动量与能量专题复习
高考二轮总复习课件物理(适用于老高考旧教材)专题2能量与动量第1讲 动能定理机械能守恒定律功能关系的

(1)建立运动模型。
(2)抓住运动过程之间运动参量的联系。
(3)分阶段或全过程列式计算。
(4)对于选定的研究过程,只考虑初、末位置而不用考虑中间过程。
注意摩擦力做功特点
深化拓展
应用动能定理解题应注意的三个问题
(1)动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比
动力学研究方法要简捷。
则重力的瞬时功率不为0,C错误;随着运动员在圆弧跳台上升高,速率逐渐
减小,所需要的向心力也在减小,向心力由台面的支持力与重力垂直接触面
向下的分力提供,由牛顿第二定律有FN-mgcos θ=m
大,v在减小,所以FN在减小,D正确。
2
,随着高度升高,θ在增
2.(命题角度1、2)(多选)一个质量为5 kg静止在水平地面上的物体,某时刻
能定理
1
Pt-W=2 m 2 ,则这一过程中小汽车克服阻力做的功为
D 错误。
W=Pt- 2 ,率启动
1
a-图像和
1
a-v 图像
1
F-图像问题
恒定加速度启动
1
F-v 图像
恒定功率启动
1
a- 图像
v
恒定加速度启动
1
F- 图像
v
①AB 段牵引力不变,做匀加速直线运动;
1
1
2
由动能定理得-mg·2r-W=2 2 − 2 1 2 ,联立解得小球克服阻力做的功
W=mgr,A 错误,B 正确;设再一次到达最低点时速度为 v3,假设空气阻力做
功不变,从最高点到最低点根据动能定理得
最低点,根据牛顿第二定律
1
mg·2r-W= 3 2
高考一轮复习 专题11 电磁感应中的动力学能量和动量问题

专题十一电磁感应中的动力学、能量和动量问题考点一电磁感应中的动力学问题师生共研例1 如图所示,两平行且无限长光滑金属导轨MN、PQ与水平面的夹角为θ=30°,两导轨之间的距离为L=1 m,两导轨M、P之间接入电阻R=0.2 Ω,导轨电阻不计,在abdc区域内有一个方向垂直于两导轨平面向下的磁场Ⅰ,磁感应强度B0=1 T,磁场的宽度x1=1 m;在cd连线以下区域有一个方向也垂直于导轨平面向下的磁场Ⅱ,磁感应强度B1=0.5 T.一个质量为m=1 kg的金属棒垂直放在金属导轨上,与导轨接触良好,金属棒的电阻r=0.2 Ω,若金属棒在离ab连线上端x0处自由释放,则金属棒进入磁场Ⅰ恰好做匀速运动.金属棒进入磁场Ⅱ后,经过ef时又达到稳定状态,cd与ef之间的距离x2=8 m.求(g取10 m/s2):(1)金属棒在磁场Ⅰ运动的速度大小;(2)金属棒滑过cd位置时的加速度大小;(3)金属棒在磁场Ⅱ中达到稳定状态时的速度大小.【考法拓展1】在【例1】中,求金属棒从开始到刚离开磁场Ⅰ所经历的时间.【考法拓展2】在【例1】中,求金属棒由释放到ab连线滑过的距离x0.【考法拓展3】在【例1】中,求金属棒从开始到在磁场Ⅱ中达到稳定状态这段时间中电阻R产生的热量.练1 [2021·黑龙江大庆模拟](多选)在倾角θ=30°的斜面上固定两根足够长的平行金属导轨MN、EF,间距为L,导轨处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下.有两根质量均为m、电阻均为R、长度均为L的金属棒ab、cd垂直导轨放置且与导轨接触良好,光滑的ab棒用平行于导轨的不可伸长的轻绳跨过光滑定滑轮与质量为2m的重物P连接,如图所示.初始时作用在ab棒上一个外力(题中未画出)使ab棒、重物P保持静止,cd棒也静止在导轨上且刚好不下滑.已知重力加速度大小为g,导轨电阻不计,最大静摩擦力等于滑动摩擦力.现撤去外力,ab棒和重物P从静止开始运动,到cd棒刚好要向上滑动的过程中,则( )A.重物P向下做加速度不断减小的加速运动B.cd棒刚好要向上滑动时,ab棒中的电流大小I=C.cd棒刚好要向上滑动时,重物P的速度大小为v=D.重物P减少的重力势能等于ab棒、重物P增加的动能与ab、cd棒产生的焦耳热之和练2 [2020·全国卷Ⅰ](多选)如图,U形光滑金属框abcd置于水平绝缘平台上,ab和dc边平行,和bc边垂直.ab、dc足够长,整个金属框电阻可忽略.一根具有一定电阻的导体棒MN置于金属框上,用水平恒力F向右拉动金属框,运动过程中,装置始终处于竖直向下的匀强磁场中,MN与金属框保持良好接触,且与bc边保持平行.经过一段时间后( )A.金属框的速度大小趋于恒定值B.金属框的加速度大小趋于恒定值C.导体棒所受安培力的大小趋于恒定值D.导体棒到金属框bc边的距离趋于恒定值练3 如图所示,间距为L的两根平行金属导轨弯成“L”形,竖直导轨面与水平导轨面均足够长,整个装置处于竖直向上大小为B的匀强磁场中.质量均为m、阻值均为R的导体棒ab、cd均垂直于导轨放置,两导体棒与导轨间动摩擦因数均为μ,当导体棒cd在水平恒力作用下以速度v0沿水平导轨向右匀速运动时,释放导体棒ab,它在竖直导轨上匀加速下滑.某时刻将导体棒cd所受水平恒力撤去,经过一段时间,导体棒cd静止,此过程流经导体棒cd的电荷量为q(导体棒ab、cd与导轨间接触良好且接触点及金属导轨的电阻不计,已知重力加速度为g),则下列判断错误的是( )A.导体棒cd受水平恒力作用时流经它的电流I=B.导体棒ab匀加速下滑时的加速度大小a=g-C.导体棒cd在水平恒力撤去后它的位移为s=D.导体棒cd在水平恒力撤去后它产生的焦耳热为Q=m-题后反思1.电磁感应中动力学问题的解题思路2.电磁感应中的动态分析导体受外力运动感应电动势感应电流导体受安培力―→合力变化加速度变化―→速度变化―→临界状态.考点二电磁感应中的能量问题多维探究1.能量转化2.求解焦耳热Q的三种方法3.解题的一般步骤(1)确定研究对象(导体棒或回路);(2)弄清电磁感应过程中哪些力做功,以及哪些形式的能量相互转化;(3)根据功能关系或能量守恒定律列式求解.题型1|由焦耳定律求解焦耳热例 2 小明设计的电磁健身器的简化装置如图所示,两根平行金属导轨相距l=0.50 m,倾角θ=53 °,导轨上端串接一个R=0.05 Ω的电阻.在导轨间长d=0.56 m的区域内,存在方向垂直导轨平面向下的匀强磁场,磁感应强度B=2.0 T.质量m=4.0 kg的金属棒CD水平置于导轨上,用绝缘绳索通过定滑轮与拉杆GH相连.CD棒的初始位置与磁场区域的下边界相距s=0.24 m.一位健身者用恒力F=80 N 拉动GH杆,CD棒由静止开始运动,上升过程中CD棒始终保持与导轨垂直.当CD棒到达磁场上边界时健身者松手,触发恢复装置使CD棒回到初始位置(重力加速度g取10 m/s2,sin 53°=0.8,不计其他电阻、摩擦力以及拉杆和绳索的质量).求:(1)CD棒进入磁场时速度v的大小.(2)CD棒进入磁场时所受的安培力F A的大小.(3)在拉升CD棒的过程中,健身者所做的功W和电阻产生的焦耳热Q.题型2|由安培力做功求解焦耳热例3 如图所示,足够长的粗糙斜面与水平面成θ=37°角放置,在斜面上虚线cc′和bb′与斜面底边平行,且两线间距为d=0.1 m,在cc′、bb′围成的区域内有垂直斜面向上的有界匀强磁场,磁感应强度为B=1 T;现有一质量为m=10 g,总电阻为R=1 Ω,边长也为d=0.1 m的正方形金属线圈MNPQ,其初始位置PQ边与cc′重合,现让金属线圈以一定初速度沿斜面向上运动,当金属线圈从最高点返回到磁场区域时,线圈刚好做匀速直线运动.已知线圈与斜面间的动摩擦因数为μ=0.5,取g=10 m/s2,不计其他阻力,求:(取sin 37°=0.6,cos 37°=0.8)(1)线圈向下返回到磁场区域时的速度大小;(2)线圈向上离开磁场区域时的动能;(3)线圈向下通过磁场区域过程中,线圈中产生的焦耳热.题型3|由能量守恒或功能关系求解焦耳热例4 [2021·广州市模拟]如图甲所示,空间存在B=0.5 T、方向竖直向下的匀强磁场,MN、PQ是水平放置的平行长直导轨,其间距L=0.2 m,R是连在导轨一端的电阻,ab是跨接在导轨上质量m=0.1 kg 的导体棒.从零时刻开始,对ab施加一个大小为F=0.45 N、方向水平向左的恒定拉力,使其从静止开始沿导轨滑动,滑动过程中棒始终保持与导轨垂直且接触良好,图乙是棒的v t图象,其中AO是图象在O 点的切线,AB是图象的渐近线.除R以外,其余部分的电阻均不计.设最大静摩擦力等于滑动摩擦力.已知当棒的位移为100 m时,其速度达到了最大速度10 m/s.求:(1)R的阻值;(2)在棒运动100 m过程中电阻R上产生的焦耳热.练4 [2020·济南模拟]如图所示,水平传送带上放置n个相同的正方形闭合导线圈,每个线圈的质量均为m,电阻均为R,边长均为L,线圈与传送带间的动摩擦因数均为μ,线圈与传送带共同以速度v0匀速向右运动.MN与PQ为匀强磁场的边界,平行间距为d(L<d),速度v0方向与MN垂直.磁场的磁感应强度为B,方向竖直向下.当线圈右侧边进入磁场时与传送带发生相对运动,线圈的右侧边到达边界PQ 时又恰好与传送带的速度相同.设传送带足够长,且线圈在传送带上始终保持右侧边平行于磁场边界.已知重力加速度为g,线圈间不会相碰.求:(1)线圈的右侧边刚进入磁场时,线圈的加速度大小;(2)线圈右侧边从MN运动到PQ经过的时间t;(3)n个线圈均通过磁场区域到恢复和传送带共速,线圈释放的焦耳热.练5 [2021·石嘴山模拟]如图所示,光滑且足够长的平行金属导轨MN、PQ固定在竖直平面内,两导轨间的距离为L=1 m,导轨间连接的定值电阻R=3 Ω,导轨上放一质量为m=0.1 kg的金属杆ab,金属杆始终与导轨接触良好,杆的电阻r=1 Ω,其余电阻不计,AB位置下方存在磁感应强度为B=1 T 的匀强磁场,磁场的方向垂直导轨平面向里.重力加速度g取10 m/s2.现让金属杆从AB水平位置由静止释放,忽略空气阻力的影响,求:(1)金属杆的最大速度.(2)若从金属杆开始下落到刚好达到最大速度的过程中,电阻R上产生的焦耳热Q=0.6 J,此时金属杆下落的高度为多少?(3)达到最大速度后,为使ab杆中不产生感应电流,从该时刻开始,磁感应强度B′应怎样随时间t 变化?推导这种情况下B′与t的关系式.考点三电磁感应与动量的综合问题多维探究题型1|动量定理在电磁感应中的应用在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量.(1)求电荷量或速度:B lΔt=mv2-mv1,q=t.(2)求时间:Ft=I冲=mv2-mv1,I冲=BIlΔt=Bl(3)求位移:-BIlΔt=-=0-mv0,即-x=m(0-v0).例5 [2020·山东潍坊期末] (多选)如图所示,水平金属导轨P、Q间距为L,M、N间距为2L,P与M相连,Q与N相连,金属棒a垂直于P、Q放置,金属棒b垂直于M、N放置,整个装置处在磁感应强度大小为B、方向竖直向上的匀强磁场中.