遗传算法与优化问题

合集下载

遗传算法优化技巧

遗传算法优化技巧

遗传算法是一种优化技术,基于生物进化原理,包括交叉、突变和自然选择等过程。

遗传算法通常用于解决复杂的优化问题,例如机器学习、数据挖掘和控制系统等。

以下是一些遗传算法的优化技巧:1.选择合适的编码方案:编码方案是将问题的解空间映射到遗传算法能够处理的搜索空间的方法。

对于某些问题,二进制编码可能更适合,而其他问题可能需要实数编码或有序编码。

选择合适的编码方案可以使遗传算法更加有效。

2.合理设计适应度函数:适应度函数是用来评估每个个体的优劣程度的函数。

适应度函数的设计应该与问题的目标函数相匹配,并且应该尽可能简单和高效。

同时,适应度函数还应该具有明确的物理意义或实际意义,以便更好地理解算法的性能和结果。

3.选择合适的交叉和突变算子:交叉和突变算子是遗传算法中的两个重要操作,它们可以增加种群的多样性,并有助于算法跳出局部最优解。

选择合适的交叉和突变算子可以提高算法的性能和效率。

4.使用精英策略:精英策略是一种保留优秀个体的策略,即将每一代中的最优个体直接复制到下一代中。

使用精英策略可以加快算法的收敛速度,并提高找到的解的质量。

5.控制种群大小:种群大小是影响遗传算法性能的一个重要参数。

种群大小太小可能会导致算法陷入局部最优解,而种群大小太大则可能会导致计算时间和内存消耗增加。

因此,需要根据问题的规模和复杂度选择合适的种群大小。

6.合理设置终止条件:终止条件是控制遗传算法运行时间和终止条件的方法。

常见的终止条件包括达到最大迭代次数、找到满意的解或达到某个收敛标准等。

选择合适的终止条件可以平衡算法的运行时间和找到的解的质量。

7.并行化遗传算法:对于大规模的优化问题,可以将遗传算法并行化以提高计算效率和性能。

并行化遗传算法可以通过将种群分成多个子种群,并在不同的处理器上同时进行进化来实现。

8.与其他优化方法结合使用:遗传算法可以与其他优化方法结合使用,例如梯度下降法、模拟退火法等。

这些方法可以弥补遗传算法的不足之处,提高算法的性能和效率。

遗传算法如何处理多目标不确定优化问题

遗传算法如何处理多目标不确定优化问题

遗传算法如何处理多目标不确定优化问题引言:遗传算法是一种模拟生物进化过程的优化算法,被广泛应用于解决各种优化问题。

然而,当面临多目标不确定优化问题时,遗传算法面临着一些挑战。

本文将探讨遗传算法在处理多目标不确定优化问题时的方法和技巧。

一、多目标优化问题的定义和挑战多目标优化问题是指在优化过程中需要考虑多个目标函数的情况。

在实际问题中,往往存在多个相互关联的目标,如最大化收益和最小化成本等。

然而,多目标优化问题往往面临着不确定性,即目标函数的形式和约束条件可能不完全确定。

这给遗传算法的应用带来了一些挑战。

二、多目标不确定优化问题的建模在处理多目标不确定优化问题时,首先需要将问题建模为适应度函数的形式。

适应度函数是遗传算法中用于衡量个体适应度的函数。

对于多目标问题,可以将每个目标函数作为一个适应度函数,然后通过某种方式将多个适应度函数综合起来。

三、多目标不确定优化问题的解决方案1. Pareto优化Pareto优化是一种常用的解决多目标优化问题的方法。

它基于Pareto最优解的概念,即不存在一个解能够在所有目标函数上优于其他解。

通过遗传算法的迭代过程,不断生成新的解,并通过比较适应度函数的值来确定Pareto最优解。

2. 非支配排序非支配排序是一种用于多目标优化问题的排序方法。

它将解空间中的个体划分为多个不同的层次,每个层次中的个体都是非支配的。

通过非支配排序,可以确定Pareto最优解的集合。

3. 多目标选择在遗传算法的选择过程中,需要考虑如何选择适应度较好的个体。

对于多目标问题,可以采用多目标选择的方法。

多目标选择不仅仅考虑个体的适应度值,还要考虑个体在多个目标函数上的表现。

4. 多目标交叉和变异在遗传算法的交叉和变异过程中,需要考虑如何保持多目标问题的多样性。

可以采用多目标交叉和变异的方法,通过改变个体的染色体结构和基因序列,生成新的解,并保持多样性。

四、案例研究为了更好地理解遗传算法在处理多目标不确定优化问题时的应用,我们以某个实际问题为例进行研究。

遗传算法优化模型求解效率评估与改进策略

遗传算法优化模型求解效率评估与改进策略

遗传算法优化模型求解效率评估与改进策略遗传算法(Genetic Algorithm, GA)是一种基于生物进化思想的启发式优化算法,在解决复杂优化问题上表现出色。

