人教A版高中数学必修五第二学期期中考试 (2)
高中数学必修二 必刷卷03下学期期中仿真必刷模拟卷(含答案)

2020-2021学年高一下学期数学期中仿真必刷模拟卷【人教A版2019】期中检测卷03姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.已知向量=(x,2),=(1,﹣1),且∥,则•=()A.4B.2C.0D.﹣4【答案】D【分析】根据∥即可求出x值,从而可得出的坐标,进而可求出的值.【解答】解:∵∥,∴﹣x﹣2=0,解得x=﹣2,∴,.故选:D.【知识点】平面向量共线(平行)的坐标表示、平面向量数量积的性质及其运算2.已知复数z=(2+i)i,其中i为虚数单位,则下列说法中,错误的是()A.|z|<3B.z的虚部为2C.z的共扼复数为2i+1D.z在复平面内对应的点在第二象限【答案】C【分析】化简复数z,求出模长|z|、虚部,写出共轭复数和z=﹣1+2i对应的点坐标即可.【解答】解:复数z=(2+i)i,则|z|=|2+i|•|i|=<3,A正确;z=(2+i)i=﹣1+2i,其虚部为2,B正确;z的共轭复数为=﹣1﹣2i,所以C错误;z=﹣1+2i对应的点为(﹣1,﹣2),在第二象限,D正确;故选:C.【知识点】复数的模3.如图,在平行四边形ABCD中,E是BC的中点,F是线段AE上靠近点A的三等分点,则=()A.B.C.D.【答案】C【分析】利用平面向量的基本定理,用和线性表示向量即可.【解答】解:由可知,=﹣=﹣=﹣++=,故选:C.【知识点】平面向量的基本定理、向量数乘和线性运算4.已知M是△ABC内的一点,且•=4,∠BAC=30°,若△MBC,△MCA和△MAB的面积分别为1,x,y,则的最小值是()A.12B.14C.16D.18【答案】C【分析】利用平面向量的数量积运算求得bc的值,根据三角形的面积公式求得x+y的值,再利用1的代换,结合基本不等式求得的最小值.【解答】解:在△ABC中,设角A,B,C所对的边分别为a,b,c,∵•=4,∠BAC=30°,∴cb cos30°=4,∴bc=8,∴S△ABC=bc sin30°=×8×=2,∴1+x+y=2,即x+y=1,且x>0,y>0,∴=()(x+y)=10++≥10+2=10+6=16,当且仅当=,即y=3x=时取等号,∴的最小值是16.故选:C.【知识点】平面向量数量积的性质及其运算5.定义复数的一种运算z1*z2=(等式右边为普通运算),若复数z=a+bi,且正实数a,b满足a+b=3,则z*最小值为()A.B.C.D.【答案】B【分析】先由新定义用a和b表示出z*,再利用基本不等式求最值即可.【解答】解:z*=,∴,z*=.故选:B.【知识点】基本不等式及其应用、虚数单位i、复数6.如图,在三棱锥S﹣ABC中,SA⊥平面ABC,AB=BC=4,∠ABC=90°,侧棱SB与平面ABC所成的角为45°,M为AC的中点,N是侧棱SC上一动点,当△BMN的面积最小时,异面直线SB与MN所成角的余弦值为()A.B.C.D.【答案】D【分析】推导出△ABC为等腰直角三角形,BM⊥AC,SA⊥BM,从而BM⊥平面SAC,BM⊥MN,当MN 最小时,△BMN的面积最小,此时MN⊥SC,过S作SE⊥SC,交CA的延长线于点E,则SE∥MN,连接BE,则∠BSE为异面直线SB与MN所成的角或其补角.由此能求出异面直线SB与MN 所成角的余弦值.【解答】解:由题意知△ABC为等腰直角三角形,因为M为AC的中点,所以BM⊥AC.又SA⊥平面ABC,所以SA⊥BM,所以BM⊥平面SAC,所以BM⊥MN,故△BMN的面积.由题意知,所以,所以,当MN最小时,△BMN的面积最小,此时MN⊥SC.当MN⊥SC时,过S作SE⊥SC,交CA的延长线于点E,则SE∥MN,连接BE,则∠BSE为异面直线SB与MN所成的角或其补角.因为SA⊥平面ABC,所以∠SBA为直线SB与平面ABC所成的角,所以∠SBA=45°,所以SA=AB=4,所以,.又,所以,所以,,在Rt△EMB中,由题意知,所以由余弦定理得:==,故当△BMN的面积最小时,异面直线SB与MN所成角的余弦值为.故选:D.【知识点】异面直线及其所成的角7.在正方体AC1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交B.异面C.平行D.垂直【答案】A【分析】直线AB与直线外一点E确定的平面为A1BCD1,EF⊂平面A1BCD1,且两直线不平行,故两直线相交,可得结论.【解答】解:如图,在正方体AC1中:∵A1B∥D1C∴A1B与D1C可以确定平面A1BCD1,又∵EF⊂平面A1BCD1,且两直线不平行,∴直线A1B与直线EF的位置关系是相交,故选:A.【知识点】空间中直线与直线之间的位置关系8.如图所示,一个水平放置的平面图形的斜二测直观图是等腰梯形OA'B'C',且直观图OA'B'C'的面积为2,则该平面图形的面积为()A.2B.4C.4D.2【答案】B【分析】结合S原图=2S直观图,可得答案.【解答】解:由已知直观图OA'B'C'的面积为2,∴原来图形的面积S=2×2=4,故选:B.【知识点】斜二测法画直观图二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.如图,在平行四边形ABCD中,E,F分别为线段AD,CD的中点,AF∩CE=G,则()A.B.C.D.【答案】AB【分析】对于A:直接利用三角形法则的应用和线性运算的应用求出结果.对于B:利用三角形法则的应用和线性运算的应用求出结果.对于C:利用平行线分线段成比例和三角形法则和线性运算的应用求出结果.对于D:直接利用平行线成比例的应用求出结果.【解答】解:在平行四边形ABCD中,E,F分别为线段AD,CD的中点,AF∩CE=G,如图所示:根据三角形法则:对于A:,故选项A正确.对于B:E,F分别为线段AD,CD的中点,所以,故选项B正确.对于C:过E作EH∥DC,所以,所以,故,整理得,所以,即=,故选项C错误.对于D:根据平行线分线段成比例定理,点B、G、D共线,故选项D错误.故选:AB.【知识点】平面向量的基本定理10.△ABC是边长为2的等边三角形,已知向量满足,则下列结论正确的是()A.是单位向量B.C.D.【答案】ABD【分析】根据条件可求出,从而判断选项A正确;可得出,从而判断选项B正确;对两边平方即可得出,从而判断选项C错误;根据前面,可以得出,从而判断选项D正确.【解答】解:A.∵,∴由得,,∴是单位向量,该选项正确;B.∵,∴,该选项正确;C.,∴由得,,即,∴,该选项错误;D.∵,由上面得,,∴,该选项正确.故选:ABD.【知识点】数量积判断两个平面向量的垂直关系、平面向量数量积的性质及其运算11.如图,在以下四个正方体中,直线AB与平面CDE垂直的是()A.B.C.D.【答案】BD【分析】对于A,由∠BAD=,CE∥AD,得直线AB与平面CDE不垂直;对于B,由CE⊥AB,DE⊥AB,得直线AB⊥平面CDE;对于C,由AB与CE所成角为,知直线AB与平面CDE不垂直;对于D,推导出DE⊥AB,CE⊥AB,从而AB⊥平面CDE.【解答】解:对于A,∵∠BAD=,CE∥AD,∴AB与CE不垂直,∵CE⊂平面CDE,∴直线AB与平面CDE不垂直,故A错误;对于B,∵CE⊥AB,DE⊥AB,CE∩DE=E,∴直线AB⊥平面CDE,故B正确;对于C,AB与CE所成角为,∴直线AB与平面CDE不垂直,故C错误;对于D,如图,∵DE⊥BF,DE⊥AF,BF∩AF=F,∴DE⊥平面ABF,∵AB⊂平面ABF,∴DE⊥AB,同理得CE⊥AB,∵DE∩CE=E,∴AB⊥平面CDE,故D正确.故选:BD.【知识点】直线与平面垂直12.如图,在直三棱柱ABC﹣A1B1C1中,CC1=,点M是棱AA1的中点,则下列说法正确的是()A.异面直线BC与B1M所成的角为90°B.在B1C上存在点D,使MD∥平面ABCC.二面角B1﹣AC﹣B的大小为60°D.B1M⊥CM【答案】ABC【分析】选项A,连接MC1,易知BC∥B1C1,故∠MB1C1即为所求.由勾股定理可知A1B1⊥B1C1,由三棱柱的性质可知BB1⊥B1C1,再结合线面垂直的判定定理与性质定理即可证得可证得B1C1⊥MB1,即∠MB1C1=90°;选项B,连接BC1,交B1C于点D,连接MD,再取BC的中点E,连接DE、AE,易知四边形AMDE为平行四边形,故MD∥AE,再由线面平行的判定定理即可得证;选项C,取AC的中点N,连接BN、B1N,则∠BNB1即为所求,在Rt△BNB1中,由三角函数可求出tan∠BNB1的值,从而得解;选项D,在△CMB1中,利用勾股定理分别算出CM、MB1和B1C的长,判断其结果是否满足≠即可.【解答】解:选项A,连接MC1,由三棱柱的性质可知,BC∥B1C1,∴∠MB1C1即为异面直线BC与B1M.∵AB=BC=2,AC=,∴∠ABC=∠A1B1C1=90°,即A1B1⊥B1C1,由直三棱柱的性质可知,BB1⊥平面A1B1C1,∵B1C1⊂平面A1B1C1,∴BB1⊥B1C1,又A1B1∩BB1=B1,A1B1、BB1⊂平面ABB1A1,∴B1C1⊥平面ABB1A1,∴B1C1⊥MB1,即∠MB1C1=90°,∴选项A正确;选项B,连接BC1,交B1C于点D,连接MD,再取BC的中点E,连接DE、AE,则DE∥AM,DE=AM,∴四边形AMDE为平行四边形,∴MD∥AE,∵MD⊄平面ABC,AE⊂平面ABC,∴MD∥平面ABC,即选项B正确;选项C,取AC的中点N,连接BN、B1N,∵BB1⊥平面ABC,∴∠BNB1即为二面角B1﹣AC﹣B的平面角.在Rt△BNB1中,BB1=,BN=AB=,∴tan∠BNB1==,∴∠BNB1=60°,即选项C正确;选项D,在△CMB1中,CM2=AC2+AM2=,=+=,==10,显然≠,即B1M与CM不垂直,∴选项D错误.故选:ABC.【知识点】二面角的平面角及求法、直线与平面所成的角、直线与平面垂直三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知向量=(﹣1,2),=(2m﹣1,1),且⊥,则|﹣2|=.【答案】5【分析】通过向量垂直,数量积为0,求出m,然后利用向量的模的运算法则求解即可.【解答】解:向量=(﹣1,2),=(2m﹣1,1),且⊥,可得=0,即﹣(﹣2m﹣1)+2=0,解得m=,所以=(2,1),=(﹣5,0),所以|﹣2|=5.故答案为:5.【知识点】平面向量数量积的性质及其运算14.已知复数集合A={x+yi||x|≤1,|y|≤1,x,y∈R},,其中i为虚数单位,若复数z∈A∩B,则z对应的点Z在复平面内所形成图形的面积为【答案】72【分析】集合A={x+yi||x|≤1,|y|≤1,x,y∈R)在复平面内所形成的图形为正方形ABCD内包括边界,z2=(1+i)z1=(cos+i sin)z1对应的点在复平面内形成的图象为正方形PQRS,再用正方形PQRS的面积减去4个等腰直角三角形的面积可得.【解答】解:集合A={x+yi||x|≤1,|y|≤1,x,y∈R)在复平面内所形成的图形为正方形ABCD内包括边界,z2=(1+i)z1=(cos+i sin)z1对应的点在复平面内形成的图象为正方形PQRS,如图:所以所求图形的面积为﹣4×=﹣1=,故答案为:【知识点】复数的代数表示法及其几何意义15.正五角星是一个与黄金分割有着密切联系的优美集合图形,在如图所示的正五角星中,A,B,C,D,E是正五边形的五个顶点,且=,若=,则+=(用表示).【分析】根据可得出,进而得出,并且,,从而可用表示出.【解答】解:∵,∴,∴,∴=.故答案为:.【知识点】向量数乘和线性运算16.如图,平面ABC⊥平面BCDE,四边形BCDE为矩形,BE=2,BC=4,△ABC的面积为2,点P为线段DE上一点,当三棱锥P﹣ACE的体积为时,=.【分析】过A作AF⊥BC的延长线,垂足为F,证明AF⊥平面BCDE,再由已知求得AF,进一步求出三棱锥D﹣ACE的体积,利用求得,进一步得到答案.【解答】解:如图,过A作AF⊥BC的延长线,垂足为F,∵平面ABC⊥平面BCDE,平面ABC∩平面BCDE=BC,∴AF⊥平面BCDE,由BE=2,BC=4,△ABC的面积为,得,∴AF=,则=4×2×;∵=.∴,则.故答案为:.【知识点】棱柱、棱锥、棱台的体积四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.设A,B,C,D为平面直角坐标系中的四点,且A(2,﹣2),B(4,1),C(1,3).(1)若=,求D点的坐标及||;(2)设向量=,=,若k﹣与+3平行,求实数k的值.