现给棒a一大小为v0、水平向右的初速度,假设导轨都足够长,两棒质量均为m,在棒a的速度由v0减小到0.8v0的过程中,两棒始终与导轨接触良好.以下说法正确的是( )A.俯视时感应电流方向为顺时针B.棒b的最大速度为0.4v0C.回路中产生的焦耳热为0.1mD.通过回路中某一截面的电荷量为题型2|动量守恒定律在电磁感应中的应用例6 [2019·全国卷Ⅲ,19](多选)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图象中可能正确的是( )练6 [2020·山东阳谷二中期末](多选)如图所示,在高为h的桌面上固定着两根平行光滑金属导轨,导轨左段弯曲,右段水平,两部分平滑连接,导轨间距为L,电阻不计,在导轨的水平部分有竖直向上的匀强磁场,磁感应强度为B,ab、cd为两根相同的金属棒,质量均为m,长度均为L,电阻均为r.开始时cd静置于水平导轨上某位置,将ab从弯曲导轨上距离桌面高为h处由静止释放,cd离开导轨水平抛出,落地点ef距轨道末端的水平距离也为h,金属棒在运动过程中没有发生碰撞且与导轨接触良好,重力加速度为g.以下说法正确的是( )A.cd在导轨上的最大加速度为B.cd在导轨上的最大加速度为C.ab的落地点在ef的右侧D.电路中产生的热量为mgh练7 如图甲所示,两足够长且不计其电阻的光滑金属轨道,如图所示放置,间距为d=1 m,在左端弧形轨道部分高h=1.25 m处放置一金属杆a,弧形轨道与平面轨道以光滑圆弧连接,在平直轨道右端放置另一金属杆b.杆a、b电阻分别为R a=2 Ω,R b=5 Ω,在平直轨道区域有竖直向上的匀强磁场,磁感应强度B=2 T.现杆b以大小5 m/s的初速度(设为v0)开始向左滑动,同时由静止释放杆a.杆a由静止滑到水平轨道的过程中,通过杆b的平均电流为0.3 A.从杆a下滑到水平轨道时开始计时,a、b杆运动图象如图乙所示(以杆a运动方向为正),其中m a=2 kg,m b=1 kg,g=10 m/s2,求:(1)杆a在弧形轨道上运动的时间;(2)杆a在水平轨道上运动过程中通过其截面的电荷量;(3)在整个运动过程中杆b上产生的焦耳热.专题十一 电磁感应中的动力学、能量和动量问题考点突破例1 解析:(1)金属棒进入磁场Ⅰ做匀速运动,设速度为v 0,由平衡条件得mgsin θ=F 安① 而F 安=B 0I 0L ,② I 0=B 0Lv 0R +r③代入数据解得v 0=2 m/s.④(2)金属棒滑过cd 位置时,其受力如图所示.由牛顿第二定律得 mgsin θ-F ′安=ma ,⑤ 而F ′安=B 1I 1L ,⑥ I 1=B 1Lv 0R +r,⑦代入数据可解得a =3.75 m/s 2.⑧(3)金属棒在进入磁场Ⅱ区域达到稳定状态时,设速度为v 1,则mgsin θ=F ″安,⑨ 而F ″安=B 1I 2L ○10 I 2=B 1Lv 1R +r,⑪代入数据解得v 1=8 m/s.⑫答案:(1)2 m/s (2)3.75 m/s 2 (3)8 m/s考法拓展1 解析:金属棒从静止开始到刚进入磁场Ⅰ的时间t 1=v 0gsin θ=0.4 s ,在磁场Ⅰ运动时间t 2=x 1v 0=0.5 s ,所以金属棒从开始到刚离开磁场Ⅰ所经历的时间为t =t 1+t 2=0.9 s.答案:0.9 s考法拓展2 解析:金属棒在未进入磁场前做初速度为0的匀加速直线运动a =gsin θ,由运动学公式得v 20=2ax 0,代入数据解得x 0=0.4 m. 答案:0.4 m考法拓展3 解析:金属棒从开始运动到在磁场Ⅱ中达到稳定状态过程中,根据能量守恒得 mg(x 0+x 1+x 2)sin θ=Q +12mv 21,Q R =R R +r Q =7.5 J.答案:7.5 J练1 解析:本题考查电磁感应中的楞次定律,通过分析安培力判断物体的运动状态,回路中的电流以及焦耳热.重物P 和ab 棒是一个系统,重物P 的重力不变,ab 棒的重力沿斜面向下的分力不变,而ab 棒切割磁感线的速度在增大,则沿斜面向下的安培力随之增大,则ab 与P 的加速度变小,所以重物P 向下做加速度不断减小的加速运动,A 正确;cd 棒刚开始恰好不下滑,则有mgsin θ=μmgcos θ,cd 棒刚好要向上滑动时,则有BIL =mgsin θ+μmgcos θ,联立解得I =mgBL ,B 正确;cd 棒刚好要向上滑动时,ab 棒切割磁感线产生的感应电动势E =BLv ,感应电流I =BLv 2R ,可得v =2mgRB 2L 2,C 正确;由能量守恒定律可知,重物P 减少的重力势能等于ab 棒、重物P 增加的动能、ab 棒增加的重力势能与ab 、cd 棒产生的焦耳热之和,D 错误.答案:ABC练2 解析:用水平恒力F 向右拉动金属框,bc 边切割磁感线产生感应电动势,回路中有感应电流i ,bc 边受到水平向左的安培力作用,设金属框的质量为M ,加速度为a 1,由牛顿第二定律有F -BiL =Ma 1;导体棒MN 受到向右的安培力,向右做加速运动,设导体棒的质量为m ,加速度为a 2,由牛顿第二定律有BiL =ma 2.设金属框bc 边的速度为v 时,导体棒的速度为v ′,则回路中产生的感应电动势为E =BL(v -v ′),由闭合电路欧姆定律i =E R =BL (v -v ′)R,F 安=BiL ,可得金属框bc 边所受安培力和导体棒MN 所受的安培力均为F 安=B 2L 2(v -v ′)R ,二者加速度之差Δa =a 1-a 2=F -F 安M -F 安m =F M -F 安⎝ ⎛⎭⎪⎫1M +1m ,随着所受安培力的增大,二者加速度之差Δa 减小,当Δa 减小到零时,F M =B 2L 2(v -v ′)R ·⎝ ⎛⎭⎪⎫1M +1m ,之后金属框和导体棒的速度之差Δv =v -v ′=FRmB 2L 2(m +M ),保持不变.由此可知,金属框的速度逐渐增大,金属框所受安培力趋于恒定值,金属框的加速度大小趋于恒定值,导体棒所受的安培力F 安=B 2L 2(v -v ′)R 趋于恒定值,选项A 错误,BC 正确;导体棒到金属框bc 边的距离x =⎠⎛0t (v -v ′)dt ,随时间的增大而增大,选项D 错误.答案:BC练3 解析:cd 切割磁感线产生感应电动势为E =BLv 0,根据闭合电路欧姆定律得I =E 2R =BLv 02R ,故A 项错误.对于ab 棒:根据牛顿第二定律得mg -F f =ma ,又F f =μF N ,F N =BIL ,联立解得,加速度大小为a =g -μB 2L 2v 02mR ,故B 项正确.对于cd 棒,由公式q =ΔΦR 总得q =BLs 2R ,则得,s =2Rq BL,故C 项正确.设导体棒cd 在水平恒力撤去后产生的焦耳热为Q ,由于ab 的电阻与cd 相同,两者串联,则ab 产生的焦耳热也为Q.根据能量守恒得2Q +μmgs =12mv 20,又s =2Rq BL ,解得Q =14mv 20-μmgRqBL ,故D 项正确.综上所述,应选择A.答案:A例2 解析:(1)由牛顿第二定律a =F -mgsin θm =12 m/s 2进入磁场时的速度v =2as =2.4 m/s. (2)感应电动势E =Blv 感应电流I =BlvR安培力F A =IBl代入得F A =(Bl )2vR =48 N.(3)健身者做功W =F(s +d)=64 J 由牛顿第二定律F -mgsin θ-F A =0 CD 棒在磁场区域做匀速运动 在磁场中运动的时间t =dv焦耳热Q =I 2Rt =26.88 J.答案:(1)2.4 m/s (2)48 N (3)64 J 26.88 J例3 解析:(1)金属线圈向下匀速进入磁场时,有mgsin θ=μmgcos θ+F 安 其中F 安=BId ,I =ER,E =Bdv解得v =(mgsin θ-μmgcos θ)RB 2d2=2 m/s. (2)设最高点离bb ′的距离为x ,线圈从最高点到开始进入磁场过程做匀加速直线运动,有v 2=2ax ,mgsin θ-μmgcos θ=ma 线圈从向上离开磁场到向下进入磁场的过程,根据动能定理有E k1-E k =μmgcos θ·2x ,其中E k =12mv 2得E k1=12mv 2+v 2μmgcos θgsin θ-μgcos θ=0.1 J.(3)线圈向下匀速通过磁场区域过程中, 有mgsin θ·2d -μmgcos θ·2d +W 安=0 Q =-W 安解得Q =2mgd(sin θ-μcos θ)=0.004 J. 答案:(1)2 m/s (2)0.1 J (3)0.004 J例4 解析:(1)由图乙得ab 棒刚开始运动瞬间a =2.5 m/s 2, 则F -F f =ma , 解得F f =0.2 N.ab 棒最终以速度v =10 m/s 匀速运动,则所受到拉力、摩擦力和安培力的合力为零,F -F f -F 安=0.F 安=BIL =BL Blv R =B 2L 2vR .联立可得R =B 2L 2vF -F f=0.4 Ω.(2)由功能关系可得(F -F f )x =12mv 2+Q ,解得Q =20 J.答案:(1)0.4 Ω (2)20 J练4 解析:(1)线圈刚进入磁场时有:E =BLv 0 根据闭合电路欧姆定律:I =ER所以安培力F =B 2L 2v 0R根据牛顿第二定律:F -μmg =ma. a =B 2L 2v 0mR -μg ,方向向左(2)根据动量定理,对线圈: μmgt -I 安=0. 其中安培力的冲量:I 安=F 安t ′=B I -L ·t ′=BLq q =ΔΦR =BL 2R .综上解得t =B 2L 3μmgR.(3)自线圈进入磁场到线圈右侧边到达PQ 过程中,对于单个线圈,根据动能定理得 μmgd -W 安=0,所以克服安培力做功W 安=μmgd单个线圈离开磁场的运动情况和进入磁场相同,W ′安=W 安=μmgd , 所以对于n 个线圈有Q =2n μmgd答案:(1)B 2L 2v 0mR -μg (2)B 2L3μmgR(3)2n μmgd练5 解析:(1)设金属杆的最大速度为v m ,安培力与重力平衡,则有:F 安=mg 又F 安=BIL ,I =ER +r,E =BLv m 联立得:F 安=B 2L 2v mR +r解得:v m =4 m/s(2)电路中产生的总焦耳热: Q 总=R +r R Q =3+13×0.6 J =0.8 J由能量守恒定律得:mgh =12mv 2m +Q 总解得:h =1.6 m(3)为使ab 杆中不产生感应电流,应使穿过回路平面的磁通量不发生变化, 在该时刻穿过回路平面的磁通量为: Φ1=BLht 时刻的磁通量为: Φ2=B ′L ⎝ ⎛⎭⎪⎫h +v m t +12gt 2 由Φ1=Φ2得:B ′=Bhh +v m t +12gt2代入数据解得:B ′= 1.65t 2+4t +1.6T答案:(1)4 m/s (2)1.6 m (3)B ′= 1.65t 2+4t +1.6T例5 解析:本题考查电磁感应中的电荷量、能量等物理量的计算.