人教版九年级上册数学第一次月考试题附答案

合集下载

2021-2022学年广东省东莞市大朗镇三校联考九年级(上)第一次月考数学试卷(解析版).docx

2021-2022学年广东省东莞市大朗镇三校联考九年级(上)第一次月考数学试卷(解析版).docx

2021-2022学年广东省东莞市大朗镇三校联考九年级第一学期第一次月考数学试卷一、选择题(每小题3分,共30分)关于二次函数y=2(X - 4) 2+6的最大值或最小值,下列说法正确的是()A. 有最大值4 B, 有最小值4 C. 有最大值6 D. 有最小值6A. 其图象的开口向下 B, 其图象的对称轴为直线x=4 C. 其顶点坐标为(4, 2)D.当x >3时,> 随x 的增大而增大一元二次方程x 2 - 4% - 6=0,经过配方可变形为( )对于实数a,万定义运算"☆"如下:ai^b —ab 2- ab,例如3^2=3X22 - 3X2=6,则 方程1女了=2的根的情况为( )B.只有一个实数根若a 是关于x 的方程3x 2 - x - 1 =0的一个根,则2021 - 6W+2Q 的值是(2. 由二次函数>=3 (x-4) 2-2可知( 1. 4. 5. A. (x- 2) 2=10 B. (% - 2) 2=6如果关于x 的一元二次方程Rx 2 - (2奸1)A. kN - ■4下列图形既是中心对称又是轴对称的是(C. (x - 4) 2=6D. (x- 2) 2=2x+l=o 有两个实数根,那么k 的取值范围是 D. k> - —M k^O43. 6. A.没有实数根C. 有两个相等的实数根D. 有两个不相等的实数根7. A. 2023B. 2022C. 2020D. 2019C.C.8.若二次函数y=ajfi+bx+c(a^O)的图象如图所示,则一次函数y=ax+b与反比例函数y=— x在同一个坐标系内的大致图象为( )-D 2的图象向左平移1个单位长度,再向上平移2个单位后,所得图象的函数解析式是(A.y= (x - 2) 2+2B. >= (x - 2) 2 - 2C. y=x2+2D. y=x2 - 210.二次函数y=ax1+bx+c (。

2020-2021学年山东省德州九中九年级(上)第一次月考数学试卷(10月份)(附答案详解)

2020-2021学年山东省德州九中九年级(上)第一次月考数学试卷(10月份)(附答案详解)