【分析】(1)可设D(x,y),然后根据即可得出D(3,6),进而可得出向量的坐标,进而求出的值;(2)可求出,,然后根据与平行即可求出k的值.【解答】解:(1)设D(x,y),则,且,,∴(2,3)=(x﹣1,y﹣3),∴,解得,∴D(3,6),,∴;(2),∴,,且与平行,∴9(2k+3)+7(3k﹣2)=0,解得.【知识点】平行向量(共线)、平面向量共线(平行)的坐标表示18.已知z∈C,z+2i和都是实数.(1)求复数z;(2)若复数(z+ai)2在复平面上对应的点在第四象限,求实数a的取值范围.【分析】(1)化简等式,利用复数为实数的条件求出a,b的值,即得复数z.(2)化简式子,利用复数与复平面内对应点之间的关系列出不等式组,解不等式组求得实数a的取值范围.【解答】解:(1)设z=a+bi(a,b∈R),则z+2i=a+(b+2)i,,∵z+2i和都是实数,∴,解得,∴z=4﹣2i.(2)由(1)知z=4﹣2i,∴(z+ai)2=[4+(a﹣2)i]2=16﹣(a﹣2)2+8(a﹣2)i,∵(z+ai)2在复平面上对应的点在第四象限,∴,即,∴,∴﹣2<a<2,即实数a的取值范围是(﹣2,2).【知识点】虚数单位i、复数、复数的代数表示法及其几何意义19.已知集合A={z||z|≤1},(1)求集合A中复数z=x+yi所对应的复平面内动点坐标(x,y)满足的关系?并在复平面内画出图形.(2)若z∈A,求|z﹣(1+i)|的最大值、最小值,并求此时的复数z(3)若B={z||z﹣ai|≤2},且A⊆B,求实数a的取值范围.【分析】(1)直接利用复数的模,求解复数z=x+yi所对应的复平面内动点坐标(x,y)满足的关系,并在复平面内画出图形单位圆即可.(2)若z∈A,求z取值时,画出图形,即可求出|z﹣(1+i)|的最大值、最小值.(3)利用B={z||z﹣ai|≤2}的几何意义,画出图象即可得到满足A⊆B时实数a的取值范围.【解答】解:(1)集合A={z||z|≤1},z=x+yi,∴x2+y2≤1(2)|z﹣(1+i)|的几何意义是圆上的点到(1,1)点的距离,如图:当z=,|z﹣(1+i)|最小值=.当z=,|z﹣(1+i)|最大值=.(3)B={z||z﹣ai|≤2},的几何意义是,复平面内的点与(0,a)的距离小于等于2,A⊆B,则满足如图所示的情况,即﹣1≤a≤1时,成立.【知识点】集合的包含关系判断及应用、复数的模20.如图,已知图1中△ABC是等腰三角形,AC=BC,D,E分别是AC,BC的中点,沿着DE把△CDE折起到△C′DE,使得平面C′DE⊥平面BADE,图2中AD=,AB=4,F为BC′的中点,连接EF.(Ⅰ)求证:EF∥平面AC′D;(Ⅱ)求四棱锥C′﹣ABED的侧面积.【分析】(Ⅰ)由中位线以及线面平行判定定理即可证明;(Ⅱ)由线面垂直、面面垂直即可求解.【解答】(Ⅰ)证明:取AC′中点G,连接DG,FG,由点F、G分别是BC′,AC′的中点,得GF∥AB,GF=AB,又DE∥AB,DE=AB.所以四边形DEFG是平行四边形,所以DG∥EF,且EF⊄平面AC′D,DG⊂平面AC′D,所以EF∥平面AC′D;(Ⅱ)因为△ABC是等腰三角形,AC=BC,AD=,AB=4,所以∠ACB=90°,所以△ABC是等腰直角三角形,且AC=BC=2.分别取DE、AB的中点H、I,连接C′H,HI,C′I,从而有C′H⊥DE.又因为平面C′DE⊥平面BADE,平面C′DE∩平面BADE=DE,所以C′H⊥平面BADE,又HI⊂平面BADE,所以C′H⊥HI,在△C′HI中,C′H=HI=1,∴,又翻折后,C′A=C′B,在△C′IA中,,∴四棱锥C′﹣ABED的侧面积为:+=1+.【知识点】棱柱、棱锥、棱台的侧面积和表面积、直线与平面平行21.现有一块长方形钢板ABCD(如图),其中AB=4米,AD=6米,运输途中不慎将四边形AEPF部分损坏,经测量AE=1.5米,AF=3米,tan∠AEP=4,∠AFP=45°.现过点P沿直线MN将破损部分切去(M,N分别在AB,AD上),设DN=t米.(1)请将切去的△AMN的面积表示为t的函数f(t);(2)当DN的长度为多少时,切去的△AMN面积最小?并求出最小面积.【分析】(1)计算P到AB,AD的距离,根据相似比求出AM,得出三角形AMN的面积;(2)利用基本不等式即可得出f(t)的最小值及其对应的t的值.【解答】解:(1)过P分别向AD,AB作垂线,垂足分别为G,H,则四边形AGPH为矩形,△PGF为等腰直角三角形,设PG=x,则GF=x,PH=AG=AF﹣FG=3﹣x,HE=AE﹣AH=1.5﹣x,∴tan∠AEP===4,解得x=1.∴AG=2,NG=4﹣t,由△NPG∽△NMA可得,即,∴AM=,∴f(t)=•(6﹣t)=(0≤t≤3).(2)f(t)==++2≥2+2=4,当且仅当=即t=2时取等号.故当DN=2m时,切去的△AMN面积最小,最小面积为4m2.【知识点】解三角形22.已知在平行四边形ABCD中,AD=2,AB=,∠ADC=,如图,DE∥CF,且DE=3,CF=4,∠DCF=,且平面ABCD⊥平面CDEF.(Ⅰ)求证:AC⊥平面CDEF;(Ⅱ)求四棱锥F﹣ABCD的体积.【分析】(Ⅰ)利用余弦定理及勾股定理证出线线垂直,再利用面面垂直的性质得证;(Ⅱ)证明CF⊥平面ABCD,即为四棱锥的高,再利用体积公式即可求解.【解答】解:(Ⅰ)证明:由题知在△ACD中,,则由余弦定理得AC2=AD2+CD2﹣2AD•CD•cos∠ADC=,则AC2+CD2=AD2,∴AC⊥CD,又∵平面ABCD⊥平面CDEF,平面ABCD∩平面CDEF=CD,AC⊂平面ABCD,∴AC⊥平面CDEF;(Ⅱ)由于平面ABCD⊥平面CDEF,又,且CF⊂平面CDEF,平面ABCD∩平面CDEF=CD,∴CF⊥平面ABCD,∵,∴四棱锥F﹣ABCD的体积为.【知识点】直线与平面垂直、棱柱、棱锥、棱台的体积。
高中数学(人教版)必修五第二章数列综合测试卷

高中数学(人教版)必修五第二章数列综合测试卷本试卷满分150分,其中选择题共75分,填空题共25分,解答题共50分。
试卷难度:0.63一.选择题(共15小题,满分75分,每小题5分)1.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.82.(5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏3.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.1104.(5分)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题5.(5分)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是由关系式a n+1()A.B.C.D.6.(5分)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.7.(5分)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定8.(5分)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.9.(5分)设△A n B n C n的三边长分别是a n,b n,c n,△A n B n C n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列10.(5分)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺11.(5分)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.5412.(5分)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱13.(5分)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣14.(5分)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.915.(5分)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0二.填空题(共5小题,满分25分,每小题5分)16.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=.17.(5分)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.18.(5分)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n },则此数列的项数为.19.(5分)已知无穷数列{a n },a 1=1,a 2=2,对任意n ∈N *,有a n +2=a n ,数列{b n }满足b n +1﹣b n =a n (n ∈N *),若数列中的任意一项都在该数列中重复出现无数次,则满足要求的b 1的值为.20.(5分)设数列{a n }的通项公式为a n =n 2+bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为.三.解答题(共5小题,满分50分,每小题10分)21.(10分)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.22.(10分)设{a n }和{b n }是两个等差数列,记c n =max {b 1﹣a 1n ,b 2﹣a 2n ,…,b n ﹣a n n }(n=1,2,3,…),其中max {x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n ﹣1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,>M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.23.(10分)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{a n }的通项公式;(Ⅱ)求和:b 1+b 3+b 5+…+b 2n ﹣1.24.(10分)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.25.(10分)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3﹣x 2=2. (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2)…P n +1(x n +1,n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y=0,x=x 1,x=x n +1所围成的区域的面积T n.高中数学(人教版)必修五第二章数列综合测试卷参考答案与试题解析一.选择题(共15小题,满分75分,每小题5分)1.(5分)(2017•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8【考点】85:等差数列的前n项和;84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.2.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【考点】89:等比数列的前n项和;88:等比数列的通项公式.【专题】11 :计算题;34 :方程思想;54 :等差数列与等比数列.【分析】设这个塔顶层有a盏灯,由题意和等比数列的定义可得:从塔顶层依次向下每层灯数是等比数列,结合条件和等比数列的前n项公式列出方程,求出a 的值.【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.【点评】本题考查了等比数列的定义,以及等比数列的前n项和公式的实际应用,属于基础题.3.(5分)(2017•新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.110【考点】8E:数列的求和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n ﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别分别即可求得N的值.