棒a 向右运动,回路面积减小,根据楞次定律可知,俯视时感应电流方向为逆时针,A 错误;在棒a 的速度由v 0减小到0.8v 0的过程中,棒a 减速,棒b 加速,对棒a ,由动量定理可得B I -·Lt =BqL =mv 0-0.8mv 0,对棒b ,由动量定理可得B I -·2Lt =mv ,联立可得v =0.4v 0,q =mv 05BL ,B 正确,D 错误;根据能量守恒定律可得Q =12mv 20-12m(0.8v 0)2+12m(0.4v 0)2=0.1mv 20,C 正确.答案:BC例6 解析:由楞次定律可知ab 棒做减速运动,cd 棒做加速运动,即v 1减小,v 2增加.回路中的感应电动势E =BL(v 1-v 2),回路中的电流I =E R =BL (v 1-v 2)R ,回路中的导体棒ab 、cd 的加速度大小均为a =F m =BIL m =B 2L 2(v 1-v 2)mR ,由于v 1-v 2减小,可知a 减小,所以ab 与cd 的v t 图线斜率减小,I 也非线性减小,所以A 、C 正确,B 、D 错误.答案:AC练6 解析:本题从动量和能量两个角度考查双棒问题.当cd 受到的安培力最大时,cd 在导轨上的加速度最大,即ab 刚进入磁场时,cd 在导轨上的加速度最大,设此时ab 的速度为v ,根据机械能守恒定律可得12mv 2=mgh ,解得v =2gh ,此时回路中的感应电流I =BLv 2r ,cd 在导轨上的最大加速度a =BIL m =B 2L 22gh2mr,故A 正确,B 错误; 设cd 离开导轨时的速度为v 1,根据平抛运动规律可知,下落时间t =2h g ,则v 1=h t=gh2,设cd 离开导轨时ab 的速度为v ′,根据动量守恒定律可得mv =mv ′+mv 1,解得v ′=v 1=gh2,所以ab 的落地点也在ef 处,故C 错误;电路中产生的热量Q =mgh -12mv ′2-12mv 21=12mgh ,故D 正确.答案:AD练7 解析:(1)设杆a 刚滑到水平轨道时,杆b 的速度为v b ,杆a 在弧形轨道上运动的时间与杆b 从开始滑动到杆a 刚滑到水平轨道时所用时间相等,对杆b 应用动量定理有Bd I -t 1=m b v b -m b v 0其中v 0=-5 m/s ,v b =-2 m/s 解得t 1=5 s.(2)设杆a 下滑到水平轨道时的速度为v a ,由杆a 下滑的过程中机械能守恒有 m a gh =12m a v 2a解得v a =5 m/s设两杆最后共同的速度为v ,两杆在水平轨道上运动过程中动量守恒,有 m a v a +m b v b =(m a +m b )v 解得v =83m/s对杆a 在水平轨道上运动过程应用动量定理有 -Bd I -t 2=m a v -m a v a 又q =I -t 2解得q =73C.(3)由能量守恒定律得,两杆产生的总焦耳热Q 总=m a gh +12m b v 20-12(m a +m b )v 2=1616 J杆a 、b 串联,电流相等,则相同时间内产生的焦耳热与电阻成正比 故杆b 上产生的焦耳热Q =R b R a +R b Q 总=1156J. 答案:(1)5 s (2)73 C (3)1156 J。
高考物理二轮专题复习课件:动力学和能量观点的综合应用

律解决问题的过程中,引导 观念。
动情景为依托,强调受力
学生体会守恒的思想,领悟 2.科学推理和论 分析、运动过程分析以及
从守恒的角度分析问题的方 证能力,应用牛顿 应用动力学和能量观点进
法,增强分析和解决问题的 第二定律、运动学 行分析和推理。主要题型:
能力。
公式、动能定理以 动力学方法和动能定理的
上一页
返回导航
下一页
专题二 动量与能量
22
(3)当小物块刚好能通过 C 点时,从 A 到 B 过程
f=μ(mg-Fsin θ)
Fscos θ-fs=12mv2B
得 F=21110 N,当小物块在 AB 段即将飞离地面时 Fsin θ=mg,得 F=50 N。
综上,拉力的取值范围为21110 N≤F≤50 N。 答案:(1)2 5 m/s (2)36 N (3)21110 N≤F≤50 N
第2讲 动力学和能量观点的综合应用 第2讲 动力学和能量观点的综合应用 第2讲 动力学和能量观点的综合应用
第第22(讲 讲2)动动匀力力学学加和和能能量量速观观点点启的的综综动合合应应用用过程中,机车功率不断增大,最大功率是额定功率。
第2讲 动力学和能量观点的综合应用
第第 第222(讲 讲讲3)动动 动以力力 力学学 学额和和 和能能 能量量 量定观观观点点 点功的的 的综综 综合合 合率应应 应用用 用启动的过程中,牵引力不断_减__小___,机车做加速度减小的加
不计空气阻力,重力加速度为 g。
(1)通过计算说明小球能否重新落回到轨道内侧;
(2)若 DA 之间的高度差为 3R,求小球落地点 P 到 B 点的距离 L。
上一页
返回导航
下一页
专题二 动量与能量
专题20 动量与能量综合问题(解析版)

2021届高考物理一轮复习热点题型归纳与变式演练专题20动量与能量综合问题【专题导航】目录热点题型一应用动量能量观点解决“子弹打木块”模型 (1)热点题型二应用动量能量观点解决“弹簧碰撞”模型 (4)热点题型三应用动量能量观点解决“板块”模型 (9)热点题型四应用动量能量观点解决斜劈碰撞现象 (13)【题型演练】 (16)【题型归纳】热点题型一应用动量能量观点解决“子弹打木块”模型s 2d s 1v 0子弹打木块实际上是一种完全非弹性碰撞。
作为一个典型,它的特点是:子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动。
下面从动量、能量和牛顿运动定律等多个角度来分析这一过程。
设质量为m 的子弹以初速度0v 射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。
求木块对子弹的平均阻力的大小和该过程中木块前进的距离。
要点诠释:子弹和木块最后共同运动,相当于完全非弹性碰撞。
从动量的角度看,子弹射入木块过程中系统动量守恒:()v m M mv +=0……①从能量的角度看,该过程系统损失的动能全部转化为系统的内能。
设平均阻力大小为f ,设子弹、木块的位移大小分别为1s 、2s ,如图所示,显然有ds s =-21对子弹用动能定理:20212121mv mv s f -=⋅-……②对木块用动能定理:2221Mv s f =⋅……③②相减得:()()2022022121v m M Mm v m M mv d f +=+-=⋅……④对子弹用动量定理:0-mv mv t f -=⋅……⑤对木块用动量定理:Mv t f =⋅……⑥【例1】(2020·江苏苏北三市模拟)光滑水平地面上有一静止的木块,子弹水平射入木块后未穿出,子弹和木块的v -t 图象如图所示.已知木块质量大于子弹质量,从子弹射入木块到达稳定状态,木块动能增加了50J ,则此过程产生的内能可能是()A .10JB .50JC .70JD .120J【答案】D.【解】析:设子弹的初速度为v 0,射入木块后子弹与木块共同的速度为v ,木块的质量为M ,子弹的质量为m ,根据动量守恒定律得:mv 0=(M +m )v ,解得v =mv 0m +M .木块获得的动能为E k =122=Mm 2v 202(M +m )2=Mmv 202(M +m )·m M +m .系统产生的内能为Q =12mv 20-12(M +m )v 2=Mmv 202(M +m ),可得Q =M +m mE k >50J ,当Q =70J 时,可得M ∶m =2∶5,因已知木块质量大于子弹质量,选项A 、B 、C 错误;当Q =120J 时,可得M ∶m =7∶5,木块质量大于子弹质量,选项D 正确.【变式1】(2020·陕西咸阳模拟)如图所示,相距足够远完全相同的质量均为3m 的两个木块静止放置在光滑水平面上,质量为m 的子弹(可视为质点)以初速度v 0水平向右射入木块,穿出第一块木块时的速度为25v 0,已知木块的长为L ,设子弹在木块中所受的阻力恒定。
2022届高考物理二轮复习:专题07动量和能量的综合运用

2022届高考物理二轮复习专题07动量和能量的综合运用基础篇一、单选题,共10小题1.(2022·全国·高三专题练习)太空探测器常装配离子发动机,其基本原理是将被电离的原子从发动机尾部高速喷出,从而为探测器提供推力,若某探测器质量为490kg ,离子以30km/s 的速率(远大于探测器的飞行速率)向后喷出,流量为33.010g/s -⨯,则探测器获得的平均推力大小为( )A .1.47NB .0.147NC .0.09ND .0.009N 2.(2022·陕西汉中·一模)陕西面食种类繁多,其中“刀削面”堪称一绝,从同一位置依次削出三个小面条,分别落在水面上A 、B 、C 三点,运动轨迹如图所示,忽略空气阻力的影响,小面条被削离面团后均水平飞出,假设三个小面条质量相等,从面条削离到落在水面的过程中,下列说法正确的是( )A .三个小面条被削离时速度相等B .三个小面条动量的变化量相同C .落在A 点的小面条在空中运动时间最短D .落在C 点的小面条落在水面时重力的功率最大3.(2022·山东·泰安市基础教育教学研究室一模)冬奥会冰壶比赛中所用的冰壶除颜色外其他完全相同,如图(a )某队员将红壶推出,之后与静止在大本营中心的蓝壶发生对心碰撞,碰撞时间极短,碰后运动员用冰壶刷摩擦蓝壶前进方向的冰面,来减小阻力。
碰撞前后两壶运动的v -t 图线如图(b )中实线所示。
重力加速度g=10m/s 2。
则运动员由于用冰壶刷摩擦冰面使冰壶与冰面间的动摩擦因数减少了( )A.0.02B.0.012C.0.008D.0.006 4.(2022·北京·一模)城市进入高楼时代后,高空坠物已成为危害极大的社会安全问题。
图为一则安全警示广告,非常形象地描述了高空坠物对人伤害的严重性。
小明同学用下面的实例来检验广告词的科学性:设一个50 g鸡蛋从25楼的窗户自由落下,与地面的碰撞时间约为3⨯,已知相邻楼层的高度差约为3 m,则该鸡蛋对地210s-面产生的冲击力约为()A.10 N B.102N C.103N D.104 N 5.(2022·重庆·模拟预测)如题图所示,水上飞行表演中,运动员操控喷射式悬浮飞行器将水带缓慢竖直送上来的水向下喷出,可以完成悬停、上升等各种动作。