然而,随着问题规模的增大和复杂度的提高,遗传算法的求解效率成为一个关键问题。

本文将对遗传算法求解效率进行评估,并提出改进策略,以提高遗传算法的求解效率。

为了评估遗传算法的求解效率,我们需要考虑两个方面的因素:算法的收敛速度和搜索空间的规模。

首先,算法的收敛速度是衡量算法求解效率的重要指标之一。

收敛速度越快,算法越快达到最优解或近似最优解。

在遗传算法中,收敛速度一般通过收敛曲线来评估。

收敛曲线是指算法迭代过程中目标函数值的变化情况。

通过观察收敛曲线的变化趋势,我们可以判断算法是否收敛以及收敛的速度如何。

其次,搜索空间的规模也是影响遗传算法求解效率的重要因素。

搜索空间的规模越大,遗传算法需要更多的迭代次数来找到最优解。

因此,需要对问题的搜索空间进行合理的定义和划分,以减少搜索空间的规模。

针对遗传算法求解效率的评估,我们可以采用以下方法:1. 收敛速度评估:通过收敛曲线的变化趋势来评估算法的收敛速度。

可以绘制目标函数值随迭代次数的变化曲线,并观察曲线的降低速度和平稳性。

如果曲线下降迅速并趋于平稳,说明算法的收敛速度较快;反之,则需要考虑改进算法以提高收敛速度。

2. 搜索空间规模评估:通过定义和划分问题的搜索空间,并统计搜索空间的规模来评估算法的求解效率。

可以计算搜索空间的维度和具体数目,以及每个维度的取值范围。

如果搜索空间规模过大,可以考虑进行问题的优化或者使用其他的优化算法。

评估完遗传算法的求解效率后,我们可以采取以下改进策略以提高算法的求解效率:1. 适应度函数设计:适应度函数在遗传算法中起着至关重要的作用。

适应度函数的设计应该能够准确衡量个体的优劣,并具有导向性,使得更优秀的个体更有可能被选中。

可以根据具体问题的特点,设计合适的适应度函数,以提高算法的求解效率。

遗传算法与其他优化算法的比较分析

遗传算法与其他优化算法的比较分析

遗传算法与其他优化算法的比较分析介绍:在计算机科学领域,优化算法是一类用于解决最优化问题的方法。

随着计算机技术的发展,优化算法在实际应用中发挥着重要的作用。

本文将对遗传算法与其他优化算法进行比较分析,探讨它们的优势和不足之处。

一、遗传算法的基本原理遗传算法是模拟生物进化过程的一种优化算法。

它通过模拟自然界中的遗传、交叉和变异等过程,逐步搜索最优解。

遗传算法的基本原理包括编码、选择、交叉和变异等步骤。

编码将问题转化为染色体的形式,选择通过适应度函数筛选出较优的个体,交叉将两个个体的染色体进行交换,变异则是对染色体进行随机变动。

二、遗传算法的优势1. 广泛适用性:遗传算法适用于各种类型的问题,包括线性和非线性问题、连续和离散问题等。

这使得它在实际应用中具有广泛的适用性。

2. 全局搜索能力:遗传算法通过随机性和多样性的搜索策略,能够在搜索空间中找到全局最优解,避免陷入局部最优解。

3. 并行性:遗传算法的并行性较强,可以通过多线程或分布式计算等方式提高求解效率。

三、遗传算法的不足之处1. 参数调整困难:遗传算法中的参数设置对算法的性能影响较大,但很难确定最优的参数取值。

不同的问题需要不同的参数设置,这增加了算法的复杂性。

2. 运算时间较长:由于遗传算法的搜索过程是通过迭代进行的,因此在求解复杂问题时,运算时间较长。

这限制了其在某些实时性要求较高的应用中的应用。

3. 可能陷入局部最优解:虽然遗传算法具有全局搜索能力,但在某些情况下,由于搜索空间较大或问题的特殊性,遗传算法可能会陷入局部最优解。

四、与其他优化算法的比较1. 粒子群算法:粒子群算法是一种模拟鸟群觅食行为的优化算法。