2020-2021学年山东省德州九中九年级(上)第一次月考数学试卷(10月份)一、选择题(本大题共12小题,共48.0分)1.下列方程中,是一元二次方程的是()A. ax2+2x=1B. x+1x−1=0C. 3(x+2)2=3x2−4x+1D. 3x2−12=x+232.下列抛物线中,与抛物线y=x2−2x+4具有相同对称轴的是()A. y=4x2+2x+1B. y=2x2−4x+1C. y=2x2−x+4D. y=x2−4x+23.若x=2是关于x的一元二次方程x2−mx+8=0的一个解.则m的值是()A. 6B. 5C. 2D. −64.用配方法解方程x2+10x+9=0,配方后可得()A. (x+5)2=16B. (x+5)2=1C. (x+10)2=91D. (x+10)2=1095.某树主干长出若干数目的支干,每个支干又长出同样数目小分支,主干、支干和小分支总数共31.若设主干长出x个支干,则可列方程是()A. (1+x)2=31B. 1+x+x2=31C. (1+x)x=31D. 1+x+2x=316.已知点A(−3,y1),B(−1,y2),C(2,y3)在函数y=−x2−2x+b的图象上,则y1、y2、y3的大小关系为()A. y1<y3<y2B. y3<y1<y2C. y3<y2<y1D. y2<y1<y37.设a,b是方程x2+x−2020=0的两个实数根,则a2+2a+b的值是()A. 2021B. 2020C. 2019D. 20188.二次函数y=−2x2+4x+1的图象如何平移可得到y=−2x2的图象()A. 向左平移1个单位,向上平移3个单位B. 向右平移1个单位,向上平移3个单位C. 向左平移1个单位,向下平移3个单位D. 向右平移1个单位,向下平移3个单位9.在平面直角坐标系中,将抛物线y=x2−(m−1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限10.在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b的图象可能是()A. B.C. D.11.已知抛物线y=x2+bx+c的对称轴为x=1,且它与x轴交于A、B两点.若AB的长是6,则该抛物线的顶点坐标为()A. (1,9)B. (1,8)C. (1,−9)D. (1,−8)12.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(−1,0)和B,与y轴交于点C.下列结论:①abc<0,②2a+b<0,③4a−2b+c>0,④3a+c>0,其中正确的结论个数为()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共24.0分)13.方程x2=2x的根为______.14.篮球联赛实行单循环赛制,即每两个球队之间进行一场比赛,计划一共打36场比赛,设一共有x个球队参赛,根据题意,所列方程为______.15.抛物线y=ax2+bx+c的部分图象如图所示,则当y>0时,x的取值范围是______16.若二次函数y=(k−2)x2+2x+1的图象与x轴有交点,则k的取值范围是______.17.抛物线y=12x2+mx+m+12经过定点的坐标是______18.平面直角坐标系中,将抛物线y=−x2平移得到抛物线C,如图所示,且抛物线C经过点A(−1,0)和B(0,3),点P是抛物线C上第一象限内一动点,过点P作x轴的垂线,垂足为Q,则OQ+PQ的最大值为______.三、解答题(本大题共7小题,共78.0分)19.解方程:(1)2x2+5x=−1;(2)2(x−3)2=x2−9.20.已知关于x的一元二次方程x2+(4m+1)x+2m−1=0,(1)求证:不论m任何实数,方程总有两个不相等的实数根;(2)若方程的两根为x1、x2且满足1x1+1x2=−12,求m的值.21.我市某楼盘原计划以每平方米5000元的均价对外销售,由于国家“限购”政策出台,购房者持币观望,房产商为了加快资金周转,对该楼盘价格经过两次下调后,决定以每平方米4050元的均价开盘销售.(1)求两次下调的平均百分率;(2)对开盘当天购房的客户,房产商在开盘均价的基础上,还给予以下两种优惠方案供选择:①打9.9折销售;②不打折,一次性送装修费每平方米40元,某客户在开盘当天购买了该楼盘的一套120平方米的商品房,试问该客户选择哪种方案购房更优惠一些?x2+bx+c经过点A(3√3,0)和点B(0,3),且这个抛物线的对称轴为22.抛物线y=−13直线l,顶点为C.(1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.23.如图,要设计一幅宽20cm,长30cm的图案,其中有两横两竖的彩条,横竖彩条的宽度比为2:1,如果要使彩条所占的面积是图案面积的19,则竖彩条宽度为多少?7524.商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,请回答:(1)商场日销售量增加______件,每件商品盈利______元(用含x的代数式表示).(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?(3)在上述条件不变、销售正常情况下,商场日盈利可以达到2200元吗?如果可以,请求出x,如果不行,请说明理由.25.已知直线l:y=−2,抛物线C:y=ax2−1经过点(2,0)(1)求a的值;(2)如图①,点P是抛物线C上任意一点,过点P作直线l的垂线,垂足为Q.求证:PO=PQ;(3)请你参考(2)中的结论解决下列问题1.如图②,过原点作直线交抛物线C于A,B两点,过此两点作直线l的垂线,垂足分别为M,N,连接ON,OM,求证:OM⊥ON;2.如图③,点D(1,1),使探究在抛物线C上是否存在点F,使得FD+FO取得最小值?若存在,求出点F的坐标,若不存在,请说明理由.答案和解析1.【答案】D【解析】【分析】本题考查一元二次方程的概念,一元二次方程未知数的最高次数是2,为整式方程,并且二次项系数不为0.找到化简后未知数的最高次数是2,二次项系数不为0的整式方程的选项即可.【解答】解:A、a有可能为0,不符合题意;B、为分式方程,不符合题意;C、化简后为一元一次方程,不符合题意;D、未知数的最高次数是2,二次项系数不为0,是一元二次方程,符合题意;故选D.2.【答案】B【解析】解:抛物线y=x2−2x+4的对称轴为x=1;A、y=4x2+2x+1的对称轴为x=−1,不符合题意;4B、y=2x2−4x+1的对称轴为x=1,符合题意;C、y=2x2−x+4的对称轴为x=1,不符合题意;4D、y=x2−4x+2的对称轴为x=2,不符合题意,故选B.根据对称轴方程分别确定各个抛物线的对称轴后即可作出判断.此题考查了二次函数的性质,牢记对称轴方程公式是解答本题的关键,难度不大.3.【答案】A【解析】【分析】本题考查了一元二次方程的解,此题比较简单,易于掌握.先把x的值代入方程即可得到一个关于m的方程,解一元一次方程即可.【解答】解:把x=2代入方程得:4−2m+8=0,解得m=6.故选:A.4.【答案】A【解析】解:方程x2+10x+9=0,整理得:x2+10x=−9,配方得:x2+10x+25=16,即(x+5)2=16,故选A.方程移项,利用完全平方公式化简得到结果即可.此题考查了解一元二次方程−配方法,熟练掌握完全平方公式是解本题的关键.5.【答案】B【解析】解:设主干长出x个支干,根据题意列方程得:x2+x+1=31.故选:B.由题意设主干长出x个支干,每个支干又长出x个小分支,则又长出x2个小分支,则共有x2+x+1个分支,即可列方程.此题考查了由实际问题抽象出一元二次方程,要根据题意分别表示主干、支干、小分支的数目,找到关键描述语,找到等量关系是解决问题的关键.6.【答案】B【解析】【分析】本题考查二次函数的性质,解题的关键是明确二次函数的性质,找出所求问题需要的条件.根据二次函数图象具有对称性和二次函数的增减性,可以判断y1、y2、y3的大小,从而可以解答本题.【解答】解:∵y=−x2−2x+b,∴函数y =−x 2−2x +b 的对称轴为直线x =−1,开口向下,当x <−1时,y 随x 的增大而增大,当x >−1时,y 随x 的增大而减小, ∵−1−(−3)=2,−1−(−1)=0,2−(−1)=3, ∴y 3<y 1<y 2, 故选B .7.【答案】C【解析】解:∵a ,b 是方程x 2+x −2020=0的两个实数根, ∴a 2+a =2020,a +b =−1,∴a 2+2a +b =(a 2+a)+(a +b)=2020−1=2019. 故选:C .根据一元二次方程的解及根与系数的关系可得出a 2+a =2020、a +b =−1,将其代入a 2+2a +b =(a 2+a)+(a +b)中即可求出结论.本题考查了根与系数的关系以及一元二次方程的解,根据一元二次方程的解及根与系数的关系找出a 2+a =2020、a +b =−1是解题的关键.8.【答案】C【解析】解:二次函数y =−2x 2+4x +1的顶点坐标为(1,3),y =−2x 2的顶点坐标为(0,0),只需将函数y =−2x 2+4x +1的图象向左移动1个单位,向下移动3个单位即可. 故选:C .根据配方法,可得顶点式解析式,根据右移减,上移加,可得答案.本题考查函数的图象变换,讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可.9.【答案】D【解析】解:∵y =x 2−(m −1)x +m =(x −m−12)2+m −(m−1)24,∴该抛物线顶点坐标是(m−12,m −(m−1)24),∴将其沿y 轴向下平移3个单位后得到的抛物线的顶点坐标是(m−12,m −(m−1)24−3),∵m>1,∴m−1>0,∴m−12>0,∵m−(m−1)24−3=4m−(m2−2m+1)−124=−(m−3)2−44=−(m−3)24−1<0,∴点(m−12,m−(m−1)24−3)在第四象限;故选:D.根据平移规律得到平移后抛物线的顶点坐标,然后结合m的取值范围判断新抛物线的顶点所在的象限即可.本题考查了二次函数的图象与性质、平移的性质、抛物线的顶点坐标等知识;熟练掌握二次函数的图象和性质,求出抛物线的顶点坐标是解题的关键.10.【答案】C【解析】【分析】本题考查了二次函数的图象以及一次函数图象与系数的关系,根据a、b的正负确定一次函数图象经过的象限是解题的关键.根据二次函数图象的开口以及对称轴与y轴的关系即可得出a、b的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.【解答】解:A.二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故A错误;B.∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,且与二次函数交于y轴负半轴的同一点,故B错误;C.二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故C 正确;∵D.二次函数图象开口向上,对称轴在y 轴右侧,∴a >0,b <0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y 轴负半轴的同一点, 故D 错误;故选C .11.【答案】C【解析】解:∵抛物线y =x 2+bx +c 的对称轴为x =1,且它与x 轴交于A 、B 两点.AB 的长是6,∴点A 的坐标为(−2,0),点B 的坐标为(4,0)或点A 的坐标为(4,0),点B 的坐标为(−2,0), ∴{−b 2×1=14−2b +c =0, 得{b =−2c =−8, ∴y =x 2−2x −8=(x −1)2−9,∴该抛物线的顶点坐标为(1,−9),故选:C .根据题意可以得到点A 和点B 的坐标,然后根据对称轴为x =1可以求得b 、c 的值,然后将函数解析式化为顶点式即可解答本题.本题考查抛物线与x 轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.12.【答案】B【解析】解:①∵由抛物线的开口向上知a >0,∵对称轴位于y 轴的右侧,∴b <0.∵抛物线与y 轴交于负半轴,∴c <0,∴abc >0;故错误;<1,得2a>−b,即2a+b>0,②对称轴为x=−b2a故错误;③如图,当x=−2时,y>0,4a−2b+c>0,故正确;④∵当x=−1时,y=0,∴0=a−b+c<a+2a+c=3a+c,即3a+c>0.故正确.综上所述,有2个结论正确.故选:B.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴求出2a与b的关系.本题主要考查抛物线与x轴的交点坐标,二次函数图象与函数系数之间的关系,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系.13.【答案】x1=0,x2=2【解析】解:x2=2x,x2−2x=0,x(x−2)=0,x=0,或x−2=0,x1=0,x2=2,故答案为:x1=0,x2=2.移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元二次方程−因式分解法,因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.14.【答案】12x(x −1)=36【解析】解:设一共有x 个球队参赛,每个队都要赛(x −1)场,但两队之间只有一场比赛,由题意得:12x(x −1)=36,故答案为12x(x −1)=36.赛制为单循环形式(每两队之间都赛一场),x 个球队比赛总场数为x(x−1)2,即可列方程.本题考查了由实际问题抽象出一元二次方程,解决本题的关键是读懂题意,得到总场数的等量关系.15.【答案】−1<x <3【解析】解:抛物线的对称轴为直线x =1,而抛物线与x 轴的一个交点坐标为(−1,0),所以抛物线与x 轴的另一个交点坐标为(3,0),所以当−1<x <3时,y >0.故答案为−1<x <3.利用抛物线的对称性得到抛物线与x 轴的另一个交点坐标为(3,0),然后写出抛物线在x 轴上方所对应的自变量的范围即可.本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c(a,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化解.关于x 的一元二次方程即可求得交点横坐标.也考查了二次函数的性质.16.【答案】k ≤3且k ≠2【解析】解:∵二次函数y =(k −2)x 2+2x +1的图象与x 轴有交点,∴一元二次方程(k −2)x 2+2x +1=0有解,∴{k −2≠0△=22−4(k −2)=12−4k ≥0, 解得:k ≤3且k ≠2.故答案为:k ≤3且k ≠2.根据二次函数图象与x 轴有交点可得出关于x 的一元二次方程有解,根据根的判别式结合二次项系数非零即可得出关于k 的一元一次不等式组,解不等式组即可得出结论. 本题考查了抛物线与x 轴的交点、根的判别式以及解一元一次不等式组,根据根的判别式△≥0结合二次项系数非零找出关于k 的一元一次不等式组是解题的关键.17.【答案】(−1,1)【解析】解:∵y =12x 2+(x +1)m +12,∵抛物线经过定点,∴x +1=0,∴x =−1,y =1,∴定点坐标为(−1,1),故答案为(−1,1)由y =12x 2+(x +1)m +12,抛物线经过定点,可得x +1=0,由此即可解决问题; 本题考查二次函数图象上的点的坐标特征,定点问题等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.18.【答案】214【解析】解:设平移后的解析式为y =−x 2+bx +c ,∵抛物线C 经过点A(−1,0)和B(0,3),∴{−1−b +c =0c =3,解得{b =2c =3, ∴抛物线C 的解析式为y =−x 2+2x +3,设Q(x,0),则P(x,−x 2+2x +3),∵点P 是抛物线C 上第一象限内一动点,∴OQ +PQ =x +(−x 2+2x +3)=−x 2+3x +3=−(x −32)2+214,∴OQ +PQ 的最大值为214,故答案为214.求得抛物线C 的解析式,设Q(x,0),则P(x,−x 2+2x +3),即可得出OQ +PQ =x +(−x 2+2x +3)=−(x −32)2+214,根据二次函数的性质即可求得.本题考查了二次函数的性质,二次函数图象与几何变换,根据题意得出OQ +PQ =−x 2+3x +3是解题的关键.19.【答案】解:(1)2x 2+5x +1=0,∵a =2,b =5,c =1,∴b 2−4ac =52−4×2×1=17,∴x =−b±√b 2−4ac 2a=−5±√172,, ∴x 1=−5+√172,x 2=−5−√172;(2)2(x −3)2=x 2−9,2(x −3)2−(x −3)(x +3)=0,(x −3)(2x −6−x −3)=0,∴x −3=0或x −9=0,∴x 1=3,x 2=9.【解析】(1)先把方程化为一般式,然后利用公式法解方程;(2)先把方程变形为2(x −3)2−(x −3)(x +3)=0,然后利用因式分解法解方程. 本题考查了解一元二次方程−因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了公式法解一元二次方程.20.【答案】解:(1)证明:Δ=(4m +1)2−4(2m −1)=16m 2+8m +1−8m +4=16m 2+5>0,∴不论m 为任何实数,方程总有两个不相等的实数根;(2)∵1x 1+1x 2=−12,即x 1+x 2x 1x 2=−12, ∴由根与系数的关系可得−4m−12m−1=−12,解得 m =−12,经检验得出m =−12是原方程的根,即m的值为−12.【解析】本题考查一元二次方程根与系数的关系,熟练掌握一元二次方程的根的情况与判别式Δ的符号的关系,把求未知系数的范围问题转化为解不等式的问题,体现了转化的数学思想.(1)要证明方程总有两个不相等的实数根,那么只要证明Δ>0即可;(2)因为1x1+1x2=x1+x2x1x2=−12,所以由根与系数的关系可得−4m−12m−1=−12,解方程可得m的值.21.【答案】解:(1)设两次下调的平均百分率为x,根据题意得:5000(1−x)2=4050,解得:x1=0.1=10%,x2=1.9(舍去),答:两次下调的平均百分率为10%.(2)∵方案①可优惠4050×120×(1−0.99)=4860(元),方案②可优惠400×120=4800(元),且4860>4800,∴方案①更优惠.【解析】(1)根据每次的均价等于上一次的价格乘以(1−x)(x为平均每次下调的百分率),可列出一个一元二次方程,解此方程可得平均每次下调的百分率;(2)根据优惠方案先分别求出方案①和方案②的优惠钱数,再进行比较即可得出答案.本题主要考查一元二次方程在实际中的应用:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22.【答案】解:(1)∵抛物线y=−13x2+bx+c经过A(3√3,0)、B(0,3),∴{−9+3√3b+c=0 c=3由上两式解得b=2√33,∴抛物线的解析式为:y=−13x2+2√33x+3;(2)由(1)抛物线对称轴为直线x=√3,把x=√3代入,y=−13x2+2√33x+3得y=4,则点C坐标为(√3,4),设线段AB所在直线为:y=kx+b,解得AB解析式为:y=−√33x+3,∵线段AB所在直线经过点A(3√3,0)、B(0,3),抛物线的对称轴l与直线AB交于点D,∴设点D的坐标为D(√3,m),将点D(√3,m)代入y=−√33x+3,解得m=2,∴点D坐标为(√3,2),∴CD=CE−DE=2过点B作BF⊥l于点F,∴BF=OE=√3,∵BF+AE=OE+AE=OA=3√3,∴S△ABC=S△BCD+S△ACD=12CD⋅BF+12CD⋅AE,∴S△ABC=12CD(BF+AE)=12×2×3√3=3√3.【解析】本题考查的是待定系数法求二次函数的解析式、待定系数法求一次函数的解析式,用割补法求三角形面积,二次函数的图象和性质,解答时注意数形结合.(1)利用待定系数法求抛物线解析式;(2)利用割补法求ABC的面积.23.【答案】解:设竖彩条的宽为xcm,则横彩条的宽为2xcm,则(30−2x)(20−4x)=30×20×(1−1975),整理得:x2−20x+19=0,解得:x1=1,x2=19(不合题意,舍去).答:竖彩条的宽度为1cm.【解析】可设竖彩条的宽是xcm,则横彩条的宽是2xcm,根据彩条所占面积是图案面积的19,可列方程求解.75本题考查的是一元二次方程的应用,设出横竖条的宽,以面积做为等量关系列方程求解.24.【答案】2x(50−x)【解析】解:(1)商场日销售量增加2x件,每件商品盈利(50−x)元,故答案为:2x、(50−x);(2)根据题意可得(30+2x)(50−x)=2100,解得:x=15或x=20,∵该商场为了尽快减少库存,∴降的越多,越吸引顾客,∴选x=20,答:每件商品降价20元,商场日盈利可达2100元.(3)根据题意可得(30+2x)(50−x)=2200,整理得到:x2−35x+350=0.由于△=b2−4ac=1225−1400=−175<0,所以该方程无解.故商场日盈利不可以达到2200元.(1)降价1元,可多售出2件,降价x元,可多售出2x件,盈利的钱数=原来的盈利−降低的钱数;(2)(3)根据日盈利=每件商品盈利的钱数×(原来每天销售的商品件数30+2×降价的钱数),列出方程求解即可.此题主要考查了一元二次方程的应用;得到日盈利的等量关系是解决本题的关键.25.【答案】解:(1)∵抛物线C:y=ax2−1经过点(2,0),∴0=4a−1,∴a=14;(2)∵a=14,∴抛物线解析式:y=14x2−1,设点P(a,14a2−1),∴PO=√(a−0)2+(14a2−1) 2=14a2+1,PQ=14a2−1−(−2)=14a2+1,∴PO=PQ;(3)1.由(2)可得OA=AM,OB=BN,∴∠BON=∠BNO,∠AOM=∠AMO,∵AM⊥MN,BN⊥MN,∴AM//BN,∴∠ABN+∠BAM=180°,∵∠ABN+∠BON+∠BNO=180°,∠AOM+∠AMO+∠BAM=180°,∴∠ABN+∠BON+∠BNO+∠AOM+∠AMO+∠BAM=360°,∴∠BON+∠AOM=90°,∴∠MON=90°,∴OM⊥ON;2.如图:过点F作EF⊥直线l,由(2)可得OF=EF,∵OF+DF=EF+DF,∴当点D,点F,点E三点共线时,OF+DF的值最小.即此时DE⊥直线l,∴OF+DF的最小值为DE=1+2=3.【解析】本题考查了二次函数综合题,待定系数法求解析式,两点距离公式,三角形内角和定理,最短路径问题,利用数形思想解决问题是本题的关键.(1)利用待定系数法可求a的值;a2−1),根据两点距离公式可求PQ,PO的长度,即可证PQ=PO;(2)设点P(a,14(3)1.由(2)可得OB=BN,AM=AO,即可求∠BON=∠BNO,∠AOM=∠AMO,根据三角形内角和定理可求OM⊥ON;2.过点F作EF⊥直线l,由(2)得OF=EF,当点D,点F,点E三点共线时,OF+DF的值最小,此时DE⊥直线l,即可求FD+FO的最小值.。

2019-2020学年黑龙江省哈尔滨九年级上第一次月考数学试卷及答案解析

2019-2020学年黑龙江省哈尔滨九年级上第一次月考数学试卷及答案解析
【分析】根据无理数的定义解答即可.
【解答】解:下列实数0, , ,π,其中,无理数有 ,π,
故选:B.
【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样无限不循环小数.
2.下列各个式子运算的结果是8a5的是( )
A.2a2+6a3B.(2a2)3C.8a7﹣8a2D.2a•4a4
10.AD是△ABC的中线,E是AD上一点,AE:ED=1:3,BE的延长线交AC于F,AF:FC=( )
A.1:3B.1:4C.1:5D.1:6
二.填空题(共10小题,满分30分,每小题3分)
11.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为万元.
12.函数y= 中,自变量x的取值范围为.
17.如图,在半径为5的⊙O中,弦AB=6,点C是优弧 上一点(不与A,B重合),则tanC的值为.
18.扇形的圆心角为80°,弧长为4πcm,则此扇形的面积等于cm2.
19.⊙O的直径为2,弦AB的长为1,弦BC的长为 ,则∠ABC的度数为.
20.如图,在△ABC中,AB=4,D是边AB中点,∠ACD=∠B,∠BAC的角平分线AE与线段CD交于点F,那么 的值是.
三.解答题(共7小题)
21.先化简,再求代数式(1﹣ )÷ 的值,其中x=2sin60°﹣tan45°.
22.在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形,如图,已知整点A(2,2),B(4,1),请在所给网格区域(含边界)上按要求画整点三角形.
(1)在图1中画一个等腰△PAB,使点P的横坐标大于点A的横坐标.

