故答案为:1-.三.解答题(共3小题)38.(2018•江苏)若x ,y ,z 为实数,且226x y z ++=,求222x y z ++的最小值.【解答】解:由柯西不等式得2222222()(122)(22)x y z x y z ++++++…, 226x y z ++=,2224x y z ∴++… 是当且仅当122x y z ==时,不等式取等号,此时23x =,43y =,43z =,222x y z ∴++的最小值为439.(2017•天津)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.()I 用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域; ()II 问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?【解答】(Ⅰ)解:由已知,x ,y 满足的数学关系式为70606005530200x y x y x y x y +⎧⎪+⎪⎪⎨⎪⎪⎪⎩……………,即766062000x y x y x y x y +⎧⎪+⎪⎪-⎨⎪⎪⎪⎩…………….该二元一次不等式组所表示的平面区域如图:(Ⅱ)解:设总收视人次为z 万,则目标函数为6025z x y =+. 考虑6025z x y =+,将它变形为12525z y x =-+,这是斜率为125-,随z 变化的一族平行直线.25z 为直线在y 轴上的截距,当25z取得最大值时,z 的值最大. 又x ,y 满足约束条件,∴由图可知,当直线6025z x y =+经过可行域上的点M 时,截距25z最大,即z 最大. 解方程组766020x y x y +=⎧⎨-=⎩,得点M 的坐标为(6,3).∴电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.40.(2017•江苏)已知a ,b ,c ,d 为实数,且224a b +=,2216c d +=,证明8ac bd +…. 【解答】证明:224a b +=,2216c d +=, 令2cos a α=,2sin b α=,4cos c β=,4sin d β=.8(cos cos sin sin )8cos()8ac bd αβαβαβ∴+=+=-….当且仅当cos()1αβ-=时取等号.因此8ac bd +….另解:由柯西不等式可得:22222()()()41664ac bd a b c d +++=⨯=…,当且仅当a bc d=时取等号.88ac bd ∴-+剟.。
2020年高考数学分类之不等式选讲详解

(2)求不等式 f (x) f (x 1) 的解集.
【答案】(1)详解解析;(2)
,
7 6
.
【详解】
x 3, x 1
(1)因为
f
x 5x 1,
1 3
x 1 ,作出图象,如图所示:
x 3, x 1 3
(2)将函数 f x 的图象向左平移1个单位,可得函数 f x 1 的图象,如图所示:
四.基本不等式 9.(2020 海南卷 12 山东卷 11)已知 a 0 , b 0 ,且 a b 1,则( )
A. a2 b2 1 2
B. 2a b 1
2
C. log a log b 2
2
2
D. a b 2
【答案】ABD
【详解】对于
A, a2
b2
a2
1 a 2
2a2
2a1
x 1,
的最大值为_________.
【答案】7
【详解】不等式组所表示的可行域如图
因为 z 3x 2y ,所以 y 3x z ,易知截距 z 越大,则 z 越大,
22
2
平移直线 y 3x ,当 y 3x z 经过 A 点时截距最大,此时 z 最大,
2
22
y 2x x 1
由
x 1
,得
y
2
,
A(1,
2)
,
所以 zmax 3 1 2 2 7 .
故答案为:7.
2x y 2 0,
7.(2020·全国Ⅰ卷高考真题(文理
13))若
x,y
满足约束条件
x
y
1
0,
y 1 0,
则z x7y
的最大值为____________.
2012-2021高考真题分类汇编11.不等式(解析PDF)

即可.
x+y − 7 0
4.(2014
高考数学课标
2
理科)设
x,y
满足约束条件
x
-
3 y+1
0
,则 z = 2x − y 的最大值为
3x − y − 5 0
()
A.10
B.8
C.3
D.2
【答案】B
解析:画出不等式表示的平面区域,可以平移直线 y = 2x - z ,可得最大值为 8.
考点:(1)二元一次不等式(组)表示平面区域;(2)求线性目标函数的最值问题。 难度:B
其中真命题是
()
A. p2 , p3 B. p1, p4
C. p1, p2
D. p1, p3
【答案】 C
解析:作出可行域如图:设 x + 2 y = z ,即 y = − 1 x + z 22
当直线过 A( 2, −1) 时, zmin = −2 + 2 = 0 ,∴ z 0 ,∴命题 p1 、 p2 真命题,选 C.
()
3
1
1
A. 4
B. 2
C.1
D.2
【答案】B
解析:由
x = 1 2x + y
=
1 得到 x
=
1, y
=
−1,代入 y
=
a(x
− 3)得 a
=
1 2
考点:(1)7.4.1 二元一次不等式(组)表示平面区域;(2)7.4.2 求线性目标函数的最值问题
难度: B 备注:高频考点 二、填空题
2x + y − 2 0,
用 3 个工时,生产一件产品 A 的利润为 2100 元,生产一件产品 B 的利润为 900 元.该企业现有甲材料
2024年全国高考数学真题分类( 不等式与不等关系)汇编(附答案)

2024年全国高考数学真题分类(不等式与不等关系)汇编一、单选题1.(2024ꞏ全国1卷)已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( )A .(10)100f >B .(20)1000f >C .(10)1000f <D .(20)10000f <2.(2024ꞏ全国1卷)已知函数为22,0()e ln(1),0xx ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是( ) A .(,0]-∞B .[1,0]-C .[1,1]-D .[0,)+∞3.(2024ꞏ全国2卷)已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则( ) A .p 和q 都是真命题 B .p ⌝和q 都是真命题 C .p 和q ⌝都是真命题D .p ⌝和q ⌝都是真命题4.(2024ꞏ全国2卷)设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为( )A .18B .14C .12D .15.(2024ꞏ全国甲卷文)若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为( ) A .5B .12C .2-D .72-6.(2024ꞏ北京)已知集合{|41}M x x =-<≤,{|13}N x x =-<<,则M N ⋃=( ) A .