与遗传算法相比,粒子群算法更加注重个体之间的信息共享,具有较快的收敛速度。

但在解决复杂问题时,遗传算法更具优势。

2. 模拟退火算法:模拟退火算法通过模拟固体物体冷却过程中的原子运动,搜索最优解。

与遗传算法相比,模拟退火算法更注重局部搜索能力,对于复杂问题的全局搜索能力较弱。

组合优化问题的遗传算法求解

组合优化问题的遗传算法求解

组合优化问题的遗传算法求解一、简介组合优化问题指的是在有限个元素中选取某些元素,以达到最优化的目标。

组合优化问题的求解在实际中应用广泛,如旅行商模型、调度问题、网络优化等领域。

但是这类问题求解面临着复杂度高、难以精确求解等困难。

在这种情况下,遗传算法是一种有效的求解方法。

遗传算法是一种基于达尔文进化论的计算方法,通过模拟生物进化的方式求解组合优化问题。

本文将介绍遗传算法在组合优化问题求解中的应用,着重介绍遗传算法基本框架、编码方法、适应度函数的构建以及遗传算法的优化策略等。

二、遗传算法基本框架遗传算法的求解过程主要包括初始种群生成、适应度评价、选择操作、交叉操作和变异操作等基本步骤。

(1)初始种群生成遗传算法首先需要生成一定数量的初始种群,初始种群可以通过随机生成或其他启发式算法生成。

例如,在旅行商问题中,初始种群可以随机生成多条路径。

(2)适应度评价适应度函数是遗传算法的核心,适应度函数的构建直接关系到遗传算法的性能。

适应度函数是对每个染色体的优劣进行量化评价,用以指导后续优化操作。

适应度函数构建需要根据问题特点进行设计。

(3)选择操作选择操作是指将上一代种群中的某些个体复制到下一代种群中,个体复制的概率与其适应度大小有关。

适应度越高的个体被选择的概率越大,从而使适应度高的个体更有机会进化到下一代。

选择操作可以通过轮盘赌选择、锦标赛选择等方式实现。

(4)交叉操作交叉操作是指对选择后的个体进行杂交,交叉操作是遗传算法的核心,它通过随机杂交个体的染色体,产生新的杂交染色体,从而增加搜索空间。

交叉操作可分为单点交叉、多点交叉、均匀交叉等。

(5)变异操作变异操作是指在交叉操作之后对个体发生变异,从而产生新的个体。

变异操作是通过随机改变染色体中的基因,从而增加多样性。

变异操作可以是简单变异、非一致变异、高斯变异等。

以上是遗传算法的基本框架,遗传算法的性能因素有适应度函数的设计、进化代数、群体大小、交叉概率、变异概率等。

遗传算法的应用

遗传算法的应用

遗传算法的应用
遗传算法是一种模拟生物进化过程的优化算法,它模拟了自然选择、交叉、突变等过程,可以用来解决许多优化问题。

以下是一些遗传
算法的应用示例:
1. 旅行商问题:遗传算法可以用来优化旅行商问题中的路线,找到
最短的旅行路径。

2. 自动化设计:遗传算法可以用来设计复杂系统的参数,如电路设计、控制系统设计等。

3. 机器学习:遗传算法可以用来优化机器学习算法中的参数,例如
神经网络的权重和偏置值。

4. 配置优化:遗传算法可以用来优化计算机系统的配置,例如网络
拓扑结构、服务器资源分配等。

5. 排课问题:遗传算法可以用来解决学校排课问题,找到最优的课
程安排方案。

6. 资源调度:遗传算法可以用来优化资源调度问题,如车辆路径规划、作业调度等。

7. 组合优化:遗传算法可以用来解决组合优化问题,如背包问题、生产调度问题等。

这些只是遗传算法的一些应用示例,实际上,遗传算法可以应用于各种优化问题,尤其是那些无法通过传统的数学方法求解的问题。

组合优化问题中的遗传算法优化研究

组合优化问题中的遗传算法优化研究随着信息技术不断发展,计算机算法也在不断创新和优化。