2019-2020学年吉林省第二实验学校九年级(上)第一次月考数学试卷(含解析)印刷版

2019-2020学年吉林省第二实验学校九年级(上)第一次月考数学试卷(含解析)印刷版

2019-2020学年吉林省第二实验学校九年级(上)第一次月考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列各数中,最小的数是()A.﹣1B.﹣6C.2D.32.(3分)下列几何体的主视图与众不同的是()A.B.C.D.3.(3分)2019年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重58000kg,将数58000用科学记数法表示为()A.58×103B.5.8×103C.0.58×105D.5.8×1044.(3分)不等式组的解集是()A.x≥2B.x>﹣2C.x≤2D.﹣2<x≤25.(3分)抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)6.(3分)观察图中尺规作图痕迹,下列结论错误的是()A.PQ为∠APB的平分线B.P A=PBC.点A、B到PQ的距离不相等D.∠APQ=∠BPQ7.(3分)函数y1=ax2+bx+c与y2=x的图象如图所示,当y1<y2时,自变量x的取值范围是()A.1<x<3B.x<1C.x>3D.x<1或x>38.(3分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米二、填空题(本大题共6小题,每小题3分,共18分9.(3分)计算:=.10.(3分)一元二次方程x2﹣5x+3=0根的判别式的值为.11.(3分)如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为.12.(3分)已知二次函数y=ax2﹣2x+c的图象如图所示,则点P(a,c)在第象限.13.(3分)如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连结AD、CD.若∠B=65°,则∠ADC的大小为度.14.(3分)如图,在平面直角坐标系中,点A是抛物线y=a(x﹣3)2+k与y轴的交点,点B是这条抛物线上另一点,且AB∥x轴,则以AB为边的菱形ABCD的周长为.三、解答题(本大题共10小题,共78分)15.(6分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点?若有,求公共点的坐标;若没有,请说明情况.16.(6分)小明和小刚相约周末到净月潭国家森林公园去徒步,小明和小刚的家分别距离公园1600米和2800米,两人分别从家中同时出发,小明骑自行车,小刚乘公交车,已知公交车的平均速度是骑自行车速度的3.5倍,结果小刚比小明提前4min到达公园,求小刚乘公交车的平均速度.17.(6分)如图所示,直线AC∥DE,DA⊥AC,隧道BC在直线AC上.某施工队要测量隧道BC的长,在点D处观测点B,测得∠BDA=45°,在点E处观测点C,测得∠CEF=53°,且测得AD=600米,DE=500米,试求隧道BC的长.【参考数据:sin53°≈,cos53°≈,tan53°≈】18.(7分)如图,菱形EFGH的顶点E、G分别在矩形ABCD的边AD,BC上,顶点F,H在矩形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若AB=3,BC=4,则菱形EFGH的面积最大值是.19.(7分)如图,在平面直角坐标系xOy中,二次函数图象的顶点坐标为(4,﹣3),该图象与x轴相交于点A、B,与y轴相交于点C,其中点A的横坐标为1.(1)求该二次函数的表达式;(2)求tan∠ABC.20.(7分)图①、图②是两个7×7网格,网格中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点,请仅用无刻度的直尺按要求作图(保留作图痕迹,不写作法).(1)在图①网格内画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图②网格内以OM为边画一个OMPQ,使OMPQ面积等于5且点P、Q均在格点上.(画出一种即可)21.(8分)如图①,甲、乙两车同时从A地出发,分别匀速前往B地与C地,甲车到达B地休息一段时间后原速返回,乙车到达C地后立即返回.两车恰好同时返回A地.图②是两车各自行驶的路程y(千米)与出发时间x(时)之间的函数图象.根据图象解答下列问题:(1)甲车到达B地休息了时;(2)求甲车返回A地途中y与x之间的函数关系式;(3)当x为何值时,两车与A地的路程恰好相同.(不考虑两车同在A地的情况)22.(9分)教材呈现:如图是华师版八年级下册数学教材第75页的部分内容.请根据教材的内容,运用此性质解决下列问题:如图①,Rt△ABC与Rt△EDC是两个全等的三角形,当两个三角形完全重合时,将△EDC绕直角顶点C顺时针旋转60°,点D恰好落在AB边上,连结DE,BE.【探究】(1)求证:DE∥BC.(2)判断S△ADC与S△BCE的大小关系S△ADC S△BCE(填”>””<”或”=”);【应用】如图②,在Rt△ABC中,∠ACB=90°,CD是斜边AB的中线,过点D作DE∥BC交AC于点F,交CD的垂线CE于点E,连结BE,AE.若S△BCE=2,EF=4FD,则四边形ADCE的面积为23.(10分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,BD⊥AB,AB=3,BD=4.动点P从点A出发,沿AC方向以每秒个单位长度的速度向终点C运动,过点P作PE⊥直线AB于点E.设点P的运动时间为t.(1)用含t的代数式表示线段PE的长;(2)当线段PE被线段BC平分时,求t的值;(3)设△APE与△ABC重合部分图形的面积为S,求S与t的函数关系式;(4)点Q是射线PE上一点,在点P的运动过程中,始终保持PQ=1,将△AEQ沿AQ翻折,使点E 的对应点为E′,直接写出当点E′落在直线AD上时t的值.24.(12分)已知,在平面直角坐标系xOy中,抛物线y=x2﹣4x+3与x轴交于A,B两点(点A在点B 的左侧),顶点为C,与y轴交点为D.(1)求点C和点A的坐标;(2)把y=x2﹣4x+3(x≥0)的图象沿着y轴翻折,翻折前与翻折后共同组成的图形记为“W”.①点E为“W”上一点,当△EAB的面积等于3时,求点E的横坐标;②点P在“W”,点Q在x轴上,当以点P、Q、C、D为顶点的四边形为平行四边形时,直接写出点Q的坐标;③点M为y=x2﹣4x+3(x≥0)上一点,作点M关于y轴的对称点N,以MN为边向上作正方形MNRS,当直线MD把正方形面积分为1:5两部分时,求点M的横坐标m的值.2019-2020学年吉林省第二实验学校九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列各数中,最小的数是()A.﹣1B.﹣6C.2D.3【分析】根据①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.即可判断出答案.【解答】解:四个选项中,最小的数是﹣6.故选:B.2.(3分)下列几何体的主视图与众不同的是()A.B.C.D.【分析】根据主视图是从正面看到的图象判定则可.【解答】解:A、主视图是下面两个正方形,上面一个正方形相叠;B、主视图是下面两个正方形,上面一个正方形相叠;C、主视图是下面两个正方形,上面一个正方形相叠;D、主视图上下都是两个正方形相叠.故选:D.3.(3分)2019年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重58000kg,将数58000用科学记数法表示为()A.58×103B.5.8×103C.0.58×105D.5.8×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:将数58000用科学记数法表示为5.8×104.故选:D.4.(3分)不等式组的解集是()A.x≥2B.x>﹣2C.x≤2D.﹣2<x≤2【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解①得:x>﹣2,解②得:x≤2,则不等式组的解集是:﹣2<x≤2.故选:D.5.(3分)抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)【分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).【解答】解:∵抛物线y=3(x﹣1)2+1是顶点式,∴顶点坐标是(1,1).故选A.6.(3分)观察图中尺规作图痕迹,下列结论错误的是()A.PQ为∠APB的平分线B.P A=PB C.点A、B到PQ的距离不相等D.∠APQ=∠BPQ 【分析】根据角平分线的作法进行解答即可.【解答】解:∵由图可知,PQ是∠APB的平分线,∴A,B,D正确;∵PQ是∠APB的平分线,P A=PB,∴点A、B到PQ的距离相等,故C错误.故选:C.7.(3分)函数y1=ax2+bx+c与y2=x的图象如图所示,当y1<y2时,自变量x的取值范围是()A.1<x<3B.x<1C.x>3D.x<1或x>3【分析】求y1<y2的自变量x的取值范围,从图上看就是二次函数图象在一次函数图象下方时,横坐标x的取值范围.【解答】解:y1<y2的自变量x的取值范围,从图上看就是二次函数图象在一次函数图象下方时,横坐标x的取值范围,从图上看当1<x<3时二次函数图象在一次函数图象下方,所以1<x<3.故选:A.8.(3分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题;【解答】解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==.故选:D.二、填空题(本大题共6小题,每小题3分,共18分9.(3分)计算:=.【分析】原式利用二次根式乘法法则计算即可得到结果.【解答】解:原式==,故答案为:10.(3分)一元二次方程x2﹣5x+3=0根的判别式的值为13.【分析】直接利用根的判别式△=b2﹣4ac求出答案.【解答】解:一元二次方程x2﹣5x+3=0根的判别式的值是:△=(﹣5)2﹣4×3=13.故答案为:13.11.(3分)如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为直线x=2.【分析】点(1,0),(3,0)的纵坐标相同,这两点一定关于对称轴对称,那么利用两点的横坐标可求对称轴.【解答】解:∵点(1,0),(3,0)的纵坐标相同,∴这两点一定关于对称轴对称,∴对称轴是:x==2.故答案为:直线x=2.12.(3分)已知二次函数y=ax2﹣2x+c的图象如图所示,则点P(a,c)在第二象限.【分析】观察图形得抛物线开口向下,抛物线与y轴的交点在x轴的上方,根据二次函数图形与系数的关系得到a<0,c>0,即可判断P点所在的象限.【解答】解:∵抛物线开口向下,∴a<0;∵抛物线与y轴的交点在x轴的上方,∴c>0.∴点P(a,c)在第二象限.故答案为二.13.(3分)如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连结AD、CD.若∠B=65°,则∠ADC的大小为65度.【分析】根据作法可得AB=CD,BC=AD,然后利用“边边边”证明△ABC和△CDA全等,再根据全等三角形对应角相等解答.【解答】解:∵以点A为圆心,以BC长为半径作弧;以顶点C为圆心,以AB长为半径作弧,两弧交于点D,∴AB=CD,BC=AD,在△ABC和△CDA中,,∴△ABC≌△CDA(SSS),∴∠ADC=∠B=65°.故答案为:65.14.(3分)如图,在平面直角坐标系中,点A是抛物线y=a(x﹣3)2+k与y轴的交点,点B是这条抛物线上另一点,且AB∥x轴,则以AB为边的菱形ABCD的周长为24.【分析】根据题意和二次函数的性质可以求得线段AB的长度,从而可以求得菱形ABCD的周长.【解答】解:∵在平面直角坐标系中,点点A是抛物线y=a(x﹣3)2+k与y轴的交点,∴点A的横坐标是0,该抛物线的对称轴为直线x=3,∵点B是这条抛物线上的另一点,且AB∥x轴,∴点B的横坐标是6,∴AB=6,∴菱形ABCD的周长为:6×4=24,故答案为:24.三、解答题(本大题共10小题,共78分)15.(6分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点?若有,求公共点的坐标;若没有,请说明情况.【分析】(1)把点A、B的坐标分别代入函数解析式求得b、c的值;(2)利用根的判别式进行判断该函数图象是否与x轴有交点,由题意得到方程﹣x2+x+3=0,通过解该方程求得x的值即为抛物线与x轴交点横坐标.【解答】解:(1)把A(0,3),B(﹣4,﹣)分别代入y=﹣x2+bx+c,得,解得;(2)由(1)可得,该抛物线解析式为:y=﹣x2+x+3.△=()2﹣4×(﹣)×3=>0,所以二次函数y=﹣x2+bx+c的图象与x轴有公共点.∵﹣x2+x+3=0的解为:x1=﹣2,x2=8∴公共点的坐标是(﹣2,0)或(8,0).16.(6分)小明和小刚相约周末到净月潭国家森林公园去徒步,小明和小刚的家分别距离公园1600米和2800米,两人分别从家中同时出发,小明骑自行车,小刚乘公交车,已知公交车的平均速度是骑自行车速度的3.5倍,结果小刚比小明提前4min到达公园,求小刚乘公交车的平均速度.