2016聚焦中考数学(辽宁省)复习:第二章方程与不等式自我测试
辽宁省各市中考数学分类解析 专题3:方程(组)和不等式(组)

辽宁各市中考数学试题分类解析汇编专题3:方程(组)和不等式(组)锦元数学工作室编辑一、选择题1. (辽宁本溪3分)已知一元二次方程x2-8x+15=0 的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为【】A、13B、11或13C、11D、12【答案】B。
【考点】因式分解法解一元二次方程,等腰三角形的性质,三角形三边关系。
【分析】∵x2-8x+15=0 ,∴(x-3)(x-5)=0。
∴x-3=0或x-5=0,即x1=3,x2=5。
∵一元二次方程x2-8x+15=0 的两个解恰好分别是等腰△ABC的底边长和腰长,∴当底边长和腰长分别为3和5时,3+3>5,∴△ABC的周长为:3+3+5=11;∴当底边长和腰长分别为5和3时,3+5>5,∴△ABC的周长为:3+5+5=13。
∴△ABC的周长为:11或13。
故选B。
2. (辽宁本溪3分)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为【】A、88+15=x 2.5xB、88=+15x 2.5xC、818+=x4 2.5xD、881=+x 2.5x4【答案】D。
【考点】由实际问题抽象出分式方程(行程问题)。
【分析】根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程:881=+x 2.5x4。
故选D。
3. (辽宁丹东3分)不等式组x30x40+>⎧⎨-<⎩的解集是【】A.-3<x<4B.3<x≤4C.-3<x≤4D.x<4 【答案】A。
【考点】解一元一次不等式组。
【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。
中考数学知识点复习 第二章 方程(组)与不等式(组)

中考数学知识点复习 第二章 方程(组)与不等式(组)第5讲 一次方程(组)及其应用(时间60分钟 满分95分)一、选择题(本大题共8小题 ,每小题4分,共32分)1.(2017·杭州)设x ,y ,c 是实数,(B )A .若x =y ,则x +c =y -cB .若x =y ,则xc =ycC .若x =y ,则x c =y cD .若x 2c =y3c,则2x =3y 2.(2017·深圳)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程(D )A .10%x =330B .(1-10%)x =330C .(1-10%)2x =330D .(1+10%)x =3303.若关于x 的方程2x -m =x -2的解为x =3,则m 的值为(B )A .-5B .5C .-7D .7 4.(2017·天津)方程组⎩⎪⎨⎪⎧y =2x ,3x +y =15的解是(D ) A.⎩⎪⎨⎪⎧x =2y =3 B.⎩⎪⎨⎪⎧x =4y =3C.⎩⎪⎨⎪⎧x =4y =8D.⎩⎪⎨⎪⎧x =3y =65.设某数是x ,若比它的2倍大3的数是8,可列方程为(B )A .2x -3=8B .2x +3=8C.12x -3=8D.12x +3=8 6.(2017·随州)小明到商店购买“五四青年节”活动奖品,购买20支铅笔和10本笔记本共需110元,但购买30支铅笔和5本笔记本只需85元,设每支铅笔x 元,每本笔记本y 元,则可列方程组(B )A.⎩⎪⎨⎪⎧20x +30y =11010x +5y =85B.⎩⎪⎨⎪⎧20x +10y =11030x +5y =85C.⎩⎪⎨⎪⎧20x +5y =11030x +10y =85D.⎩⎪⎨⎪⎧5x +20y =11010x +30y =85 7.已知方程|x |=2,那么方程的解是(C )A .x =2B .x =-2C .x 1=2,x 2=-2D .x =48.已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x +y =3m -5,x -y =m -1,若x +y >3,则m 的取值范围是(D )A .m >1B .m <2C .m >3D .m >5二、填空题(本大题共7小题 ,每小题3分,共21分)9.(2017·金华)若a b =23,则a +b b =__53__. 10.(2017·南宁)已知⎩⎪⎨⎪⎧x =a ,y =b 是方程组⎩⎪⎨⎪⎧x -2y =0,2x +y =5的解,则3a -b =__5__.11.我们规定一种运算:a *b =2a -3b ,则方程x *2=3*x 的解为__x =125__. 12.(2017·宁夏)某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为__4__元.13.若(a -1)x 2-|a |-3=0是关于x 的一元一次方程,则a 的值为__-1__.14.若x ,y 互为相反数,且(x +y +3)(x -y -2)=6,则x =__2__.15.(2017·荆门)已知:派派的妈妈和派派今年共36岁,再过5年,派派的妈妈的年龄是派派年龄的4倍还大1岁,当派派的妈妈40岁时,则派派的年龄为__12__岁.三、解答题(本大题共6小题 ,共42分)16.(5分)(2017·武汉)解方程:4x -3=2(x -1).解:4x -3=2(x -1),4x -3 =2x -2,4x -2x =-2+3,2x =1,x =12.17.(5分)解方程:6x +1=3(x +1)+4.解:去括号得:6x +1=3x +3+4,移项合并得:3x =6,解得:x =2.18.(6分)(2017·广州)解方程组⎩⎪⎨⎪⎧x +y =5,2x +3y =11.解:⎩⎪⎨⎪⎧x +y =5 ①,2x +3y =11 ②,①×3-②得:x =4,把x =4代入①得:y =1,则方程组的解为⎩⎪⎨⎪⎧x =5,y =1.19.(7分)已知二元一次方程组⎩⎪⎨⎪⎧2x +y =14,-3x +2y =21的解为x =a ,y =b ,求a +b 的值. 解:∵⎩⎪⎨⎪⎧2x +y =14,-3x +2y =21,解得 ⎩⎪⎨⎪⎧x =1,y =12, ∴a =1,b =12,∴a +b =13.20.(9分)某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?解:该店有客房8间,房客63人.21.(10分)(2018·原创)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可赢利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)解:(1)甲、乙两组工作一天,商店各应付300元和140元;(2)单独请甲组需要的费用:300×12=3600元,单独请乙组需要的费用:24×140=3360元,答:单独请乙组需要的费用少;(3)请两组同时装修,理由:甲单独做,需费用3600元,少赢利200×12=2400元,相当于损失6000元;乙单独做,需费用3360元,少赢利200×24=4800元,相当于损失8160元;甲、乙合作,需费用3520元,少赢利200×8=1600元,相当于损失5120元;∵5120<6000<8160,∴甲、乙合作损失费用最少.答:甲、乙合作施工更有利于商店.第6讲 一元二次方程(时间60分钟 满分95分)一、选择题(本大题共8小题 ,每小题4分,共32分)1.(2017·嘉兴)用配方法解方程x 2+2x -1=0时,配方结果正确的是(B )A .(x +2)2=2B .(x +1)2=2C .(x +2)2=3D .(x +1)2=32.