{}43x x -<< B .{}11x x -<≤ C .{}0,1,2D .{}14x x -<<7.(2024ꞏ北京)记水的质量为1ln S d n-=,并且d 越大,水质量越好.若S 不变,且1 2.1d =,2 2.2d =,则1n 与2n 的关系为( ) A .12n n <B .12n n >C .若1S <,则12n n <;若1S >,则12n n >;D .若1S <,则12n n >;若1S >,则12n n <;8.(2024ꞏ北京)已知()11,x y ,()22,x y 是函数2x y =图象上不同的两点,则下列正确的是( )A .12122log 22y y x x ++> B .12122log 22y y x x ++< C .12212log 2y y x x +>+ D .12212log 2y y x x +<+ 9.(2024ꞏ天津)若0.30.34.24.2 4.2log 0.2a b c -===,,,则a b c ,,的大小关系为( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>二、填空题10.(2024ꞏ上海)已知,x ∈R 则不等式2230x x --<的解集为 .三、解答题11.(2024ꞏ全国甲卷文)已知函数()()1ln 1f x a x x =--+. (1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1e xf x -<恒成立.12.(2024ꞏ全国甲卷理)已知函数()()()1ln 1f x ax x x =-+-. (1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围.参考答案1.B【详细分析】代入得到(1)1,(2)2f f ==,再利用函数性质和不等式的性质,逐渐递推即可判断.【答案解析】因为当3x <时()f x x =,所以(1)1,(2)2f f ==, 又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>, (8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>, (11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+> (14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确. 故选:B.【名师点评】关键点名师点评:本题的关键是利用(1)1,(2)2f f ==,再利用题目所给的函数性质()(1)(2)f x f x f x >-+-,代入函数值再结合不等式同向可加性,不断递推即可. 2.B【详细分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【答案解析】因为()f x 在R 上单调递增,且0x ≥时,()()e ln 1xf x x =++单调递增,则需满足()02021e ln1aa -⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a -≤≤, 即a 的范围是[1,0]-. 故选:B. 3.B【详细分析】对于两个命题而言,可分别取=1x -、1x =,再结合命题及其否定的真假性相反即可得解.【答案解析】对于p 而言,取=1x -,则有101x +=<,故p 是假命题,p ⌝是真命题, 对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q ⌝是假命题,综上,p ⌝和q 都是真命题. 故选:B. 4.C【详细分析】解法一:由题意可知:()f x 的定义域为(),b ∞-+,分类讨论a -与,1b b --的大小关系,结合符号详细分析判断,即可得1b a =+,代入可得最值;解法二:根据对数函数的性质详细分析ln()x b +的符号,进而可得x a +的符号,即可得1b a =+,代入可得最值. 【答案解析】解法一:由题意可知:()f x 的定义域为(),b ∞-+, 令0x a +=解得x a =-;令ln()0x b +=解得1x b =-; 若-≤-a b ,当(),1x b b ∈--时,可知()0,ln 0x a x b +>+<, 此时()0f x <,不合题意;若1b a b -<-<-,当(),1x a b ∈--时,可知()0,ln 0x a x b +>+<, 此时()0f x <,不合题意;若1a b -=-,当(),1x b b ∈--时,可知()0,ln 0x a x b +<+<,此时()0f x >; 当[)1,x b ∞∈-+时,可知()0,ln 0x a x b +≥+≥,此时()0f x ≥; 可知若1a b -=-,符合题意;若1a b ->-,当()1,x b a ∈--时,可知()0,ln 0x a x b ++, 此时()0f x <,不合题意; 综上所述:1a b -=-,即1b a =+,则()2222211112222a b a a a ⎛⎫+=++=++≥ ⎪⎝⎭,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12;解法二:由题意可知:()f x 的定义域为(),b ∞-+, 令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;则当(),1x b b ∈--时,()ln 0x b +<,故0x a +≤,所以10b a -+≤;()1,x b ∞∈-+时,()ln 0x b +>,故0x a +≥,所以10b a -+≥;故10b a -+=, 则()2222211112222a b a a a ⎛⎫+=++=++≥ ⎪⎝⎭,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12. 故选:C.【名师点评】关键点名师点评:分别求0x a +=、ln()0x b +=的根,以根和函数定义域为临界,比较大小分类讨论,结合符号性详细分析判断. 5.D【详细分析】画出可行域后,利用z 的几何意义计算即可得.【答案解析】实数,x y 满足43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图:由5z x y =-可得1155y x z =-, 即z 的几何意义为1155y x z =-的截距的15-, 则该直线截距取最大值时,z 有最小值, 此时直线1155y x z =-过点A , 联立43302690x y x y --=⎧⎨+-=⎩,解得321x y ⎧=⎪⎨⎪=⎩,即3,12A ⎛⎫⎪⎝⎭, 则min 375122z =-⨯=-. 故选:D. 6.A【详细分析】直接根据并集含义即可得到答案. 【答案解析】由题意得()4,3M N ⋃=-,故选:A. 7.C【详细分析】根据题意详细分析可得12.1112.22e e S S n n --⎧=⎪⎨⎪=⎩,讨论S 与1的大小关系,结合指数函数单调性详细分析判断.