高考物理二轮复习专题四能量与动量动量三大观点的综合应用

第3讲动量三大观点的综合应用(建议用时:40分钟满分:100分)一、选择题(本大题共8小题,每小题8分,共64分.第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求)1.(2020·山西大学附中检测)下列四个图描述的是竖直上抛物体的动量增量随时间变化的图线和动量变化率随时间变化的图线,若不计空气阻力,取竖直向上为正方向,那么正确的是( C )解析:在不计空气阻力的情况下,做竖直上抛运动的物体只受重力的作用,加速度方向竖直向下,取竖直向上为正方向,根据动量定理,有Δp=-mgΔt,=-mg,选项C正确.2.(2020·广东武邑调研)如图所示,三辆完全相同的平板小车a,b,c成一直线排列,静止在光滑水平面上,c车上有一小孩跳到b车上,接着又立即从b车跳到a车上,小孩跳离c车和b车时对地的水平速度相同,他跳到a车上没有走动便相对a车静止,此后( B )A.a,c两车速率相同B.三辆车的速率关系为v c>v a>v bC.a,b两车运动速度相同D.a,c两车运动方向相同解析:设人的质量为m,对地速度为v0,车的质量为m′,人从c车跳出有0=mv0+m′v c,人跳到b车再跳出,有mv0=m′v b+mv0,人跳上a车有mv0=(m′+m)v a,可得v c>v a>v b,选项B正确.3.(2020·天津卷,4)“天津之眼”是一座跨河建设、桥轮合一的摩天轮,是天津市的地标之一.摩天轮悬挂透明座舱,乘客随座舱在竖直面内做匀速圆周运动.下列叙述正确的是( B )A.摩天轮转动过程中,乘客的机械能保持不变B.在最高点时,乘客重力大于座椅对他的支持力C.摩天轮转动一周的过程中,乘客重力的冲量为零D.摩天轮转动过程中,乘客重力的瞬时功率保持不变解析:摩天轮转动过程中乘客的动能不变,重力势能一直变化,故机械能一直变化,A错误;在最高点乘客具有竖直向下的向心加速度,重力大于座椅对他的支持力,B正确;摩天轮转动一周的过程中,乘客重力的冲量等于重力与周期的乘积,C错误;重力瞬时功率等于重力与速度在重力方向上的分量的乘积,而转动过程中速度在重力方向上的分量是变化的,所以重力的瞬时功率也是变化的,D错误.4.如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为L的区域内,有一个边长为a(a<L)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后速度变为v(v<v0),那么( B )A.完全进入磁场中时线圈的速度大于B.完全进入磁场中时线圈的速度等于C.完全进入磁场中时线圈的速度小于D.以上情况A,B均有可能,而C是不可能的解析:设线圈完全进入磁场中时的速度为v x.线圈在穿过磁场的过程中所受合外力为安培力.对于线圈进入磁场的过程,据动量定理可得-FΔt=-Ba=-Ba=mv x-mv0对于线圈穿出磁场的过程,据动量定理可得-FΔt=-Ba=-Ba=mv-mv x由上述二式可得v x=,选项B正确.5.我国女子短道速滑队世锦赛上实现女子3 000 m 接力三连冠.如图所示,观察发现,“接棒”的运动员甲提前站在“交棒”的运动员乙前面,并且开始向前滑行,待乙追上甲时,乙猛推甲一把,使甲获得更大的速度向前冲出.在乙推甲的过程中,忽略运动员与冰面间在水平方向上的相互作用,则( C )A.甲对乙的冲量一定等于乙对甲的冲量B.甲、乙的动量变化一定相同C.甲的动能增加量不一定等于乙的动能减少量D.甲对乙做多少负功,乙对甲就一定做多少正功解析:由于甲对乙的作用力与乙对甲的作用力大小相等,方向相反,因此两个力的冲量大小相等,方向相反,由动量定理可知,两者的动量变化量大小相等,方向相反,选项A,B错误;虽然甲、乙之间的相互作用力等大反向,但在作用力作用过程中两人的位移不一定相等,所以做功不一定相等,由动能定理可知,甲、乙动能的变化量也不一定相等,选项C正确,D错误.6.(2020·河北衡水质检)如图(甲)所示,一质量为m的物块在t=0时刻,以初速度v0从足够长、倾角为θ的粗糙斜面底端向上滑行,物块速度随时间变化的图像如图(乙)所示.t0时刻物块到达最高点,3t0时刻物块又返回底端.下列说法正确的是( BC )A.物块从开始运动到返回底端的过程中重力的冲量为3mgt0·cos θB.物块从t=0时刻开始运动到返回底端的过程中动量的变化量为-mv0C.斜面倾角θ的正弦值为D.不能求出3t0时间内物块克服摩擦力所做的功解析:物块从开始运动到返回底端的过程中重力的冲量I G=3mgt0,选项A错误;上滑过程中物块做初速度为v0的匀减速直线运动,下滑过程中做初速度为零、末速度为v的匀加速直线运动,上滑和下滑的位移大小相等,所以有t0=·2t0,解得v=,物块从开始运动到返回底端过程中动量的变化量为Δp=-mv-mv0=-mv0,选项B正确;上滑过程中有-(mgsin θ+μmgcos θ)·t0=0-mv0,下滑过程中有(mgsin θ-μmgcosθ)2t0=,解得sin θ=,选项C正确;根据图像可求出物块上升的最大位移,由动能定理求出整个过程中摩擦力所做的功,选项D错误.7.两个小球在光滑水平面上沿同一直线、同一方向运动,球2在前,球1在后,m1=1 kg,m2=3 kg,v01=6m/s,v02=3 m/s,当球1与球2发生碰撞后,两球的速度分别为v1,v2,将碰撞后球1的动能和动量大小分别记为E1,p1,则v1,v2,E1,p1的可能值为( AB )A.v1=3.75 m/s,v2=3.75 m/sB.v1=1.5 m/s,v2=4.5 m/sC.E1=9 JD.p1=1 kg· m/s解析:两球碰撞过程中系统动量守恒,以两球的初速度方向为正方向,如果两球发生完全非弹性碰撞,由动量守恒定律得m1v01+m2v02=(m1+m2)v,代入数据解得v=3.75 m/s,如果两球发生完全弹性碰撞,有m1v01+m2v02=m1v1+m2v2,由机械能守恒定律得m1+m2=m1+m2,代入数据解得v1=1.5 m/s,v2=4.5m/s,则碰撞后球1、球2的速度满足1.5 m/s≤v1≤3.75 m/s,3.75 m/s≤v2≤4.5 m/s;球1的动能E1=m1,满足1.125 J≤E1≤7.03 J;球1的动量p1=m1v1,满足1.5 kg· m/s≤p1≤3.75 kg· m/s,综上所述,选项A,B正确,C,D错误.8.(2020·山西联考卷)如图所示,一辆小车静止在光滑的水平面上,小车的上表面左侧AB为一光滑的圆弧,其半径为R=0.8 m,右侧BC为粗糙水平面,且水平面与圆弧光滑过渡,BC=0.8 m,小车的上表面离地高度为h=0.8 m,小车静止时其右侧端点C在地面上的投影为C′点,一质量为m=1 kg的滑块(可视为质点)自圆弧顶点A由静止释放,并且从C处滑落小车,其落地时刚好打在C′点,已知滑块与小车上表面BC面间的动摩擦因数μ=0.5,重力加速度g=10 m/s2,则由以上条件可得( BCD )A.小车的最终速度为1 m/sB.整个过程滑块与小车因摩擦产生的热量为Q=4 JC.小车的质量为M=1 kgD.从小车开始运动至滑块落至C′的时间内,小车一共向左前进了x=1.6 m解析:滑块与小车组成的系统水平方向动量守恒,设滑块滑离小车时速度大小为v1,小车最终速度大小为v2,小车的质量为M,则mv1=Mv2,根据能量守恒可得mgR=m+M+μmgL BC,滑块滑离小车后做平抛运动,根据题意其平抛的水平距离为小车向左运动的距离,小车向左运动了s=(R+L BC),又s=v1t,h=gt2,联立以上各式解得:M=1 kg,v1=v2=2 m/s,s=0.8 m,t=0.4 s,故A错误,C正确;整个过程的摩擦生热为Q=μmgL BC=4 J,B正确;自滑块滑落小车至落地时,小车又发生的位移s′=v2t=0.8 m,所以从小车开始运动至滑块落至C′的时间内,小车一共向左前进了s总=s+s′=1.6 m,故D正确.二、非选择题(本大题共2小题,共36分)9.(18分)(2020·百校联盟模拟)如图(甲)所示,两相互平行且间距为l=0.5 m的足够长的光滑金属导轨MN,PQ固定在水平面上,两长度均为l=0.5 m的导体棒ab,cd垂直于导轨放置,与金属导轨平行的绝缘水平细线一端固定,另一端与导体棒ab的中点连接,绝缘细线能承受的最大拉力为F T=4 N,整个装置处在竖直向下的匀强磁场中.开始时两导体棒均处于静止状态,细线刚好伸直且无拉力.现对导体棒cd施加一水平向右的拉力F,并开始计时,使导体棒cd向右做匀加速直线运动,当绝缘细线刚好被拉断时撤去拉力F,已知两导体棒的质量均为m=0.1 kg,电阻均为R=2 Ω,导轨电阻不计,拉力F随时间变化的关系如图(乙)所示.求:(1)匀强磁场的磁感应强度B的大小和细线被拉断所需要的时间t;(2)撤去拉力F后,两导体棒ab,cd间距离增加量的最大值.解析:(1)由法拉第电磁感应定律可得导体棒cd 在拉力F的作用下切割磁感线产生的感应电动势为E=Blv回路中的电流大小为I=,导体棒cd的速度为v=at导体棒cd受到的安培力大小为F安=BIl由牛顿运动定律可得F-F安=ma联立并代入数据解得F=t+ma由题图(乙)可知=2N·s-1,ma=0.2 N,联立两式并代入数据解得B=4 T,a=2 m/s2当绝缘细线刚被拉断时,有F T=F安又因为F安=t代入数据解得t=2 s.(2)由题意可知,当细线刚断时,导体棒cd的速度大小v0=at此后导体棒ab做加速运动,导体棒cd做减速运动,但由于cd棒的速度大于ab棒的速度,故两导体棒之间的距离在不断增大,当两导体棒达到共同速度而稳定时,两导体棒之间的距离增加量达到最大值Δx.此过程中通过该回路导线横截面的电荷量q=Δt=,由动量守恒定律可得mv0=2mv共对导体棒ab,由动量定理可得B lΔt=mv共联立并代入数据解得Δx=0.2 m.答案:(1)4 T 2 s(2)0.2 m10.(18分)(2020·河南六市一联)足够长的倾角为θ的光滑斜面的底端固定一轻弹簧,弹簧的上端连接质量为m、厚度不计的钢板,钢板静止时弹簧的压缩量为x0,如图所示.一物块从距钢板3x0的A处沿斜面滑下,与钢板碰撞后立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动.已知物块质量也为m时,它们恰能回到O点,O为弹簧自然伸长时钢板的位置.若物块质量为2m,仍从A处沿斜面滑下,则物块与钢板回到O点时,还具有向上的速度,已知重力加速度为g,计算结果可以用根式表示,求:(1)质量为m的物块与钢板碰撞后瞬间的速度大小v1;(2)碰撞前弹簧的弹性势能;(3)质量为2m的物块沿斜面向上运动到达的最高点离O点的距离.解析:(1)设物块与钢板碰撞前速度为v0,有3mgx0sin θ=m解得v0=设物块与钢板碰撞后一起运动的速度为v1,有mv0=2mv1解得v1=.(2)设碰撞前弹簧的弹性势能为E p,当质量为m的物块和钢板一起回到O点时,弹簧无形变,弹簧弹性势能为零,根据机械能守恒得E p+(2m)=2mgx0sin θ解得E p=mgx0sin θ.(3)由能量守恒可知质量为2m的物块与钢板碰撞前的速度为v0,设v2表示质量为2m的物块与钢板碰后一起向下运动的速度,有2mv0=3mv2它们回到O点时,弹簧弹性势能为零,但它们仍继续向上运动,设此时速度为v,由机械能守恒定律得E p+(3m)=3mgx0sin θ+(3m)v2在O点物块与钢板分离.分离后,物块以初速度v沿斜面上升,设运动到达的最高点离O点的距离为x,有v2=2ax2mgsin θ=2ma解得x=.答案:(1)(2)mgx0sin θ(3)高考理综物理模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