(2017·广东)如果2是方程x 2-3x +k =0的一个根,则常数k 的值为(B )A .1B .2C .-1D .-23.(2017·苏州)关于x 的一元二次方程x 2-2x +k =0有两个相等的实数根,则k 的值为(A )A .1B .-1C .2D .-24.(2017·绵阳)关于x 的方程2x 2+mx +n =0的两个根是-2和1,则n m 的值为(C )A .-8B .8C .16D .-165.(2017·江西)已知一元二次方程2x 2-5x +1=0的两个根为x 1,x 2,下列结论正确的是(D )A .x 1+x 2=-52B .x 1·x 2=1C .x 1,x 2都是有理数D .x 1,x 2都是正数6.某广场绿化工程中有一块长2千米,宽1千米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间及周边留有宽度相等的人行通道(如图),并在这些人行通道铺上瓷砖,要求铺瓷砖的面积是矩形空地面积的12,设人行通道的宽度为x 千米,则下列方程正确的是(A )A .(2-3x )(1-2x )=1B.12(2-3x )(1-2x )=1 C.14(2-3x )(1-2x )=1 D.14(2-3x )(1-2x )=2 7.下列关于x 的一元二次方程中,有两个相等实数根的是(D )A .x 2+1=0B .x 2+x -1=0C .x 2+2x -3=0D .4x 2-4x +1=08.(2017·烟台)若x 1,x 2是方程x 2-2mx +m 2-m -1=0的两个根,且x 1+x 2=1-x 1x 2,则m 的值为(D )A .-1或2B .1或-2C .-2D .1二、填空题(本大题共5小题 ,每小题3分,共15分)9.方程(x -2)2=3x (x -2)的解为__x =2或x =-1__.10.(2017·大连)关于x 的方程x 2+2x +c =0有两个不相等的实数根,则c 的取值范围为__c <1__.11.若关于x 的一元二次方程kx 2-2x -1=0有两个不相等的实数根,则k 的取值范围是__k >-1且k ≠0__.12.(2017·菏泽)关于x 的一元二次方程(k -1)x 2+6x +k 2-k =0的一个根是0,则k 的值是__0__.13.(2017·成都)已知x 1,x 2是关于x 的一元二次方程x 2-5x +a =0的两个实数根,且x 12-x 22=10,则a =__214__. 三、解答题(本大题共7小题 ,共48分)14.(5分)(2017·丽水)解方程:(x -3)(x -1)=3.解:方程化为x 2-4x =0,x (x -4)=0,∴x 1=0,x 2=4.15.(5分)解方程:3x 2+5(2x +1)=0.解:3x 2+5(2x +1)=0,整理得:3x 2+10x +5=0,∵a =3,b =10,c =5,∴b 2-4ac =100-60=40>0,∴x =-10±2106=-5±103, 则原方程的解为x 1=-5+103,x 2=-5-103. 16.(5分)解方程:x 2-6x -4=0.解:移项得x2-6x=4,配方得x2-6x+9=4+9,即(x-3)2=13,开方得x-3=±13,∴x1=3+13,x2=3-13.17.(7分)(2017·玉林)已知关于x的一元二次方程:x2-(t-1)x+t-2=0.(1)求证:对于任意实数t,方程都有实数根;(2)当t为何值时,方程的两个根互为相反数?请说明理由.(1)证明:在方程x2-(t-1)x+t-2=0中,b2-4ac=[-(t-1)]2-4×1×(t-2)=t2-6t+9=(t-3)2≥0,∴对于任意实数t,方程都有实数根;(2)解:设方程的两根分别为m、n,∵方程的两个根互为相反数,∴m+n=t-1=0,解得t=1.∴当t=1时,方程的两个根互为相反数.18.(8分)(2017·绥化)已知关于x的一元二次方程x2+(2m+1)x+m2-4=0.(1)当m为何值时,方程有两个不相等的实数根?(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.解:(1)∵方程x 2+(2m +1)x +m 2-4=0有两个不相等的实数根, ∴b 2-4ac =(2m +1)2-4(m 2-4)=4m +17>0, 解得m >-174.∴当m >-174时,方程有两个不相等的实数根;(2)设方程的两根分别为a 、b ,根据题意得:a +b =-2m -1,ab =m 2-4. ∵2a 、2b 为边长为5的菱形的两条对角线的长,∴a 2+b 2=(a +b )2-2ab =(-2m -1)2-2(m 2-4)=2m 2+4m +9=52=25, 解得m =-4或m =2.∵a >0,b >0,∴a +b =-2m -1>0, ∴m =-4.∴若边长为5的菱形的两条对角线的长分别为方程两根的2倍,则m 的值为-4.19.(9分 )新兴商场经营某种儿童益智玩具.已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.每件玩具的售价定为多少元时,月销售利润恰为2520元?解:每件玩具的售价定为32元时,月销售利润恰为2520元.20.(9分)(2017·襄阳)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?解:(1)这两年该企业年利润平均增长率为20%;(2)该企业2017年的利润能超过3.4亿元.第7讲分式方程(时间50分钟满分80分)一、选择题(本大题共7小题,每小题4分,共28分)1.(2017·哈尔滨)方程2x+3=1x-1的解为(C)A.x=3 B.x=4 C.x=5 D.x=-52.解分式方程2x-1+x+21-x=3时,去分母后变形正确的是(D)A .2+(x +2)=3(x -1)B .2-x +2=3(x -1)C .2-(x +2)=3D .2-(x +2)=3(x -1)3.(2017·成都)已知x =3是分式方程kxx -1-2k -1x =2的解,那么实数k 的值为(D )A .-1B .0C .1D .24.某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x 元,则可列出方程为(B )A.420x -420x -0.5=20B.420x -0.5-420x =20C.420x -420x -20=0.5D.420x -20-420x =0.55.(2017·聊城)如果解关于x 的分式方程mx -2-2x 2-x=1时出现增根,那么m 的值为(D )A .-2B .2C .4D .-4 6.(2016·十堰)用换元法解方程x 2-12x-4xx 2-12=3时,设x 2-12x=y ,则原方程可化为(B )A .y -1y -3=0B .y -4y-3=0C .y -1y +3=0D .y -4y+3=07.(2017·龙东地区)若关于x 的分式方程2x -a x -2=12的解为非负数,则a 的取值范围是(C )A .a ≥1B .a >1C .a ≥1且a ≠4D .a >1且a ≠4二、填空题(本大题共4小题 ,每小题3分,共12分) 8.(2017·南京)方程2x +2-1x =0的解是__x =2__.9.(2017·泸州)若关于x 的分式方程x +mx -2+2m2-x=3的解为正实数,则实数m 的取值范围是__m <6且m ≠2__.10.(2017·温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x 米,根据题意可列出方程:__160x =200x +5__.11.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小琼步行12000步与小博步行9000步消耗的能量相同.