【分析】设小明骑自行车的平均速度为x米/分钟,则小刚乘公交车的平均速度为3.5x米/分钟,根据时间=路程÷速度结合小刚比小明提前4min到达公园,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设小明骑自行车的平均速度为x米/分钟,则小刚乘公交车的平均速度为3.5x米/分钟,依题意,得:﹣=4,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴3.5x=700.答:小刚乘公交车的平均速度为700米/分钟.17.(6分)如图所示,直线AC∥DE,DA⊥AC,隧道BC在直线AC上.某施工队要测量隧道BC的长,在点D处观测点B,测得∠BDA=45°,在点E处观测点C,测得∠CEF=53°,且测得AD=600米,DE=500米,试求隧道BC的长.【参考数据:sin53°≈,cos53°≈,tan53°≈】【分析】作EM⊥AC于M,解直角三角形即可得到结论.【解答】解:在Rt△ABD中,AB=AD=600,作EM⊥AC于M,则AM=DE=500,∴BM=100,在Rt△CEM中,tan53°=,∴CM=800,∴BC=CM﹣BM=800﹣100=700(米)答:隧道BC长为700米18.(7分)如图,菱形EFGH的顶点E、G分别在矩形ABCD的边AD,BC上,顶点F,H在矩形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若AB=3,BC=4,则菱形EFGH的面积最大值是.【分析】(1)证明△BFG≌△DHE(AAS),即可得出BG=DE;(2)当点F与B重合,点H与D重合时,菱形EFGH的面积最大,由菱形的性质得出EG⊥BD,BE =DE=BG,设BE=DE=x,则AE=4﹣x,在Rt△ABE中,由勾股定理得出方程32+(4﹣x)2=x2,解得x=,得出CG=AE=4﹣=,菱形EFGH的面积最大值=矩形ABCD的面积﹣△ABE的面积﹣△CDG的面积,即可得出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠FBG=∠HDE,∵四边形EFGH是菱形,∴FG=EH,∠EFG=∠EHG,∠GFH=∠EFG,∠EHF=∠EHG,∴∠GFH=∠EHG,∴∠BFG=∠DHE,在△BFG和△DHE中,,∴△BFG≌△DHE(AAS),∴BG=DE;(2)解:当点F与B重合,点H与D重合时,菱形EFGH的面积最大,如图所示:∵四边形EFGH是菱形,∴EG⊥BD,BE=DE=BG,∵四边形ABCD是矩形,∴∠BAD=90°,设BE=DE=x,则AE=4﹣x,在Rt△ABE中,由勾股定理得:32+(4﹣x)2=x2,解得:x=,∴CG=AE=4﹣=,∴菱形EFGH的面积最大值=矩形ABCD的面积﹣△ABE的面积﹣△CDG的面积=3×4﹣2×××3=;故答案为:.19.(7分)如图,在平面直角坐标系xOy中,二次函数图象的顶点坐标为(4,﹣3),该图象与x轴相交于点A、B,与y轴相交于点C,其中点A的横坐标为1.(1)求该二次函数的表达式;(2)求tan∠ABC.【分析】(1)由题意可设抛物线解析式为:y=a(x﹣4)2﹣3,将A(1,0)代入解析式来求a的值.(2)由锐角三角函数定义解答.【解答】解:(1)由题意可设抛物线解析式为:y=a(x﹣4)2﹣3,(a≠0).把A(1,0)代入,得0=a(1﹣4)2﹣3,解得a=.故该二次函数解析式为y=(x﹣4)2﹣3;(2)令x=0,则y=(0﹣4)2﹣3=.则OC=.因为二次函数图象的顶点坐标为(4,﹣3),A(1,0),则点B与点A关系直线x=4对称,所以B(7,0).所以OB=7.所以tan∠ABC===,即tan∠ABC=.20.(7分)图①、图②是两个7×7网格,网格中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点,请仅用无刻度的直尺按要求作图(保留作图痕迹,不写作法).(1)在图①网格内画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图②网格内以OM为边画一个OMPQ,使OMPQ面积等于5且点P、Q均在格点上.(画出一种即可)【分析】(1)利用数形结合的思想解决问题即可.(2)利用数形结合的思想解决问题即可(答案不唯一).【解答】解:(1)如图,△MON即为所求.(2)四边形OMPQ即为所求.21.(8分)如图①,甲、乙两车同时从A地出发,分别匀速前往B地与C地,甲车到达B地休息一段时间后原速返回,乙车到达C地后立即返回.两车恰好同时返回A地.图②是两车各自行驶的路程y(千米)与出发时间x(时)之间的函数图象.根据图象解答下列问题:(1)甲车到达B地休息了3小时;(2)求甲车返回A地途中y与x之间的函数关系式;(3)当x为何值时,两车与A地的路程恰好相同.(不考虑两车同在A地的情况)【分析】(1)根据题意和图象中的数据可以求得甲车到达B地休息了多长时间;(2)根据函数图象中的数据可以求得甲车返回A地途中y与x之间的函数关系式;(3)根据函数图象中的数据可以求得甲乙的速度,从而可以解答本题.【解答】解:(1)由题意可得,甲车到达B地休息了:7﹣2﹣2=3(小时),故答案为:3小;(2)设甲车返回A地途中y与x之间的函数关系式是y=kx+b,,得,即甲车返回A地途中y与x之间的函数关系式是y=80x﹣240;(3)甲车的速度为160÷2=80km/h,乙车的速度为:420÷7=60km/h,令60x=160,得x=,令60x=210+(210﹣160),得x=,当x为或时,两车与A地的距离恰好相同.22.(9分)教材呈现:如图是华师版八年级下册数学教材第75页的部分内容.请根据教材的内容,运用此性质解决下列问题:如图①,Rt△ABC与Rt△EDC是两个全等的三角形,当两个三角形完全重合时,将△EDC绕直角顶点C顺时针旋转60°,点D恰好落在AB边上,连结DE,BE.【探究】(1)求证:DE∥BC.(2)判断S△ADC与S△BCE的大小关系S△ADC=S△BCE(填”>””<”或”=”);【应用】如图②,在Rt△ABC中,∠ACB=90°,CD是斜边AB的中线,过点D作DE∥BC交AC于点F,交CD的垂线CE于点E,连结BE,AE.若S△BCE=2,EF=4FD,则四边形ADCE的面积为10【分析】【探究】(1)由旋转的性质可得CB=CD,∠CBD=∠CDE,∠BCD=60°,可得△BCD是等边三角形,可得∠CBD=60°=∠BCD=∠CDE,可得DE∥BC;(2)由平行线之间的距离处处相等,且底相同,可得S△BCE=S△BCD,通过证明AD=BD,可得S△BCD =S△ADC,可得S△ADC=S△BCE;【应用】由中线的性质可求S△BCD=S△ADC,由平行线的性质可求S△BCE=S△BCD=S△ADC=2,由三角形面积公式可求S△ACE=8,即可求解.【解答】证明:【探究】(1)∵将△EDC绕直角顶点C顺时针旋转60°,∴CB=CD,∠CBD=∠CDE,∠BCD=60°,∴△BCD是等边三角形,∴∠CBD=60°,∵∠CDE=60°=∠CBD,∴∠BCD=∠CDE,∴DE∥BC;(2)∵DE∥BC,∴S△BCE=S△BCD,∵∠ACB=90°,∠CBD=∠BCD=60°,∴∠A=∠ACD=30°,∴AD=CD,∴AD=BD,∴S△BCD=S△ADC,∴S△ADC=S△BCE,故答案为:=;【应用】∵CD是斜边AB的中线,∴S△BCD=S△ADC,∵DE∥BC,∠ACB=90°,∴S△BCE=S△BCD=S△ADC=2,∠AFD=∠ACB=90°,∵S△ACD=AC×DF=2,S△ACE=×AC×EF,且EF=4DF,∴S△ACE=8,∴四边形ADCE的面积=S△ADC+S△ACE=10,故答案为:10.23.(10分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,BD⊥AB,AB=3,BD=4.动点P从点A出发,沿AC方向以每秒个单位长度的速度向终点C运动,过点P作PE⊥直线AB于点E.设点P的运动时间为t.(1)用含t的代数式表示线段PE的长;(2)当线段PE被线段BC平分时,求t的值;(3)设△APE与△ABC重合部分图形的面积为S,求S与t的函数关系式;(4)点Q是射线PE上一点,在点P的运动过程中,始终保持PQ=1,将△AEQ沿AQ翻折,使点E 的对应点为E′,直接写出当点E′落在直线AD上时t的值.【分析】(1)证明△APE∽△AOB,可得=,由此即可解决问题.(2)如图2中,当PE被BC平分时,设PE交BC于F.由PF∥OB,BF=CF,推出OP=PC=OC,求出AP即可解决问题.(3)分两种情形:①如图3﹣1中,当0<t≤1时,重叠部分是△APE,根据S=•AE•PE求解.②如图3﹣2中,当1<t≤2时,重叠部分是四边形ABFP,根据S=S△APE﹣S△BFE求解即可.(4)分两种情形:①如图4﹣1中,当点E′落在DA的延长线上时,作BM⊥AD于M,在AD上截取AN,使得AN=AB,连接BN.证明∠EAQ=∠BNM,推出tan∠EAQ=tan∠BNM,可得=,由此构建方程即可解决问题.②如图4﹣2中,当点E′落在AD的延长线于E′,作MN⊥AD于N.由BM∥QE,推出△ABM∽△AEQ,可得=,由此构建方程即可解决问题.【解答】解:(1)如图1中,∵四边形ABCD是平行四边形,∴OB=OD=BD=2,∵BD⊥AB,PE⊥AB,∴OA===,PE∥BD,∴△APE∽△AOB,∴=,即=,解得:PE=2t;(2)如图2中,当PE被BC平分时,设PE交BC于F.∵PF∥OB,BF=CF,∴OP=PC=OC=,∴AP=OA+OP=,∴t=.(3)①如图3﹣1中,当0<t≤1时,重叠部分是△APE,S=•AE•PE=•3t•2t=3t2.②如图3﹣2中,当1<t≤2时,重叠部分是四边形ABFP,S=S△APE﹣S△BFE=3t2﹣•(3t﹣3)•(4t﹣4)=﹣3t2+12t﹣6.综上所述,S=.(4)①如图4﹣1中,当点E′落在DA的延长线上时,作BM⊥AD于M,在AD上截取AN,使得AN=AB,连接BN.在Rt△ABD中,AD===5,∵S△ABD=•AB•BD=•AD•BM,∴BM==,∴AM=MN===,∴NM=AN﹣AM=3﹣=,∵∠E′=∠AEQ=90°,QE=QE′.AQ=AQ,∴Rt△AQE≌Rt△AQE(HL),∴∠QAE=∠QAE′,∵∠E′AE=∠ABN+∠ANB,∠ANB=∠ABN,∴∠EAQ=∠BNM,∴tan∠EAQ=tan∠BNM,∴=,∴=,∴t=.②如图4﹣2中,当点E′落在AD的延长线于E′,作MN⊥AD于N.∵∠QAB=∠QAE′,MB⊥AB,MN⊥AD,∴BM=MN,∠ABM=∥ANM=90°,∵AM=AM,∴△AMN≌△AMB(HL),∴AB=AN=3,设BM=MN=x,则DM=4﹣x,在Rt△DMN中,则有(4﹣x)2=x2+22,解得x=,∵BM∥QE,∴△ABM∽△AEQ,∴=,∴=,解得t=2,综上所述,满足条件的t的值为s或2s.24.(12分)已知,在平面直角坐标系xOy中,抛物线y=x2﹣4x+3与x轴交于A,B两点(点A在点B 的左侧),顶点为C,与y轴交点为D.(1)求点C和点A的坐标;(2)把y=x2﹣4x+3(x≥0)的图象沿着y轴翻折,翻折前与翻折后共同组成的图形记为“W”.①点E为“W”上一点,当△EAB的面积等于3时,求点E的横坐标;②点P在“W”,点Q在x轴上,当以点P、Q、C、D为顶点的四边形为平行四边形时,直接写出点Q的坐标;③点M为y=x2﹣4x+3(x≥0)上一点,作点M关于y轴的对称点N,以MN为边向上作正方形MNRS,当直线MD把正方形面积分为1:5两部分时,求点M的横坐标m的值.【分析】(1)y=x2﹣4x+3,令x=0,则y=3,令y=0,则x=1或3,即可求解;(2)①△EAB的面积S=×AB×|y E|=2×|y E|=3,则y E=±3,即可求解;②分DA是平行四边形的一条边、DA是平行四边形的对角线两种情况,分别求解即可;③直线MD把正方形面积分为1:5两部分时,则S△MKS=S正方形MNRS,即可求解.【解答】解:(1)y=x2﹣4x+3,令x=0,则y=3,令y=0,则x=1或3,故点A、B、C、D的坐标为:(1,0)、(3,0)、(2,﹣1)、(0,3),答:点C和点A的坐标分别为:(0,3)、(1,0);(2)y=x2﹣4x+3(x≥0)的图象沿着y轴翻折,翻折后的抛物线表达式为:y=x2+4x+3,①△EAB的面积S=×AB×|y E|=2×|y E|=3,则y E=±3,即:x2﹣4x+3=±3或x2+4x+3=±3,解得:x=0或4或﹣4;答:点E的横坐标为:0或4或﹣4;②设点P(m,n),n=m2±4m+3,点Q(s,0),﹣﹣﹣﹣当DA是平行四边形的一条边时,当x≥0时,点D向右平移1个单位向下平移3个单位得到A,同样,点P(Q)向右平移1个单位向下平移3个单位得到Q(P),故:m+1=s,n﹣3=0或m﹣1=s,n+3=0,且n=m2﹣4m+3,解得:m=0或4(舍去0),故s=5,即点Q(5,0);当x<0时,同理可得:点Q(﹣3,0);当DA是平行四边形的对角线时,当x≥0时,m+s=1,n+0=3,且n=m2﹣4m+3,解得:s=5,即点Q(5,0);当x<0时,同理可得:点Q(﹣3,0);综上,Q的坐标为:(5,0)或(﹣3,0);③如下图:设边RS交直线AC于点K,设点M(m,m2﹣4m+3),则点N(﹣m,m2﹣4m+3),则MN=2m,直线MD函数表达式中的k值为:k ==m﹣4,tan∠MA=﹣k=4﹣m=tanα,则∠RSM=α,直线MD把正方形面积分为1:5两部分时,则S△MKS =S正方形MNRS,即×2m ×=×(2m)2,解得:m=1.第21页(共21页)。