高考物理二轮复习教案专题二能量与动量功和功率功能关系
功和功率 功能关系复习备考建议(1)能量观点是高中物理三大观点之一,是历年高考必考内容;或与直线运动、平抛运动、圆周运动结合,或与电场、电磁感应结合,或与弹簧、传送带、板块连接体等结合;或借助选择题单独考查功、功率、动能定理、功能关系的理解,或在计算题中考查动力学与能量观点的综合应用,难度较大.(2)对于动量问题,17年只在选择题中出现,而且是动量守恒、动量定理的基本应用,18年在计算题中出现,Ⅰ卷、Ⅱ卷都是动量守恒的基本应用,运动过程简单,综合性较低,Ⅲ卷只是用到了动量的概念,19年在计算题中出现,Ⅰ卷、Ⅲ卷都涉及动量与能量观点的综合应用,Ⅱ卷中用到了动量定理,对于动量的考察,综合性、难度有所提升,备考时应多加注意.第4课时 功和功率 功能关系 考点 功、功率的分析与计算1.恒力功的计算(1)单个恒力的功W =Fl cos α. (2)合力为恒力的功①先求合力,再求W =F 合l cos α. ②W =W 1+W 2+…. 2.变力功的计算(1)若力大小恒定,且方向始终沿轨迹切线方向,可用力的大小跟路程的乘积计算. (2)力的方向不变,大小随位移线性变化可用W =F l cos α计算. (3)F -l 图象中,功的大小等于“面积”. (4)求解一般变力做的功常用动能定理. 3.功率的计算(1)P =Wt,适用于计算平均功率;(2)P =Fv ,若v 为瞬时速度,则P 为瞬时功率;若v 为平均速度,则P 为平均功率. 注意:力F 与速度v 方向不在同一直线上时功率为Fv cos θ.例1 (多选)(2019·山西晋中市适应性调研)如图1甲所示,足够长的固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,沿杆方向给环施加一个拉力F ,使环由静止开始运动,已知拉力F 及小环速度v 随时间t 变化的规律如图乙、丙所示,重力加速度g 取10m/s 2.则以下判断正确的是( )图1A .小环的质量是1kgB .细杆与地面间的倾角是30°C .前3s 内拉力F 的最大功率是2.25WD .前3s 内拉力对小环做功5.75J 答案 AD解析 由速度-时间图象得到环先匀加速上升,然后匀速运动,由题图可得:第1s 内,a =Δv t =0.51m/s 2=0.5 m/s 2,加速阶段:F 1-mg sin θ=ma ;匀速阶段:F 2-mg sin θ=0,联立以上三式解得:m =1kg ,sin θ=0.45,故A 正确,B 错误;第1s 内,速度不断变大,拉力的瞬时功率也不断变大,第1s 末,P =Fv 1=5×0.5W=2.5W ;第1s 末到第3s 末,P =Fv 1=4.5×0.5W=2.25W ,即拉力的最大功率为2.5W ,故C 错误;从速度-时间图象可以得到,第1 s 内的位移为0.25 m,1~3 s 内的位移为1 m ,前3 s 内拉力做的功为:W =5×0.25 J +4.5×1J =5.75J ,故D 正确. 变式训练1.(2019·河南名校联盟高三下学期2月联考)如图2所示,ad 、bd 、cd 是竖直面内三根固定的光滑细杆,a 、b 、c 、d 位于同一圆周上,a 点为圆周的最高点,d 点为最低点.每根杆上都套着一个质量相等的小滑环(图中未画出),三个滑环分别从a 、b 、c 处由静止释放,用P 1、P 2、P 3依次表示各滑环从静止滑到d 过程中重力的平均功率,则( )图2A .P 1<P 2<P 3B .P 1>P 2>P 3C .P 3>P 1>P 2D .P 1=P 2=P 3 答案 B解析 对小滑环b 受力分析,受重力和支持力,将重力沿杆的方向和垂直杆的方向正交分解,根据牛顿第二定律得,小滑环做初速度为零的匀加速直线运动的加速度为a =g sin θ(θ为杆与水平方向的夹角),由数学知识可知,小滑环的位移x =2R sin θ,所以t =2xa=2×2R sin θg sin θ=4Rg,t 与θ无关,即t 1=t 2=t 3,而三个环重力做功W 1>W 2>W 3,所以有:P 1>P 2>P 3,B 正确.2.(多选)(2019·福建龙岩市期末质量检查)如图3所示,在竖直平面内有一条不光滑的轨道ABC ,其中AB 段是半径为R 的14圆弧,BC 段是水平的.一质量为m 的滑块从A 点由静止滑下,最后停在水平轨道上C 点,此过程克服摩擦力做功为W 1.现用一沿着轨道方向的力推滑块,使它缓慢地由C 点推回到A 点,此过程克服摩擦力做功为W 2,推力对滑块做功为W ,重力加速度为g ,则下列关系中正确的是( )图3A .W 1=mgRB .W 2=mgRC .mgR <W <2mgRD .W >2mgR 答案 AC解析 滑块由A 到C 的过程,由动能定理可知mgR -W 1=0,故A 对;滑块由A 到B 做圆周运动,而在推力作用下从C 经过B 到达A 的过程是一个缓慢的匀速过程,所以从A 到B 的过程中平均支持力大于从B 到A 的平均支持力,那么摩擦力从A 到B 做的功大于从B 到A 做的功,而两次经过BC 段摩擦力做功相等,故W 2<W 1=mgR ,故B 错;滑块由C 到A 的过程中,由能量守恒可知,推力对滑块做的功等于滑块重力势能增加量与克服摩擦力所做的功两部分,即W -mgR -W 2=0,即W =W 1+W 2,由于W 2<W 1=mgR ,所以mgR <W <2mgR ,故C 对,D 错.考点 功能关系的理解和应用1.几个重要的功能关系(1)重力做的功等于重力势能的减少量,即W G =-ΔE p . (2)弹力做的功等于弹性势能的减少量,即W 弹=-ΔE p . (3)合力做的功等于动能的变化量,即W =ΔE k .(4)重力(或系统内弹力)之外的其他力做的功等于机械能的变化量,即W 其他=ΔE . (5)系统内一对滑动摩擦力做的功是系统内能改变的量度,即Q =F f ·x 相对. 2.理解(1)做功的过程就是能量转化的过程,不同形式的能量发生相互转化可以通过做功来实现.(2)功是能量转化的量度,功和能的关系,一是体现在不同性质的力做功对应不同形式的能转化,二是做功的多少与能量转化的多少在数值上相等. 3.应用(1)分析物体运动过程中受哪些力,有哪些力做功,有哪些形式的能发生变化. (2)列动能定理或能量守恒定律表达式.例2 (多选)(2019·全国卷Ⅱ·18)从地面竖直向上抛出一物体,其机械能E 总等于动能E k 与重力势能E p 之和.取地面为重力势能零点,该物体的E 总和E p 随它离开地面的高度h 的变化如图4所示.重力加速度取10m/s 2.由图中数据可得( )图4A .物体的质量为2kgB .h =0时,物体的速率为20m/sC .h =2m 时,物体的动能E k =40JD .从地面至h =4m ,物体的动能减少100J 答案 AD解析 根据题图图像可知,h =4m 时物体的重力势能mgh =80J ,解得物体质量m =2kg ,抛出时物体的动能为E k0=100J ,由公式E k0=12mv 2可知,h =0时物体的速率为v =10m/s ,选项A 正确,B 错误;由功能关系可知F f h =|ΔE 总|=20J ,解得物体上升过程中所受空气阻力F f =5 N ,从物体开始抛出至上升到h =2 m 的过程中,由动能定理有-mgh -F f h =E k -100J ,解得E k =50J ,选项C 错误;由题图图像可知,物体上升到h =4m 时,机械能为80J ,重力势能为80J ,动能为零,即从地面上升到h =4m ,物体动能减少100J ,选项D 正确. 变式训练3.(多选)(2018·安徽安庆市二模)如图5所示,一运动员穿着飞行装备从飞机上跳出后的一段运动过程可近似认为是匀变速直线运动,运动方向与水平方向成53°角,运动员的加速度大小为3g4.已知运动员(包含装备)的质量为m ,则在运动员下落高度为h 的过程中,下列说法正确的是(sin53°=45,cos53°=35)( )图5A .运动员重力势能的减少量为35mghB .运动员动能的增加量为34mghC .运动员动能的增加量为1516mghD .运动员的机械能减少了116mgh答案 CD解析 运动员下落的高度是h ,则重力做功:W =mgh ,所以运动员重力势能的减少量为mgh ,故A 错误;运动员下落的高度是h ,则飞行的距离:L =h sin53°=54h ,运动员受到的合外力:F 合=ma =34mg ,动能的增加量等于合外力做的功,即:ΔE k =W 合=F 合L =34mg ×54h =1516mgh ,故B 错误,C 正确;运动员重力势能的减少量为mgh ,动能的增加量为1516mgh ,所以运动员的机械能减少了116mgh ,故D 正确.4.(多选)(2019·福建厦门市第一次质量检查)如图6甲所示,一轻质弹簧的下端固定在水平面上,上端与A 物体相连接,将B 物体放置在A 物体上面,A 、B 的质量都为m ,初始时两物体处于静止状态.现用竖直向上的拉力F 作用在物体B 上,使物体B 开始向上做匀加速运动,拉力F 与物体B 的位移x 的关系如图乙所示(g =10m/s 2),下列说法正确的是( )图6A .0~4cm 过程中,物体A 、B 和弹簧组成的系统机械能增大B .0~4cm 过程中,弹簧的弹性势能减小,物体B 运动到4cm 处,弹簧弹性势能为零C .弹簧的劲度系数为7.5N/cmD.弹簧的劲度系数为5.0N/cm答案AC解析0~4 cm过程中,物体A、B和弹簧组成的系统,因力F对系统做正功,则系统的机械能增大,选项A正确.由题图可知,在x=4 cm处A、B分离,此时A、B之间的压力为零,A、B的加速度相等,但是弹簧仍处于压缩状态,弹簧的弹性势能不为零,选项B错误.