【解答】解:设该数列为{a n},设b n=+…+=2n﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n﹣1=2n﹣n﹣2,),数列{a n}的前N项和为数列{b n}的前n项和,可知当N为时(n∈N+即为2n﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1, (2)﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N >100,∴该款软件的激活码440.故选A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.4.(5分)(2017•上海模拟)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4O:定义法;5L :简易逻辑.【分析】对于①不妨设a n=2n,b n=3n、c n=sinn,满足{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但是不满足c n=sinn是递增数列,对于②根据等差数列的性质和定义即可判断.【解答】解:对于①不妨设a n=2n,b n=3n、c n=sinn,∴{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但c n=sinn不是递增数列,故为假命题,对于②{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,不妨设公差为分别为a,b,c,∴a n+b n﹣a n﹣1﹣b n﹣1=a,b n+c n﹣b n﹣1﹣c n﹣1=b,a n+c n﹣a n﹣1﹣c n﹣1=c,设{a n},{b n}、{c n}的公差为x,y,x,∴则x=,y=,z=,故若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列,故为真命题,故选:D【点评】本题考查了等差数列的性质和定义,以及命题的真假,属于基础题.5.(5分)(2017•徐汇区校级模拟)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),由关系式a n+1=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是()A.B.C.D.【考点】81:数列的概念及简单表示法.【专题】31 :数形结合;51 :函数的性质及应用.=f(a n)得到的数列{a n}满足a n+1>a n(n∈N*),根据点与【分析】由关系式a n+1直线之间的位置关系,我们不难得到,f(x)的图象在y=x上方.逐一分析不难得到正确的答案.=f(a n)>a n知:f(x)的图象在y=x上方.【解答】解:由a n+1故选:A.【点评】本题考查了数列与函数的单调性、数形结合思想方法,考查了推理能力与计算能力,属于基础题.6.(5分)(2017•河东区二模)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.【考点】82:数列的函数特性.【专题】32 :分类讨论;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】由a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,可得:(﹣1)n+2016•a<2+,对n分类讨论即可得出.【解答】解:a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,∴(﹣1)n+2016•a<2+,n为偶数时:化为a<2﹣,则a<.n为奇数时:化为﹣a<2+,则a≥﹣2.则实数a的取值范围是.故选:D【点评】本题考查了数列通项公式、分类讨论方法、数列的单调性,考查了推理能力与计算能力,属于中档题.7.(5分)(2017•宝清县一模)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列.【分析】由于{b n}是等差数列,可得b4+b10=2b7.已知a6=b7,于是b4+b10=2a6.由于数列{a n}是正项等比数列,可得a3+a9=≥=2a6.即可得出.【解答】解:∵{b n}是等差数列,∴b4+b10=2b7,∵a6=b7,∴b4+b10=2a6,∵数列{a n}是正项等比数列,∴a3+a9=≥=2a6,∴a3+a9≥b4+b10.【点评】本题考查了等差数列与等比数列的性质、基本不等式的性质,属于中档题.8.(5分)(2017•湖北模拟)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.【考点】82:数列的函数特性.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】根据数列的递推公式可得数列{+1}是等比数列,首项为+1=2,公=(n﹣2λ)•2n,根据数列的单调性即可求出λ的范围.比为2,再代值得到b n+1【解答】解:∵数列{a n}满足:a1=1,a n+1=(n∈N*),∴=+1,化为+1=+2∴数列{+1}是等比数列,首项为+1=2,公比为2,∴+1=2n,=(n﹣2λ)(+1)=(n﹣2λ)•2n,∴b n+1∵数列{b n}是单调递增数列,>b n,∴b n+1∴(n﹣2λ)•2n>(n﹣1﹣2λ)•2n﹣1,解得λ<1,但是当n=1时,b2>b1,∵b1=﹣λ,∴(1﹣2λ)•2>﹣λ,故选:A.【点评】本题考查了变形利用等比数列的通项公式的方法、单调递增数列,考查了推理能力与计算能力,属于中档题.9.(5分)(2017•海淀区校级模拟)设△A n B n C n的三边长分别是a n,b n,c n,△A nB nC n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列;58 :解三角形;59 :不等式的解法及应用.【分析】由a n=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣2a1=(b n+c n+1﹣2a n),b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n﹣c n+1=(c n﹣b n),得b n﹣c n=,可知n→+∞时b n→c n,+1据此可判断△A n B n C n的边B n C n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴c1,+c n+1=+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),由题意,b n+1∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,﹣c n+1=,又由题意,b n+1∴b n﹣(2a1﹣b n+1)==a1﹣b n,b n+1﹣a1=(a1﹣b n)=(b1 +1﹣a1).∴b n=a1+(b1﹣a1),c n=2a1﹣b n=a1﹣(b1﹣a1),=•=单调递增.可得{S n}单调递增.故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,属于难题.10.(5分)(2017•汉中二模)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺【考点】84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】由题意,该女子从第一天起,每天所织的布的长度成等差数列,其公差为d,由等差数列的前n项和公式能求出公差.【解答】解:由题意,该女子从第一天起,每天所织的布的长度成等差数列,记为:a1,a2,a3,…,a n,其公差为d,则a1=5,S30=390,∴=390,∴d=.故选:B.【点评】本题查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.11.(5分)(2017•徐水县模拟)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.54【考点】84:等差数列的通项公式.【专题】11 :计算题.【分析】由题意得a2=3a4﹣6,所以得a5=3.所以由等差数列的性质得S9=9a5=27.【解答】解:设数列{a n}的首项为a1,公差为d,因为a2=3a4﹣6,所以a1+d=3(a1+3d)﹣6,所以a5=3.所以S9=9a5=27.故选B.【点评】解决此类题目的关键是熟悉等差数列的性质并且灵活利用性质解题.12.(5分)(2017•安徽模拟)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱【考点】84:等差数列的通项公式.【专题】11 :计算题;21 :阅读型;33 :函数思想;51 :函数的性质及应用;54 :等差数列与等比数列.【分析】设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,列出方程组,能求出E所得.【解答】解:由题意:设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,则,解得a=,故E所得为钱.故选:A.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质、等差数列的性质的合理运用.13.(5分)(2017•南开区模拟)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣【考点】84:等差数列的通项公式.【专题】54 :等差数列与等比数列.【分析】设出等差数列的首项和公差,由已知列式求得首项和公差,代入两点求直线的斜率公式得答案.【解答】解:设等差数列{a n}的首项为a1,公差为d,由S2=10,S5=55,得,解得:.∴过点P(n,a n),Q(n+2,a n+2)的直线的斜率为k=.故选:A.【点评】本题考查等差数列的通项公式,考查等差数列的前n项和,训练了两点求直线的斜率公式,是基础题.14.(5分)(2017•枣阳市校级模拟)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.9【考点】84:等差数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】设等差数列{a n}的公差为d,由S3=9,a2a4=21,可得3a1+d=9,(a1+d)(a1+3d)=21,可得a n.由数列{b n}满足,利用递推关系可得:=.对n取值即可得出.【解答】解:设等差数列{a n}的公差为d,∵S3=9,a2a4=21,∴3a1+d=9,(a1+d)(a1+3d)=21,联立解得:a1=1,d=2.∴a n=1+2(n﹣1)=2n﹣1.∵数列{b n}满足,∴n=1时,=1﹣,解得b1=.n≥2时,+…+=1﹣,∴=.∴b n=.若,则<.n=7时,>.n=8时,<.因此:,则n的最小值为8.故选:C.【点评】本题考查了等差数列通项公式与求和公式、数列递推关系及其单调性,考查了推理能力与计算能力,属于中档题.15.(5分)(2017•安徽一模)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0【考点】84:等差数列的通项公式.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】由函数图象关于x=﹣1对称,由题意可得a50+a51=﹣2,运用等差数列的性质和求和公式,计算即可得到所求和.【解答】解:函数f(x)的图象关于x=﹣1对称,数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),可得a50+a51=﹣2,又{a n}是等差数列,所以a1+a100=a50+a51=﹣2,则{a n}的前100项的和为=﹣100故选:B.【点评】本题考查函数的对称性及应用,考查等差数列的性质,以及求和公式,考查运算能力,属于中档题.二.填空题(共5小题,满分25分,每小题5分)16.(5分)(2017•江苏)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=32.【考点】88:等比数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列.