【答案解析】由题意可得11221 2.1ln 1 2.2ln S d n S d n -⎧==⎪⎪⎨-⎪==⎪⎩,解得12.1112.22e e S S n n --⎧=⎪⎨⎪=⎩, 若1S >,则112.1 2.2S S -->,可得112.1 2.2e e S S -->,即12n n >; 若1S =,则1102.1 2.2S S --==,可得121n n ==; 若1S <,则112.1 2.2S S --<,可得112.1 2.2e e S S --<,即12n n <; 结合选项可知C 正确,ABD 错误; 故选:C. 8.A【详细分析】根据指数函数和对数函数的单调性结合基本不等式详细分析判断AB ;举例判断CD 即可.【答案解析】由题意不妨设12x x <,因为函数2x y =是增函数,所以12022x x <<,即120y y <<,对于选项AB:可得121222222x x x x ++>=,即12122202x x y y ++>>, 根据函数2log y x =是增函数,所以121212222log log 222x x y y x x+++>=,故A 正确,B 错误;对于选项C :例如120,1x x ==,则121,2y y ==, 可得()12223log log 0,122y y +=∈,即12212log 12y y x x +<=+,故C 错误; 对于选项D :例如121,2x x =-=-,则1211,24y y ==,可得()122223log log log 332,128y y +==-∈--,即12212log 32y y x x +>-=+,故D 错误, 故选:A.9.B【详细分析】利用指数函数和对数函数的单调性详细分析判断即可. 【答案解析】因为 4.2x y =在R 上递增,且0.300.3-<<, 所以0.300.30 4.2 4.2 4.2-<<<,所以0.30.30 4.21 4.2-<<<,即01a b <<<, 因为 4.2log y x =在(0,)+∞上递增,且00.21<<, 所以 4.2 4.2log 0.2log 10<=,即0c <, 所以b a c >>, 故选:B10.{}|13x x -<<【详细分析】求出方程2230x x --=的解后可求不等式的解集. 【答案解析】方程2230x x --=的解为=1x -或3x =, 故不等式2230x x --<的解集为{}|13x x -<<, 故答案为:{}|13x x -<<.11.(1)见答案解析 (2)见答案解析【详细分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性; (2)先根据题设条件将问题可转化成证明当1x >时,1e 21ln 0x x x --++>即可.【答案解析】(1)()f x 定义域为(0,)+∞,11()ax f x a x x'-=-= 当0a ≤时,1()0ax f x x-'=<,故()f x 在(0,)+∞上单调递减; 当0a >时,1,x a ∞⎛⎫∈+ ⎪⎝⎭时,()0f x '>,()f x 单调递增,当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递减;0a >时,()f x 在1,a ∞⎛⎫+ ⎪⎝⎭上单调递增,在10,a ⎛⎫⎪⎝⎭上单调递减.(2)2a ≤,且1x >时,111e ()e (1)ln 1e 21ln x x x f x a x x x x ----=--+-≥-++,令1()e 21ln (1)x g x x x x -=-++>,下证()0g x >即可. 11()e 2x g x x -'=-+,再令()()h x g x '=,则121()e x h x x-'=-, 显然()h x '在(1,)+∞上递增,则0()(1)e 10h x h ''>=-=, 即()()g x h x ='在(1,)+∞上递增,故0()(1)e 210g x g ''>=-+=,即()g x 在(1,)+∞上单调递增, 故0()(1)e 21ln10g x g >=-++=,问题得证12.(1)极小值为0,无极大值. (2)12a ≤-【详细分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值.(2)求出函数的二阶导数,就12a ≤-、102a -<<、0a ≥分类讨论后可得参数的取值范围.【答案解析】(1)当2a =-时,()(12)ln(1)f x x x x =++-,故121()2ln(1)12ln(1)111x f x x x x x+'=++-=+-+++, 因为12ln(1),11y x y x=+=-++在()1,∞-+上为增函数, 故()f x '在()1,∞-+上为增函数,而(0)0f '=, 故当10x -<<时,()0f x '<,当0x >时,()0f x '>, 故()f x 在0x =处取极小值且极小值为()00f =,无极大值.(2)()()()()11ln 11ln 1,011a x axf x a x a x x x x +-=-+'+-=-+->++, 设()()()1ln 1,01a x s x a x x x+=-+->+,则()()()()()()222111211111a a x a a ax a s x x x x x ++++-++=-=-=-+++'+, 当12a ≤-时,()0s x '>,故()s x 在()0,∞+上为增函数,故()()00s x s >=,即()0f x '>,所以()f x 在[)0,∞+上为增函数,故()()00f x f ≥=.当102a -<<时,当210a x a+<<-时,()0s x '<, 故()s x 在210,a a +⎛⎫- ⎪⎝⎭上为减函数,故在210,a a +⎛⎫- ⎪⎝⎭上()()0s x s <,即在210,a a +⎛⎫- ⎪⎝⎭上()0f x '<即()f x 为减函数,故在210,a a +⎛⎫- ⎪⎝⎭上()()00f x f <=,不合题意,舍.当0a ≥,此时()0s x '<在()0,∞+上恒成立,同理可得在()0,∞+上()()00f x f <=恒成立,不合题意,舍; 综上,12a ≤-.【名师点评】思路名师点评:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.。
2023年高考数学真题分训练 不等式选讲(含答案含解析)