开始物体处于静止状态,重力和弹力二力平衡,有:2mg=kΔl1;拉力F1为20 N时,弹簧弹力和重力平衡,合力等于拉力,根据牛顿第二定律,有:F1=2ma;物体B与A分离后,拉力F2为50 N,根据牛顿第二定律,有:F2-mg=ma;物体A与B分离时,物体A的加速度为a,则根据牛顿第二定律有:kΔl2-mg=k(Δl1-4 cm)-mg=ma;联立解得:m=4.0 kg,k=7.5 N/cm.选项C正确,D错误.考点动能定理的应用1.表达式:W总=E k2-E k1.2.五点说明(1)W总为物体在运动过程中所受各力做功的代数和.(2)动能变化量E k2-E k1一定是物体在末、初两状态的动能之差.(3)动能定理既适用于直线运动,也适用于曲线运动.(4)动能定理既适用于恒力做功,也适用于变力做功.(5)力可以是各种性质的力,既可以同时作用,也可以分阶段作用.3.基本思路(1)确定研究对象和研究过程.(2)进行运动分析和受力分析,确定初、末速度和各力做功情况,利用动能定理全过程或者分过程列式.4.在功能关系中的应用(1)对于物体运动过程中不涉及加速度和时间,而涉及力和位移、速度的问题时,一般选择动能定理,尤其是曲线运动、多过程的直线运动等.(2)动能定理也是一种功能关系,即合外力做的功(总功)与动能变化量一一对应.例3如图7所示,在地面上竖直固定了刻度尺和轻质弹簧,弹簧原长时上端与刻度尺上的A点等高.质量m=0.5kg的篮球静止在弹簧正上方,其底端距A点的高度h1=1.10m,篮球由静止释放,测得第一次撞击弹簧时,弹簧的最大形变量x1=0.15m,第一次反弹至最高点,篮球底端距A点的高度h2=0.873m,篮球多次反弹后静止在弹簧的上端,此时弹簧的形变量x2=0.01m,弹性势能为E p=0.025J.若篮球运动时受到的空气阻力大小恒定,忽略篮球与弹簧碰撞时的能量损失和篮球形变,弹簧形变在弹性限度范围内,g取10m/s2.求:图7(1)弹簧的劲度系数;(2)篮球在运动过程中受到的空气阻力的大小; (3)篮球在整个运动过程中通过的路程. 答案 (1)500N/m (2)0.50N (3)11.05m 解析 (1)由最后静止的位置可知kx 2=mg , 所以k =500N/m(2)由动能定理可知,在篮球由静止下落到第一次反弹至最高点的过程中mg Δh -F f ·L =12mv 22-12mv 12整个过程动能变化为0,重力做功mg Δh =mg (h 1-h 2)=1.135J 空气阻力大小恒定,作用距离为L =h 1+h 2+2x 1=2.273m故可得F f ≈0.50N(3)整个运动过程中,空气阻力一直与运动方向相反 根据动能定理有mg Δh ′+W f +W 弹=12mv 2′2-12mv 12整个过程动能变化为0,重力做功mg Δh ′=mg (h 1+x 2)=5.55J 弹力做功W 弹=-E p =-0.025J则空气阻力做功W f =-mg Δh ′-W 弹=-5.525J 因W f =-F f s 故解得s =11.05m. 变式训练5.(2019·全国卷Ⅲ·17)从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用.距地面高度h 在3m 以内时,物体上升、下落过程中动能E k 随h 的变化如图8所示.重力加速度取10m/s 2.该物体的质量为( )图8A.2kgB.1.5kgC.1kgD.0.5kg答案 C解析设物体的质量为m,则物体在上升过程中,受到竖直向下的重力mg和竖直向下的恒定外力F,当Δh=3m时,由动能定理结合题图可得-(mg+F)×Δh=(36-72) J;物体在下落过程中,受到竖直向下的重力mg和竖直向上的恒定外力F,当Δh=3m时,再由动能定理结合题图可得(mg-F)×Δh=(48-24) J,联立解得m=1kg、F=2N,选项C正确,A、B、D均错误.6.由相同材料的木板搭成的轨道如图9所示,其中木板AB、BC、CD、DE、EF…的长均为L =1.5m,木板OA和其他木板与水平地面的夹角都为β=37°,sin37°=0.6,cos37°=0.8,g取10m/s2.一个可看成质点的物体在木板OA上从离地高度h=1.8m处由静止释放,物体与木板间的动摩擦因数都为μ=0.2,在两木板交接处都用小曲面相连,使物体能顺利地经过,既不损失动能,也不会脱离轨道,在以后的运动过程中,求:(最大静摩擦力等于滑动摩擦力)图9(1)物体能否静止在木板上?请说明理由.(2)物体运动的总路程是多少?(3)物体最终停在何处?并作出解释.答案(1)不能理由见解析(2)11.25m (3)C点解释见解析解析(1)物体在木板上时,重力沿木板方向的分力为mg sinβ=0.6mg最大静摩擦力F fm=μmg cosβ=0.16mg因mg sinβ>μmg cosβ,故物体不会静止在木板上.(2)从物体开始运动到停下,设总路程为s,由动能定理得mgh -μmgs cos β=0解得s =11.25m(3)假设物体依次能到达B 、D 点,由动能定理得mg (h -L sin β)-μmg cos β(L +hsin β)=12mv B 2 解得v B >0mg (h -L sin β)-μmg cos β(3L +hsin β)=12mv D 2 v D 无解说明物体能通过B 点但不能到达D 点,因物体不能静止在木板上,故物体最终停在C 点.考点 动力学与能量观点的综合应用1.两个分析(1)综合受力分析、运动过程分析,由牛顿运动定律做好动力学分析.(2)分析各力做功情况,做好能量的转化与守恒的分析,由此把握各运动阶段的运动性质,各连接点、临界点的力学特征、运动特征、能量特征. 2.四个选择(1)当物体受到恒力作用发生运动状态的改变而且又涉及时间时,一般选择用动力学方法解题;(2)当涉及功、能和位移时,一般选用动能定理、机械能守恒定律、功能关系或能量守恒定律解题,题目中出现相对位移时,应优先选择能量守恒定律;(3)当涉及细节并要求分析力时,一般选择牛顿运动定律,对某一时刻的问题选择牛顿第二定律求解;(4)复杂问题的分析一般需选择能量的观点、运动与力的观点综合分析求解.例4 (2019·河北邯郸市测试)如图10所示,一根轻弹簧左端固定于竖直墙上,右端被质量m =1kg 可视为质点的小物块压缩而处于静止状态,且弹簧与物块不拴接,弹簧原长小于光滑平台的长度.在平台的右端有一传送带,AB 长L =5m ,物块与传送带间的动摩擦因数μ1=0.2,与传送带相邻的粗糙水平面BC 长s =1.5 m ,它与物块间的动摩擦因数μ2=0.3,在C 点右侧有一半径为R 的光滑竖直圆弧轨道与BC 平滑连接,圆弧对应的圆心角为θ=120°,在圆弧的最高点F 处有一固定挡板,物块撞上挡板后会以原速率反弹回来.若传送带以v =5m/s 的速率顺时针转动,不考虑物块滑上和滑下传送带的机械能损失.当弹簧储存的E p =18 J 能量全部释放时,小物块恰能滑到与圆心等高的E 点,取g =10 m/s 2.图10(1)求右侧圆弧的轨道半径R ;(2)求小物块最终停下时与C 点的距离;(3)若传送带的速度大小可调,欲使小物块与挡板只碰一次,且碰后不脱离轨道,求传送带速度的可调节范围.答案 (1)0.8m (2)13m (3)37m/s≤v ≤43m/s解析 (1)物块被弹簧弹出,由E p =12mv 02,可知:v 0=6m/s因为v 0>v ,故物块滑上传送带后先减速,物块与传送带相对滑动过程中, 由:μ1mg =ma 1,v =v 0-a 1t 1,x 1=v 0t 1-12a 1t 12得到:a 1=2m/s 2,t 1=0.5s ,x 1=2.75m因为x 1<L ,故物块与传送带同速后相对静止,最后物块以5m/s 的速度滑上水平面BC ,物块滑离传送带后恰到E 点,由动能定理可知:12mv 2=μ2mgs +mgR代入数据得到:R =0.8m.(2)设物块从E 点返回至B 点的速度大小为v B , 由12mv 2-12mv B 2=μ2mg ·2s 得到v B =7m/s ,因为v B >0,故物块会再次滑上传送带,物块在恒定摩擦力的作用下先减速至0再反向加速,由运动的对称性可知,物块以相同的速率离开传送带,经分析可知最终在BC 间停下,设最终停在距C 点x 处,由12mv B 2=μ2mg (s -x ),代入数据解得:x =13m. (3)设传送带速度为v 1时物块恰能到F 点,在F 点满足mg sin30°=m v F 2R从B 到F 过程中由动能定理可知: -μ2mgs -mg (R +R sin30°)=12mv F 2-12mv 12解得:v 1=37m/s设传送带速度为v 2时,物块撞挡板后返回能再次上滑恰到E 点, 由12mv 22=μ2mg ·3s +mgR解得:v 2=43m/s若物块在传送带上一直加速运动,由12mv B m 2-12mv 02=μ1mgL知其到B 点的最大速度v B m =56m/s若物块在E 、F 间速度减为0,则物块将脱离轨道.综合上述分析可知,只要传送带速度37m/s≤v ≤43m/s 就满足条件. 变式训练7.(2019·山东青岛二中上学期期末)如图11所示,O 点距水平地面的高度为H =3m ,不可伸长的细线一端固定在O 点,另一端系一质量m =2kg 的小球(可视为质点),另一根水平细线一端固定在墙上A 点,另一端与小球相连,OB 线与竖直方向的夹角为37°,l <H ,g 取10m/s 2,空气阻力不计.(sin37°=0.6,cos37°=0.8)图11(1)若OB 的长度l =1m ,剪断细线AB 的同时,在竖直平面内垂直OB 的方向上,给小球一个斜向下的冲量,为使小球恰好能在竖直平面内做完整的圆周运动,求此冲量的大小; (2)若先剪断细线AB ,当小球由静止运动至最低点时再剪断OB ,小球最终落地,求OB 的长度l 为多长时,小球落地点与O 点的水平距离最远,最远水平距离是多少. 答案 (1)246kg·m/s (2)1.5m355m 解析 (1)要使小球恰好能在竖直平面内做完整的圆周运动,最高点需满足:mg =m v 2l从B 点到最高点,由动能定理有: -mg (l +l cos37°)=12mv 2-12mv 02联立得一开始的冲量大小为I =mv 0=246kg·m/s(2)从剪断AB 到小球至H -l 高度过程,设小球至H -l 高度处的速度为v 0′ 由机械能守恒可得12mv 0′2=mgl (1-cos37°)小球从H -l 高度做初速度为v 0′的平抛运动,12gt 2=H -l ,x =v 0′t 联立得,x =45(-l 2+3l ) 当l =1.5m 时x 取最大值,为355m .专题突破练1.