若每消耗1千卡能量小琼行走的步数比小博多10步,则小博每消耗1千卡能量需要行走__30__步.三、解答题(本大题共6小题 ,共40分) 12.(5分)解方程:x -3x -2+1=32-x.解:方程两边同乘以(x -2), 得:x -3+(x -2)=-3, 解得x =1,检验:x =1时,x -2≠0, ∴x =1是原分式方程的解.13.(5分)(2017·宁夏)解方程:x +3x -3-4x +3=1.解:去分母得(x +3)2-4(x -3)=(x -3)(x +3), 去括号得x 2+6x +9-4x +12=x 2-9, 合并同类项得2x =-30, 系数化为1得x =-15, 当x =-15时,(x -3)(x +3)≠0, ∴原分式方程的解为x =-15.14.(5分)(2017·上海)解方程:3x 2-3x -1x -3=1.解:方程两边同乘x (x -3)得3-x =x 2-3x , ∴x 2-2x -3=0, ∴(x -3)(x +1)=0, 解得x =3或x =-1, 经检验x =3是原方程的增根, ∴原方程的解为x =-1.15.(7分)(2017·广州)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的43倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5∶8,求乙队平均每天筑路多少公里. 解:(1)60×43=80(公里).答:乙队筑路的总公里数为80公里;(2)设乙队平均每天筑路8x 公里,则甲队平均每天筑路5x 公里, 根据题意得:605x -808x =20,解得:x =0.1,经检验,x =0.1是原方程的解, ∴8x =8×0.1=0.8.答:乙队平均每天筑路0.8公里.16.(8分)(2017·通化)一汽车从甲地出发开往相距240 km 的乙地,出发后第一小时内按原计划的速度匀速行驶,1小时后比原来的速度加快14,比原计划提前24 min 到达乙地,求汽车出发后第1小时内的行驶速度.解:汽车出发后第1小时内的行驶速度是80千米/小时.17.(10分)某公司计划对面积为1800 m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成的绿化面积是乙队每天能完成的绿化面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天时间.(1)求甲、乙两工程队每天能完成的绿化面积;(2)若公司每天需付给甲队的绿化费用为0.4万元,付给乙队的绿化费用为0.25万元,要使这次的绿化总费用不超过8万元,则至少应安排甲队工作多少天?解:(1)甲、乙两工程队每天能完成绿化的面积分别是100 m2、50 m2;(2)至少应安排甲队工作10天.第8讲不等式(组)及其应用(时间60分钟满分100分)A卷一、选择题(本大题共10小题,每小题4分,共40分) 1.(2017·杭州)若x+5>0,则(D)A.x+1<0 B.x-1<0C.x5<-1 D.-2x<122.一元一次不等式x+1≥2的解在数轴上表示为(A)3.(2017·株洲)已知实数a,b满足a+1>b+1,则下列选项错误的为(D) A.a>b B.a+2>b+2C.-a<-b D.2a>3b4.(2017·西宁)不等式组⎩⎪⎨⎪⎧-2x +1<3,x ≤1的解集在数轴上表示正确的是(B )5.(2017·齐齐哈尔)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买(A )A .16个B .17个C .33个D .34个6.(2017·恩施州)关于x 的不等式组⎩⎪⎨⎪⎧x -m <0,3x -1>2(x -1)无解,那么m 的取值范围为(A )A .m ≤-1B .m <-1C .-1<m ≤0D .-1≤m <07.(2017·大庆)若实数3是不等式2x -a -2<0的一个解,则a 可取的最小正整数为(D )A .2B .3C .4D .58.不等式组⎩⎪⎨⎪⎧3(x +2)>2x +5,x -12≤x 3的最小整数解是(B )A .-1B .0C .1D .29.已知x >y ,若对任意实数a ,以下结论:甲:ax >ay ;乙:a 2-x >a 2-y ;丙:a 2+x ≤a 2+y ;丁:a 2x ≥a 2y .其中正确的是(D )A .甲B .乙C .丙D .丁10.(2017·金华)若关于x 的一元一次不等式组⎩⎪⎨⎪⎧2x -1>3(x -2),x <m 的解是x <5,则m 的取值范围是(A )A .m ≥5B .m >5C .m ≤5D .m <5二、填空题(本大题共7小题 ,每小题3分,共21分) 11.(2016·陕西)不等式-12x +3<0的解集是__x >6__.12.(2017·哈尔滨)不等式组⎩⎪⎨⎪⎧5-2x ≤1,x -3<0的解集是__2≤x <3__.13.已知关于x 的不等式(1-a )x >3的解集为x <31-a ,则a 的取值范围是__a >1__.14.(2017·台州)商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为__10__元/千克.15.(2017·烟台)运行程序如图所示,从“输入实数x ”到“结果是否<18”为一次程序操作,若输入x 后程序操作仅进行了一次就停止,则x 的取值范围是__x <8__.16.(2017·宜宾)若关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧x -y =2m +1x +3y =3的解满足x +y >0,则m 的取值范围是__m >-2__.17.定义一种法则“⊕”如下:a ⊕b =⎩⎪⎨⎪⎧a (a >b ),b (a ≤b ),例如:1⊕2=2,若(-2m -5)⊕3=3,则m 的取值范围是__m ≥-4__.三、解答题(本大题共3小题,共19分)18.(6分)(2017·北京)解不等式组:⎩⎪⎨⎪⎧2(x +1)>5x -7,x +103>2x .解:⎩⎪⎨⎪⎧2(x +1)>5x -7①,x +103>2x ②,由①式得x <3,由②式得x <2, ∴不等式组的解集是x <2.19.(6分)解不等式组:⎩⎪⎨⎪⎧x +2>0,3(x -1)+2≥2x ,并判断-1,3这两个数是否为该不等式组的解.解:解不等式x +2>0,得x >-2, 解不等式3(x -1)+2≥2x ,得x ≥1, ∴不等式组的解集为x ≥1, ∵-1<1,3>1,∴3是该不等式组的解.20.(7分)(2017·常州)某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.(1)求每个篮球和每个足球的售价;(2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么最多可购买多少个足球?解:(1)每个篮球和每个足球的售价分别为100元,120元; (2)最多可购买25个足球.B 卷1.(3分)(2017·百色)关于x 的不等式组⎩⎪⎨⎪⎧x -a ≤0,2x +3a >0的解集中至少有5个整数解,则正数a 的最小值是(B )A .3B .2C .1 D.232.(3分)已知,关于x 的不等式组⎩⎪⎨⎪⎧x -a >0,2-x >0的整数解共有两个,那么a 的取值范围是__-1≤a <0__.3.(5分)(2017·天津)解不等式组⎩⎪⎨⎪⎧x +1≥2 ①,5x ≤4x +3②,请结合题意填空,完成本题的解答. (1)解不等式①,得__x ≥1__; (2)解不等式②,得__x ≤3__;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为__1≤x≤3__.