【分析】设等比数列{a n}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.17.(5分)(2017•新课标Ⅱ)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.【考点】8E:数列的求和;85:等差数列的前n项和.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】利用已知条件求出等差数列的前n项和,然后化简所求的表达式,求解即可.【解答】解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.【点评】本题考查等差数列的求和,裂项消项法求和的应用,考查计算能力.18.(5分)(2017•汕头三模)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n},则此数列的项数为134.【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】由能被3除余1且被5除余1的数就是能被15整除余1的数,运用等差数列通项公式,以及解不等式即可得到所求项数.【解答】解:由能被3除余1且被5除余1的数就是能被15整除余1的数,故a n=15n﹣14.由a n=15n﹣14≤2017得n≤135,∵当n=1时,符合要求,但是该数列是从2开始的,故此数列的项数为135﹣1=134.故答案为:134【点评】本题考查数列模型在实际问题中的应用,考查等差数列的通项公式的运用,考查运算能力,属于基础题19.(5分)(2017•闵行区一模)已知无穷数列{a n},a1=1,a2=2,对任意n∈N*,=a n,数列{b n}满足b n+1﹣b n=a n(n∈N*),若数列中的任意一项都在有a n+2该数列中重复出现无数次,则满足要求的b1的值为2.【考点】81:数列的概念及简单表示法.【专题】35 :转化思想;48 :分析法;5M :推理和证明.【分析】依题意数列{a n}是周期数咧,则可写出数列{a n}的通项,由数列{b n}满足b n﹣b n=a n(n∈N*),可推出b n+1﹣b n=a n=⇒,,+1,,…要使数列中的任意一项都在该数列中重复出现无数次,则b2=b6=b10=…=b2n﹣1,b4=b8=b12=…=b4n,可得b8=b4=3即可,【解答】解:a1=1,a2=2,对任意n∈N*,有a n+2=a n,∴a3=a1=1,a4=a2=2,a5=a3=a1=1,∴a n=﹣b n=a n=,∴b n+1﹣b2n+1=a2n+1=1,b2n+1﹣b2n=a2n=2,∴b2n+2﹣b2n=3,b2n+1﹣b2n﹣1=3∴b2n+2∴b3﹣b1=b5﹣b3=…=b2n+1﹣b2n﹣1=3,b4﹣b2=b6﹣b4=b8﹣b6=…=b2n﹣b2n﹣2=3,b2﹣b1=1,,,,,,,…,=b4n﹣2∵数列中的任意一项都在该数列中重复出现无数次,∴b2=b6=b10=…=b4n﹣2,b4=b8=b12=…=b4n,解得b8=b4=3,b2=3,∵b2﹣b1=1,∴b1=2,故答案为:2【点评】本题考查了数列的推理与证明,属于难题.20.(5分)(2017•青浦区一模)设数列{a n}的通项公式为a n=n2+bn,若数列{a n}是单调递增数列,则实数b的取值范围为(﹣3,+∞).【考点】82:数列的函数特性.【专题】35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】数列{a n}是单调递增数列,可得∀n∈N*,a n+1>a n,化简整理,再利用数列的单调性即可得出.【解答】解:∵数列{a n}是单调递增数列,∴∀n∈N*,a n>a n,+1(n+1)2+b(n+1)>n2+bn,化为:b>﹣(2n+1),∵数列{﹣(2n+1)}是单调递减数列,∴n=1,﹣(2n+1)取得最大值﹣3,∴b>﹣3.即实数b的取值范围为(﹣3,+∞).故答案为:(﹣3,+∞).【点评】本题考查了数列的单调性及其通项公式、不等式的解法,考查了推理能力与计算能力,属于中档题.三.解答题(共5小题,满分50分,每小题10分)21.(10分)(2017•江苏)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.【考点】8B :数列的应用.【专题】23 :新定义;35 :转化思想;4R :转化法;54 :等差数列与等比数列.【分析】(1)由题意可知根据等差数列的性质,a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1)═2×3a n ,根据“P (k )数列”的定义,可得数列{a n }是“P (3)数列”;(2)由已知条件结合(1)中的结论,可得到{a n }从第3项起为等差数列,再通过判断a 2与a 3的关系和a 1与a 2的关系,可知{a n }为等差数列.【解答】解:(1)证明:设等差数列{a n }首项为a 1,公差为d ,则a n =a 1+(n ﹣1)d ,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3,=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1),=2a n +2a n +2a n ,=2×3a n ,∴等差数列{a n }是“P (3)数列”;(2)证明:当n ≥4时,因为数列{a n }是P (3)数列,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n ,①,因为数列{a n }是“P (2)数列”,所以a n ﹣3+a n ﹣3+a n +a n +1=4a n ﹣1,②,a n ﹣1+a n +a n +2+a n +3=4a n +1,③,②+③﹣①,得2a n =4a n ﹣1+4a n +1﹣6a n ,即2a n =a n ﹣1+a n +1,(n ≥4),因此n ≥4从第3项起为等差数列,设公差为d ,注意到a 2+a 3+a 5+a 6=4a 4, 所以a 2=4a 4﹣a 3﹣a 5﹣a 6=4(a 3+d )﹣a 3﹣(a 3+2d )﹣(a 3+3d )=a 3﹣d ,因为a1+a2+a4+a5=4a3,所以a1=4a3﹣a2﹣a4﹣a5=4(a2+d)﹣a2﹣(a2+2d)﹣(a2+3d)=a2﹣d,也即前3项满足等差数列的通项公式,所以{a n}为等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.22.(10分)(2017•北京)设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.【考点】8B:数列的应用;8C:等差关系的确定.【专题】32 :分类讨论;4R:转化法;54 :等差数列与等比数列.【分析】(1)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,则c n=b1﹣na1=1﹣c n=﹣1对∀n∈N*均成立;﹣n,c n+1(2)由b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得c m,c m+1,c m+2,…是等差数列;设=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,分类讨论,采用放缩法即可求得因此对任意正数M,存在正整数m,使得当n≥m时,>M.【解答】解:(1)a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,当n=1时,c1=max{b1﹣a1}=max{0}=0,当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有c n=b1﹣na1,当n∈N*,且2≤k≤n时,则(b k﹣na k)﹣(b1﹣na1),=[(2k﹣1)﹣nk]﹣1+n,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,∴c n﹣c n=﹣1对∀n∈N*均成立,+1∴数列{c n}是等差数列;(2)证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,(i∈N*,且1≤i≤n),则b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i﹣a i n═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d2>0,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣n)d2>0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,﹣c n=d2﹣a1,此时c n+1∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n≥m时,c n=b1﹣a1n,此时c n﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;+1③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,则当n≥s时,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i ≤n),因此,当n≥s时,c n=b n﹣a n n,此时==﹣a n+,=﹣d2n+(d1﹣a1+d2)+,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,若C≥0,取m=[+1],[x]表示不大于x的最大整数,当n≥m时,≥An+B≥Am+B=A[+1]+B>A•+B=M,此时命题成立;若C<0,取m=[]+1,当n≥m时,≥An+B+≥Am+B+C>A•+B+C≥M﹣C﹣B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种情况,命题得证.【点评】本题考查数列的综合应用,等差数列的性质,考查与不等式的综合应用,考查“放缩法”的应用,考查学生分析问题及解决问题的能力,考查分类讨论及转化思想,考查计算能力,属于难题.23.(10分)(2017•北京)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【考点】8E:数列的求和;8M:等差数列与等比数列的综合.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】(Ⅰ)利用已知条件求出等差数列的公差,然后求{a n}的通项公式;(Ⅱ)利用已知条件求出公比,然后求解数列的和即可.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.【点评】本题考查等差数列与等比数列的应用,数列求和以及通项公式的求解,考查计算能力.24.(10分)(2017•新课标Ⅰ)记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.【考点】8E:数列的求和;89:等比数列的前n项和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】(1)由题意可知a3=S3﹣S2=﹣6﹣2=﹣8,a1==,a2==,由a1+a2=2,列方程即可求得q及a1,根据等比数列通项公式,即可求得{a n}的通项公式;(2)由(1)可知.利用等比数列前n项和公式,即可求得S n,分别求得S n+1,S n+2,显然S n+1+S n+2=2S n,则S n+1,S n,S n+2成等差数列.。
人教A版高中数学必修五第二章2.1(一).docx