专题 35 不等式选讲 十年大数据x 全景展示年 份题号考 点考 查 内 容不等式选 讲 2011文理 24绝对值不等式的解法不等式选 讲 2023 文理 24文理 24绝对值不等式的解法,不等式恒成立参数取值范围问题的解法绝对值不等式的解法,不等式恒成立参数取值范围问题的解法多元不等式的证明不等式选 讲 卷 12023不等式选讲 卷 2文理 24卷 1文理 24卷 2文理 24卷 1文理 24卷 2文理 24卷 1 文理 24不等式选讲 根本不等式的应用20232023不等式选讲 绝对值不等式的解法不等式选讲 绝对值不等式的解法,不等式恒成立参数取值范围问题的解法不等式的证明不等式选讲 不等式选讲 分段函数的图像,绝对值不等式的解法绝对值不等式的解法,绝对值不等式的证明绝对值不等式的解法,不等式恒成立参数取值范围问题的解法绝对值不等式的解法,不等式恒成立参数取值范围问题的解法不等式的证明不等式选 讲 2023 卷 2 文理 24卷 3 文理 24 不等式选 讲 不等式选讲 卷 1 文理 23不等式选 讲 2023 卷 2 文理 23不等式选讲 卷 3文理 23 绝对值不等式的解法,绝对值不等式解集非空的参数取值范围问题 绝对值不等式的解法,不等式恒成立参数取值范围问题的解法2023卷 1文理 23不等式选讲不等式选讲卷2 文理23卷3 文理23 绝对值不等式的解法,不等式恒成立参数取值范围问题的解法绝对值函数的图象,不等式恒成立参数最值问题的解法三元条件不等式的证明不等式选讲不等式选讲2023 卷1 文理23卷2 文理23 不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法三元条件最值问题的解法,三元条件不等式的证明绝对值函数的图像,绝对值不等式的解法不等式选讲卷3 文理23不等式选讲卷1 文理23不等式选讲2023 卷2 文理23卷3 文理23 绝对值不等式的解法,不等式恒成立参数取值范围问题的解法三元条件不等式的证明不等式选讲大数据分析x预测高考出现频率考点2023 年预测考点120 绝对值不等式的求解23 次考4 次2023 年主要考查绝对值不等式的解法、绝对值考点121 含绝对值不等式的恒成立问题23 次考12 次不等式的证明,不等式恒成立参数取值范围问题的解法等.考点122 不等式的证明23 次考7 次十年真题分类x探求规律考点120绝对值不等式的求解f x 3x 1 2 x 11.(2023 全国Ⅰ文理22)已知函数.y f x(1)画出的图像;(2)求不等式 f x f x 1 的解集.x 1 x 3,1 x 1 ,作出图像,如下图: f x5x 1, (解析)(1)∵ 31 x 3, x3 (2)将函数的图像向左平移1个单位,可得函数f x 1的图像,如下图:f x 7 76x 3 5 x 1 1, x ,∴不等式的解集为 .由 ,解得 62.(2023 江苏 23)设 x R ,解不等式2 | x 1| | x | 4 .2 32, (答案)(思路导引)依据绝对值定义化为三个不等式组,解得结果.x 1 1 x 0 x 0或(解析) 或 , 2x 2 x 4 2x 2 x 4 2x 2 x 4222 x 1或 1 x 0或0 x 2, ,∴解集为 .33 3.(2023 全国 I 文理)已知函数 f (x ) | x 1| | 2x 3|.(I)在图中画出 y f (x ) 的图像; (II)求不等式| f (x ) | 1的解集.(解析)(1)如下图:4,x ≤ 1 x3 2, f x 1.(2) f x 3x 2, 1 x 3 24 x ,x ≥当 x ≤ 1, x 4 1,解得 x 5 或 x 3 ,∴x ≤ 1;31 3 1 3 3 2当 1 x , 3x 2 1,解得 x 1或 x,∴ 1 x 或1 x ; 2 3 3当 x ≥ , 4 x 1,解得 x 5 或 x 3 ,∴ ≤x 3或 x 5 .2 2 11 , ,, .综上, x 或1 x 3 或 x 5 , f x∴,解集为 1 1 3 5 3 31 4.(2023 全国 II 文理)设函数 f x = x x a (a 0)a(Ⅰ)证明: f x ≥2;(Ⅱ)假设 f 3 5,求a 的取值范围.11 1 (解析)(I)由a 0,有 f (x ) x x a x (x a ) a 2,∴ f (x ) ≥2.a a a1 (Ⅱ) f (3) 3 3 a .a15 21当时a >3 时, f (3) = a ,由 f (3) <5 得 3< < a; a 21 1 5当 0<a ≤3 时, f (3) = 6 a ,由 f (3) <5 得<a ≤3. a 21 5 5 21综上:a 的取值范围是(, ). 2 25.(2011 新课标文理)设函数 f (x ) x a 3x ,其中 f (x ) 3x 2的解集;a 0 .(Ⅰ)当a 1时,求不等式(Ⅱ)假设不等式 f (x ) 0的解集为 x | x f (x ) 3x 2可化为| x 1| 2,由此可得 x 3 或 x 11,求 a 的值.(解析)(Ⅰ)当a 1时, .故不等式 f (x ) 3x 2的解集为(x | x 3或 x 1).x a ( Ⅱ) 由 f (x ) 0 得 x a 3x 0 ,此不等式化为不等式组 x aa x 3x 0 或, x a 3x 0x ≥a x ≤ax |x ,由题设可得 a =1,故a 2a 即 a 或 x ≤ 4 a ,因为a 0 ,∴不等式组的解集为 . x ≤ 2 2 2 考点 121 含绝对值不等式的恒成立问题6.(2023 全国Ⅱ文理 22)已知函数 f x x 2 x 2a 1 .a (1)当a 2时,求不等式 f x 4 的解集; (2)假设 f x 4 ,求a 的取值范围.3 2 11 2 x xx ;(2) , 1 3,.(答案)(1) 或 (思路导引)(1)分别在x 3、3 x 4和 x 4三种情况下解不等式求得结果;2(2)利用绝对值三角不等式可得到 f x a 1 ,由此构造不等式求得结果. f x x 4 x 3(解析)(1)当a 2时,.3 x 当x 3时, f x 4 x 3 x 7 2x 4 ,解得: ,无解; ; ; 2f x 4 x x 3 1 4当3 x 4时, 112f x x 4 x 3 2x 7 4 当 x 4 时, x ,解得:4的解集为 3 2 112 f xx 或 x x . 综上所述: 2f x x a 2 x 2a 1 x a 2 x 2a 1 a 2 2a 1 a 1 (当且仅当 (2) 2a 1 x a 2 时取等号), a 1 2,解得:a 1或a 3, a 的取值范围为 , 1 3, . 47.(2023 全国 II 文理 23)选修 4-5:不等式选讲](10 分) f (x ) | x a | x | x 2 | (x a ). 已知 (1)当a 1时,求不等式 f (x ) 0 的解集; x ( ,1) 时, f (x ) 0a,求 的取值范围.(2)假设(解析)(1)当 a=1 时, f (x )=|x 1| x +|x 2|(x 1) .当 x 1时, f (x ) 2(x 1) 0 ;当 x 1时, f (x ) 0,∴不等式 f (x ) 0的解集为( ,1).2(2)因为 f (a )=0 ,∴a 1.当a 1, x ( ,1) 时, f (x )=(a x ) x +(2 x )(x a )=2(a x )(x 1)<0 ∴a 的取值范围是1, ) . 8.(2023 全国Ⅰ文理)已知 f (x ) | x 1| | ax 1|.(1)当a 1时,求不等式 f (x ) 1的解集;(2)假设x (0,1)时不等式 f (x ) xa成立,求 的取值范围.2, x ≤ 1,(解析)(1)当a 1时, f (x ) | x 1| | x 1|f (x ) 2x , 1 x 1, ,即2, x ≥1.1 故不等式f (x ) 1的解集为(x | x ) .2(2)当 x (0,1)时| x 1| | ax 1| x 成立等价于当 x (0,1)时| ax 1| 1成立. 