解:(3)把不等式①和②的解集在数轴上表示出来:4.(9分)(2017·聊城)在推进城乡义务教育均衡发展工作中,我市某区政府通过公开招标的方式为辖区内全部乡镇中学采购了某型号的学生用电脑和教师用笔记本电脑,其中,A 乡镇中学更新学生用电脑110台和教师用笔记本电脑32台,共花费30.5万元;B乡镇中学更新学生用电脑55台和教师用笔记本电脑24台,共花费17.65万元.(1)求该型号的学生用电脑和教师用笔记本电脑单价分别是多少万元?(2)经统计,全部乡镇中学需要购进的教师用笔记本电脑台数比购进的学生用电脑台数的15少90台,在两种电脑的总费用不超过预算438万元的情况下,至多能购进的学生用电脑和教师用笔记本电脑各多少台?解:(1)该型号的学生用电脑的单价为0.19万元,教师用笔记本电脑的单价为0.3万元; (2)设能购进的学生用电脑m 台,则能购进的教师用笔记本电脑为(15m -90)台,依题意得:0.19m +0.3×(15m -90)≤438,解得m ≤1860.∴15m -90=15×1860-90=282(台). 答:至多能购进的学生用电脑1860台,教师用笔记本电脑为282台.第二章 方程(组)与不等式(组)自我测试(时间60分钟 满分105分)一、选择题(本大题共10小题 ,每小题4分,共40分) 1.(2017·常州)若3x >-3y ,则下列不等式中一定成立的是(A ) A .x +y >0 B .x -y >0 C .x +y <0 D .x -y <02.(2017·安徽)不等式4-2x >0的解集在数轴上表示为(D )3.(2017·泰安)一元二次方程x 2-6x -6=0配方后化为(A ) A .(x -3)2=15 B .(x -3)2=3 C .(x +3)2=15 D .(x +3)2=34.不等式组⎩⎪⎨⎪⎧x -3≤0,13(x -2)<x +1的解集在数轴上表示正确的是(A )5.(2017·岳阳)解分式方程2x -1-2xx -1=1,可知方程的解为(D )A .x =1B .x =3C .x =12D .无解6.(2017·宜宾)一元二次方程4x 2-2x +14=0的根的情况是(B ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法判断7.(2017·安徽)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足(D )A .16(1+2x )=25B .25(1-2x )=16C .16(1+x )2=25D .25(1-x )2=168.(2017·内江)不等式组⎩⎪⎨⎪⎧3x +7≥2,2x -9<1的非负整数解的个数是(B )A .4B .5C .6D .79.(2017·娄底)“珍爱生命,拒绝毒品”,学校举行的2017年禁毒知识竞赛共有60道题,曾浩同学答对了x 道题,答错了y 道题(不答视为答错),且答对题数比答错题数的7倍还多4道,那么下面列出的方程组中正确的是(A )A.⎩⎪⎨⎪⎧x +y =60x -7y =4B.⎩⎪⎨⎪⎧x +y =60y -7x =4C.⎩⎪⎨⎪⎧x =60-y x =7y -4D.⎩⎪⎨⎪⎧y =60-x y =7x -4 10.(2017·凉山州)若关于x 的方程x 2+2x -3=0与2x +3=1x -a有一个解相同,则a的值为(B )A .0B .-1C .2D .-3二、填空题(本大题共7小题 ,每小题3分,共21分) 11.方程(2a -1)x 2+3x +1=4是一元一次方程,则a =__12__.12.(2017·襄阳)不等式组⎩⎪⎨⎪⎧2x -1>x +1,x +8≥4x -1的解集为__2<x ≤3__.13.(2017·乌鲁木齐)一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是__100__元.(导学号 35694137)14.(2017·枣庄)已知关于x 的一元二次方程ax 2-2x -1=0有两个不相等的实数根,则a 的取值范围是__a >-1且a ≠0__.15.(2017·包头)若关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧x +y =3,2x -ay =5的解是⎩⎪⎨⎪⎧x =b ,y =1,则a b 的值为__1__.16.(2017·北京)某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为__⎩⎪⎨⎪⎧x -y =34x +5y =435__.17.(2017·西宁)若x 1,x 2是一元二次方程x 2+3x -5=0的两个根,则x 12x 2+x 1x 22的值是__15__.三、解答题(本大题共6小题,共44分)18.(6分)(2017·广州)解方程组⎩⎪⎨⎪⎧x +y =5,2x +3y =11.解:⎩⎪⎨⎪⎧x +y =5 ①,2x +3y =11 ②,①×3-②得x =4,把x =4代入①得y =1,则方程组的解为⎩⎪⎨⎪⎧x =4,y =1.19.(6分)解方程1-x x -2+1=x2x -4.解:方程两边同乘以2(x -2),得:2(1-x )+2x -4=x , 解得x =-2,把x =-2代入原分式方程中,方程两边相等, 经检验x =-2是分式方程的解.20.(7分)(2017·长沙)解不等式组⎩⎪⎨⎪⎧2x ≥-9-x5x -1>3(x +1),并把它的解集在数轴上表示出来.解:解不等式2x≥-9-x,得x≥-3,解不等式5x-1>3(x+1),得x>2,则不等式组的解集为x>2,将解集表示在数轴上如解图.21.(7分)(2017·广东)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?答:男生志愿者有12人,女生志愿者有16人.22.(9分)(2017·日照)某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?解:(1)实际每年绿化面积为54万平方米;(2)实际平均每年绿化面积至少还要增加45万平方米.23.(9分)(2017·宁波)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?解:(1)甲种商品的销售单价为900元,乙种商品的销售单价为600元;(2)至少销售甲种商品2万件.第31 页共31 页。
人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

∴原方程组的解为y=1,将y=1 代入 2kx-3y<5 得 2×k×2-3<5,解得 k<2.
命题点 2:一次方程(组)的应用(近 3 年考查 15 次)
7.(数学文化)(2021·武汉第 7 题 3 分)我国古代数学名著《九章算术》
中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价
32 人.2 艘大船与 1 艘小船一次共可以满载游客 46 人.则 1 艘大船与 1
艘小船一次共可以满载游客的人数为
( B)
A.30
B.26
C.24
D.22
11.★(2022·武汉第 10 题 3 分)幻方是古老的数学问题,我国古代的《洛 书》中记载了最早的幻方——九宫格.将 9 个数填入幻方的空格中,要 求每一横行、 每一竖列以及两条对角线上的 3 个数之和相等,例如图① 就是一个幻方.图②是一个未完成的幻方,则 x 与 y 的和是 ( D ) A.9 B.10 C.11 D.12
14.(2020·仙桃第 12 题 3 分)篮球联赛中,每场比赛都要分出胜负,每 队胜 1 场得 2 分,负 1 场得 1 分.某队 14 场比赛得到 23 分,则该队胜 了__99__场.