(2019·山东烟台市上学期期末)如图1所示,把两个相同的小球从离地面相同高度处,以相同大小的初速度v 分别沿竖直向上和水平向右方向抛出,不计空气阻力.则下列说法中正确的是( )图1A .两小球落地时速度相同B .两小球落地时,重力的瞬时功率相同C .从小球抛出到落地,重力对两小球做的功相等D .从小球抛出到落地,重力对两小球做功的平均功率相等 答案 C解析 两小球运动过程中均只有重力做功,故机械能都守恒,由机械能守恒定律得,两小球落地时的速度大小相同,但方向不同,故A 错误;两小球落地时,由于竖直方向的分速度不同,故重力的瞬时功率不相同,故B 错误;由重力做功公式W =mgh 得,从开始运动至落地,重力对两小球做功相同,故C 正确;从抛出至落地,重力对两小球做的功相同,但是落地的时间不同,故重力对两小球做功的平均功率不相同,故D 错误.2.(2019·河北张家口市上学期期末)如图2所示,运动员跳伞将经历加速下降和减速下降两个过程,在这两个过程中,下列说法正确的是( )图2A .运动员先处于超重状态后处于失重状态B .空气浮力对系统始终做负功C .加速下降时,重力做功大于系统重力势能的减小量D .任意相等的时间内系统重力势能的减小量相等 答案 B解析 运动员先加速向下运动,处于失重状态,后减速向下运动,处于超重状态,选项A 错误;空气浮力与运动方向总相反,则对系统始终做负功,选项B 正确;无论以什么运动状态运动,重力做功都等于系统重力势能的减小量,选项C 错误;因为是变速运动,相等的时间内,因为系统下降的高度不相等,则系统重力势能的减小量不相等,选项D 错误. 3.(2019·河南驻马店市上学期期终)一物体在竖直向上的恒力作用下,由静止开始上升,到达某一高度时撤去外力.若不计空气阻力,则在整个上升过程中,物体的机械能E 随时间t 变化的关系图象是( )答案 A解析 设物体在恒力作用下的加速度为a ,机械能增量为:ΔE =F Δh =F ·12at 2,知此时E-t 图象是开口向上的抛物线;撤去外力后的上升过程中,机械能守恒,则机械能不随时间改变,故A 正确,B 、C 、D 错误.4.(多选)如图3所示,楔形木块abc 固定在水平面上,粗糙斜面ab 和光滑斜面bc 与水平面的夹角相同,顶角b 处安装一定滑轮.质量分别为M 、m (M >m )的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中( )图3A .两滑块组成的系统机械能守恒B .轻绳对m 做的功等于m 机械能的增加量C .重力对M 做的功等于M 动能的增加量D .两滑块组成的系统机械能的损失等于M 克服摩擦力做的功 答案 BD5.(2019·福建三明市期末质量检测)如图4所示,一个质量m =1 kg 的小球(视为质点)从H =11m 高处,由静止开始沿光滑弯曲轨道AB 进入半径R =4m 的竖直圆环内侧,且与圆环的动摩擦因数处处相等,当到达圆环顶点C 时,刚好对轨道压力为零,然后沿CB 圆弧滑下,进入光滑弧形轨道BD ,到达高度为h 的D 点时速度为零,则h 的值可能为(重力加速度g =10m/s 2)( )图4A .10mB .9.5mC .9mD .8.5m 答案 B解析 到达圆环顶点C 时,刚好对轨道压力为零,则mg =m v C 2R,解得v C =210m/s ,则物体在BC 阶段克服摩擦力做功,由动能定理mg (H -2R )-W BC =12mv C 2,解得W BC =10J ;由于从C到B 过程小球对圆轨道的平均压力小于从B 到C 过程小球对圆轨道的平均压力,则小球从C 到B 过程克服摩擦力做的功小于从B 到C 过程克服摩擦力做的功,即0<W CB <10J ;从C 到D 由动能定理:mg (2R -h )-W CB =0-12mv C 2,联立解得9m<h <10m.6.一名外卖送餐员用电动自行车沿平直公路行驶给客户送餐,中途因电瓶“没电”,只能改用脚蹬车以5m/s 的速度匀速前行,骑行过程中所受阻力大小恒为车和人总重力的0.02倍(取g =10 m/s 2),该送餐员骑电动自行车以5m/s 的速度匀速前行过程做功的功率最接近( )A .10WB .100WC .1kWD .10kW 答案 B解析 设送餐员和车的总质量为100kg ,匀速行驶时的速率为5m/s ,匀速行驶时的牵引力与阻力大小相等,F =0.02mg =20 N ,则送餐员骑电动自行车匀速行驶时的功率为P =Fv =100W ,故B 正确.7.(多选)(2019·四川第二次诊断)如图5甲所示,质量m =1kg 的物块在平行斜面向上的拉力F 作用下从静止开始沿斜面向上运动,t =0.5s 时撤去拉力,其1.5s 内的速度随时间变化关系如图乙所示,g 取10m/s 2.则( )图5A .0.5s 时拉力功率为12WB .0.5s 内拉力做功9JC .1.5s 后物块可能返回D .1.5s 后物块一定静止 答案 AC解析 0~0.5 s 内物体的位移:x 1=12×0.5×2 m=0.5 m ;0.5~1.5 s 内物体的位移:x 2=12×1×2m =1m ;由题图乙知,各阶段加速度的大小:a 1=4m/s 2,a 2=2 m/s 2;设斜面倾角为θ,斜面对物块的动摩擦因数为μ,根据牛顿第二定律,0~0.5s 内F -μgm cos θ-mg sin θ=ma 1;0.5~1.5s 内-μmg cos θ-mg sin θ=-ma 2,联立解得:F =6N ,但无法求出μ和θ.0.5s 时,拉力的功率P =Fv =12W ,故A 正确.拉力做的功为W =Fx 1=3J ,故B 错误.无法求出μ和θ,不清楚tan θ与μ的大小关系,故无法判断物块能否静止在斜面上,故C 正确,D 错误.8.(多选)(2019·安徽安庆市期末调研监测)如图6所示,重力为10N 的滑块轻放在倾角为30°的光滑斜面上,从a 点由静止开始下滑,到b 点接触到一个轻质弹簧,滑块压缩弹簧到c 点开始弹回,返回b 点离开弹簧,最后又回到a 点.已知ab =1m ,bc =0.2m ,则以下结论正确的是( )图6A .整个过程中弹簧弹性势能的最大值为6JB .整个过程中滑块动能的最大值为6JC .从c 到b 弹簧的弹力对滑块做功5JD .整个过程中弹簧、滑块与地球组成的系统机械能守恒 答案 AD解析 滑块从a 到c, mgh ac +W 弹′=0-0,解得:W 弹′=-6J .则E pm =-W 弹′=6J ,所以整个过程中弹簧弹性势能的最大值为6J ,故A 正确;当滑块受到的合外力为0时,滑块速度最大,设滑块在d 点合外力为0,由分析可知d 点在b 点和c 点之间.滑块从a 到d 有:mgh ad +W 弹=E k d -0,因mgh ad <6J ,W 弹<0,所以E k d <6J ,故B 错误;从c 点到b 点弹簧的弹力对滑块做的功与从b 点到c 点弹簧的弹力对滑块做的功大小相等,即为6J ,故C 错误;整个过程中弹簧、滑块与地球组成的系统机械能守恒,没有与系统外发生能量转化,故D 正确.9.(多选)(2019·河南九师联盟质检)如图7所示,半径为R =0.4m 的14圆形光滑轨道固定于竖直平面内,圆形轨道与光滑固定的水平轨道相切,可视为质点的质量均为m =0.5kg 的小球甲、乙用轻杆连接,置于圆轨道上,小球甲与O 点等高,小球乙位于圆心O 的正下方.某时刻将两小球由静止释放,最终它们在水平面上运动,g 取10m/s 2.则( )图7A .小球甲下滑过程中机械能增加B .小球甲下滑过程中重力对它做功的功率先增大后减小C .小球甲下滑到圆形轨道最低点对轨道压力的大小为12ND .整个过程中轻杆对小球乙做的功为1J 答案 BD解析 小球甲下滑过程中,轻杆对甲做负功,则甲的机械能减小,故A 错误.小球甲下滑过程中,最高点速度为零,故重力的功率为零;最低点速度和重力垂直,故重力的功率也是零;而中途重力的功率不为零,故重力的功率应该是先增大后减小,故B 正确.两个球与轻杆组成的系统机械能守恒,故:mgR =12mv 2+12mv 2,解得:v =gR =10×0.4m/s =2 m/s ;小球甲下滑到圆弧形轨道最低点,重力和支持力的合力提供向心力,故:F N -mg =m v 2R,解得:F N=mg +m v 2R =0.5×10N+0.5×220.4N =10N ,根据牛顿第三定律,小球甲对轨道的压力大小为10N ,故C 错误;整个过程中,对球乙,根据动能定理,有:W =12mv 2=12×0.5×22J =1J ,故D 正确.10.(2019·吉林“五地六校”合作体联考)一辆赛车在水平路面上由静止启动,在前5s 内做匀加速直线运动,5s 末达到额定功率,之后保持以额定功率运动.其v -t 图象如图8所示.已知赛车的质量为m =1×103kg ,赛车受到的阻力为车重力的0.1倍,重力加速度g 取10m/s 2,则以下说法正确的是( )图8A .赛车在前5s 内的牵引力为5×102N。
2021年高考物理一轮复习资料第六单元第3节动量与能量综合应用五大模型课件
(2)当弹簧恢复原长时,滑块 B 获得最大速度, 由动量守恒和能量守恒: mAv0=mAvA+mBvm 12mAv02=12mBvm2+12mAvA2 解得:vm=2 m/s,向右.
►方法提炼 “滑块-弹簧”模型的解题思路 (1)应用系统的动量守恒; (2)应用系统的机械能守恒; (3)临界条件 1:两滑块同速时,弹簧的弹性势能最大. (4)临界条件 2:从 A 开始压缩弹簧到弹簧恢复原长时,B 的 速度最大,此过程类似弹性碰撞,可直接利用结论: v1=mm11-+mm22v0,v2=m21+m1m2v0.
►方法提炼 “滑块-平板”模型的解题思路 (1)应用系统的动量守恒. (2)在涉及滑块或平板的时间时,优先考虑用动量定理. (3)在涉及滑块或平板的位移时,优先考虑用动能定理. (4)在涉及滑块的相对位移时,优先考虑用系统的能量守恒. (5)滑块恰好不滑动时,滑块与平板达到共同速度.
“滑块-弹簧”模型 例 2 如图所示,质量分别为 1 kg、3 kg 的滑块 A、B 位于 光滑水平面上,现使滑块 A 以 4 m/s 的速度向右运动,与左侧连 有轻弹簧的滑块 B 发生碰撞.二者在发生碰撞的过程中,求:
A.3 J C.20 J
B.6 J D.4 J
答案 A 解析 设铁块与木板速度相同时,共同速度大小为 v,铁块 相对木板向右运动时,滑行的最大路程为 L,摩擦力大小为 f.根 据能量守恒定律得: 铁块相对于木板向右运动过程:12mv02=fL+12(M+m)v2+ Ep 铁块相对于木板运动的整个过程:12mv02=2fL+12(M+m)v2 又根据系统动量守恒可知,mv0=(M+m)v 联立解得:Ep=3 J.
(1)弹簧的最大弹性势能; (2)滑块 B 的最大速度.