天津市河西区自立中学上学期第一次月考九年级数学试卷(含答案)

天津市河西区自立中学上学期第一次月考九年级数学试卷(含答案)

天津市河西区自立中学2019-2019学年上学期第一次月考九年级数学试卷一、单选题(共12题,共36分)1.方程(1)0x x -=的两根分别为( ).A .11x =,21x =-B .10x =,21x =-C .10x =,21x =D .121x x == 2.抛物线22y x =-与y 轴交点的坐标是( ). A .(2,0)B .(2,0)-C .(0,2)D .(0,2)- 3.抛物线2y ax bx c =++与x 轴的交点是(1,0)-,(3,0),则这条抛物线的对称轴是( ).A .直线1x =-B .直线0x =C .直线1x =D .直线3x =4.某广场有一喷水池,水从地面喷出,如图,以在水平地面内的一条水平线为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线24y x x =-+(单位:米)的一部分,则水喷出的最大高度是( ). A .4米B .3米C .2米D .1米 5.若二次函数22(1)23y m x mx m m =+-+--图象经过原点,则m 的值为( ).A .1-或3B .3C .1-D .3-或16.下列生态环保标志中,是中心对称图形的是( ).A .B .C .D .7.如图所示,ABC △的顶点坐标是(4,6)A ,(5,2)B ,(2,1)C ,如果将ABC △绕点C 按逆时针方向旋转90︒,得到A B C '''△,那么点A 的对应点A '的坐标是( ).A .(3,3)-B .(3,3)-C .(2,4)-D .(1,4)8.在同一直角坐标系中,一次函数y ax c =+和二次函数2y ax c =+的图象大致为( ).A .xyOB .xy OC .xyOD .xyO9.将抛物线224y x =+绕原点O 旋转180︒,则旋转后的抛物线的解析式为( ).A .224y x =--B .224y x =-+C .224y x =-D .22y x =-10.已知抛物线2(1)y x m =-+(m 是常数),点11(,)A x y ,22(,)B x y 在抛物线上,若121x x <<,122x x +>,则下列大小比较正确的是( ). A .12m y y >> B .21m y y >> C .12y y m >> D .21y y m >> 11.已知二次函数2()1y x m =--,当3x ≤时,y 随x 的增大而减小,则m 的取值范围是( ).A .3m =B .3m >C .3m ≥D .3m ≤12.如图是二次函数2y ax bx c =++的图象的一部分,图象过点(3,0)A -,对称轴为直线1x =-,给出四个结论:①24b ac >;②20a b +=;③0c a -<;④若点1(4,)B y -,2(1,)C y 为函数图象上的两点,则12y y <,其中正确结论是( ).A .②④B .②③C .①③D .①④二、填空题(共6题,共18分)13.二次函数22(1)y x =-图象的顶点坐标为__________.14.某一型号飞机着陆后滑行的距离y (单位:m )与滑行时间x (单位:s )之间的函数表达式是260 1.5y x x =-,该型号飞机着陆后滑行的最大距离是__________m .15.已知抛物线2y ax bx c =++过(2,3)-,(4,3)两点,那么抛物线的对称轴为直线__________. 16.设m 、n 是方程2370x x +-=的两个根,则24m m n ++=__________.17.边长为1的正方形OABC 的顶点A 在x 正半轴上,点C 在y 正半轴上,将正方形OABC 绕顶点O 顺时针旋转75︒,如图所示,使点B 恰好落在函数2(0)y ax a =<的图象上,则a 的值为__________.18.若关于x 的一元二次方程(3)(5)x x m --=有实数根1x 、2x ,且12x x ≠,有下列结论:①13x =,25x =;②1m >-;③二次函数12()()y x x x x m =--+的图象与x 轴的公共点是(3,0)和(5,0).其中,正确的结论是__________(填序号).三、解答题(共6题,共66分) 19.(10分)解下列方程.20.(10分)二次函数23y x bx =++的图像经过点(3,0). (1)求b 的值.(2)求出该二次函数图像的顶点坐标和对称轴. (3)画出该二次函数的图像.(4)根据图像回答,当x 取何值时,0y <?21.(10分)如图,有长为24m 的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可用长度10m a =).(1)如果所围成的花圃的面积为245m ,试求宽AB 的长.(2)按题目的设计要求,能围成面积比245m 更大的花圃吗?请求出最大面积,并说明围法;如果不能,请说明理由.22.(12分)某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?23.(12分)在平面直角坐标系中,点(4,0)A ,点(0,3)B ,把ABO △绕点B 逆时针旋转,则A BO ''△,点A 、O 旋转后的对应点为A '、O ',旋转角为α.(1)如图1,若90α=︒,求AA '的长. (2)如图2,若120α=︒,求O '的坐标.(3)在(2)的条件下,边OA 上的一点P 旋转后的对应点为P ',当PO BP ''+取得最小值时,求点P '的坐标.24.(12分)在平面直角坐标系中,平行四边形ABOC 如图放置,点(0,4)A ,(1,0)C -,将此平行四边形绕点O 顺时针旋转90︒,得到平行四边形A B OC '''. (1)若抛物线经过点C 、A 、A ',求此抛物线的解析式.(2)在(1)情况下,点M 是第一象限内抛物线上的一动点,问:当点M 在何处时,AMA '△的面积最大?最大面积是多少?并求出此时M的坐标.(3)在(1)的情况下,若P为抛物线上一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q构成以BQ作为一边的平行四边形时,求点P的坐标.参考答案1-10、CDCAB BADAA 11-12、CD13、(1,0)14、60015、x=116、417、18、②③19、20、21、22、23、24、。