15.(2020·黄冈第 19 题 6 分)为推广黄冈各县市名优农产品,市政府组 织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买 6 盒 羊角春牌绿茶和 4 盒九孔牌藕粉,共需 960 元,如果购买 1 盒羊角春牌 绿茶和 3 盒九孔牌藕粉共需 300 元,请问每盒羊角春牌绿茶和每盒九孔 牌藕粉分别需要多少元?
【分层分析】设购进创意文具袋 x 个,由题干信息①得购进笔记本为
((2x2+x+10)个,由题干信息②可列方程为 xx++(2(x2+x1+0)1=0)190.
中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第三节 分式方程及其应用

③若分式方程的解为正数,则 a 的取值范围为 aa>>--4 且4且a a≠≠11;
yy--33≠≠00,,
【 分 层 分 析 】 若 分 式 方 程 的 解 为 正 数 , 则 yy>>00 , 即
3533aaa+5++5513112a22-+->3130≠2≠00,,
, >0
解得 aa>>--4 且4且a a≠≠1.1
A.1 B.2 C.3 D.4
3.(2022·普宁月考)若分式方程2xx--1a-4=-x2+x+1 a的解为整数,则整
数 a 的值为
(D )
A.±2
B.±1 或±2
C.1 或 2
D.±1
4.(2022·富川县模拟)关于 x 的分式方程2m-+xx+x-3 2=1 有解,则实数
m 应满足的条件是 A.m=-1
1.(2022·鼓楼区期末)关于 x 的分式方程x+m 3=1,下列说法中正确的
是
( B)
A.方程的解是 x=m-3
B.当 m>3 时,方程的解是正数
C.当 m<3 时,方程的解为负数
D.当 m=3 时,方程无解
2.(2022·荷塘区模拟)分式方程2x+x-a 1=2 的解为 x=2,则 a 的值为 ( A)
④若分式方程有负分数解,则 a 的值可以为 --5(5答(答案不案唯不一唯) ;
【分层分析】若分式方程有负分数解,则 3a+一12)=--1,1,-2-,-2,3,--34,,
4-,6 -…,解得 6…
a=3-133,-134,-153,-136或-6…-,∴a
的值可以为
-55.
⑤若分式方程有非负整数解,则 a 的值可以为 --44(答(答案不案唯不唯一) . 【解分得层a=分3-析4】,若-分73式,方-程23,1有383非,负133整或数…解,则,3a∴+5a一1的2=)值00或可,,1以…,1为2,,--42,,454.4或,…5,
最新2016聚焦中考数学(辽宁省习题课件:专题二+类型三 图形折叠问题

3.(2015·鄂州)如图,在矩形 ABCD 中,AB=8,BC=12, 点 E 是 BC 的中点,连接 AE,将△ABE 沿 AE 折叠,点 B 落在点 F 处,连接 FC,则 sin∠ECF=( D )34源自 4 A.4 B.3 C.5 D.5
解析:过 E 作 EH⊥CF 于 H,由折叠的性质得:BE=EF,∠ BEA=∠FEA,∵点 E 是 BC 的中点,∴CE=BE,∴EF=CE,∴ ∠FEH=∠CEH,∴∠AEB+∠CEH=90°,又∵∠ECF+∠CEH =90°,∴∠ECF=∠AEB,在 Rt△ABE 中,AB=8,BE=12BC =6,∴AE=10,∴sin∠ECF=sin∠AEB=AAEB=45
2.找出折叠前后隐含的位置关系和数量关系; 3.一般运用三角形全等、勾股定理、相似三角形等知识及方程 思想,设出恰当的未知数,解方程求线段长; 4.求一个角的三角函数有两种方法:①直接法:找这个角所在 的直角三角形或构造一个关于这个角的直角三角形;②间接法: 找出一个与这个角相等的角,再在相应的直角三角形求出.
2016聚焦中考数学(辽宁省) 习题课件:专题二+类型三 图
形折叠问题
对于图形折叠问题,常考类型包括:求线段长,求角度大小, 求一个角的三角函数值等.解答这类问题,需掌握以下知识:
1.折叠的性质:①位于折痕两侧的图形关于折痕成轴对称;② 折叠前后的两部分图形全等,对应线段、角和面积等都相等;③ 折叠后对应点的连线被折痕垂直平分;
AB2-BH2=2 6,∴EF= 6
6.(丹东模拟)如图,正方形 ABCD 的边长是 16,点 E 在边 AB 上,AE=3,点 F 是边 BC 上不与点 B,C 重合的一个动点, 把△EBF 沿 EF 折叠,点 B 落在 B′处.若△CDB′恰为等腰三角形, 则 DB′的长为__1_6_或___4__5_.
中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第三节 分式方程及其应用

确的是
( A)
800 600 A.x+50= x
800 600 800 600 B.x-50= x C. x =x+50
800 600 D. x =x-50
6.(2013·天水第 15 题 4 分)有两块面积相同的小麦试验田,分别收获
小麦 9 000 kg 和 15 000 kg,已知第一块试验田每公顷的产量比第二块
3.(RJ 八上 P155 习题 T4 改编)甲、乙两个机器人检测零件,甲比乙每小 时多检测 20 个,甲检测 300 个比乙检测 200 个所用的时间少 10%.若设甲 每小时检测 x 个,则根据题意,可列出方程为__3x00=x2-=0200××((11--1100%%))__.
4.(RJ 八上 P151 例 2 改编)解方程:
第三节 分式方程及其应 用
1.已知关于 x 的分式方程mx--31=1. (1)若此分式方程的解为 x=2,则 m 的值为 4 4; (2)若此分式方程有增根,则 m 的值是 3 3 ; (3)若此分式方程的解是正数,则 m 的取值范围是 m>m2>且2且m ≠3.
m≠3
2.(RJ 八上 P153 例 4 改编)甲、乙两地相距 1 000 km,如果乘高铁列车 从甲地到乙地比乘特快列车少用 3 h,已知高铁列车的平均速度是特快列 车的 1.6 倍.若设特快列车的平均速度为 x km/h,则根据题意,可列方 程为 -1 3x0=00-3=11.060x0 .