其中,遗传算法在组合优化问题中得到了广泛的应用和重视。

本文将从遗传算法的基本原理、组合优化问题、遗传算法优化等方面展开讨论。

一、遗传算法的基本原理遗传算法是一种基于生物进化过程的优化算法,通过模拟进化过程,寻求给定问题的优化解。

遗传算法包括以下基本步骤:1.初始化种群,即初始候选解的随机生成。

2.选择算子,即选取适应度函数值高的候选解。

3.交叉算子,即两个父代个体之间产生子代的操作。

4.变异算子,即对种群中的某些个体进行基因突变的操作。

5.根据预设的停止准则,判断是否满足结束条件。

二、组合优化问题组合优化问题是指从一给定集合中选择一定的元素,并使其满足某些条件的问题。

组合优化问题涉及到多个领域,如图论、操作研究、信息学等。

在组合优化问题中,遗传算法可以帮助确定最优解。

组合优化问题通常有以下几个分类:1.背包问题:即在限定容量下,选取可能的物品使得其总价值最大。

2.图问题:即在一张给定的图中找到满足条件的最佳路径或图。

3.集合问题:即在给定一定条件下找到一个最合适的子集。

三、遗传算法优化遗传算法优化在组合优化问题中发挥着重要作用。

在遗传算法优化过程中,我们需要寻找到最优解,即使得适应度函数值最高。

在优化过程中,我们需要考虑以下问题:1.如何定义适应度函数适应度函数是衡量个体成功的度量标准,它需要合理地衡量每个个体的特定性。

适应度函数通常使用一些常见软件包进行计算。

2.如何选取交叉算子和变异算子交叉和变异算子可以影响解的质量。

交叉算子是指选择两个个体并获得两个子代。

在变异算子中,我们可以随机改变某些基因以获得更好的结果。

3.如何确定种群大小和停止准则种群大小和停止准则是遗传算法中最重要的两个参数。

种群的大小可以影响优化效果。

停止准则也非常重要,当满足停止准则时,算法将终止运行并返回结果。

4.如何选择合适的遗传算法模型遗传算法有多种模型,如标准遗传算法、粒子群优化等。

利用遗传算法进行多目标优化问题求解研究

利用遗传算法进行多目标优化问题求解研究遗传算法是一种基于遗传学理论的优化算法,其通过模拟进化过程,在多个条件限制下对问题进行求解,从而得到最优解或近似最优解。

多目标优化问题则是指存在多个目标函数需要优化,不同目标往往存在冲突,需要同时考虑多个目标函数的取值。

因此,如何利用遗传算法进行多目标优化问题求解,成为了当前的一个研究热点。

一、遗传算法的基本原理遗传算法基于进化论的思想,通过模拟自然选择、遗传、变异等过程,来实现全局优化。

遗传算法包括三个主要操作:选择、交叉和变异。

1. 选择:通过选择过程筛选出群体中的优秀个体,如采用轮盘赌算法、精英保留算法等。

2. 交叉:通过交叉操作将优秀个体的优良基因进行组合,产生下一代个体。

交叉有单点交叉、多点交叉、均匀交叉等方式。

3. 变异:在交叉后随机对个体进行变异操作,产生新的变异个体。

算法通过迭代过程,逐步优化种群,最终收敛到全局最优解或靠近最优解。

二、多目标优化问题多目标优化问题的主要特点包括不同目标函数的互相矛盾,不能直接将多个目标函数简单叠加成一个目标函数。

同时,多目标问题通常存在非可行域问题、可行域分散问题和过度拟合问题。

解决多目标问题的方法包括:权值法、约束方法、Lebesgue度量法、最小距离法、ε支配法、Pareto支配法等。

其中,ε支配法和Pareto支配法的应用较为广泛。

三、利用遗传算法解决多目标优化问题对于多目标问题,遗传算法的求解方式主要包括单目标优化法和多目标优化法。

单目标优化法将多个目标函数简单地叠加成一个目标函数进行处理,如采用加权函数法和目标规划法等。