九年级数学下学期第一次月考试题(含解析) 新人教版-新人教版初中九年级全册数学试题

九年级数学下学期第一次月考试题(含解析)  新人教版-新人教版初中九年级全册数学试题

某某省池州市石台中学2015-2016学年九年级数学下学期第一次月考试题一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣22.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师X超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米4.分式有意义,则x的取值X围是()A.x>1 B.x≠1C.x<1 D.一切实数5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和108.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]]=2;[π]=3,按此规定[2020﹣]=.12.分解因式:4a2﹣16b2=.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是(填序号).三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.16.解不等式:1﹣>.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.18.如图,马路边安装的路灯由支柱上端的钢管ABCD支撑,AB=25cm,CG⊥AF,FD⊥AF,点G、点F分别是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,请计算钢管ABCD的长度.(钢管的直径忽略不计,结果精确到1cm.参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图某某息解答下列问题.(1)本次调查的学生人数为人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数 y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b 的取值X围;(3)将函数 y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么X围时,满足≤t≤1?2015-2016学年某某省池州市石台中学九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣2【考点】有理数大小比较.【分析】根据有理数比较大小的法则进行比较即可.【解答】解:∵|﹣3|=3,|﹣2|=2,3>2,∴﹣3<﹣2,∴﹣3<﹣2<0<2,∴最小的数是﹣3.故选B.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.2.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘除法法则,合并同类项的定义,进行逐项分析解答,用排除法找到正确的答案.【解答】解:A、原式=a6﹣2=a4,故本选项错误,B、原式=(5﹣3)a2=2a2,故本选项错误,C、原式=a2a3=a5,故本选项正确,D、原式中的两项不是同类项,不能进行合并,故本选项错误,故选C.【点评】本题主要考查同底数幂的乘除法法则,合并同类项的定义,关键在于根据相关的法则进行逐项分析解答.3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师X超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:20微米=20÷1 000 000米==2×10﹣5米,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.分式有意义,则x的取值X围是()A.x>1 B.x≠1C.x<1 D.一切实数【考点】分式有意义的条件.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:由分式有意义,得x﹣1≠0.解得x≠1,故选:B.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c【考点】平行线的判定与性质.【分析】直接利用平行线的判定方法分别进行判断得出答案.【解答】解:A、若∠3=∠2,则d∥e,故此选项错误,符合题意;B、若∠3+∠5=180°,则a∥c,正确,不合题意;C、若∠1=∠2,则a∥c,正确,不合题意;D、若a∥b,b∥c,则a∥c,正确,不合题意;故选:A.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,当t=时,乙到达B城,y甲=250;综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和10【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:6、7、8、9、10、10、12,最中间的数是9,则这组数据的中位数是9;10出现了2次,出现的次数最多,则众数是10;故选C.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数8.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】由于a≠0,那么a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限,利用这些结论即可求解.【解答】解:∵a≠0,∴a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限.A、图中直线经过直线经过第一、二、四象限,双曲线经过第二、四象限,故A选项错误;B、图中直线经过第第一、二、三象限,双曲线经过第二、四象限,故B选项正确;C、图中直线经过第二、三、四象限,故C选项错误;D、图中直线经过第一、二、三象限,双曲线经过第一、三象限,故D选项错误.故选:B.【点评】此题考查一次函数,反比例函数中系数及常数项与图象位置之间关系.直线y=kx+b、双曲线y=,当k>0时经过第一、三象限,当k<0时经过第二、四象限.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【考点】相似三角形的判定与性质;平行四边形的性质.【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选:B.【点评】本题考查了平行四边形的性质以及相似三角形的判定和性质,注:相似三角形的面积之比等于相似比的平方.10.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.【考点】解直角三角形;等腰直角三角形.【分析】利用等腰直角三角形的判定与性质推知BC=AC,DE=EC=DC,然后通过解直角△DBE来求tan∠DBC的值.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,BC=AC.又∵点D为边AC的中点,∴AD=DC=AC.∵DE⊥BC于点E,∴∠CDE=∠C=45°,∴DE=EC=DC=AC.∴tan∠DBC===.故选:A.【点评】本题考查了解直角三角形的应用、等腰直角三角形的性质.通过解直角三角形,可求出相关的边长或角的度数或三角函数值.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]]=2;[π]=3,按此规定[2020﹣]= 2015 .【考点】估算无理数的大小.【分析】先求出的X围,再求出2020﹣的X围,即可得出答案.【解答】解:∵4<<5,∴﹣4>﹣5,∴2016>2020﹣>2015,∴[2020﹣]=2015,故答案为:2015.【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出2016>2020﹣>2015,难度不是很大.12.分解因式:4a2﹣16b2= 4(a+2b)(a﹣2b).【考点】提公因式法与公式法的综合运用.【分析】根据提取公因式,再运用公式法,可分解因式.【解答】解:原式=4(a2﹣4b2)=4(a+2b)(a﹣2b),故答案为:4(a+2b)(a﹣2b).【点评】本题考查了因式分解,先提取公因式,再运用公式,分解到不能再分解为止.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:7250(1+8.5%)(1﹣x%)2=7200 .【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设2014、2015两年平均每年降价的百分率是x,那么2014年的房价为7250(1+8.5%)(1﹣x%),2015年的房价为7250(1+8.5%)(1﹣x%)2,然后根据2015年的7200元/m2即可列出方程解决问题.【解答】解:设设两年平均每年降价的百分率为x%,根据题意得:7250(1+8.5%)(1﹣x%)2=7200;故答案为:7250(1+8.5%)(1﹣x%)2=7200.【点评】本题是一道一元二次方程的运用题,是一道降低率问题,与实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是①②④(填序号).【考点】几何变换综合题.【分析】①根据矩形的性质,得∠DAC=∠ACB,再由平移的性质,可得出∠A1=∠ACB,A1D1=CB,从而证出结论;②易得△AC1F∽△ACD,根据面积比等于相似比平方可得出s与x的函数关系式③根据菱形的性质,四条边都相等,可推得当C1在AC中点时四边形ABC1D1是菱形.④当x=2时,点C1与点A重合,可求得BD=DD1=BD1=2,从而可判断△BDD1为等边三角形.【解答】解:①∵四边形ABCD为矩形,∴BC=AD,BC∥AD∴∠DAC=∠ACB∵把△ACD沿CA方向平移得到△A1C1D1,∴∠A1=∠DAC,A1D1=AD,AA1=CC1,在△A1AD1与△CC1B中,,∴△A1AD1≌△CC1B(SAS),故①正确;②易得△AC1F∽△ACD,∴解得:S△AC1F=(x﹣2)2(0<x<2);故②正确;③∵∠ACB=30°,∴∠CAB=60°,∵AB=1,∴AC=2,∵x=1,∴AC1=1,∴△AC1B是等边三角形,∴AB=D1C1,又AB∥BC1,∴四边形ABC1D1是菱形,故③错误;④如图所示:则可得BD=DD1=BD1=2,∴△BDD1为等边三角形,故④正确.综上可得正确的是①②④.故答案为:①②④【点评】本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的判定及解直角三角形的知识,解答本题需要我们熟练掌握全等三角形的判定及含30°角的直角三角形的性质,有一定难度.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.【考点】分式的化简求值.【分析】先算减法通分,再算除法,由此顺序化简,再进一步代入求得数值即可.【解答】解:原式===.当a=﹣3时,原式=.【点评】此题考查分式的化简求值,掌握运算顺序,化简的方法把分式化到最简,然后代值计算.16.解不等式:1﹣>.【考点】解一元一次不等式.【分析】根据解不等式的基本步骤,依次去分母、去括号、移项、合并同类项、系数化为1可得解集.【解答】解:去分母,得:6﹣(x﹣3)>2x,去括号,得:6﹣x+3>2x,移项,得:﹣x﹣2x>﹣6﹣3,合并同类项,得:﹣3x>﹣9,系数化为1,得:x<9.【点评】本题主要考查解不等式的能力,熟知解不等式的基本步骤是基础,去分母和系数化为1时注意不等号的方向是解不等式易错点.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.【考点】平行线分线段成比例.【分析】根据PQ∥BC可得,进而得出,再解答即可.【解答】解:∵PQ∥BC,∴,,∴MN∥BC,∴==,∴,∴,∵AP=AQ,∴PQ=3.【点评】此题考查了平行线段成比例,关键是根据平行线等分线段定理进行解答.18.如图,马路边安装的路灯由支柱上端的钢管ABCD支撑,AB=25cm,CG⊥AF,FD⊥AF,点G、点F分别是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,请计算钢管ABCD的长度.(钢管的直径忽略不计,结果精确到1cm.参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【考点】解直角三角形的应用.【分析】根据直角三角形的解法分别求出BC,CD的长,即可求出钢管ABCD的长度.【解答】解:在△BCG中,∠GBC=30°,BC=2BG=80cm,CD=≈41.2,钢管ABCD的长度=AB+BC+CD=25+80+41.2=146.2≈146cm.答:钢管ABCD的长度为146cm.【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?【考点】二元一次方程组的应用.【分析】(1)设八年级(一)班有x人、(二)班有y人,根据两个班的购票费之和为1126元和824元建立方程组求出其解即可;(2)根据单独购票的费用大于团体购票的费用确定选择团体购票,可以节省的费用为1126﹣824元.【解答】解:(1)设八年级(一)班有x人、(二)班有y人,由题意,得,解得:.答:八年级(一)班有48人、(二)班有55人;(2)∵1126>824,∴选择团体购票.团体购票节省的费用为:1126﹣824=302元.∴团体购票节省的费用302元.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时建立方程组求出各班的人数是关键.20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.【考点】相似三角形的判定与性质;翻折变换(折叠问题).【分析】(1)根据折叠的性质得出∠C=∠AED=90°,利用∠DEB=∠C,∠B=∠B证明三角形相似即可;(2)由折叠的性质知CD=DE,AC=AE.根据题意在Rt△BDE中运用勾股定理求DE,进而得出AD即可.【解答】证明:(1)∵∠C=90°,△ACD沿AD折叠,∴∠C=∠AED=90°,∴∠DEB=∠C=90°,又∵∠B=∠B,∴△BDE∽△BAC;(2)由勾股定理得,AB=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°.∴BE=AB﹣AE=10﹣6=4,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2,即CD2+42=(8﹣CD)2,解得:CD=3,在Rt△ACD中,由勾股定理得AC2+CD2=AD2,即32+62=AD2,解得:AD=.【点评】本题考查了相似三角形的判定和性质,关键是根据1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、勾股定理求解.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图某某息解答下列问题.(1)本次调查的学生人数为60 人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是ACD (只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?【考点】扇形统计图;条形统计图.【专题】数形结合.【分析】(1)根据完成课外作业时间低于60分钟的学生数占被调查人数的10%.可求出抽查的学生人数;(2)根据总人数,现有人数为补上那12人,画图即可;(3)根据中位数、众数、频率的意义对各选项依次进行判断即可解答;(4)先求出60人里学生每天完成课外作业时间在120分钟以下的人的比例,再按比例估算全校的人数.【解答】解:(1)6÷10%=60(人).(2)补全的频数分布直方图如图所示:(3)A.由图(1)知,学生完成作业所用时间的中位数在第三组内,正确;B.由图(1)知,学生完成作业所用时间的众数不在第三组内,错误;C.图(2)中,90~120数据组所在扇形的圆心角为108°.正确;D.图(1)中,落在第五组内数据的频率为0.15,正确.故答案为:60;ACD.(4)==60%,即样本中,完成作业时间不超过120分钟的学生占60%.∴560×60%=336.答:九年级学生中,课业负担适中的学生约为336人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【考点】二次函数的应用.【专题】销售问题.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,当x=45时,y最大=﹣2×452+180×45+2000=6050,当50≤x≤90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.【点评】本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数 y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b 的取值X围;(3)将函数 y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么X围时,满足≤t≤1?【考点】二次函数综合题.【专题】代数综合题;压轴题.【分析】(1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值X围;(3)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值X围:0≤m≤或≤m≤1.【解答】解:(1)根据有界函数的定义知,函数y=(x>0)不是有界函数.y=x+1(﹣4≤x≤2)是有界函数.边界值为:2+1=3;(2)∵函数y=﹣x+1的图象是y随x的增大而减小,∴当x=a时,y=﹣a+1=2,则a=﹣1当x=b时,y=﹣b+1.则,∴﹣1<b≤3;(3)若m>1,函数向下平移m个单位后,x=0时,函数值小于﹣1,此时函数的边界t>1,与题意不符,故m≤1.当x=﹣1时,y=1 即过点(﹣1,1)当x=0时,y最小=0,即过点(0,0),都向下平移m个单位,则(﹣1,1﹣m)、(0,﹣m)≤1﹣m≤1或﹣1≤﹣m≤﹣,∴0≤m≤或≤m≤1.【点评】本题考查了二次函数综合题型.掌握“有界函数”和“有界函数的边界值”的定义是解题的关键.。

2013届九年级上册数学12月月考试卷试题附答案

2013届九年级上册数学12月月考试卷试题附答案

2013届九年级12月月考数学试题温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!参考公式:二次函数y =ax 2+bx +c 图象的顶点坐标是)44,2(2ab ac a b --.一、选择题(本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1、 反比例函数2y x=的图象在( ) A. 第一、三象限 B. 第二、四象限 C. 第一、二象限 D. 第三、四象限 2、 已知二次函数的解析式为()221y x =-+,则该二次函数图象的顶点坐标是( ) A. (-2,1) B. (2,1)C. (2,-1)D. (1,2)3、 在 △ABC 中,AC=8,BC=6,AB=10,则△ABC 的外接圆半径长为( )A .10 B. 5C. 6D. 44、 将抛物线y=3x 2的图象先向上平移3个单位,再向右平移4个单位所得的解析式为( ) A.y=3(x -3)2+4 B. y=3(x+4)2-3 C. y=3(x -4)2+3 D. y=3(x -4)2-35、若不等式组220x a b x ->⎧⎨->⎩的解集是-1<x <1,则2006)(b a +值等于( )A.1B.-1C.0D.无法确定6.在△===∠B A C ABC tan ,53sin ,90,则中( )。