命题点 2:由分式方程解的情况求字母的取值范围(省卷近 5 年未考查,
兰州近 5 年考查 1 次)
2x+a 3.(2018·兰州第 10 题 4 分)关于 x 的分式方程 x+1 =1 的解为负数,
则 a 的取值范围为
中考数学阶段性测试二 方程与不等式
阶段性测试二: 方程与不等式测试题姓名:________ 分数:________一、选择题(每小题1分,共36分)1、若x =2是关于x 的方程2x +3m -1=0的解,则m 的值为( )A 、-1B 、0C 、1D 、132、某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价.设这种服装的成本价为x 元,则得到方程( )A 、15025%x =⨯B 、25%150x ⋅=C 、%25150=-xxD 、15025%x -= 3、解方程16110312=+-+x x 时,去分母、去括号后,正确结果是( ) A 、111014=+-+x x B 、111024=--+x x C 、611024=--+x x D 、611024=+-+x x4、方程组125x y x y +=⎧⎨-=⎩,的解是 ( )A 、12.x y =-⎧⎨=⎩, B 、23.x y =-⎧⎨=⎩, C 、21.x y =⎧⎨=⎩, D 、21.x y =⎧⎨=-⎩,5、某校春季运动会比赛中,八年级(1)班、(5)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(5)班得分比为6:5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x 分,(5)班得y 分,根据题意所列的方程组应为( )A 、65,240x y x y =⎧⎨=-⎩B 、65,240x y x y =⎧⎨=+⎩C 、56,240x y x y =⎧⎨=+⎩D 、56,240x y x y =⎧⎨=-⎩ 6、分式方程xx x -=+--23123的解是( ) A 、2 B 、1 C 、-1 D 、-2 7、解分式方程2322-+=-x x x ,去分母后的结果是( ) A 、32+=x B 、3)2(2+-=x x C 、)2(32)2(-+=-x x x D 、2)2(3+-=x x 8、若关于x 的方程1011m xx x --=--有增根,则m 的值是( ) A、3 B、2 C、1 D、1-9、关于x 的方程211x a x +=-的解是正数,则a 的取值范围是( )A 、a >-1B 、a >-1且a ≠0C 、a <-1D 、a <-1且a ≠-210、关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足( ) A 、a ≥1 B 、a >1且a ≠5 C 、a ≥1且a ≠5 D 、a ≠511、已知一元二次方程 x 2 + x ─ 1 = 0,下列判断正确的是( )A 、该方程有两个相等的实数根B 、该方程有两个不相等的实数根C 、该方程无实数根D 、该方程根的情况不确定12、下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A 、x 2+1=0B 、9 x 2—6x+1=0C 、x 2—x+2=0D 、x 2-2x-2=0 13、一元二次方程x 2+kx-3=0的一个根是x=1,则另一个根是 ( )A 、3B 、-1C 、-3D 、-214、关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( ) A 、1B 、12C 、13D 、2515、如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是( )(A 、-3,2 (B 、3,-2 (C 、2,-3 (D 、2,316、关于x 的方程12mx x -=的解为正实数,则m 的取值范围是( )A 、m ≥2B 、m ≤2C 、m >2D 、m <217、解集在数轴上表示为如图所示的不等式组是( )A 、32x x >-⎧⎨⎩≥ B 、32x x >-⎧⎨⎩≤ C 、32x x <-⎧⎨⎩≥D 、32x x <-⎧⎨⎩≤ 18、不等式110320.x x ⎧+>⎪⎨⎪-⎩,≥的解集是( )A 、-31<x ≤2 B 、-3<x ≤2 C 、x ≥2 D 、x <-319、不等式组⎩⎨⎧>-<-050x x 的正整数解的个数是( )A 、2个B 、3个C 、4个D 、5个20、一个一元一次不等式组的解集在数轴上的表示如上图,则该不等式组的解集是( ) A 、13x -≤< B 、13x -<≤ C 、1x ≥- D 、3x < 21、下列不等式变形正确的是( )A 、由a >b ,得a -2<b -2B 、由a >b ,得-2a <-2bC 、由a >b,得a >b D 、由a >b,得a2>b222、不等式组320,10x x ->⎧⎨+⎩≥的解集在数轴上表示正确是的是 ( )23、货车行驶25千米所用时间相同,20千米,求两车的速度各为多少?设货车的速度为x 千米/小时,依题意列方程正确的是( )A、203525-=x x B、x x 352025=- C、203525+=x x D、xx 352025=+ (A )24、上海世博会的某纪念品原价168元,连续两次降价a %后售价为128元. 下列所列方程中正确的是( )A 、128)% 1(1682=+aB 、128)% 1(1682=-a C 、128)% 21(168=-a D 、128)% 1(1682=-a25、某品牌服装折扣店将某件衣服按进价提高50%后标价,再打8折(标价的80%)销售,售价为240元,设这件衣服的进价为x 元,根据题意,下面所列的方程正确的是( )A 、x ·50%×80%=240B 、x ·(1+50%)×80%=240C 、240×50%×80%=xD 、x ·(1+50%)=240×80%26、庆“五一”,市工会组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛,这次有 ( )队参加比赛.A 、12B 、11C 、9D 、1027、某单位向一所希望小学赠送1080件文具,现用A 、B 两种不同的包装箱进行包装,已知每个B 型包装箱比A 型包装箱多装15件文具,单独使用B 型包装箱比单独使用A 型包装箱可少用12个。
中考数学方程与不等式复习资料
第二章 方程(组)与不等式(组)一、方程与方程(组)1.方程与方程(组)有关概念 (1)方程:含有未知数的等式。
(2)整式方程:重点研究一元一次方程(ax b a +=≠00,)和一元二次方程(ax bx c a 200++=≠,)。
(3)分式方程(可化为一元一次方程的分式方程) (4)二元一次方程组2.方程(组)的解与解方程(组)(1)方程的解:使方程左右两边相等的未知数的值叫做方程的解,只含有一个未知数的方程的解也叫做根。
(2)方程组的解:使方程组中每个方程左右两边的值都相等的所有未知数的值,叫做该方程组的解。
(3)解方程:求方程解的过程。
(4)等式的基本性质:等式两边都加上(或减去)同一个数或同一个整式,所得的结果仍是等式; 等式两边都乘以(或除以)同一个数(除数不是零),所得的结果仍是等式。
(5)一元一次方程(包括含字母系数的一元一次方程)解法的一般步骤: 去分母→去括号→移项→合并同类项→系数化为1(6)一元二次方程的解法:直接开平方法,因式分解法,配方法,公式法;(7)一次方程组的解法:一次方程组通过代入消元或加减消元转化为一次方程来解决。
(8)可化为一元一次方程的分式方程的解法;分式方程通过去分母或换元转化为整式方程来解决,注意验根。
(9)二元一次方程组的解法:通过代入消元或加减消元转化为一元一次方程来解决。
※3.一元二次方程ax bx c a 200++=≠()根的判别式。
∆=->⇔b ac 240方程有两个不相等的实数根∆=-=⇔b ac 240方程有两个相等的实数根 ∆=-<⇔b ac 240方程没有实数根4.应用问题解应用题时,应该有两步检验,一是检验所求得的解是否为原方程(组)的解;二是检验它是否符合实际意义。
(1)列方程(组)解应用问题常用的基本数量关系: ①数量的和、差、倍、分;②距离=速度×时间,注意变式的情况; ③工作量=工作效率×工作时间;④100%⨯增长数增长率=基数⑤数字问题。
2016陕西省聚焦中考数学 课件 考点追踪 自我测试:第二章 方程与不
►知识点五 一元二次方程的应用
1.常见题型 (1)增长(降低)率问题. (2)行程问题.