多目标优化法则将多目标函数当作是独立的,通过遗传算法的多目标优化方法进行求解。

多目标优化方法包括NSGA、NSGA-II、PAES、SPEA2等多种算法,其中NSGA-II和SPEA2应用最为广泛。

NSGA-II算法的基本思想是:将种群进行分层,并通过保持多样性、最大化拥挤距离等方式来获取Pareto前沿。

基于遗传算法的物流配送路径优化问题的研究

基于遗传算法的物流配送路径优化问题的研究【基于遗传算法的物流配送路径优化问题的研究】一、引言物流配送路径优化一直是物流行业中的一个重要课题。

如何最大程度地降低物流成本,提高配送效率,一直是企业和学术界关注的焦点。

遗传算法作为一种启发式算法,已经被广泛应用于解决物流配送路径优化问题。

本文将从遗传算法的基本原理入手,探讨其在物流配送路径优化中的应用及研究现状,并结合个人观点对该问题进行深入分析。

二、遗传算法的基本原理遗传算法是一种模拟自然选择和遗传机制的优化方法,其基本原理是通过模拟生物进化的过程,利用遗传操作和自然选择来搜索最优解。

遗传算法的主要操作包括种群初始化、选择、交叉、变异和适应度评价。

在种群初始化阶段,一组个体被随机生成,每个个体都表示问题的一个可能解。

根据个体的适应度对其进行选择,适应度越高的个体被选中的概率越大。

接下来进行交叉操作,通过模拟生物的基因交换,生成新的个体。

随后进行变异操作,以增加种群的多样性。

最后对新生成的个体进行适应度评价,选择出适应度最高的个体,作为下一代种群的父代。

这样不断地进行迭代,直到达到终止条件为止。

三、遗传算法在物流配送路径优化中的应用物流配送路径优化问题是一个典型的组合优化问题,通常包括了多个配送点、不同的货物需求、配送车辆的容量和行驶时间等多个约束条件。

传统的优化方法往往难以处理这样复杂的问题,而遗传算法作为一种全局搜索方法,具有较强的适用性。

遗传算法被广泛应用于解决物流配送路径优化问题。

在应用遗传算法进行物流配送路径优化时,首先需要将问题抽象成一个特定的数学模型,然后将其转化为遗传算法可以处理的优化问题。

一般来说,可以将各个配送点视为个体的染色体,通过交叉和变异操作来生成新的配送路径。

需要设计合适的适应度函数来评价每个个体的优劣,以指导遗传算法的搜索方向。

在研究中,学者们从不同角度对物流配送路径优化问题进行了探讨。

有些研究关注于如何合理地安排配送车辆的行驶路径,以减少行驶距离和时间成本。

人工智能中的遗传算法与粒子群优化算法比较分析

人工智能中的遗传算法与粒子群优化算法比较分析遗传算法和粒子群优化算法都是优化问题中常用的智能算法,它们分别基于生物进化和鸟群行为的启发,通过模拟自然选择和信息交流的过程来求解问题的最优解。

下面将从原理、优势与劣势、应用领域等方面对遗传算法和粒子群优化算法进行比较分析。

一、原理比较1.遗传算法遗传算法基于达尔文的进化论,通过模拟自然选择、交叉、变异等操作来搜索问题的最优解。

其中,个体表示问题的候选解,适应度函数用于评估个体的优劣程度,选择操作根据个体适应度选择优秀的个体参与繁殖,交叉操作模拟基因的交换,变异操作模拟基因的突变。

通过多代的进化,逐渐优化个体,最终找到最优解。

2.粒子群优化算法粒子群优化算法基于社会行为模拟鸟群,通过个体间的信息交流和位置的调整来寻找问题的最优解。

其中,个体表示问题的解,位置表示个体的候选解,速度表示个体的搜索方向和步长,适应度函数用于评估个体的优劣程度,个体位置根据历史最优解和全局最优解进行更新,从而逐步优化个体的位置,最终找到最优解。