第二章数列§2.1 数列的概念与简单表示法(一)课时目标1.理解数列及其有关概念;2.理解数列的通项公式,并会用通项公式写出数列的任意一项;3.对于比较简单的数列,会根据其前n项写出它的通项公式.1.按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,…,排在第n 位的数称为这个数列的第n 项.2.数列的一般形式可以写成a 1,a 2,…,a n ,…,简记为{a n }. 3.项数有限的数列称有穷数列,项数无限的数列叫做无穷数列.4.如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的通项公式.一、选择题1.数列2,3,4,5,…的一个通项公式为( ) A .a n =n B .a n =n +1 C .a n =n +2 D .a n =2n 答案 B2.已知数列{a n }的通项公式为a n =1+(-1)n +12,则该数列的前4项依次为( )A .1,0,1,0B .0,1,0,1 C.12,0,12,0 D .2,0,2,0 答案 A3.若数列的前4项为1,0,1,0,则这个数列的通项公式不可能是( )A .a n =12[1+(-1)n -1]B .a n =12[1-cos(n ·180°)]C .a n =sin 2(n ·90°)D .a n =(n -1)(n -2)+12[1+(-1)n -1]答案 D解析 令n =1,2,3,4代入验证即可.4.已知数列{a n }的通项公式为a n =n 2-n -50,则-8是该数列的( ) A .第5项 B .第6项 C .第7项 D .非任何一项 答案 C解析 n 2-n -50=-8,得n =7或n =-6(舍去). 5.数列1,3,6,10,…的一个通项公式是( )A .a n =n 2-n +1 B .a n =n (n -1)2C .a n =n (n +1)2D .a n =n 2+1答案 C解析 令n =1,2,3,4,代入A 、B 、C 、D 检验即可.排除A 、B 、D ,从而选C.6.设a n =1n +1+1n +2+1n +3+…+12n (n ∈N *),那么a n +1-a n 等于( )A.12n +1B.12n +2C.12n +1+12n +2D.12n +1-12n +2 答案 D解析 ∵a n =1n +1+1n +2+1n +3+…+12n∴a n +1=1n +2+1n +3+…+12n +12n +1+12n +2,∴a n +1-a n =12n +1+12n +2-1n +1=12n +1-12n +2.二、填空题7.已知数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧3n +1(n 为正奇数)4n -1(n 为正偶数).则它的前4项依次为____________.答案 4,7,10,158.已知数列{a n }的通项公式为a n =1n (n +2)(n ∈N *),那么1120是这个数列的第______项.答案 10解析 ∵1n (n +2)=1120,∴n (n +2)=10×12,∴n =10.9.用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数a n 与所搭三角形的个数n 之间的关系式可以是______________.答案 a n =2n +1解析 a 1=3,a 2=3+2=5,a 3=3+2+2=7,a 4=3+2+2+2=9,…,∴a n =2n +1. 10.传说古希腊毕达哥拉斯(Pythagoras ,约公元前570年—公元前500年)学派的数学家经常在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数.比如,他们将石子摆成如图所示的三角形状,就将其所对应石子个数称为三角形数,则第10个三角形数是______.答案 55解析 三角形数依次为:1,3,6,10,15,…,第10个三角形数为:1+2+3+4+…+10=55.三、解答题11.根据数列的前几项,写出下列各数列的一个通项公式: (1)-1,7,-13,19,… (2)0.8,0.88,0.888,… (3)12,14,-58,1316,-2932,6164,… (4)32,1,710,917,…(5)0,1,0,1,…解 (1)符号问题可通过(-1)n 或(-1)n +1表示,其各项的绝对值的排列规律为:后面的数的绝对值总比前面数的绝对值大6,故通项公式为a n =(-1)n (6n -5)(n ∈N *).(2)数列变形为89(1-0.1),89(1-0.01),89(1-0.001),…,∴a n =89⎝ ⎛⎭⎪⎫1-110n (n ∈N *). (3)各项的分母分别为21,22,23,24,…易看出第2,3,4项的分子分别比分母少3.因此把第1项变为-2-32,因此原数列可化为-21-321,22-322,-23-323,24-324,…,∴a n =(-1)n ·2n-32n (n ∈N *).(4)将数列统一为32,55,710,917,…对于分子3,5,7,9,…,是序号的2倍加1,可得分子的通项公式为b n =2n +1,对于分母2,5,10,17,…联想到数列1,4,9,16…即数列{n 2},可得分母的通项公式为c n =n 2+1,∴可得它的一个通项公式为a n =2n +1n 2+1(n ∈N *).(5)a n =⎩⎪⎨⎪⎧0 (n 为奇数)1 (n 为偶数)或a n =1+(-1)n2(n ∈N *)或a n =1+cos n π2(n ∈N *).12.已知数列⎩⎨⎧⎭⎬⎫9n 2-9n +29n 2-1; (1)求这个数列的第10项;(2)98101是不是该数列中的项,为什么? (3)求证:数列中的各项都在区间(0,1)内;(4)在区间⎝ ⎛⎭⎪⎫13,23内有、无数列中的项?若有,有几项?若没有,说明理由. (1)解 设f (n )=9n 2-9n +29n 2-1=(3n -1)(3n -2)(3n -1)(3n +1)=3n -23n +1. 令n =10,得第10项a 10=f (10)=2831.(2)解 令3n -23n +1=98101,得9n =300.此方程无正整数解,所以98101不是该数列中的项.(3)证明 ∵a n =3n -23n +1=3n +1-33n +1=1-33n +1,又n ∈N *,∴0<33n +1<1,∴0<a n <1.∴数列中的各项都在区间(0,1)内.(4)解 令13<a n =3n -23n +1<23,则⎩⎪⎨⎪⎧3n +1<9n -69n -6<6n +2,即⎩⎪⎨⎪⎧n >76n <83.∴76<n <83. 又∵n ∈N *,∴当且仅当n =2时,上式成立,故区间⎝ ⎛⎭⎪⎫13,23上有数列中的项,且只有一项为a 2=47.能力提升13.数列a ,b ,a ,b ,…的一个通项公式是______________________.答案 a n =a +b 2+(-1)n +1⎝ ⎛⎭⎪⎫a -b 2 解析 a =a +b 2+a -b 2,b =a +b 2-a -b2,故a n =a +b 2+(-1)n +1⎝ ⎛⎭⎪⎫a -b 2. 14.根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图中有多少个点.解 图(1)只有1个点,无分支;图(2)除中间1个点外,有两个分支,每个分支有1个点;图(3)除中间1个点外,有三个分支,每个分支有2个点;图(4)除中间1个点外,有四个分支,每个分支有3个点;…;猜测第n 个图中除中间一个点外,有n 个分支,每个分支有(n -1)个点,故第n 个图中点的个数为1+n (n -1)=n 2-n +1.1.与集合中元素的性质相比较,数列中的项也有三个性质:(1)确定性:一个数在不在数列中,即一个数是不是数列中的项是确定的. (2)可重复性:数列中的数可以重复.(3)有序性:一个数列不仅与构成数列的“数”有关,而且与这些数的排列次序也有关. 2.并非所有的数列都能写出它的通项公式.例如,π的不同近似值,依据精确的程度可形成一个数列3,3.1,3.14,3.141,…,它没有通项公式.3.如果一个数列有通项公式,则它的通项公式可以有多种形式.例如:数列-1,1,-1,1,-1,1,…的通项公式可写成a n =(-1)n ,也可以写成a n =(-1)n +2,还可以写成a n =⎩⎪⎨⎪⎧-1 (n =2k -1),1 (n =2k ),其中k ∈N *.。
人教A版高中数学必修五同步课时分层训练:第2章 数列章末质量检测卷(二)

章末质量检测卷(二)(时间:120分钟 满分:150分)一、选择题(本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若数列的前4项分别为2,0,2,0,则这个数列的通项公式不能是( ) A .a n =1+(-1)n +1 B .a n =1-cos n π C .a n =2sin 2n π2D .a n =1+(-1)n -1+(n -1)(n -2)解析:选D 将各选项中的通项公式写出前4项,看是否为题干中的数即可,当n =3时,D 不满足,故选D.2.(2019·湖北荆州模拟)在等差数列{a n }中,若a 3+a 4+a 5=3,a 8=8,则a 12的值是( )A .15B .30C .31D .64解析:选A 设等差数列{a n }的公差为d ,∵a 3+a 4+a 5=3,∴3a 4=3,即a 1+3d =1,又由a 8=8得a 1+7d =8,联立解得a 1=-174,d =74,则a 12=-174+74×11=15.故选A.3.(2019·山西太原模拟)已知等差数列{a n }的前n 项和为S n ,若a 2+a 3+a 10=9,则S 9=( )A .3B .9C .18D .27解析:选D 设等差数列{a n }的公差为d ,∵a 2+a 3+a 10=9,∴3a 1+12d =9,即a 1+4d =3,∴a 5=3,∴S 9=9(a 1+a 9)2=9a 5=27,故选D.4.(2018·广东珠海模拟)S n 是正项等比数列{a n }的前n 项和,a 3=18,S 3=26,则a 1=( )A .2B .3C .1D .6解析:选A 设等比数列{a n }的公比为q ,因a 3=18,S 3=26,则有a 3+a 3q +a 3q 2=26,即18+18q +18q 2=26,解得q =3或q =-34,又由数列{a n }为正项等比数列,得q =3,则a 1=a 3q 2=189=2,故选A.5.(2018·山东淄博模拟)已知{a n }是等比数列,若a 1=1,a 6=8a 3,数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,则T 5=( )A.3116 B .31 C.158D .7解析:选A 设等比数列{a n }的公比为q ,∵a 1=1,a 6=8a 3,∴q 3=8,解得q =2.∴a n =2n -1.∴1a n =⎝ ⎛⎭⎪⎫12n -1.∴数列⎩⎨⎧⎭⎬⎫1a n 是首项为1,公比为12的等比数列.则T 5=1-⎝ ⎛⎭⎪⎫1251-12=3116.故选A. 6.(2017·全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏解析:选B 每层塔所挂的灯数从上到下构成等比数列,记为{a n },则前7项的和S 7=381,公比q =2,依题意,得S 7=a 1(1-27)1-2=381,解得a 1=3.7.(2019·湖北荆州模拟)在等差数列{a n }中,a 1=1,a 2+a 6=10,则a 7=( ) A .9 B .10 C .11D .12解析:选A ∵在等差数列{a n }中,a 1=1,a 2+a 6=10, ∴⎩⎨⎧a 1=1,a 1+d +a 1+5d =10,解得a 1=1,d =43, ∴a 7=a 1+6d =1+8=9.故选A.8.(2019·河南濮阳模拟)已知等差数列{a n }一共有9项,前4项和为3,最后3项和为4,则中间一项的值为( )A.1720 B .5960 C .1D .6766解析:选D 设等差数列{a n }的公差为d ,由题意得⎩⎨⎧4a 1+6d =3,3a 1+21d =4,解得⎩⎪⎨⎪⎧a 1=1322,d =766.∴中间一项为a 5=a 1+4d =1322+4×766=6766.故选D.9.(2018·北京卷)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为( )A.32f B .322f C.1225fD .1227f解析:选D 由题意知,十三个单音的频率构成首项为f ,公比为122的等比数列,设该等比数列为{a n },则a 8=a 1q 7,即a 8=1227f ,故选D.10.(2018·广东汕头模拟)已知等差数列{a n }的前n 项和为S n ,a 1=9,S 99-S 55=-4,则S n 取最大值时的n 为( )A .4B .5C .6D .4或5解析:选B 由{a n }为等差数列,得S 99-S 55=a 5-a 3=2d =-4,即d =-2, 由于a 1=9,所以a n =-2n +11, 令a n =-2n +11<0,得n >112, 所以S n 取最大值时的n 为5,故选B.11.