假设a ≤0,则当 x (0,1)时| ax 1|≥1;2 2,假设a 0 | ax 1| 1的解集为 (0, 2. 0 x,∴ ≥1,故0 a ≤2. a aa综上, 的取值范围为9.(2023 全国Ⅱ文理)设函数 f (x ) 5 | x a | | x 2 |. (1)当a 1时,求不等式 f (x )≥0 的解集; (2)假设 f (x )≤1,求a 的取值范围.2x 4, x ≤ 1,(解析)(1)当a 1时, f (x ) 2, 1 x ≤2,2x 6, x 2.可得 f (x )≥0 的解集为(x | 2≤ x ≤3). (2) f (x )≤1等价于| x a | | x 2 |≥4.而| x a | | x 2 |≥| a 2 | ,且当 x 2时等号成立.故 f (x )≤1等价于| a 2 |≥4. 由| a 2 |≥4可得a ≤ 6或a ≥2,∴a 的取值范围是( , 6] 2, ). 10.(2023 全国Ⅲ文理)设函数 f (x ) | 2x 1| | x 1| . (1)画出 y f (x ) 的图像;(2)当x 0, )时,f(x)≤ax b,求a b的最小值.13x, x ,21f(x) x 2, ≤x 1,(解析)(1)23x, x≥1.y f(x) 的图像如下图.(2)由(1)知,y f(x) 的图像与y轴交点的纵坐标为2,且各局部所在直线斜率的最大值为3,故当且仅当a≥3且b≥2 时,f(x)≤ax b在0, ) 成立,因此a b的最小值为5.211.(2023 江苏)假设x,y,z为实数,且x 2y 2z 6,求x2 y z2 的最小值.(解析)由柯西不等式,得(x 2y 2 z 2 )(1 22 2 2 2)≥(x 2y 2z ) .2x y z 2 4 4 因为 x 2y 2z =6 ,∴ x2y 2 z 2 ≥4,当且仅当 时,不等式取等号,此时 x ,y ,z ,1 2 2 3 3 3∴ x 2 y 2 z 的最小值为 4.2 f (x ) x ax 4 , g (x ) | x 1| | x 1|.212.(2023 全国Ⅰ文理)已知函数 (1)当a 1时,求不等式 f (x )≥ g (x ) 的解集;(2)假设不等式 f (x )≥ g (x ) 的解集包含 1,1],求a 的取值范围. (解析)(1)当a 1时,不等式 f (x )≥ g (x ) 等价于 2x x | x 1| | x 1| 4 ≤0 .①当 x 1时,①式化为2x 3x 4≤0 ,无解;当 1≤x ≤1时,①式化为 x 2x 2≤0,从而 1≤x ≤1;1 17当 x 1时,①式化为 x 2x 4≤0 ,从而1 x ≤,∴ f (x )≥ g (x ) 的解集为 21 17(x | 1 x ≤). 2(2)当 x 1,1]时, g (x ) 2 ,∴ f (x )≥ g (x ) 的解集包含 1,1],等价于当 x 1,1]时 f (x )≥2 . 又 f (x ) 在 1,1]的最小值必为 f ( 1)与 f (1)之一,∴ f ( 1)≥2且 f (1)≥2,得 1≤a ≤1,∴a 的取 值范围为 1,1].13.(2023 全国Ⅲ文理)已知函数 f (x ) | x 1| | x 2 |. (1)求不等式 f (x )≥1的解集;f (x )≥x x m 的解集非空,求m 的取值范围.2(2)假设不等式 3, x 1(解析)(1) f (x ) 2x 1, 1≤x ≤2 ,3, x 2当 x 1时, f x ≥1无解;当 1≤x ≤2时,由 f x ≥1得,2x 1≥1,解得1≤ ≤2;x 当 x >2时,由 f x ≥1解得 >2. x∴ f x ≥1的解集为 x x ≥1 .x m 得m ≤ x 1 x 2 x(2)由 f x ≥ x 2 2x ,而23 5 5 x 1 x 2 x 2x ≤ x +1+ x 2 x 2x =- x - + ≤ ,2 4 4355 4且当 x 时, x 1 x 2 x 2x = ,故 m 的取值范围为 - , . 2 4 14.(2023 全国 III 文理)已知函数 f (x ) | 2x a | a (Ⅰ)当 a=2 时,求不等式 f (x )≤6 的解集;(Ⅱ)设函数 g (x ) | 2x 1| ,当 x R 时, f (x ) g (x )≥3,求 a 的取值范围. (解析)(Ⅰ)当a 2时, f (x ) | 2x 2 | 2.解不等式| 2x 2 | 2 6 ,得 1 x 3,因此 f (x ) 6的解集为(x | 1 x 3). (Ⅱ)当 x R 时, f (x ) g (x ) | 2x a | a |1 2x |1| 2x a 1 2x | a |1 a | a ,当 x 时等号成立,2∴当 x R 时, f (x ) g (x ) 3等价于|1 a | a 3. ① 当a 1时,①等价于1 a a 3 ,无解. 当a 1时,①等价于a 1 a 3 ,解得a 2 . ∴a 的取值范围是2, ) .15.(201 5 全国 I 文理)已知函数 f (x ) | x 1| 2 | x a | ,a 0. (Ⅰ)当a 1时,求不等式 f (x ) 1的解集;(Ⅱ)假设 f (x ) 的图像与 x 轴围成的三角形面积大于 6,求a 的取值范围. (解析)(Ⅰ)当a 1时,不等式 f (x ) 1化为| x 1| 2 | x 1| 1 0, 当 x ≤ 1时,不等式化为 x 4 0,无解;2 当 1 x 1时,不等式化为3x 2 0 ,解得 x 1; 3当 x ≥1时,不等式化为 x 2 0,解得1≤x 2. 2 ∴ f (x ) 1的解集为(x | x 2).3x 1 2a , x 1 (Ⅱ)有题设可得, f (x ) 3x 1 2a , 1≤ x ≤a ,∴函数 f (x ) 图象与 x 轴围成的三角形的三个顶点分别x 1 2a , x a2a 1 2 2 3, 0), B (2a 1, 0),C (a ,a 1) , (a 1) 6 ,故a 2.∴ 2 为 A ( ABC 的面积为 (a 1) 2 .有题设得 3 3 a 的取值范围为(2, ) .1 116.(2023 全国 I 文理)假设a 0,b 0 ,且 ab .a b a 3 b 3 的最小值;(Ⅰ)求 (Ⅱ)是否存在a ,b ,使得2a 3b 6?并说明理由.1 1 (解析)(I)由 ab a b 2,得ab 2 ,且当a b 2 时取等号.ab 故a ∴a 3 3 b 3 2 a 3 b 3 4 2 ,且当a b 2 时取等号.b 3 的 最小值为4 2 .(II)由(I)知,2a 3b 2 6 ab 4 3 .由于4 3 6 ,从而不存在a ,b ,使得2a 3b 6 .f (x ) | 2x 1| | 2x a |g (x ) x 3 .16.