二、优势与劣势比较1.优势比较-遗传算法的优势:a.全局搜索能力较强:遗传算法采用随机搜索的策略,具有良好的全局搜索能力,适用于复杂问题的求解。

b.可以处理离散和连续问题:遗传算法适用于离散和连续优化问题,对问题的表达方式较为灵活。

c.可以处理多目标优化问题:遗传算法通过引入多个适应度函数,可以同时优化多个目标。

-粒子群优化算法的优势:a.收敛速度快:粒子群优化算法通过个体间的信息交流和位置更新,可以快速收敛到最优解。

b.可以处理连续和离散问题:粒子群优化算法适用于连续和离散优化问题,对问题的表达方式较为灵活。

c.具有自适应性:粒子群优化算法通过个体间的协作和自适应调整,有较好的适应性和稳定性。

2.劣势比较-遗传算法的劣势:a.搜索过程可能陷入局部最优:遗传算法基于随机搜索策略,可能陷入局部最优解而无法全局最优解。

b.参数调整和运算复杂性较高:遗传算法的参数设置和运算复杂性较高,需要经验和大量的计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档 . 实验十 遗传算法与优化问题

一、问题背景与实验目的 遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算. 1.遗传算法的基本原理 遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议). (1)遗传算法中的生物遗传学概念 由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念. 首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关系.这些概念如下: 序号 遗传学概念 遗传算法概念 数学概念 1 个体 要处理的基本对象、结构 也就是可行解

2 群体 个体的集合 被选定的一组可行解

3 染色体 个体的表现形式 可行解的编码

4 基因 染色体中的元素 编码中的元素

5 基因位 某一基因在染色体中的位置 元素在编码中的位置

6 适应值 个体对于环境的适应程度,或在环境压力下的生存能力 可行解所对应的适应函数

值 7 种群 被选定的一组染色体或个体 根据入选概率定出的一组

可行解 8 选择 从群体中选择优胜的个体,淘汰劣质个体的操作 保留或复制适应值大的可

行解,去掉小的可行解 9 交叉 一组染色体上对应基因段的交换 根据交叉原则产生的一组

新解 10 交叉概率 染色体对应基因段交换的概率(可能性大小) 闭区间[0,1]上的一个值,

一般为0.65~0.90 11 变异 染色体水平上基因变化 编码的某些元素被改变 精品文档 . 12 变异概率 染色体上基因变化的概率(可能性大小) 开区间(0,1)内的一个值,

一般为0.001~0.01 13 进化、 适者生存 个体进行优胜劣汰的进化,一代又一代地优化 目标函数取到最大值,最

优的可行解 (2)遗传算法的步骤 遗传算法计算优化的操作过程就如同生物学上生物遗传进化的过程,主要有三个基本操作(或称为算子):选择(Selection)、交叉(Crossover)、变异(Mutation). 遗传算法基本步骤主要是:先把问题的解表示成“染色体”,在算法中也就是以二进制编码的串,在执行遗传算法之前,给出一群“染色体”,也就是假设的可行解.然后,把这些假设的可行解置于问题的“环境”中,并按适者生存的原则,从中选择出较适应环境的“染色体”进行复制,再通过交叉、变异过程产生更适应环境的新一代“染色体”群.经过这样的一代一代地进化,最后就会收敛到最适应环境的一个“染色体”上,它就是问题的最优解. 下面给出遗传算法的具体步骤,流程图参见图1: 第一步:选择编码策略,把参数集合(可行解集合)转换染色体结构空间; 第二步:定义适应函数,便于计算适应值; 第三步:确定遗传策略,包括选择群体大小,选择、交叉、变异方法以及确定交叉概率、变异概率等遗传参数; 第四步:随机产生初始化群体; 第五步:计算群体中的个体或染色体解码后的适应值; 第六步:按照遗传策略,运用选择、交叉和变异算子作用于群体,形成下一代群体; 第七步:判断群体性能是否满足某一指标、或者是否已完成预定的迭代次数,不满足则返回第五步、或者修改遗传策略再返回第六步.