(3)面积问题.
(4)二次分裂问题. (5)经济问题.
中 考 全 程 总 复 习 · 陕 西 · 数 学
2.列一元二次方程解应用题的步骤 (1)审:弄关系列出方程.
中 考 全 程 总 复 习 · 陕 西 · 数 学
利用求根公式来解.当b2-4ac≥0时,其求根公式为x=
-b± b2-4ac 2a __________________.
【注意】选择四种解法的使用顺序:直接开平方法,因 式分解法,配方法,公式法.
►知识点三 一元二次方程根的判别式
一元二次方程 ax2 + bx + c = 0(a≠0) 的根的判别式是 Δ = b2-4ac ______________. 方程有两个不相等的实数根 . 1.Δ>0⇔__________________________ 方程有两个相等的实数根. 2.Δ=0⇔_______________________ 方程没有实数根 3.Δ<0⇔_______________________ .
中 考 全 程 总 复 习 · 陕 西 · 数 学
十字相乘法,就是把一个二次三项式化为两个因式相 乘的形式.用十字相乘法把形如x2+px+q的二次三项式分解 因式,如下:
x2+px+q=x2+(a+b)x+ab=(x+a)(x+b)
⇑ p ⇑ q
中 考 全 程 总 复 习 · 陕 西 · 数 学
x2+px+q=(x+a)(x+b),其中q、p、a、b之间的符号 关系:当 q> 0时, q分解的因数 a 、 b 同号且 a, b 符号与 p符 号相同.
2016年辽宁省营口市中考数学试卷附详细答案(原版+解析版)
2016年辽宁省营口市中考数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的。
每小题3分,共30分)1.﹣23的相反数是()A.﹣8 B.8 C.﹣6 D.62.如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是()A.B.C. D.3.若关于x的一元二次方程kx2+2x﹣1=0有实数根,则实数k的取值范围是()A.k≥﹣1 B.k>﹣1 C.k≥﹣1且k≠0 D.k>﹣1且k≠04.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°5.化简+﹣的结果为()A.0 B.2 C.﹣2D.26.如图,矩形ABCD的对角线交于点O,若∠ACB=30°,AB=2,则OC的长为()A.2 B.3 C.2D.47.为了解某市参加中考的25000名学生的身高情况,抽查了其中1200名学生的身高进行统计分析.下面叙述正确的是()A.25000名学生是总体B.1200名学生的身高是总体的一个样本C.每名学生是总体的一个个体D.以上调查是全面调查8.如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以相同的长(大于AC)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.下列结论错误的是()A.AD=CD B.∠A=∠DCE C.∠ADE=∠DCB D.∠A=2∠DCB9.已知一次函数y=(a+1)x+b的图象如图所示,那么a的取值范围是()A.a>1 B.a<﹣1 C.a>﹣1 D.a<010.如图,等腰直角三角形ABC的直角顶点C与平面直角坐标系的坐标原点O重合,AC,BC分别在坐标轴上,AC=BC=1,△ABC在x轴正半轴上沿顺时针方向作无滑动的滚动,在滚动过程中,当点C第一次落在x轴正半轴上时,点A的对应点A1的横坐标是()A.2 B.3 C.1+D.2+二、填空题(每小题3分,共24分)11.在网络上搜索“奔跑吧,兄弟”,能搜索到与之相关的结果为35 800 000个,将35 800 000用科学记数法表示为.12.如图,AB是⊙O的直径,弦CD垂直平分OB,垂足为点E,连接OD、BC,若BC=1,则扇形OBD的面积为.13.已知一组数据:18,17,13,15,17,16,14,17,则这组数据的中位数与众数分别是.14.若分式有意义,则a的取值范围是.15.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2,则点B的对应点B1的坐标是.16.如图,四边形ABCD为正方形,点A、B在y轴上,点C的坐标为(﹣3,1),反比例函数y=的图象经过点D,则k的值为.17.下列图形中:①圆;②等腰三角形;③正方形;④正五边形,既是轴对称图形又是中心对称图形的有个.18.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,对称轴是直线x=﹣1,点B的坐标为(1,0).下面的四个结论:①AB=4;②b2﹣4ac>0;③ab<0;④a﹣b+c<0,其中正确的结论是(填写序号).三、解答题19.先化简,再求值:(﹣1)÷,其中x=2+.20.如图是一个转盘,转盘被平均分成4等份,即被分成4个大小相等的扇形,4个扇形分别标有数字1、2、3、4,指针的位置固定,转动转盘后任其自由停止,每次指针落在每一扇形的机会均等(若指针恰好落在分界线上则重转).(1)图中标有“1”的扇形至少绕圆心旋转度能与标有“4”的扇形的起始位置重合;(2)现有一本故事书,姐妹俩商定通过转盘游戏定输赢(赢的一方先看).游戏规则是:姐妹俩各转动一次转盘,两次转动后,若指针所指扇形上的数字之积为偶数,则姐姐赢;若指针所指扇形上的数字之积为奇数,则妹妹赢.这个游戏规则对双方公平吗?请利用树状图或列表法说明理由.21.学校为了了解全校1600名学生对“初中学生带手机上学”现象的看法,在全校随机抽取了若干名学生进行问卷调查.问卷给出了四种看法供学生选择,每人只能选一种,且不能不选.将调查结果整理后,绘制成如图①、图②所示的条形统计图与扇形统计图(均不完整).(1)在这次调查中,一共抽取了多少名学生?(2)补全条形统计图和扇形统计图;(3)估计全校有多少名学生对“初中学生带手机上学”现象持“不赞同”的看法.22.某居民楼紧挨一座山坡AB,经过地质人员勘测,当坡度不超过45°时,可以确保山体不滑坡,如图所示,已知AE∥BD,斜坡AB的坡角∠ABD=60°,.为防止滑坡,现对山坡进行改造,改造后,斜坡BC与地面BD成45°角,AC=20米.求斜坡BC的长是多少米?(结果精确到0.1米,参考数据:≈1.41,≈1.73)23.如图,AB为⊙O的直径,CD切⊙O于点C,与BA的延长线交于点D,OE⊥AB交⊙O于点E,连接CA、CE、CB,过点A作AF⊥CE于点F,延长AF交BC于点P.(1)求证:CA=CP;(2)连接OF,若AC=,∠D=30°,求线段OF的长.24.谋划点准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.(1)求购进甲、乙两种花卉,每盆各需多少元?