(2023 全国 I 文理)已知函数 = , = a f (x ) < g (x ) (Ⅰ)当 =-2 时,求不等式 的解集;a 1 2 a x ,求 的取值范围.f (x ) ≤g (x ) a(Ⅱ)设 >-1,且当 ∈ , )时, 2 a =f (x ) <g (x ) 化为| 2x 1| | 2x 2 | x 3 0 ,(解析)(Ⅰ)当 2时,不等式 125x , x 1 x 1,设函数 y =| 2x 1| | 2x 2 | x 3 y x 2, , = 23x 6, x 1x (0, 2) y时, <0, 其图像如下图,从图像可知,当且仅当∴原不等式解集是(x | 0 x 2) . a 1 2x f (x ) =1 a f (x ) ≤ g (x ) 化为1 a ≤x 3, (Ⅱ)当 ∈ , )时, ,不等式 2a 1 a 4 ∴ x ≥a 2 对 ∈ x , )都成立,故 ≥a 2 ,即a ≤ , 2 2 2 34 3a 1, ∴ 的取值范围为( ]. 17.(2023 新课标文理)已知函数 f (x ) | x a | | x 2 | .(Ⅰ)当a 3|时,求不等式 f (x ) 3的解集;(Ⅱ)假设 f (x ) | x 4 | 的解集包含1,2],求a 的取值范围.(解析)(1)当a 3时, f (x ) 3 x 3 x 2 3 x 2 2 x 3 x 3 x 3 x 2 33或 3 x x 2 3 或 3 x 2 x x 1或 x 4.(2)原命题 f (x ) x 4 在1, 2]上恒成立x a 2 x 4 x 在1, 2]上恒成立2 x a 2 x 在1, 2]上恒成立3 a 0.考点 122 不等式的证明18.(2023 全国Ⅲ文理 23)设a , b , c R , a b c 0 , abc 1.(1)证明:ab bc ca 0 ;(2)用max a , b , c 表示a , b , c 的最大值,证明:max a , b , c 4 .3 (答案)(1)证明见解析(2)证明见解析.(思路导引)(1)依据题设条件a b c 0,两边平方,再利用均值不等式证明即可;max (a ,b ,c ) a ,由题意得出a 0,b ,c 0 (2)思路一:不妨设 ,2 b c b 2 c 2 2bc 由a3 a 2 a ,结合根本不等式,即可得出证明. bc bc思路二:假设出a ,b ,c 中最大值,依据反证法与根本不等式推出矛盾,即可得出结论. (解析)(1)证明:0,a b c a b c 2 0. a 2 b 2 c 2 2ab 2ac 2ca 0, 即2ab 2bc 2ca a2 b 2 c 2 2ab 2bc 2ca 0, ab bc ca 0.(2)证法一:不妨设max (a ,b ,c ) a ,由a b c 0,abc 1可知,a 0,b 0,c 0 ,1 2 b c 2bc 2bc 2bc b c 2 2 a b c ,a , a 3 a 2 a , 4 bc bc bc bc当且仅当b c 时,取等号, a,即max (a ,b ,c ) 4 . 3 3 4 11 3 , a b c 3 4, 而 证法二:不妨设a b 0 c 4 ,则ab c 3 42 13 214 矛盾,∴命题得证.3 4 a b 2 ab 3 6 4 19.(2023 全国 I 文理 2 3)已知 a ,b ,c 为正数,且满足 abc=1.证明:1 1 1a ab c2 b 2 c 2 (1) (2) ; (a b ) (b c )3 3 (c a ) b 2ab ,b ab bc ca 3 24 .(解析)(1)因为a 2 2 2 c2 2bc ,c 2 a 2 2ac ,又abc 1, 1 1 1 1 ab bc ca 1 1 故有a 2 b 2 c 2 ,∴ a 2 b c 2 .2 abc a b c a b c (2)因为a , b , c 为正数且abc 1,故有(a b ) (b c ) (c a ) 3 (a b ) 3 (2 ab ) (2 bc ) (2 ac ) =24.(b c ) (c a ) 24.3 3 3 3 3 (b c ) 3 (a c ) =3(a +b )(b +c )(a +c ) 3 ∴(a b ) 3 3 3x , y , z R ,且 x y z 1.20.(2023 全国 III 文理 23)设 (x 1) 2 (y 1) 2 (z 1)2 的最小值; (1)求 (2)假设 1(x 2) 2 (y 1) 2 (z a ) 2 成立,证明:a 3 或a 1 .3 (解析)(1)由于(x 1) (y 1) (z 1)] 2 (x 1) 2 (y 1) 2 (z 1) 2(x 1)(y 1) (y 1)(z 1) (z 1)(x 1)]2 3 (x 1) 2 (y 1) 2 (z 1) 2, 4 35 1 z 1 故由已知得(x 1) 2 (y 1) 2 (z 1) 2 ,当且仅当x= ,y=– , 时等号成立. 3 3 3 4 ∴(x 1) (2)由于(x 2) (y 1) (z a )] (x 2) (y 1) (z a ) 2(x 2)(y 1) (y 1)(z a ) (z a )(x 2)] 2 (y 1) 2 (z 1)2 的最小值为 . 322 2 23 (x 2)2 (y 1) 2 (z a ) 2 , (2 a ) 2 4 a 1 a 2a 2 故由已知(x 2) 2 2 (y 1) 2 (z a ) 2,当且仅当 x y z , , 时等号成 3 3 3 3 (2 a ) 2 立,因此(x 2) (y 1) 2 (z a )2 的最小值为. 3 (2 a ) 2 1 ,解得a 3 或a 1. 由题设知 3 321.(2023 全国Ⅱ文理)已知a 0,b 0, a3 b 2 ,证明: 34 ; (1) a b a b(2) a b 2.(解析)(1)(a b )(a 5 524.5 b 5 ) a6 2 ab 5 a 5 b b 6 (a 3 b 3 ) 2 2a 3 b 3 ab (a 4 b 4 ) 4 ab a 2 b 2 3(a b ) 2 3(a b ) 3 (a b ) 3 a 3 3a 2 b 3ab b 3 2 3ab (a b ) 2 (a b ) 2 , (2)∵ 4 4∴(a b ) 8 ,因此a b 2. 3 22.(2023 江苏)已知a ,b ,c ,d 为实数,且 a 2 b2 4 ,c 2 d 16 ,证明ac bd 8. 2(解析)证明:由柯西不等式可得:(ac bd ) 2 ≤(a 2 b 2 )(c 2 d 2 ) , 因为a 2 b 2 4,c 2 d 2 16, ∴(ac bd ) 2 ≤64 ,因此 ac bd 8.≤ 1 1 2 x ,M 为不等式 f x 2的解集.23.(2023 全国 II 文理)已知函数 f x x 2 (I)求 M ;(II)证明:当 a ,b M 时, a b 1 ab . 1 f x x x 2x 1 1 ,假设 1 x 1 (解析)(I)当 x 时, ; 2 2 2 21 1 1 1 当 ≤ x ≤ 时, f x x x 12 恒成立;2 2 2 2 1 1 当 x 时, f x 2x ,假设 f x 2, < x 1. 22 综上可得,Mx | 1 x 1., , 时,有 a (Ⅱ)当a b 1 1 2 1 b 2 1 0 ,即a 2 b 2 1 a 2 b , 2 2 b 2 2ab 1 a 2 2ab b 2 ,则 ab 1 2 a b ,即 a b ab 1 ,证毕. 2则a 24.