【答案】 (1)6 J (2)2 m/s 向右 【解析】 (1)当弹簧压缩最短时,弹簧的弹性势能最大,此 时滑块 A、B 同速. 由动量守恒定律:mAv0=(mA+mB)v 解得:v=mmA+Avm0 B=11× +43 m/s=1 m/s 弹簧的最大弹性势能即滑块 A、B 损失的动能 Epm=12mAv02-12(mA+mB)v2=6 J
高考物理二轮复习 第一部分 专题四 动量与能量 第1讲 动量和能量观念在力学中的应用练习(含解析)
动量和能量观念在力学中的应用1.如图甲所示,质量m=6 kg的空木箱静止在水平面上,某同学用水平恒力F推着木箱向前运动,1 s 后撤掉推力,木箱运动的v .t图像如图乙所示,不计空气阻力,g取10 m/s2。
下列说法正确的是()A.木箱与水平面间的动摩擦因数μ=0。
25B.推力F的大小为20 NC.在0~3 s内,木箱克服摩擦力做功为900 JD.在0.5 s时,推力F的瞬时功率为450 W解析撤去推力后,木箱做匀减速直线运动,由速度—时间图线知,匀减速直线运动的加速度大小a2=错误! m/s2=5 m/s2,由牛顿第二定律得,a2=错误!=μg,解得木箱与水平面间的动摩擦因数μ=0.5,故A错误;匀加速直线运动的加速度大小a1=错误! m/s2=10 m/s2,由牛顿第二定律得,F-μmg=ma1,解得F=μmg+ma1=0。
5×60 N+6×10 N=90 N,故B错误;0~3 s内,木箱的位移x=错误!×3×10 m=15 m,则木箱克服摩擦力做功W f=μmgx=0。
5×60×15 J=450 J,故C错误;0。
5 s时木箱的速度v=a1t1=10×0。
5 m/s=5 m/s,则推力F的瞬时功率P=Fv=90×5 W=450 W,故D正确.答案D2.(2019·湖南株洲二模)如图,长为l的轻杆两端固定两个质量相等的小球甲和乙(小球可视为质点),初始时它们直立在光滑的水平地面上。
后由于受到微小扰动,系统从图示位置开始倾倒。
当小球甲刚要落地时,其速度大小为()A.错误!B.错误!C.错误!D.0解析甲、乙组成的系统水平方向动量守恒,以向右为正方向,在水平方向,由动量守恒定律得mv-mv′=0,由于甲球落地时,水平方向速度v=0,故v′=0,由机械能守恒定律得错误!mv错误!=mgl,解得v甲=2gl,故A正确.答案A3。
动量和能量专题
江苏省扬州市高三物理第二轮复习教案动量和能量【近三年高考题回顾】1.(2003全国理综22)K ˉ介子衰变的方程为0ππK +→--,如图所示,其中K ˉ介子和πˉ介子带负的基元电荷,π0介子不带电。
一个K ˉ介子沿垂直于磁场的方向射入匀强磁场中,其轨迹为圆弧AP ,衰变后产生的πˉ介子的轨迹为圆弧PB ,两轨迹在P 点相切,它们的半径R K ˉ与R π-之比为2∶1。
π0介子的轨迹未画出。
由此可知πˉ介子的动量大小与π0介子的动量大小之比为A .1∶1B .1∶2C .1∶3D .1∶6解析:K ˉ介子带负电,在磁场中作圆周运动到达P 点发生衰变,变成带负电的πˉ介子和不带电的π0介子。
πˉ介子在磁场中作圆周运动,半径与K ˉ介子不同,带电粒子在磁场中作圆周运动,半径qB p qB mv R ==,可知K ˉ介子和πˉ介子的动量之比:12=--πp p K。
K ˉ介子在P 点衰变时动量守恒,衰变前后粒子的动量方向如图所示。
有---=ππp p p K 0解得 130=-ππp p 。
故选项C 正确。
2.(2003全国理综34题)一传送带装置示意图如图所示,其中传送带经过AB 区域时是水平的,经过BC 区域时变为圆弧形(圆弧由光滑模板形成,为画出),经过CD 区域时是倾斜的,AB 和CD 都与BC 相切。
现将大量的质量均为m 的小货箱一个一个在A 处放到传送带上,放置时初速为零,经传送带运送到D 处,D 和A 的高度差为h 。
稳定工作时传送带速度不变,CD 段上各箱等距排列,相邻两箱的距离为L 。
每个箱子在A 处投放后,在到达B 之前已经相对于传送带静止,且以后也不再滑动(忽略经BC 段时的微小滑动)。
已知在一段相当长的时间T 内,共运送小货箱的数目为N 。
这装置由电动机带动,传送带与轮子间无相对滑动,不计轮轴处的摩擦。
求电动机的平均输出功率P 。
解析:以地面为参考系(下同),设传送带的运动速度为v 0,在水平段运输的过程中,小货箱先在滑动摩擦力作用下做匀加速运动,设这段路程为s ,所用时间为t ,加速度为a ,则对小箱有221at s = ① at v =0 ② 在这段时间内,传送带运动的路程为 t v s 00= ③由以上可得 s s 20= ④用f 表示小箱与传送带之间的滑动摩擦力,则传送带对小箱做功为2021mv fx A == ⑤ 传送带克服小箱对它的摩擦力做功 2000212mv fx A ⋅== ⑥ 两者之差就是克服摩擦力做功发出的热量 2021mv Q = ⑦ 可见,在小箱加速运动过程中,小箱获得的动能与发热量相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量与能量专题复习 一、教学目的 1. 能灵活选取研究对象,正确分析物理过程。 2. 能从动量和能量的角度去综合分析和解决一些力学问题。 二、教学重、难点 重点:力学规律的综合应用。 难点:在物理过程中,对所遵循的相应力学规律的正确判定。 三、教学过程 一个力学过程,所遵循的物理规律往往是多方面的,对相互作用的两物体这一整体遵循能的转化和守恒,总动量守恒是较为常见的一类问题。 (一)解决力学问题一般采用的三种方法 1.运用力与物体的瞬时作用效果——牛顿运动定律 。 2.运用力对物体作用时间的积累效果——动量定理和动量守恒定律 。 3.运用力对物体作用空间(位移)的积累效果——动能定理和能量守恒定律 。 (二)碰撞中能量关系 1.分类: (1)弹性碰撞:碰撞后总动能 等于 碰撞前总动能。 (2)非弹性碰撞:碰撞后总动能 小于 碰撞前总动能。 (3)完全非弹性碰撞:碰撞后两物体粘合在一起,碰撞后总动能 小于 碰撞前总动能,且系统动能损失 最多 。 注意:不管是何种碰撞,在整个作用过程中系统的总动量 守恒 。
例1.在光滑的水平面上,置放着滑块A和B,它们的质量分别为1m和2m,滑块B与一轻弹簧相连,
弹簧的另一端固定在竖直的墙上,滑块A以速度0v与静止的滑块B发生正碰后粘合在一起运动并压缩,如图所示,求弹簧所能达到的最大弹性势能。 解:取向右为正 对A、B组成系统:据动量守恒定律
'PP
得
1012()mvmmv 对A、B、弹簧组成系统:压缩弹簧过程,据机械能守恒定律PKEE得 22210
12121()22()P
mvEmmvmm
讨论:弹簧的最大弹性势能为什么不等于A滑块的初动能?(原因是:AB碰撞过程,动能损失) 所以,第二种解法为:据能量守恒定律得
21012PEmvE
损
221012
11()22Emvmmv损
由以上两式解得: PE=2210122()mvmm 小结:注意碰撞过程,一般情况下动量守恒,机械能(动能)损失,除非题目中说明不考虑机械能损失或弹性碰撞。 2.“一动一静”弹性正碰的基本规律
如图所示,一个动量为11mv的小球(主动球),与
一个静止的质量为2m的小球(被动球)发生弹性正碰,碰后设1m、2m小球速度分别为'1v、'2v。 (1)动量守恒,初、末动能相等。(取1v方向为正) ''111122mvmvmv ①
2'2'2111122
111
222mvmvmv ②
由①②解得:'121112'121122mmvvmmmvvmm (2)判定碰撞后的速度方向 ① 当12mm时 '1v>0 '2v<0——两球均沿初速1v方向运动 。
② 当12mm时 '1v=0 '2v=1v——两球交换速度 。 ③ 当12mm时 '1v<0 '2v>0——主动球反弹,被动球沿1v方向运动 。 例2.三个半径相同的弹性球,静止置于光滑水平面的同一直线上,顺序如图所示,已知Am=Bm=1㎏,当A以速度Av=10m/s向B运动,若B不再与A球相碰,C球质量最大为多少?
解:运用“一动一静”弹性正碰的基本规律得:maxCm=1㎏ 小结:熟记“一动一静”弹性正碰的基本规律。 3.在分析碰撞后物体速度的可能值时,通常抓住三个原则: (1)碰撞中动量守恒 。 (2)碰撞后动能不增加 。 (3)是否符合物理实际情境,即不能超越 。
例3.质量相等的A、B两球在光滑水平面上沿同一直线,同一方向运动,A球动量是7kgm/s。B球的
动量是5kgm/s。当A球追上B球时发生碰撞,则碰撞后A、B两球的动量可能值是: ( A ) A.Ap=6 kgm/s Bp= 6 kgm/s B. Ap=3 kgm/s Bp=9 kgm/s C. Ap=-2 kgm/s Bp=14 kgm/s D. Ap=-4 kgm/s Bp=17 kgm/s 分析与解答: ①从碰撞前后动量守恒''1212pppp验证,A、B、C三种情况皆有可能。
②从总动能不能增加:22'2'212122222ppppmmmm来看,答案只有A可能。 练:在光滑的水平面上有A、B两球,若规定向右为正方向,A球动量Ap=10 kgm/s,B球动量Bp= 6 kgm/s,碰撞后A球动量增量Ap=-4 kgm/s.则在图中标号1的球应是 球,它们的质量比Am/Bm所满足的条件 。
解:(1) 1 (2)据动量守恒定律''ABABpppp得
' =10 kg m/s =6 kg m/s =6 kg m/sABAppp ' =10 kg m/sBp ①碰前:A球追上B球> ABvv>ABABppmm5<3ABmm
②碰中:系统动能不能增加22'2'22222ABABABABppppmmmm1ABmm ③碰后:A球不能超越B球''ABvv''ABABppmm35ABmm 315ABmm 小结:牢记碰撞过程可行性的三个原则。 (三)摩擦力做功与机械能的变化 1.静摩擦力做功的特点: (1)静摩擦力可以做 正功 ,也可以做 负功 ,还可以 不做功 。 (2)静摩擦力做功过程中,只有机械能相互 转移 ,而没有机械能 转化 为其他形式的能。 (3)相互摩擦的系统内,一对静摩擦力做功的代数和总是 等于零 。 2.滑动摩擦力做功的特点: (1)滑动摩擦力可以对物体做 正功 ,也可以对物体做 负功 ,还可以对物体 不做功 。 (2)相互摩擦的系统内,一对滑动摩擦力所做的功总是 负 值,其绝对值等于 滑动摩擦力与相对路程的乘积 ,等于 系统损失的机械能 ,等于 产生的内能 。即
Q=fs相对=-E 。
例4.如图所示,质量为m的子弹,以水平初速0v射入原来静止在光滑水平面上质量为M的木块中。设子弹在射入木块时所受阻力不变,大小为f,且子弹未射穿木块。
(1)子弹从开始射入到相对木块静止所经历的时间。 (2)子弹从开始射入到相对木块静止这段时间内,子弹发生的位移1s是多少?
(3)子弹从开始射入到相对木块静止这段时间内,木块发生的位移2s是多少? (4)子弹从开始射入到相对木块静止这段时间内,子弹相对木块发生距离s相对是多少? (5)请寻找阻力和相对路程乘积(记作Q)与系统损失机械能E损之间的关系。 解:
(1)取0v方向为正 对m、M组成系统:据能量守恒定律'PP得 m0v=(M+m)v v=0mvMm 对m:在水平方向上受向左的阻力f,据动量定理Ip合得 -ft=mv- m0v t=0()MmvMmf 或 对M:ft=Mv-0 解得t=0()MmvMmf (2)对m:据动能定理kWE合得 -f1s=2201122mvmv 1s=202(2)2()MmMmvfMm
(3) 对M: 在水平方向上受向右的力f,据动能定理kWE合得 f2s=2012Mv-0
2s=22022()MmvfMm (4) s相对=1s-2s=202()MmvfMm (5) Q=fs相对=202()MmvMm E损=22011()22mvMmv=202()MmvMm 通过计算比较上面两式得:Q=fs相对=E损 练:在光滑的水平面上,有一块质量为M的长条木板,以初速0v向右做匀速直线运动。现将质量为m的小铁块无初速地轻放在木板的前端,设小铁块与木板间动摩擦因数为,求: (1)小铁块与木板相对静止时,距木板前端多远? (2)全过程有多少机械能转化为系统的内能? (3)从小铁块开始放落到相对木板静止的这段时间内木板通过的距离是多少? 解:(1)取向右为正
对m、M组成系统:据能量守恒定律'PP得 M0v=(M+m)v v=0MvMm 据能量守恒定律Q=fL=-KE得: 22011()22mglMvMmv 202()MvlMmg (2)据能量守恒定律Q=-KE得: Q=22011()22MvMmv=202()MmvMm 或 Q=fl=mgl=202()MmvMm (3)对木板:在水平方向上受向左的阻力f,据动能定理kWE合得: 2201122mgsMvMv
202(2)2()MMmvsMmg 小结:涉及时间优先考虑动量定理,涉及位移优先考虑动能定理,涉及相对位移优先考虑能量守恒定律。
课堂小结:本节课主要讲解了动量与能量的综合应用,它是高考的重点、难点内容,请同学们遇到此类题时认真分析物理过程,灵活选取物理规律解题。
训练题
1.如图所示,木块A放在木块B的左端,用恒力F将木块A拉到板B的右端。第一次将B固定在地面上,F做功为W1,系统产生的热量为Q1;第二次让B可以在光滑水平地面上自由滑动,F做功为W2,系统产生的热量为Q2,则有: ( ) A. W1=W2,Q1=Q2 B. W1D. W1〖解析〗设B板长度为L,A、B之间的摩擦力大小为f,第一次B固定时,力F对物体A做的功为 W1=FL 物体A克服滑动摩擦力做的功为 WfA=fL 物体B的对地位移为零,所以摩擦力对物体B做的功WfB为零,故滑动摩擦力对系统做的功为 Wf1=-WfA+WfB=-fL 根据能量转化和守恒定律可得,第一次产生的热量为 Q1= fL 第二次物体B可在光滑水平地面上运动,在A从B的左端向右端滑动的过程中,由于B物体在滑动摩擦力的作用下要向右加速,所以物体A滑到物体B右端时,其对地位移大于B的长度L,所以有 W2>FL 而滑动摩擦力对系统做的功等于滑动摩擦力与相对位移的乘积,所以由能量转化和守恒定律可得,第二次产生的热量Q2= fL 所以本题的正确答案为B。 2如图所示,质量为M的小车B静止在光滑水平面上,车的左端固定着一根弹簧,小车上O点以左部分光滑,O点以右部分粗糙,O点到小车右端长度为L 。一质量为m的小物块A(可视为质点),以速
A B
F