(A )53 (B )54 (C )43 (D ) 347.已知⊙O 的半径为10,P 为⊙O 内一点,且OP =6,则过P 点,且长度为整数的弦有( ) A .5条 B .6条 C .8条 D .10条8、如图,现有一圆心角为90°,半径为8cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为( ) A .1cmB .2cmC .3cmD . 4cm9.如图,直线24y x =-+与x 轴,y 轴分别相交于,A BC 为OB 上一点,且12∠=∠,则ABC S ∆等于 ( )A .1B .2C .3D .410.如图,将等腰直角三角形按图示方式翻折,若DE =2①△BC ′D 是等腰三角形; ②△CED 的周长等于BC 的长; ③DC ′平分∠BDE ; ④BE 长为422+。

2019-2020学年广西南宁市兴宁区三美学校九年级(上)第一次月考数学试卷(附答案详解)

2019-2020学年广西南宁市兴宁区三美学校九年级(上)第一次月考数学试卷(附答案详解)

2019-2020学年广西南宁市兴宁区三美学校九年级(上)第一次月考数学试卷1.如果a与−2互为相反数,那么a等于()A. −2B. 2C. −12D. 122.下列方程是一元二次方程的是()A. x2−y=1B. x2+2x−3=0C. x2+1x=3 D. x−5y=63.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆。

数据380000用科学记数法表示为()A. 38×104B. 3.8×104C. 3.8×105D. 0.38×1064.下列命题中,是假命题的是()A. 对顶角相等B. 同角的余角相等C. 内错角相等D. 到角两边距离相等的点,在这个角的角平分线上5.在一次数学测验中,随机抽取了10份试卷,其成绩如下:85,81,89,81,72,82,77,81,79,83,则这组数据的中位数为()A. 72B. 81C. 77D. 826.已知a+b=3,b−c=12,则a+2b−c的值为()A. 15B. 9C. −15D. −97.用配方法解一元二次方程x2−4x=4时,此方程可变形为()A. (x+2)2=1B. (x−2)2=0C. (x+2)2=9D. (x−2)2=88.如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE//BC交AC于点E,若∠A=54°,∠B=46°.则∠CDE的大小为()A. 45°B. 40°C. 39°D. 35°9.已知方程(k−3)x2+2x+1=0有两个实数根,则k的取值范围是()A. k<4B. k≤4C. k<4且k≠3D. k≤4且k≠310.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数值y>0时,x的取值范围是()A. x<−1B. x>3C. −1<x<3D. x<−1或x>311.过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.若AB=√3,∠DCF=30°,则EF的长为()D. √3A. 2B. 3C. √3212.已知二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc>0;②2a+b=0;③b2−4ac<0;④4a+2b+c>0.其中正确的是()A. ①③B. ②C. ②④D. ③④13.若式子√x+2有意义,则x的取值范围是______.14.因式分解:x2y−y3=______.15.要组织一场足球比赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,问比赛组织者应邀请多少只球队参赛?设比赛组织者应邀请x支球队参赛,根据题意列出的方程是______.16.将抛物线y=2(x−1)2+5先向右平移2个单位,再向下平移3个单位后得到的抛物线的解析式为______.17.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则DF的长为______ .18.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A2019的坐标是______.19.计算:20190−|−2|+√(−3)2−(14)−1.20.解分式方程:1−xx−2=12−x−221.如图所示的正方形网格,△ABC的顶点在网格上,在建立平面直角坐标系后,点B的坐标是(−1,−1).(1)把△ABC向左平移8格,再向上平移2格得到△A1B1C1,画出△A1B1C1;并写出点B1的坐标;(2)画出△A1B1C1关于x轴对称的图形△A2B2C2;并写出点C2的坐标.22.在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了______名同学;(2)条形统计图中,m=______,n=______;(3)扇形统计图中,艺术类读物所在扇形的圆心角是______度;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?23.已知:如图所示.在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于4cm2?24.某公司销售某一种新型通讯产品,已知每件产品的进价为4万元,每月销售该种产品的总开支(不含进价)总计11万元.在销售过程中发现,月销售量y(件)与销售单价x(万元)之间存在着如图所示的一次函数关系.(1)求y关于x的函数关系式(直接写出结果)(2)试写出该公司销售该种产品的月获利z(万元)关于销售单价x(万元)的函数关系式、当销售单价x为何值时,月获利最大?并求这个最大值(月获利=月销售额−月销售产品总进价−月总开支)(3)若公司希望该产品一个月的销售获利不低于5万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少万元.25.如图,在边长为2的正方形ABCD中,点P、Q分别是边AB、BC上的两个动点(与点A、B、C不重合)且始终保持BP=BQ,AQ⊥QE,QE交正方形外角平分线CE于点E,AE交CD于点F,连结PQ.(1)求证:△APQ≌△QCE;(2)求∠QAE的度数;(3)设BQ=x,当x为何值时,QF//CE,并求出此时△AQF的面积.26.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(−1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.答案和解析1.【答案】B【解析】【分析】本题考查了相反数的定义,相反数是指只有符号不同的两个数.根据相反数的定义求解即可.【解答】解:−2的相反数是2,那么a等于2.故选B.2.【答案】B【解析】解:A、x2−y=1是二元二次方程,不合题意;B、x2+2x−3=0是一元二次方程,符合题意;=3不是整式方程,不合题意;C、x2+1xD、x−5y=6是二元一次方程,不合题意,故选:B.利用一元二次方程的定义判断即可.此题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键.3.【答案】C【解析】【分析】此题考查科学记数法的表示方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级上册数学第一次月考试卷一、选择题。