(2023 全国 II 文理)设a ,b ,c ,d 均为正数,且a b c d ,证明: (Ⅰ)假设ab > cd ,则 a b c d ;(Ⅱ) a b c d 是| a b | | c d | 的充要条件. (解析)(Ⅰ)∵( a b ) 由题设a b c d ,ab cd 得( a b ) (ab ) (cd )2 ,即(a b ) 因为a b c d ,∴ab cd ,由(Ⅰ) 得 a b c d . ( a b ) ( c d )2 ,即a b 2 ab c d 2 cd . (a b ) 4ab (c d ) 4cd (c d )2 . 2 a b 2 ab ,( c d ) ( c d )2 ,因此 a b c d .4ab (c d ) 4cd . 2 c d 2 cd ,2 (Ⅱ)(ⅰ)假设| a b | | c d |,则 2 2 2 (ⅱ)假设 a b c d , 则 因为a +b =c +d ,∴ab >cd ,于是(a b )因此| a b | | c d |.综上 a b c d 是| a b | | c d |的充要条件.a ,b ,c 2 2 2 2 25.(2023 全国 II 文理)设 均为正数,且 a b c 1,证明:1 3ab bc ca (Ⅰ) ; a 2 b 2 c 2 (Ⅱ) 1. b c a(解析)(Ⅰ) a 2 b 2 2ab ,b 2 c 2 2bc ,c 2 a 2 2ca 得a 2 b 2 c ab bc ca ,2 由题设得 a b c2 2 2 2 1,即a bc 2ab 2bc 2ca 1, 1 ∴3 ab bc ca 1,即ab bc ca. 3a 2b 2c 2 a 2 b 2 c 2 (Ⅱ)∵ b 2a , c 2b , a 2c ,∴ (a b c ) 2(a b c ) , b c a b c aa 2b 2c 2 a 2 b 2 c 2 即 a b c ,∴ 1. b c a b c a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年高考数学试题分类汇编:不等式 1(2017北京文)已知,,且x +y =1,则的取值范围是__________.【考点】3W :二次函数的性质.【专题】11 :计算题;35 :转化思想;49 :综合法;51 :函数的性质及应用.【分析】利用已知条件转化所求表达式,通过二次函数的性质求解即可.【解答】解:x ≥0,y ≥0,且x +y=1,则x 2+y 2=x 2+(1﹣x )2=2x 2﹣2x +1,x ∈[0,1],则令f (x )=2x 2﹣2x +1,x ∈[0,1],函数的对称轴为:x=,开口向上, 所以函数的最小值为:f ()==.最大值为:f (1)=2﹣2+1=1.则x 2+y 2的取值范围是:[,1].故答案为:[,1].【点评】本题考查二次函数的简单性质的应用,考查转化思想以及计算能力. 2(2017浙江)已知a R ,函数在区间[1,4]上的最大值是5,则的取值范围是___________. 【考点】3H :函数的最值及其几何意义.【专题】11 :计算题;35 :转化思想;49 :综合法;51 :函数的性质及应用.【分析】通过转化可知|x +﹣a |+a ≤5且a ≤5,进而解绝对值不等式可知2a ﹣5≤x +≤5,进而计算可得结论.0x ≥0y ≥22x y +∈4()||f x x a a x =+-+a【解答】解:由题可知|x+﹣a|+a≤5,即|x+﹣a|≤5﹣a,所以a≤5,又因为|x+﹣a|≤5﹣a,所以a﹣5≤x+﹣a≤5﹣a,所以2a﹣5≤x+≤5,又因为1≤x≤4,4≤x+≤5,所以2a﹣5≤4,解得a≤,故答案为:(﹣∞,].【点评】本题考查函数的最值,考查绝对值函数,考查转化与化归思想,注意解题方法的积累,属于中档题.3(2017新课标Ⅲ文数)[选修4—5:不等式选讲](10分)f x=│x+1│–│x–2│.已知函数()f x≥1的解集;(1)求不等式()f x≥x2–x +m的解集非空,求实数m的取值范围.(2)若不等式()【考点】R4:绝对值三角不等式;R5:绝对值不等式的解法.【专题】32 :分类讨论;33 :函数思想;4C :分类法;4R:转化法;51 :函数的性质及应用;5T :不等式.【分析】(1)由于f(x)=|x+1|﹣|x﹣2|=,解不等式f(x)≥1可分﹣1≤x≤2与x>2两类讨论即可解得不等式f(x)≥1的解集;(2)依题意可得m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x,分x≤1、﹣1<x<2、x≥2三类讨论,可求得g(x)max=,从而可得m的取值范围.【解答】解:(1)∵f(x)=|x+1|﹣|x﹣2|=,f(x)≥1,∴当﹣1≤x≤2时,2x﹣1≥1,解得1≤x≤2;当x>2时,3≥1恒成立,故x>2;综上,不等式f(x)≥1的解集为{x|x≥1}.(2)原式等价于存在x∈R使得f(x)﹣x2+x≥m成立,即m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x.由(1)知,g(x)=,当x≤﹣1时,g(x)=﹣x2+x﹣3,其开口向下,对称轴方程为x=>﹣1,∴g(x)≤g(﹣1)=﹣1﹣1﹣3=﹣5;当﹣1<x<2时,g(x)=﹣x2+3x﹣1,其开口向下,对称轴方程为x=∈(﹣1,2),∴g(x)≤g()=﹣+﹣1=;当x≥2时,g(x)=﹣x2+x+3,其开口向下,对称轴方程为x=<2,∴g(x)≤g(2)=﹣4+2+3=1;综上,g(x)max=,∴m的取值范围为(﹣∞,].【点评】本题考查绝对值不等式的解法,去掉绝对值符号是解决问题的关键,突出考查分类讨论思想与等价转化思想、函数与方程思想的综合运用,属于难题. 4(2017新课标Ⅲ理数).[选修45:不等式选讲](10分)已知函数f (x )=│x +1│–│x –2│.(1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围.解:(1)当1x ≤-时 ()()()1231f x x x =-++-=-≤无解当12x -<<时()1(2)212111f x x x x x x =++-=--≥≥∴12x <<当2x ≥时()1(2)3312f x x x x =+--=>∴≥综上所述()1f x ≥的解集为 [1,)+∞.(2)原式等价于存在x R ∈,使2()f x x x m -+≥ 成立,即 2max [()]f x x x m -+≥设2()()g x f x x x =-+ 由(1)知 2223,1()31,123,2x x x g x x x x x x x ⎧-+-≤-⎪=-+--<<⎨⎪-++≥⎩当1x ≤-时,2()3g x x x =-+-5(2017新课标Ⅱ文)[选修4−5:不等式选讲](10分)已知330,0,2a b a b >>+=.证明: (1)55()()4a b a b ++≥;(2)2a b +≤.