(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,设购进甲种花卉x盆,全部销售后获得的利润为W 元,求W与x之间的函数关系式;(3)在(2)的条件下,考虑到顾客需求,要求购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍,那么该花店共有几种购进方案?在所有的购进方案中,哪种方案获利最大?最大利润是多少元?25.已知:如图①,将∠D=60°的菱形ABCD沿对角线AC剪开,将△ADC沿射线DC方向平移,得到△BCE,点M为边BC上一点(点M不与点B、点C重合),将射线AM绕点A逆时针旋转60°,与EB的延长线交于点N,连接MN.(1)①求证:∠ANB=∠AMC;②探究△AMN的形状;(2)如图②,若菱形ABCD变为正方形ABCD,将射线AM绕点A逆时针旋转45°,原题其他条件不变,(1)中的①、②两个结论是否仍然成立?若成立,请直接写出结论;若不成立,请写出变化后的结论并证明.26.如图①,已知△ABC的三个顶点坐标分别为A(﹣1,0)、B(3,0)、C(0,3),直线BE交y轴正半轴于点E.(1)求经过A、B、C三点的抛物线解析式及顶点D的坐标;(2)连接BD、CD,设∠DBO=α,∠EBO=β,若tan (α﹣β)=1,求点E的坐标;(3)如图②,在(2)的条件下,动点M从点C出发以每秒个单位的速度在直线BC 上移动(不考虑点M与点C、B重合的情况),点N为抛物线上一点,设点M移动的时间为t秒,在点M移动的过程中,以E、C、M、N四个点为顶点的四边形能否成为平行四边形?若能,直接写出所有满足条件的t值及点M的个数;若不能,请说明理由.2016年辽宁省营口市中考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 方程与不等式自我测试
一、选择题(每小题5分,共25分)
1.(2015·大连)方程3x+2(1-x)=4的解是( C )
A.x=25 B.x=65 C.x=2 D.x=1
2.(2015·云南)下列一元二次方程中,没有实数根的是( A )
A.4x2-5x+2=0 B.x2-6x+9=0
C.5x2-4x-1=0 D.3x2-4x+1=0
3.“五一”节老同学聚会,每两个人都握一次手,所有人共握手28次,则参加聚会的
人数是( B )
A.7 B.8 C.9 D.10
4.(抚顺模拟)不等式组12x+1≥-3,x-2(x-3)>0的最大整数解为( C )
A.8 B.6 C.5 D.4
5.(2015·玉林)某次列车平均提速v km/h,用相同的时间,列车提速前行驶s km,提速
后比提速前多行驶50 km.设提速前列车的平均速度为x km/h,则列方程是( A )
A.sx=s+50x+v B.sx+v=s+50x
C.sx=s+50x-v D.sx-v=s+50x
二、填空题(每小题5分,共25分)
6.(2015·咸宁)将x2+6x+3配方成(x+m)2+n的形式,则m=__3__.
7.(2015·怀化)方程2x-11+x=0的解是__x=-2__.
8.(鞍山模拟)已知关于x的方程3a-x=x2+3的解为2,则代数式a2-2a+1的值是
__1__.
9.(2015·咸宁)如果实数x,y满足方程组x-y=-12,2x+2y=5则x2-y2的值为__-54__.
10.(2014·成都)已知关于x的分式方程x+kx+1-kx-1=1的解为负数,则k的取值范围是
__k>12且k≠1__.
三、解答题(共50分)
11.(15分)解方程(组):
(1)(辽阳模拟)x-2y=3,3x+y=2;
解:①+②×2得:7x=7,即x=1,把x=1代入①得:y=-1,则方程组的解为
x=1,
y=-1,
(2)x2-4x-21=0;
解:(x-7)(x+3)=0,x1=7,x2=-3
(3)(2015·广安)1-xx-2=x2x-4-1.
解:化为整式方程得:2-2x=x-2x+4,解得:x=-2,把x=-2代入原分式方程
中,等式两边相等,经检验x=-2是分式方程的解
12.(7分)(2015·永州)已知关于x的一元二次方程x2+x+m2-2m=0有一个实数根为
-1,求m的值及方程的另一实根.
解:设方程的另一根为x2,则-1+x2=-1,解得x2=0.把x=-1代入x2+x+m
2
-2m=0,得(-1)2+(-1)+m2-2m=0,即m(m-2)=0,解得m1=0,m2=2.综上所述,
m的值是0或2,方程的另一实根是0
13.(8分)上数学课时,陈老师让同学们解一道关于x,y的方程组ax+3y=-5①,2x-by=14②,并
请小方和小龙两位同学到黑板上板演,可是小方同学看错了方程①中的a,得到方程组的解
为x=3,y=2,小龙同学看错了方程②中的b,得到方程组的组为x=-2,y=-1,你能按正确的a,b
值求出方程组的解吗?请试一试.
解:a=1,b=-4,原方程的解为x=31,y=-12
14.(10分)(本溪模拟)已知关于x的一元二次方程x2-(2m+3)x+m2+2=0.
(1)若方程有实数根,求实数m的取值范围;
(2)若方程两实数根分别为x1,x2,且满足x12+x22=31+|x1x2|,求实数m的值.
解:(1)∵关于x的一元二次方程x2-(2m+3)x+m2+2=0有实数根,∴△≥0,即(2m
+3)2-4(m2+2)≥0,∴m≥-112 (2)根据题意得x1+x2=2m+3,x1x2=m2+2,∵x12+x
2
2
=31+|x1x2|,∴(x1+x2)2-2x1x2=31+|x1x2|,即(2m+3)2-2(m2+2)=31+m2+2,解得m
=2,m=-14(舍去),∴m=2
15.(10分)(2015·哈尔滨)华昌中学开学初在金利源商场购进A,B两种品牌的足球,购
买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是
购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花30元.
(1)求购买一个A品牌、一个B品牌的足球各需多少元?
(2)华昌中学响应习总书记“足球进校园”的号召,决定两次购进A,B两种品牌足球
共50个,恰逢金利源商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买
时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A,B
两种品牌足球的总费用不超过3260元,那么华昌中学此次最多可购买多少个B品牌足球?
解:(1)设一个A品牌的足球需x元,则一个B品牌的足球需(x+30)元,由题意得2500x=
2000
x+30
×2,解得x=50,经检验x=50是原方程的解,x+30=80,答:一个A品牌的足球
需50元,则一个B品牌的足球需80元 (2)设此次可购买a个B品牌足球,则购进A牌足
球(50-a)个,由题意得50×(1+8%)(50-a)+80×0.9a≤3260解得a≤31
1
9
,∵a是整数,
∴a最大等于31,答:华昌中学此次最多可购买31个B品牌足球