(2018·西安八校联考)设等差数列{a n }的前n 项和为S n ,且a 2+a 7+a 12=24,则S 13=( )A .52B .78C .104D .208解析:选C 依题意得3a 7=24,则a 7=8,S 13=13(a 1+a 13)2=13a 7=104.故选C.12.(2018·云南模拟)已知数列{a n }是等差数列,若a 1-1,a 3-3,a 5-5依次构成公比为q 的等比数列,则q =( )A .-2B .-1C .1D .2解析:选C 依题意,注意到2a 3=a 1+a 5,2a 3-6=a 1+a 5-6,即有2(a 3-3)=(a 1-1)+(a 5-5),即a 1-1,a 3-3,a 5-5成等差数列;又a 1-1,a 3-3,a 5-5依次构成公比为q 的等比数列,因此有a 1-1=a 3-3=a 5-5(若一个数列既是等差数列又是等比数列,则该数列是一个非零的常数列),q =a 3-3a 1-1=1. 故选C.二、填空题(本题共4小题,每小题5分,共20分)13.数列{a n }为正项等比数列,若a 3=3,且a n +1=2a n +3a n -1(n ≥2,n ∈N *),则此数列的前5项和S 5= .解析:设公比为q (q >0),由a n +1=2a n +3a n -1,可得q 2=2q +3,所以q =3,又a 3=3,则a 1=13,所以此数列的前5项和S 5=13×(1-35)1-3=1213.答案:121314.(2018·合肥模拟)已知数列{a n }中,a 1=2,且a 2n +1a n =4(a n +1-a n )(n ∈N *),则其前9项和S 9= .解析:由已知,得a 2n +1=4a n a n +1-4a 2n , 即a 2n +1-4a n a n +1+4a 2n =(a n +1-2a n )2=0,所以a n +1=2a n ,所以数列{a n }是首项为2,公比为2的等比数列, 故S 9=2×(1-29)1-2=210-2=1 022.答案:1 02215.已知数列{a n }的通项公式为a n =2 015-3n ,则使a n >0成立的最大正整数n 的值为 .解析:由a n =2 015-3n >0,得n <2 0153=67123, 又∵n ∈N *,∴n 的最大值为671. 答案:67116.在等比数列{a n }中,若1,a 2,a 3-1成等差数列,则a 3+a 4a 5+a 6= . 解析:设等比数列的公比为q , 依题意,可得2a 1q =1+a 1q 2-1, 又a 1≠0,整理得q 2-2q =0, 所以q =2或q =0(舍去), 所以a 3+a 4a 5+a 6=1q 2=14. 答案:14三、解答题(本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知等差数列{a n },a 6=5,a 3+a 8=5. (1)求{a n }的通项公式a n ;(2)若数列{b n }满足b n =a 2n -1,求{b n }的通项公式b n . 解:(1)设{a n }的首项是a 1,公差为d ,依题意得, ⎩⎨⎧ a 1+5d =5,2a 1+9d =5,∴⎩⎨⎧a 1=-20,d =5. ∴a n =5n -25(n ∈N +). (2)由(1)知,a n =5n -25,∴b n =a 2n -1=5(2n -1)-25=10n -30, ∴b n =10n -30(n ∈N +).18.(12分)已知数列{a n }的前n 项和为S n ,且满足a 1=12,a n =-2S n S n -1(n ≥2).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)求S n 和a n .解:(1)证明:当n ≥2时,a n =S n -S n -1=-2S n S n -1,① ∵S 1=a 1≠0,由递推关系知S n ≠0(n ∈N *), 由①式得1S n -1S n -1=2(n ≥2).∴⎩⎨⎧⎭⎬⎫1S n 是等差数列,其中首项为1S 1=1a 1=2,公差为2. (2)由(1)知,1S n=2+2(n -1)=2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=-12n (n -1),当n =1时,a 1=S 1=12不适合上式, ∴a n =⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.19.(12分)(2019·成都模拟)已知数列{a n }满足a 1=-2,a n +1=2a n +4. (1)证明:数列{a n +4}是等比数列; (2)求数列{|a n |}的前n 项和S n .解:(1)证明:∵a 1=-2,∴a 1+4=2.∵a n +1=2a n +4,∴a n +1+4=2a n +8=2(a n +4), ∴a n +1+4a n +4=2, ∴{a n +4}是以2为首项,2为公比的等比数列. (2)由(1)可知,a n +4=2n ,∴a n =2n -4. 当n =1时,a 1=-2<0,∴S 1=|a 1|=2; 当n ≥2时,a n ≥0.∴S n =-a 1+a 2+…+a n =2+(22-4)+…+(2n -4)=2+22+…+2n -4(n -1)=2(1-2n )1-2-4(n -1)=2n +1-4n +2.又当n =1时,也满足上式.∴当n ∈N *时,S n =2n +1-4n +2.20.(12分)用分期付款的方式购买价格为25万元的住房一套,如果购买时先付5万元,以后每年付2万元加上欠款利息.签订购房合同后1年付款一次,再过1年又付款一次,直到还完后为止,商定年利率为10%,则第5年该付多少元?购房款全部付清后实际共付多少元?解:购买时先付5万元,余款20万元按题意分10次分期还清,每次付款数组成数列{a n },则a 1=2+(25-5)×10%=4(万元);a 2=2+(25-5-2)×10%=3.8(万元);a 3=2+(25-5-2×2)×10%=3.6(万元),…,a n =2+[25-5-2(n -1)]×10%=⎝ ⎛⎭⎪⎫4-n -15(万元)(n =1,2,…,10).因而数列{a n }是首项为4,公差为-15的等差数列.a 5=4-5-15=3.2(万元).S 10=10×4+10×(10-1)×⎝ ⎛⎭⎪⎫-152=31(万元).因此第5年该付3.2万元,购房款全部付清后实际共付31+5=36万元. 21.(12分)(2018·广东七校联考)已知等差数列{a n }的前n 项和为S n ,a 1=λ(λ>0),a n +1=2S n +1(n ∈N *).(1)求λ的值;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和T n .解:(1)a n +1=S n +1-S n ,代入a n +1=2S n +1, 得S n +1-S n =2S n +1,整理可得S n +1=(S n +1)2, 因为S n >0,所以S n +1-S n =1,所以数列{S n }是首项为λ,公差为1的等差数列, 所以S n =λ+(n -1)×1=n +λ-1,即S n =(n +λ-1)2, 当n ≥2时,a n =S n -S n -1=2n +2λ-3, ∴a n +1-a n =2,因为数列{a n }为等差数列, 所以a 2-a 1=2λ+1-λ=2,解得λ=1. (2)由(1)可得,a n =2n -1, 所以1a n a n +1=1(2n -1)(2n +1)=12×⎝ ⎛⎭⎪⎫12n -1-12n +1, 因为T n =1a 1a 2+1a 2a 3+…+1a n a n +1,所以T n =12×⎝⎛1-13+13-15+15-17+…+⎭⎪⎫12n -1-12n +1=12-14n +2.22.(12分)(2018·河南信阳模拟)已知数列{a n }满足a 1=1,a n +1=2a n +λ(λ为常数).(1)试探究数列{a n +λ}是不是等比数列,并求a n ; (2)当λ=1时,求数列{n (a n +λ)}的前n 项和T n . 解:(1)因为a n +1=2a n +λ,所以a n +1+λ=2(a n +λ).又a 1=1,所以当λ=-1时,a 1+λ=0,数列{a n +λ}不是等比数列, 此时a n +λ=a n -1=0,即a n =1; 当λ≠-1时,a 1+λ≠0,所以a n +λ≠0,所以数列{a n +λ}是以1+λ为首项,2为公比的等比数列, 此时a n +λ=(1+λ)2n -1,即a n =(1+λ)2n -1-λ.(2)由(1)知,a n=2n-1,所以n(a n+1)=n×2n,T n=2+2×22+3×23+…+n×2n,①2T n=22+2×23+3×24+…+n×2n+1,②①-②得,-T n=2+22+23+…+2n-n×2n+1=2(1-2n)1-2-n×2n+1=2n+1-2-n×2n+1=(1-n)2n+1-2.所以T n=(n-1)2n+1+2.由Ruize收集整理。
人教A版高中数学必修五高二上学期期中考试(文)试题(扫描版).docx

高中数学学习材料唐玲出品参考答案一、选择题、二、填空题13. 4π 14.)22,0( 15. 1 16. )41,21(n n P n三、解答题17. 解析:由题意知抛物线的焦点为双曲线x 24-y 22=1的顶点,即为(-2,0)或(2,0),所以抛物线的方程为y 2=8x 或y 2=-8x .18.【答案】a=4, 极大值为f (-2)=28/319.解:对于命题p ,由条件可得m ≥2对于命题q ,由)34(44)(2-+='m mx x x f -≥0对R x ∈恒成立得)34(16)42--m m (-≤0 ⇒ 1≤m ≤3由p q ∧为假,p q ∨为真得q p 与一真一假, 若p 真q 假时,则可得⎩⎨⎧〉〈〉312m m m 或⇒m >3若p 假q 真时,则可得⎩⎨⎧≤≤≤312m m ⇒1≤m ≤2综上可得,m 的取值范围是1≤m ≤2或m >3题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C BABDCCAAABC20.解:(1)b ax x x f 363)(2++=',由该函数在2=x 处有极值, 故0)2(='f ,即031212=++b a ………………① 又其图象在1=x 处的切线与直线0526=++y x 平行 故3)1(-='f ,即3363-=++b a ………………② 由①,②,解得0,1=-=b a ∴c x x x f +-=233)(,(Ⅰ)∵x x x f 63)(2-='由0)(='x f 得01=x ,22=x列表如下x )0,(-∞0 )2,0(2 ),2(+∞)(x f ' + 0 - 0 + )(x f↗极大值↘极小值↗故)(x f 的单调递增区间是(-∞,0),(2,+∞)单调递增区间是(0,2)(Ⅱ)由(1)可知列表如下x 1 (1,2) 2 (2,3) 3 )(x f '- 0 +)(x f -2+c↘-4+c↗c∴)(x f 在[1,3]的最小值是-4+c ∴-4+c >1-42c ⇒c <-45或c >121. 解析:(1)设双曲线12222=-by a x ,由已知得3=a ,2=c ,再由2222=+b a ,得12=b ,故双曲线C 的方程为1322=-y x 5分 (2)将2+=kx y 代入1322=-y x 得0926)31(22=---kx x k . 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k 且2k ≠31且12<k ① 则23126k k x x B A -=+,2319kx x B A --= 由2>⋅OB OA 得2>+B A B A y y x x , 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x1373231262319)1(22222-+=+-+--+=k k k k k k k 12分于是137322-+k k >2,即0139322>-+-k k , 解此不等式得3312<<k ② 由①②得1312<<k , 故k 的取值范围为)1,33()33,1( -- 16分。
人教A版高中数学必修第二册强化练习题-第2-课时-余弦定理、正弦定理的实际应用(含答案)