(每小题只有一个正确答案)1.下列方程属于一元二次方程的是( )A .(x 2﹣2)x=x 2B .ax 2+bx+c=0C .3x+1x =5D .x 2=3x 2.下列方程中,无实数根的是( )A .3x 2﹣2x +1=0B .x 2﹣x ﹣2=0C .(x ﹣2)2=0D .(x ﹣2)2=10 3.抛物线y=x 2﹣2x+3的对称轴是直线( )A .x=﹣2B .x=2C .x=﹣1D .x=1 4.将一元二次方程x 2﹣2x ﹣3=0配方后所得的方程是( )A .(x ﹣2)2=4B .(x ﹣1)2=4C .(x ﹣1)2=3D .(x ﹣2)2=3 5.已知方程x 2﹣10x+21=0的两个根都是等腰三角形两条边长,则此三角形的周长是( ) A .13 B .17 C .13或17 D .以上都不对6.若抛物线y=a (x+m )2+n 的开口向下,顶点是(1,3),y 随x 的增大而减小,则x 的取值范围是( )A .x >3B .x <3C .x >1D .x <07.将二次函数y=x 2的图象向下平移一个单位,则平移以后的二次函数的解析式为( ) A .y=x 2﹣1 B .y=x 2+1 C .y=(x ﹣1)2 D .y=(x+1)2 8.下列二次函数中有一个函数的图像与x 轴有两个不同的交点,这个函数是( ) A .2y x B .24y x =+ C .2325y x x =-+ D .2351y x x =+- 9.关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 值为( ) A .1 B .1- C .1或1- D .1210.下面所示各图是在同一直角坐标系内,二次函数y=ax 2+c 与一次函数y=ax+c 的大致图象.正确的是( )A .B .C .D .二、填空题11.一元二次方程(x﹣1)(x+2)=0的根是_____.12.抛物线y=2x2﹣1与x轴有_____个交点.13.已知函数y=﹣x2+2x﹣3,则y的最大值为_____.14.若方程x2﹣4x﹣1=0的两根为x1,x2,则x1•x2﹣x1﹣x2=_____.15.若x2﹣2x﹣2=0,则代数式3x2﹣6x+2018的值是_____.16.二次函数y=ax2+bx+c的图象如图示,下列结论:(1)b<0;(2)c>0;(3)b2﹣4ac>0;(4)a﹣b+c<0;(5)2a+b<0;(6)abc>0;其中正确的是_____;(填写序号)17.今年9月10日,退休老师老黄去与老同事们聚会,共庆第33个教师节.晚上,读初三的孙子小明问老黄:“爷爷,今天有几个同事参加聚会啦?”爷爷:“我来考考你:我们每个人都与其他人握了一次手,一共握了120次,你知道我们一共有多少人参加聚会吗?”若小明设参加聚会的人有x个,则可列方程为_________三、解答题18.配方法解方程:x2+4x﹣5=0.19.已知抛物线y=x2+2x﹣1(1)用配方法或公式法求出它的顶点坐标和对称轴.(2)直接写出它与y轴的交点坐标是_____.20.李师傅去年开了一家商店,今年1月份开始盈利,2月份盈利2400元,4月份的盈利达到3456元,且从2月到4月,每月盈利的平均增长率都相同.(1)求每月盈利的平均增长率;(2)按照这个平均增长率,预计5月份这家商店的盈利将达到多少元?21.已知关于x的方程x2﹣kx﹣2=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为,求k的值及另一个根.22.如图,已知二次函数y=﹣x2+2x+m图象过点A(3,0),与y轴交于点B(1)求m的值;(2)若直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.23.如图,在Rt△ABC中,∠ABC=90°,AB=8cm,BC=10cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A、B同时出发,当一个点到达终点时,另一个点随之停止.设运动时间为x 秒,△PBQ的面积为ycm2.(1)求y与x的函数关系式,写出x的取值范围;(2)求运动多少秒时,△PBQ的面积为12cm2;(3)求运动多少秒时,△PBQ的面有最大值.最大值是多少?24.某超市销售樱桃,已知樱桃的进价为14 元/千克,如果售价为20元/千克,那么每天可售出260 千克,如果售价为25 元/千克,那么每天可售出210 千克,经调查发现:每天的销售量y(千克)与售价x(元/千克)之间存在一次函数关系(1)求y 与x 之间的函数关系式;(2)若该超市每天要获得利润1920 元,同时又要让消费者得到实惠,则售价x应定于多少元?(3)若樱桃的售价不得高于28 元/千克,请问售价定为多少时,该超市每天销售樱桃所获的利润最大?最大利润是多少元?25.如图,抛物线y=﹣x2+bx+c经过B(3,0)、C(0,3)两点,(1)求抛物线的函数关系式;(2)直接写出,当y≥3时,x的取值范围是_____;(3)在抛物线的对称轴上是否存在点M点,使△MOB是等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.参考答案1.D【分析】根据一元二次方程定义,逐项判定即可.【详解】解:A .整理得:3220x x x --=,不是一元二次方程,故此选项错误;B .当a =0时,不是一元二次方程,故此选项错误;C .左边不是整式方程,故不是一元二次方程,故此选项错误;D .是一元二次方程,故此选项正确.故选D .【点睛】题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键. 2.A【解析】解:A .∵△=(﹣2)2﹣4×3×1=﹣8<0,∴方程3x 2﹣2x +1=0无解,故A 符合题意; B .∵△=(﹣1)2﹣4×1×(﹣2)=9>0,∴方程x 2﹣x ﹣2=0有两个不相等的实数根,故B 不符合题意;C .∵(x ﹣2)2=0,∴x 1=x 2=2,故C 不符合题意;D .∵(x ﹣2)2=10,∴x ﹣,∴x 1,x 2=2,故D 不符合题意. 故选A .3.D【详解】解:∵y =x 2﹣2x +3=(x ﹣1)2+2,∴对称轴是直线x =1.故选D .4.B【解析】解:x 2﹣2x ﹣3=0,x 2﹣2x =3,x 2﹣2x +1=3+1,(x ﹣1)2=4.故选B .5.B【解析】解:解方程x 2﹣10x +21=0可得x =3或x =7,当等腰三角形的腰为7时,三角形三边为7、7、3,其周长为17;当等腰三角形的腰为3时,三角形三边为3、3、7,不满足三角形三边关系,舍去,∴三角形的周长为17.故选B.点睛:本题主要考查解一元二次方程及等腰三角形的性质,求得方程的两根是解题的关键,注意分两种情况讨论.6.C【解析】解:∵抛物线的顶点坐标为(1,3),∴对称轴为x=1.又∵开口向下,函数y随自变量x的增大而减小,∴x>1.故选C.点睛:本题考查了二次函数的性质,顶点式y=a(x+m)2+n,顶点坐标是(﹣m,n),对称轴是x=﹣m.此题最好是借助图象解答.7.A【解析】二次函数图象与平移变换.据平移变化的规律,左右平移只改变横坐标,左减右加.上下平移只改变纵坐标,下减上加.因此,将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为:y=x2﹣1.故选A.8.D【解析】试题分析:分别对A、B、C、D四个选项进行一一验证,令y=0,转化为一元二次方程,根据根的判别式来判断方程是否有根.A、令y=0,得x2=0,△=0-4×1×0=0,则函数图形与x轴没有两个交点,故A错误;B、令y=0,得x2+4=0,△=0-4×1×1=-4<0,则函数图形与x轴没有两个交点,故B错误;C、令y=0,得3x2-2x+5=0,△=4-4×3×5=-56<0,则函数图形与x轴没有两个交点,故C错误;D、令y=0,得3x2+5x-1=0,△=25-4×3×(-1)=37>0,则函数图形与x轴有两个交点,故D正确;故选D.考点:本题考查的是抛物线与x轴的交点点评:解答本题的关键是熟练掌握当二次函数与x轴有两个交点时,b2-4ac>0,与x轴有一个交点时,b2-4ac=0,与x轴没有交点时,b2-4ac<0.9.B【分析】根据一元二次方程解的定义得到-1+a2=0,再解关于a的方程,然后根据一元二次方程定义确定a的值.【详解】解:把x=0代入一元二次方程(a-1)x2+x-1+a2=0得-1+a2=0,解得a1=1,a2=-1,而a-1≠0,所以a的值为-1.故选B.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了一元二次方程的定义.10.B【解析】解:∵b=0,∴二次函数y=ax2+c的对称轴为y轴,∴B符合题意.故选B.点睛:本题考查了二次函数的图象以及一次函数的图象,由b=0找出抛物线的对称轴为y 轴是解题的关键.11.x1=1,x2=﹣2【解析】解:∵(x﹣1)(x+2)=0,∴x﹣1=0,x+2=0,∴x1=1,x2=﹣2.故答案为x1=1,x2=﹣2.12.2【解析】解:∵b2﹣4ac=2﹣4×2×(﹣1)=2+8=10>0,∴抛物线y=2x2﹣1与x轴有2个交点.故答案为2.13.﹣2【解析】解:∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴y的最大值为﹣2.故答案为:﹣2.14.-5【详解】解:∵方程x2﹣4x﹣1=0的两根为x1、x2,∴x1+x2=4,x1•x2=﹣1,x1x2﹣x1﹣x2=(﹣1)﹣4=-5.故答案为-5.点睛:本题考查了一元二次方程根与系数的关系,此题难度不大,解题的关键是掌握:若二次项系数为1,常用以下关系:x 1,x 2是方程x 2+px +q =0的两根时,x 1+x 2=﹣p ,x 1x 2=q 性质. 15.2024【解析】解:∵x 2﹣2x ﹣2=0,∴x 2﹣2x =2,∴3x 2﹣6x +2018=3(x 2﹣2x )+2018=3×2+2018=2024.故答案为2024.16.(2)(3)(4)(5)【详解】解:(1)函数开口向下,则a <0,且对称轴在y 轴的右边,则b >0,故结论错误; (2)函数与y 轴交于正半轴,则c >0,故结论正确;(3)∵抛物线与x 轴于两个交点,∴b 2﹣4ac >0;故结论正确;(4)∵当x =﹣1时,y <0,∴a ﹣b +c <0,故结论正确;(5)∵﹣2b a<1,∴2a +b <0;故结论正确; (6)∵a <0,b >0,c >0,∴abc <0;故结论错误.故答案为(2)(3)(4)(5).【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.17.(1)1202x x -= 【详解】参加聚会的人数为x 名,每个人都要握手(x −1)次,∴可列方程为12x (x −1)=120. 故答案为()1120.2x x -=18.x 1=﹣5,x 2=1.【解析】试题分析:先分解因式,即可得出两个一元一次方程,求出方程的解即可.试题解析:解:x2+4x﹣5=0,(x+5)(x﹣1)=0,x+5=0,x﹣1=0,∴x1=﹣5,x2=1.19.(1)顶点(﹣1,﹣2),对称轴为直线:x=﹣1;(2)(0,﹣1)【分析】(1)直接利用配方法得到函数的顶点式进而得出答案;(2)利用x=0时,求出y的值,即可答案.【详解】解:(1)y=x2+2x﹣1=(x+1)2﹣2,则它的顶点坐标为:(﹣1,﹣2),对称轴为:直线:x=﹣1;(2)当x=0时,y=﹣1,故它与y轴的交点坐标是:(0,﹣1).故答案为(0,﹣1).20.(1)20%;(2)4147.2元.【详解】试题分析:(1)设该商店的月平均增长率为x,根据等量关系:2月份盈利额×(1+增长率)2=4月份的盈利额列出方程求解即可.(2)5月份盈利=4月份盈利×增长率.试题解析:(1)设该商店的每月盈利的平均增长率为x,根据题意得:2400(1+x)2=3456,解得:x1=20%,x2=-2.2(舍去).(2)由(1)知,该商店的每月盈利的平均增长率为20%,则5月份盈利为:3456×(1+20%)=4147.2(元).答:(1)该商店的每月盈利的平均增长率为20%.(2)5月份盈利为4147.2元.考点:一元二次方程的应用.21.(1)见解析;(2)方程的另一根为x=1【解析】试题分析:(1)根据△=b2﹣4ac进行判断;(2)把x=3代入方程x2﹣(k+2)x+2k﹣1=0即可求得k,然后解这个方程即可.试题解析:(1)证明:由于x2﹣kx﹣2=0是一元二次方程,△=b2﹣4ac=k2﹣4×1×(﹣2)=k2+8,无论k取何实数,总有k2≥0,k2+8>0,所以方程总有两个不相等的实数根;(2)解:把x代入方程x2﹣kx﹣2=0)2﹣k1)﹣2=0,解得:k=2.此时方程可化为x2﹣2x﹣2=0.解此方程,得:x1=1x2=1所以方程的另一根为x=1点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根;还有方程根的意义等.22.(1)m=3;(2)P(1,2);(3)x<0或x>3.【解析】试题分析:(1)把点A(3,0)代入二次函数的解析式得到m=3;(2)先确定二次函数的解析式为:y=﹣x2+2x+3,求得B(0,3),得到直线AB的解析式为:y=﹣x+3,把对称轴方程x=1代入直线y=﹣x+3即可得到结果;(3)由两个函数的交点坐标即可求解.试题解析:解:(1)∵二次函数的图象过点A(3,0),∴0=﹣9+6+m,∴m=3;(2)∵m=3,∴二次函数的解析式为:y=﹣x2+2x+3,令x=0,则y=3,∴B(0,3),设直线AB的解析式为:y=kx+b,∴033k bb=+⎧⎨=⎩,解得:13kb=-⎧⎨=⎩,∴直线AB的解析式为:y=﹣x+3.∵抛物线y=﹣x2+2x+3,的对称轴为:x=1,∴把x=1代入y=﹣x+3得:y=2,∴P(1,2);(3)根据图象可知使一次函数值大于二次函数值的x的取值范围是x<0或x>3.23.(1)y=﹣x2+8x(0<x<5);(2)当运动2秒时,△PBQ的面积为12cm2;(3)当x=4时,△PBQ的面有最大值.最大值是16.【解析】试题分析:(1)根据题意用x表示出BP、BQ,根据三角形的面积公式计算;(2)根据题意列出方程,解方程即可;(3)根据二次函数的性质解答.试题解析:解:(1)由题意得:AP=xcm,BQ=2xcm,则BP=(8﹣x)cm,y=12×BQ×BP=x(8﹣x )=﹣x 2+8x (0<x <5);(2)﹣x 2+8x =12,x 1=2,x 2=6(不合题意,舍去),当运动2秒时,△PBQ 的面积为12cm 2;(3)y =﹣x 2+8x =﹣(x 2﹣8x +16)+16=﹣(x ﹣4)2+16,∴当x =4时,△PBQ 的面有最大值.最大值是16.点睛:本题考查的是三角形的面积计算、一元二次方程的解法、二次函数的性质,根据题意用x 表示出y 、掌握二次函数的性质是解题的关键.24.(1)y 与x 的函数关系式为:y=﹣10x+450;(2)该超市每天要获得利润810元,同时又要让消费者得到实惠,则售价x 应定于18元;(3)售价为28元时,每天获利最大为2210元.【解析】试题分析:(1)直接利用待定系数法求出一次函数解析式进而得出答案;(2)根据“总利润=单件利润×销售量”列方程求解后,根据要让消费者得到实惠可得答案; (3)首先表示出每天的获利,进而利用配方法结合二次函数增减性得出答案.试题解析:解:(1)设y 与x 的函数关系式为:y =kx +b ,把(20,250),(25,200)代入得: 2025025200k b k b +=⎧⎨+=⎩,解得:10450k b =-⎧⎨=⎩,∴y 与x 的函数关系式为:y =﹣10x +450; (2)根据题意知,(x ﹣15)(﹣10x +450)=810,整理得:x 2﹣60x +756=0,解得:x =42或x =18.∵要让消费者得到实惠,∴x =18.答:该超市每天要获得利润810元,同时又要让消费者得到实惠,则售价x 应定于18元;(3)设每天获利W 元,W =(x ﹣15)(﹣10x +450)=﹣10x 2+600x ﹣6750=﹣10(x ﹣30)2+2250. ∵a =﹣10<0,∴开口向下.∵对称轴为x =30,∴在x ≤28时,W 随x 的增大而增大,∴x =28时,W 最大值=13×170=2210(元).答:售价为28元时,每天获利最大为2210元.点睛:本题主要考查了二次函数的应用以及一次函数应用,正确利用二次函数增减性分析是解题的关键.25.(1)y =﹣x 2+2x +3;(2)0≤x ≤2;(3)M (1或(1,或(1,或(1,﹣.【分析】(1)把B 、C 两点坐标代入抛物线解析式,利用待定系数法可求得其解析式;(2)由解析式可求得其对称轴,求出点C关于对称轴的对称点,再结合函数图象即可得出y≥3时,x的取值范围;(3)可设M点坐标为(1,t),根据两点间的距离公式分别表示出BM、OM和OB的长度,再分BM=BO、OM=OB和MB=MO三种情况分别得到关于t的方程,求得t的值,则可求得M点的坐标.【详解】解:(1)∵抛物线y=﹣x2+bx+c经过B(3,0)、C(0,3)两点,∴9303b cc-++=⎧⎨=⎩,解得:23bc=⎧⎨=⎩,∴抛物线解析式为y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴对称轴为x=1,∴C(0,3)关于对称轴的对称点坐标为(2,3),∴当y≥3时,x的取值范围是0≤x≤2.故答案为0≤x≤2;(3)由(2)可知抛物线对称轴为x=1,设M(1,t).∵B(3,0),O(0,0),∴BM2=4+t2,OM2=1+t2,OB2=9.∵△MOB为等腰三角形,∴有BM=BO、OM=OB和MB=MO三种情况,①当BM=BO时,即4+t2=9,解得t M点坐标为(11;②当OM=OB时,即1+t2=9,解得t=±此时M点坐标为(1,或(1,﹣,③当MB=MO时,即4+t2=1+t2,无实数根.综上所述:存在满足条件的M点,其坐标为(111,(1,﹣.【点睛】本题为二次函数综合题,涉及利用待定系数法求抛物线的解析式,二次函数的性质,等腰三角形的性质,两点间的距离公式,知识点较多,综合性较强,难度适中.利用数形结合、方程思想及分类讨论思想是解题的关键.。

相关文档
最新文档