图1 一个遗传算法的具体步骤 产生初始群体

是否满足终止条件 得到结果 结束程序 是

否 计算每个个体的适应值

以概率选择遗传算子 选择一个个体复制到新群体 选择两个个体进行交叉插入到新群体 选择一个个体进行变异插入到新群体

得到新群体 精品文档

. 遗传算法有很多种具体的不同实现过程,以上介绍的是标准遗传算法的主要步骤,此算法会一直运行直到找到满足条件的最优解为止. 2.遗传算法的实际应用

例1:设2()20.5fxxx,求 max(), [1,2]fxx. 注:这是一个非常简单的二次函数求极值的问题,相信大家都会做.在此我们要研究的不是问题本身,而是借此来说明如何通过遗传算法分析和解决问题. 在此将细化地给出遗传算法的整个过程. (1)编码和产生初始群体 首先第一步要确定编码的策略,也就是说如何把1到2这个区间内的数用计算机语言表示出来. 编码就是表现型到基因型的映射,编码时要注意以下三个原则: 完备性:问题空间中所有点(潜在解)都能成为GA编码空间中的点(染色体位串)的表现型; 健全性:GA编码空间中的染色体位串必须对应问题空间中的某一潜在解; 非冗余性:染色体和潜在解必须一一对应. 这里我们通过采用二进制的形式来解决编码问题,将某个变量值代表的个体表示为一个{0,1}二进制串.当然,串长取决于求解的精度.如果要设定求解精度到六位小数,由于区间长度为2(1)3,则必须将闭区间 [1,2]分为6310

等分.因为216222097152231024194304 所以编码的二进制串至少需要22位. 将一个二进制串(b21b20b19…b1b0)转化为区间[1,2]内对应的实数值很简单,只需采取以下两步(Matlab程序参见附录4): 1)将一个二进制串(b21b20b19…b1b0)代表的二进制数化为10进制数: 21212019102100()(2)'iiibbbbbbx



2)'x 对应的区间[1,2]内的实数: 12)1(2'122xx

例如,一个二进制串a=<1000101110110101000111>表示实数0.637197. 'x=(1000101110110101000111)2=2288967

637197.01232288967122x 二进制串<0000000000000000000000>,<1111111111111111111111>,则分别表示区间的两个端点值-1和2. 利用这种方法我们就完成了遗传算法的第一步——编码,这种二进制编码的方法完全符合上述的编码的三个原则. 首先我们来随机的产生一个个体数为4个的初始群体如下: pop(1)={ <1101011101001100011110>, %% a1 <1000011001010001000010>, %% a2 <0001100111010110000000>, %% a3 <0110101001101110010101>} %% a4(Matlab程序参见附录2) 化成十进制的数分别为: 精品文档 . pop(1)={ 1.523032,0.574022 ,-0.697235 ,0.247238 } 接下来我们就要解决每个染色体个体的适应值问题了. (2)定义适应函数和适应值

由于给定的目标函数2()20.5fxxx在[1,2]内的值有正有负,所以必须通过建立适应函数与目标函数的映射关系,保证映射后的适应值非负,而且目标函数的优化方向应对应于适应值增大的方向,也为以后计算各个体的入选概率打下基础. 对于本题中的最大化问题,定义适应函数()gx,采用下述方法:

minmin

(), ()0()0,fxFfxFgx若

其他 式中minF既可以是特定的输入值,也可以是当前所有代或最近K代中()fx的最小值,这里为了便于计算,将采用了一个特定的输入值. 若取min1F,则当()1fx时适应函数()2gx;当()1.1fx时适应函数()0gx. 由上述所随机产生的初始群体,我们可以先计算出目标函数值分别如下(Matlab程序参见附录3): f [pop(1)]={ 1.226437 , 1.318543 , -1.380607 , 0.933350 } 然后通过适应函数计算出适应值分别如下(Matlab程序参见附录5、附录6): 取min1F, g[pop(1)]= { 2.226437 , 2.318543 , 0 , 1.933350 } (3)确定选择标准 这里我们用到了适应值的比例来作为选择的标准,得到的每个个体的适应值比例叫作入选概率.其计算公式如下:

对于给定的规模为n的群体pop={123,,,,naaaaL},个体ia的适应值为()iga,则其入选概率为

1()(),1,2,3,,()isiniigaPainga

由上述给出的群体,我们可以计算出各个个体的入选概率. 首先可得 41()6.478330iiga,

然后分别用四个个体的适应值去除以41()iiga,得: P(a1)=2.226437 / 6.478330 = 0.343675 %% a1 P(a2)=2.318543 / 6.478330 = 0.357892 %% a2 P(a3)= 0 / 6.478330 = 0 %% a3 P(a4)=1.933350 / 6.478330 = 0.298433 %% a4(Matlab程序参见附录7) (4)产生种群 计算完了入选概率后,就将入选概率大的个体选入种群,淘汰概率小的个体,并用入选概率最大的个体补入种群,得到与原群体大小同样的种群(Matlab程序参见附录8、附录11).

相关文档
最新文档