人教A版高中数学必修第二册第2课时 余弦定理、正弦定理的实际应用基础过关练题组一 距离问题1.(2023北京师范大学第二附属中学期中)某大学校园内有一个湖,湖的两侧有一个音乐教室和一个图书馆,如图,若音乐教室在A处,图书馆在B处,为测量A,B两地之间的距离,甲同∠A. D.③④为了测量河的宽度,在岸边选定两点C,CBA=60°,AB=60 m,则河的宽度CD=()m C.20(3+3)m 某区域地面有四个5G基站站20 km,基站A,B∠A.106kmB.30(3-1)kmC.15 kmD.105km4.(2023陕西西安中学模拟)如图,从气球A上测得一河流的两岸B,C的俯角分别为67°,30°,此时气球距离地面的高度AD=46 m(D在直线BC上),则河流的宽度BC约为 m.(参考数据:sin 67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,3≈1.73)题组二 高度问题5.(2024广东汕头潮阳一中期中)岳阳楼与黄鹤楼、滕王阁并称为“江南三大名楼”,是“中国得)C.20 mD.21 m山东菏泽外国语学校月考)如图,一辆汽车在一条水平的公路上向正西方向行驶A处时测得公路北侧一山底C在西偏北30°的方向上;行驶600 m湖南长沙实验中学月考)圣·索菲亚教堂坐落于中国黑龙江省哈尔滨市于年拜占庭风格的东正教教堂,距今已有117年的历史,为哈尔滨的标志性建筑索菲亚教堂的高度,在圣·索菲亚教堂的正东方向找到了一座建筑物的高度为 m.题组三 角度问题8.(多选题)(2024山东栖霞第一中学月考)如图,在海面上有两个观测点B,D,B在D的正北方向,距离为2 n mile,在某天10:00观察到某船在C 处,此时测得∠CBD=45°,5 min 后该船行驶至A 处,此时测得∠ABC=30°,∠ADB=60°,∠ADC=30°,则( )A.观测点B 位于A 的北偏东75°方向B.当天10:00时,该船到观测点B 的距离为6 n mileC.当船行驶至A 处时,该船到观测点B 的距离为6 n mileD.该船由C 行驶至A 行驶了2 n mile9.(2024广东六校二联)在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12 n mile 的水面上,有蓝方一艘小艇正以10 n mile/h 的速度沿南偏东75°方向前进,侦察艇以14 n mile/h 的速度,沿北偏东45°+α方向拦截蓝方的小艇.若要在最短的时间内拦截住,则红方侦察艇所需的时间为 h,角α的正弦值为 .10.在灯塔A 的正西方向且与A 相距(3-1)n mile 的B 处有一艘甲船,需要海上加油.在灯塔A 的北偏东45°方向且与A 相距2 n mile 的C 处有一乙船,求乙船前往B 处支援甲船的航行距离和方向.能力提升练题组 正、余弦定理的实际应用1.(2024云南昆明模拟)早期天文学家常采用“三角法”测量行星的轨道半径.假设一种理想状态:地球E 和某小行星M 绕太阳S 在同一平面上的运动轨道均为圆,三个星体的位置如图所示.地球在E 0位置时,测出∠SE 0M=2π3;行星M 绕太阳运动一周回到原来位置,地球运动到了E 1位置,测出∠SE 1M=3π4,∠E 1SE 0=π3.若地球的轨道半径为R,则下列选项中与行星M 的轨道半径最接近的是(参考数据:3≈1.7)( )A.2.1RB.2.2RC.2.3RD.2.4R2.(2024重庆南开中学月考)某同学为了测量一塔ED的高,他在山下A处测得塔尖D的仰DC.39.53 mD.40.52 m在同一平面上有相距14 km的A,B方向发射炮弹,B向东偏北θ方向发射炮弹向5.(2024山西太原师范学院附属中学月考)如图,用无人机测量一座小山的海拔与该山最高处的古塔AB的高度,无人机的航线与塔AB在同一铅垂平面内,无人机飞行的海拔高度为500 m,在C处测得塔底A(即小山的最高处)的俯角为45°,塔顶B的俯角为30°,向山顶方向沿水平线CE飞行50 m到达D处时,测得塔底A的俯角为75°,则该座小山的海拔为 m;古塔AB的高度为 m.6.(2023山东省实验中学模拟)如图,已知点C为山顶P在水平面上的射影,一辆汽车由南向北沿AD行驶,在水平面上的A处测得∠BAC=15°,匀速向北行驶20 min到达B处,测得∠DBC=60°,山顶P的仰角为60°,已知山高为23km.(1)求汽车的行驶速度;(2)若汽车继续行驶10 min到达D处,此时点C位于D的南偏东多少度方向?7.(2024陕西西安中学月考)在海岸A处发现北偏东45°方向,距离A处(3-1)n mile的B处有一艘走私船,在A处北偏西75°的方向,距离A处2 n mile的C处的缉私船奉命以103n mile/h的速度追截走私船.此时,走私船正以10 n mile/h的速度从B处向北偏东30°方向逃窜.(1)求BC的长度;(2)求∠ACB的大小;(3)缉私船沿北偏东多少度的方向能最快追上走私船?最快需要多长时间?参考数据:sin 15°=6-24,cos 15°=6+24.答案与分层梯度式解析第2课时 余弦定理、正弦定理的实际应用基础过关练1.C2.B3.A 5.B8.ACD1.C ①测量∠A,∠B,∠C,即知道三个角的度数,则三角形有无数组解,不能唯一确定A,B两地之间的距离;②测量∠A,∠B,BC,即已知两角及其中一角的对边,则由正弦定理可知,三角形有唯一的解,能唯一确定A,B两地之间的距离;③测量∠A,AC,BC,即已知两边及其中一边的对角,则由正弦定理可知,三角形可能有2个解,不能唯一确定A,B两地之间的距离;④测量∠C,AC,BC,即已知两边及其夹角,则由余弦定理可知,三角形有唯一的解,能唯一确定A,B两地之间的距离.综上可得,能唯一确定A,B两地之间距离的方案的序号是②④.故选C.2.B 由题意得∠ACB=180°-45°-60°=75°,在△ABC中,由正弦定理得ABsin∠ACB =BCsin∠CAB,∴BC=60sin45°sin75°=60sin45°sin(30°+45°)=60(3-1)(m).故CD=BCsin∠CBA=60(3-1)×32=30(3-3)(m).故选B.3.A 在△ACD中,∠CAD=180°-105°-30°=45°,由正弦定理得CDsin45°=AD sin105°,则AD=CD×sin105°sin45°=20×(sin60°cos45°+cos60°sin45°)sin45°=10(3+1),在△BCD中,易知∠BCD=45°,∠BDC=90°,所以∠CBD=45°,所以BD=CD=20,在△ABD中,由余弦定理得AB=AD2+B D2-2×AD×BD×cos60°=600=106.故A,B两个基站间的距离为106km.故选A.规律总结 1.当A,B两点不相通,但均可到达时,选取点C,测出AC,BC,∠ACB,用余弦定理求解AB;2.当A,B两点间可视,但有一点B不可到达时,选取点C,测出∠CAB,∠ACB和AC,用正弦定理求解AB;3.当A,B 两点都不可到达时,选取对A,B 可视的点C,D,测出∠BCA,∠BDA,∠ACD,∠BDC 和CD,用正弦定理和余弦定理求解AB.4.答案 60解析 由题意得AD=46 m,∠ACD=30°,∠BAC=37°,∠ABC=113°.在Rt △ACD 中,因为∠ACD=30°,所以AC=2AD=92 m,在△ABC 中,由正弦定理可得BC sin∠BAC =AC sin∠ABC ,即BC sin37°=92sin113°,在由6.在在7.在在在Rt △DCM 中,CD=CM·sin 60°=AB ·sin45°·sin60°sin15°·sin30°=(153-15)×22×326-24×12=303(m),所以小明估算圣·索菲亚教堂的高度为303 m.8.ACD A 中,∠ABD=∠ABC+∠CBD=30°+45°=75°,因为B 在D 的正北方向,所以B 位于A 的北偏东75°方向,故A 正确.B 中,在△BCD 中,∠CDB=∠ADC+∠ADB=30°+60°=90°,∠CBD=45°,BD=2 n mile,所以BC=22 n mile,故B 错误.C 中,在△ABD 中,∠ADB=60°,∠BAD=180°-75°-60°=45°,由正弦定理得AB sin∠ADB =BD sin∠BAD ,即AB=BD sin60°sin45°=6 n mile,故C 正确.D 中,在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB·BC·cos ∠ABC=6+8-2×6×22×32=2,则AC=2 n mile,故D 正确.故选ACD.9.答案 2;5314解析 设红方侦察艇经过x h 后在C 处追上蓝方的小艇,则AC=14x n mile,BC=10x n mile,易知∠ABC=120°.在△ABC 中,根据余弦定理得(14x)2=122+(10x)2-240x×cos 120°,解得x=2(负值舍去),故AC=28 n mile,BC=20 n mile.根据正弦定理得BC sin α=AC sin120°,解得sin α=20sin120°28=5314.10.解析 根据题意,画出示意图如图,在△ABC 中,由余弦定理得BC 2=AB 2+AC 2-2AB·AC·cos 135°=(3-1)2+(2)2-2×(3-1)×2×-所以BC=2 n mile,由正弦定理得AB sin C =BC sin∠BAC ,即3-1sin C =2sin135°,所以sin C=6-24,易知C 为锐角,又sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°sin 30°=6-24,所以C=15°.故乙船的航行距离为2 n mile,方向为南偏西15°+45°=60°.能力提升练1.A 2.B 3.D1.A 连接E 0E 1,在△SE 0E 1中,SE 0=SE 1=R,又∠E 1SE 0=π3,所以△SE 0E 1是正三角形,E 0E 1=R,由∠SE 0M=2π3,∠SE 1M=3π4,得∠E 1E 0M=π3,∠E 0E 1M=5π12,在在则在则在则在AB=14,AC=BC=AM=18,∠CBA=∠CAB=θ,∠MAB=θ2,在△ABC 中,由余弦定理得BC 2=AC 2+AB 2-2AC·ABcos θ,即182=182+142-2×18×14cos θ,解得cos θ=718,所以cos θ=2cos 2θ2-1=718,又θ为锐角,所以cos θ2=56,在△ABM 中,由余弦定理得BM 2=AM 2+AB 2-2AM·ABcos θ2=182+142-2×18×14×56=100,所以BM=10,即B 炮台与弹着点M 的距离为10 km.故选D.4.答案 42+4解析 如图,设MN 与扇形的切点为P,连接OP.由题意得∠MON=135°,设OM=a km,ON=b km,在△OMN 中,MN 2=a 2+b 2-2abcos 135°=a 2+b 2+2ab≥(2+2)ab,当且仅当a=b 时取等号.设∠OMN=α,则∠ONM=45°-α,所以a=2sin α,b=2sin(45°−α),故ab=4sin αsin(45°−α)=162sin(2α+45°)−2≥162−2,当且仅当α=22.5°时取等号,所以MN 2≥16(2+2)2−2=16(2+1)2,解得MN≥4(2+1),所以MN 的最小值为(42+4)km.5.答案 475-253;5033解析 如图,在△ACD 中,CD=50 m,∠ACD=45°,∠ADC=105°,∠CAD=30°,由正弦定理得AC sin∠ADC =CD sin∠CAD =AD sin∠ACD ,又sin 105°=sin 75°=sin(45°+30°)=22×32+22×12=6+24,所以AC=5012×6+24=25(6+2)(m),延长AB 交CE 于H,则AH=ACsin ∠ACD=25(6+2)×22=25(3+1)(m),又无人机飞行的海拔高度为500 m,所以该座小山的海拔为500-25(3+1)=(475-253)m.在△ABC 中,∠ACB=45°-30°=15°,∠ABC=120°,且sin ∠ACB=sin(45°-30°)=22×32-22×12=6-24,由正弦定理得AB sin15°=AC sin120°,则AB=25(6+2)32×6-24=5033(m).6.解析 (1)由题意知∠BCP=90°,∠PBC=60°,PC=23,7.(3)设缉私船用t h在D处追上走私船,如图,则有CD=103t n mile,BD=10t n mile.在△BCD中,∠CBD=90°+30°=120°,由正弦定理得sin∠BCD=BD·sin∠CBDCD =10t·sin120°103t=12.易知0°<∠BCD<60°,所以∠BCD=30°,所以缉私船沿北偏东60°的方向能最快追上走私船.又∠D=180°-120°-30°=30°=∠BCD,所以BD=BC,即10t=6,解得t=610,所以缉私船追上走私船最快需要610h.。