【解析】(1)(2)因为所以()3+8≤a b ,因此a+b≤2.6(2017新课标Ⅱ理)[选修4—5:不等式选讲](10分)已知330,0,2a b a b >>+=.证明:(1)55()()4a b a b ++≥;(2)2a b +≤.【解析】(1)(2)因为 所以()3+8≤a b ,因此a+b≤2.7(2017新课标Ⅰ文数)[选修4—5:不等式选讲](10分)已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.解:(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.① 当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而112x -<≤.所以()()f x g x ≥的解集为{|1x x -<≤. (2)当[1,1]x ∈-时,()2g x =.所以()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,所以(1)2f -≥且(1)2f ≥,得11a -≤≤.所以a 的取值范围为[1,1]-.8(2017新课标Ⅰ理数)设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【考点】72:不等式比较大小.【专题】35 :转化思想;51 :函数的性质及应用;59 :不等式的解法及应用.【分析】x 、y 、z 为正数,令2x =3y =5z =k >1.lgk >0.可得x=,y=,z=.可得3y=,2x=,5z=.根据==,>=.即可得出大小关系.另解:x 、y 、z 为正数,令2x =3y =5z =k >1.lgk >0.可得x=,y=,z=.==>1,可得2x >3y ,同理可得5z >2x .【解答】解:x 、y 、z 为正数,令2x =3y =5z =k >1.lgk >0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg >>0. ∴3y <2x <5z .另解:x 、y 、z 为正数,令2x =3y =5z =k >1.lgk >0.则x=,y=,z=. ∴==>1,可得2x >3y ,==>1.可得5z >2x .综上可得:5z >2x >3y .解法三:对k 取特殊值,也可以比较出大小关系.故选:D .【点评】本题考查了对数函数的单调性、换底公式、不等式的性质,考查了推理能力与计算能力,属于中档题.9(2017新课标Ⅰ理数).[选修4—5:不等式选讲](10分)已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.【解析】(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.①10(2017天津文)若a,b∈R,0ab>,则4441a bab++的最小值为 .【考点】7F:基本不等式.【专题】34 :方程思想;4R:转化法;5T :不等式.【分析】【方法一】两次利用基本不等式,即可求出最小值,需要注意不等式等号成立的条件是什么.【方法二】将拆成+,利用柯西不等式求出最小值.【解答】解:【解法一】a,b∈R,ab>0,∴≥==4ab+≥2=4,当且仅当,即,即a=,b=或a=﹣,b=﹣时取“=”;∴上式的最小值为4.【解法二】a,b∈R,ab>0,∴=+++≥4=4,当且仅当,即,即a=,b=或a=﹣,b=﹣时取“=”;∴上式的最小值为4.故答案为:4.【点评】本题考查了基本不等式的应用问题,是中档题.11(2017天津理)若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________. 【答案】4 【解析】442241414a b a b ab ab+++≥≥ ,当且仅当21a b ==时取等号 12(2017山东文)若直线1(00)x y a b a b+=>,> 过点(1,2),则2a +b 的最小值为 . 【答案】8(7)(2017山东理)若0a b >>,且1ab =,则下列不等式成立的是 (A )()21log 2a b a a b b +<<+ (B )()21log 2a b a b a b<+<+(C )()21log 2a b a a b b +<+< (D )()21log 2a b a b a b +<+< 【答案】B【解析】221,01,1,log ()log 1,2a b a b a b ><<∴<+>= 12112log ()a b a a b a a b b b+>+>+⇒+>+ ,所以选B. 13(2017江苏)某公司一年购买某种货物600吨,每次购买吨,运费为6万元/次,一年的总存储费用为万元.要使一年的总运费与总存储费用之和最小,则的值是 ▲ .【解析】总费用600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.14(2017年江苏卷)[选修4-5:不等式选讲](本小题满分10分)已知为实数,且证明: 【解析】由柯西不等式可得22222()()()a b c d ac bd ++≥+, 即2()41664ac bd +≤⨯=,故8ac bd +≤.15(2017北京理)能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c 的值依次为______________________________. 【考点】FC :反证法.【专题】11 :计算题;35 :转化思想;4O :定义法;5L :简易逻辑.【分析】设a ,b ,c 是任意实数.若a >b >c ,则a +b >c”是假命题,则若a >b >c ,则a +b ≤c”是真命题,举例即可,本题答案不唯一【解答】解:设a ,b ,c 是任意实数.若a >b >c ,则a +b >c”是假命题,x 4x x ,,,a b c d 22224,16,a b c d +=+=8.ac bd +≤文档从网络中收集,已重新整理排版.word版本可编辑.欢迎下载支持.则若a>b>c,则a+b≤c”是真命题,可设a,b,c的值依次﹣1,﹣2,﹣3,(答案不唯一),故答案为:﹣1,﹣2,﹣3【点评】本题考查了命题的真假,举例说明即可,属于基础题.16.(2017•新课标Ⅲ文数)设x,y满足约束条件则z=x﹣y的取值范围是()A.[﹣3,0]B.[﹣3,2]C.[0,2]D.[0,3]【考点】7C:简单线性规划.【专题】11 :计算题;31 :数形结合;35 :转化思想;5T :不等式.【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的范围即可.【解答】解:x,y满足约束条件的可行域如图:目标函数z=x﹣y,经过可行域的A,B时,目标函数取得最值,由解得A(0,3),由解得B(2,0),目标函数的最大值为:2,最小值为:﹣3,目标函数的取值范围:[﹣3,2].故选:B.【点评】本题考查线性规划的简单应用,目标函数的最优解以及可行域的作法是解题的关键.11word版本可编辑.欢迎下载支持.。