最新【人教A版】高中数学必修五学案设计(含答案)第一章 1.1.2(二)

最新人教版数学精品教学资料1.1.2 余弦定理(二)[学习目标] 1.熟练掌握余弦定理及变形形式,能用余弦定理解三角形.2.能应用余弦定理判断三角形形状.3.能利用正弦、余弦定理解决解三角形的有关问题.知识点一 正弦定理及其变形 1.a sin A =b sin B =csin C=2R . 2.a =2R sin A ,b =2R sin B ,c =2R sin C . 知识点二 余弦定理及其推论1.a 2=b 2+c 2-2bc cos A ,b 2=c 2+a 2-2ca cos B ,c 2=a 2+b 2-2ab cos C .2.cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca ,cos C =a 2+b 2-c 22ab.3.在△ABC 中,c 2=a 2+b 2⇔C 为直角,c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角. 知识点三 正弦、余弦定理解决的问题 思考 以下问题不能用余弦定理求解的是.(1)已知两边和其中一边的对角,求另一边的对角,进而可求其他的边和角; (2)已知两角和一边,求其他角和边;(3)已知一个三角形的两条边及其夹角,求其他的边和角; (4)已知一个三角形的三条边,解三角形. 答案 (2)题型一 利用余弦定理判断三角形的形状例1 在△ABC 中,cos 2B 2=a +c2c ,其中a 、b 、c 分别是角A 、B 、C 的对边,则△ABC 的形状为( ) A.直角三角形B.等腰三角形或直角三角形C.等腰直角三角形D.正三角形答案 A解析 方法一 在△ABC 中,由已知得 1+cos B 2=12+a2c, ∴cos B =a c =a 2+c 2-b22ac,化简得c 2=a 2+b 2. 故△ABC 为直角三角形.方法二 原式化为cos B =a c =sin Asin C ,∴cos B sin C =sin A =sin(B +C ) =sin B cos C +cos B sin C , ∴sin B cos C =0,∵B ∈(0,π),sin B ≠0,∴cos C =0, 又∵C ∈(0,π),∴C =90°, 即△ABC 为直角三角形.反思与感悟 一般地,如果遇到的式子含角的余弦或是边的二次式,要考虑用余弦定理;反之,若遇到的式子含角的正弦或是边的一次式,则大多用正弦定理;若是以上特征不明显,则要考虑两个定理都有可能用.跟踪训练1 在△ABC 中,B =60°,b 2=ac ,则三角形一定是( ) A.直角三角形 B.等边三角形 C.等腰直角三角形 D.钝角三角形 答案 B解析 由余弦定理cos B =a 2+c 2-b 22ac,代入得12=a 2+c 2-ac 2ac,∴a 2+c 2-2ac =0, 即(a -c )2=0,∴a =c .又∵B =60°,∴△ABC 是等边三角形. 题型二 正弦、余弦定理的综合应用例2 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c ,已知BA →·BC →=2,cos B =13,b =3,求:(1)a 和c 的值; (2)cos(B -C )的值.解 (1)由BA →·BC →=2得,ca cos B =2, 又cos B =13.所以ca =6.由余弦定理得a 2+c 2=b 2+2ac cos B . 又b =3,所以a 2+c 2=9+2×6×13=13.解⎩⎪⎨⎪⎧ac =6,a 2+c 2=13得a =2,c =3或a =3,c =2. 因为a >c ,所以a =3,c =2. (2)在△ABC 中,B ∈(0,π), sin B =1-cos 2B =1-(13)2=223.由正弦定理得,sin C =c b sin B =23×223=429.因为a =b >c ,所以C 为锐角, 因此cos C =1-sin 2C =1-(429)2=79.于是cos(B -C )=cos B cos C +sin B sin C =13×79+223×429=2327.反思与感悟 (1)余弦定理和正弦定理一样,都是围绕着三角形进行边角互换的.在有关三角形的题目中注意选择是应用正弦定理,还是余弦定理,必要时也可列方程(组)求解.同时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能利用某个定理的信息. (2)解题时,还应注意,当把条件转化为角之间的关系时,还应注意三角恒等变换公式的应用. 跟踪训练2 在△ABC 中,内角A ,B ,C 对边分别为a ,b ,c ,且b sin A =3a cos B . (1)求角B ;(2)若b =3,sin C =2sin A ,求a ,c 的值. 解 (1)由b sin A =3a cos B 及正弦定理, 得sin B =3cos B ,即tan B =3,因为B 是三角形的内角,所以B =π3.(2)由sin C =2 sin A 及正弦定理得,c =2a . 由余弦定理及b =3,得9=a 2+c 2-2ac cos π3,即9=a 2+4a 2-2a 2,所以a =3,c =2 3.题型三 利用正弦、余弦定理证明边角恒等式例3 在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,求证:a 2-b 2c 2=sin (A -B )sin C .证明 在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A , b 2=a 2+c 2-2ac cos B ,∴a 2-b 2=b 2-a 2-2bc cos A +2ac cos B , ∴2(a 2-b 2)=2ac cos B -2bc cos A , 即a 2-b 2=ac cos B -bc cos A , ∴a 2-b 2c 2=a cos B -b cos Ac .由正弦定理得a c =sin A sin C ,b c =sin B sin C,∴a 2-b 2c 2=sin A cos B -cos A sin B sin C =sin (A -B )sin C ,故等式成立.反思与感悟 (1)证明三角恒等式,关键是消除等号两端三角函数式的差异.形式上一般有:左⇒右;右⇒左或左⇒中⇐右三种.(2)利用正弦、余弦定理证明三角形中的恒等式的途径有两种:一是把角的关系通过正弦、余弦定理转化为边的关系;二是把边的关系转化为角的关系,一般是通过正弦定理转化. 跟踪训练3 在△ABC 中,若a cos 2C 2+c cos 2A 2=3b2,求证:a +c =2b .解 由题a (1+cos C )+c (1+cos A )=3b , 即a +a ·a 2+b 2-c 22ab +c +c ·b 2+c 2-a 22bc =3b ,∴2ab +a 2+b 2-c 2+2bc +b 2+c 2-a 2=6b 2, 整理得ab +bc =2b 2,同除b 得a +c =2b , 故等式成立.忽略三角形中任意两边之和大于第三边例4 已知钝角三角形的三边BC =a =k ,AC =b =k +2,AB =c =k +4,求k 的取值范围. 错解 ∵c >b >a ,且△ABC 为钝角三角形, ∴C 为钝角.由余弦定理得cos C =a 2+b 2-c 22ab =k 2-4k -122k (k +2)<0.∴k 2-4k -12<0,解得-2<k <6,① ∵k 为三角形的一边长,∴k >0,② 由①②知0<k <6.错因分析 忽略隐含条件k +k +2>k +4,即k >2. 正解 ∵c >b >a ,且△ABC 为钝角三角形, ∴C 为钝角.由余弦定理得cos C =a 2+b 2-c 22ab =k 2-4k -122k (k +2)<0,∴k 2-4k -12<0,解得-2<k <6,① 由两边之和大于第三边得k +(k +2)>k +4, ∴k >2,② 由①②可知2<k <6.误区警示 在解与三角形的边有关的问题时,一定要注意三角形两边之和大于第三边,两边之差小于第三边.跟踪训练4 若△ABC 为钝角三角形,三边长分别为2,3,x ,则x 的取值范围是( ) A.(1,5) B.(13,5)C.(5,13)D.(1,5)∪(13,5)答案 D解析 (1)若x >3,则x 对角的余弦值22+32-x 22×2×3<0且2+3>x ,解得13<x <5.(2)若x <3,则3对角的余弦值22+x 2-322×2×x <0且x +2>3,解得1<x < 5.故x 的取值范围是(1,5)∪(13,5).1.在△ABC 中,b cos A =a cos B ,则△ABC 是( ) A.等边三角形 B.等腰三角形 C.直角三角形 D.锐角三角形答案 B解析 由题b ·b 2+c 2-a 22bc =a ·a 2+c 2-b 22ac ,整理得a 2=b 2,∴a =b .2.在△ABC 中,sin 2A -sin 2C -sin 2B =sin C sin B ,则A 等于( )A.60°B.45°C.120°D.30° 答案 C解析 由正弦定理得a 2-c 2-b 2=bc , 结合余弦定理得cos A =b 2+c 2-a 22bc =-12,又A ∈(0,π),∴A =120°.3.在△ABC 中,A =120°,AB =5,BC =7,则sin Bsin C 的值为( )A.85B.58C.53D.35 答案 D解析 由余弦定理BC 2=AB 2+AC 2-2·AB ·AC ·cos A 得72=52+AC 2-2·5·AC ·(-12),∴AC =3或-8(舍).∴sin B sin C =AC AB =35.4.已知锐角三角形的边长分别为1,3,a ,则a 的范围是( ) A.(8,10) B.(22,10) C.(22,10) D.(10,8)答案 B解析 只需让3和a 所对的边均为锐角即可.故⎩⎪⎨⎪⎧12+32-a 22·1·3>012+a 2-322·1·a>01+3>a 1+a >3,解得22<a <10.5.在△ABC 中,若b =1,c =3,C =2π3,则a =.答案 1解析 由余弦定理得c 2=a 2+b 2-2ab cos C , ∴a 2+1+a =3,即a 2+a -2=0, 解得a =1或a =-2(舍).6.已知△ABC 的三边长分别为2,3,4,则此三角形是三角形. 答案 钝角解析 4所对的角的余弦为22+32-422×2×3=-14<0,故该角为钝角,故该三角形为钝角三角形.1.判断三角形形状的基本思想是:用正弦定理或余弦定理将所给条件统一为角之间的关系或边之间的关系.若统一为角之间的关系,再利用三角恒等变形化简找到角之间的关系;若统一为边之间的关系,再利用代数方法进行恒等变形、化简,找到边之间的关系.2.解决综合问题时应考虑以下两点(1)正弦定理、余弦定理是解决三角形问题的主要工具,正确选择适合试题特点的公式极为重要,当使用一个定理无法解决问题时,要及时考虑另外一个定理.(2)三角函数中的公式在解决三角形问题时是不可或缺的,应该养成应用三角公式列式化简的习惯.一、选择题1.在△ABC 中,有下列结论①若a 2>b 2+c 2,则△ABC 为钝角三角形; ②若a 2=b 2+c 2+bc ,则A 为60°; ③若a 2+b 2>c 2,则△ABC 为锐角三角形; ④若A ∶B ∶C =1∶2∶3,则a ∶b ∶c =1∶2∶3. 其中正确的个数为( ) A.1 B.2 C.3 D.4 答案 A解析 结合余弦定理可知:①中A 为钝角,正确;②中A =120°;③中C 为锐角,但另两个角未必是锐角;④中A 、B 、C 分别为30°、60°、90°,∴a ∶b ∶c =sin A ∶sin B ∶sin C =12∶32∶1,故正确的结论为①.2.在△ABC 中,已知a =2,则b cos C +c cos B 等于( ) A.1 B. 2 C.2 D.4 答案 C解析 b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac=a 2+b 2-c 2+a 2+c 2-b 22a=a =2.3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( ) A.518 B.34C.32D.78 答案 D解析 设顶角为α,底边长为a ,周长为5a ,故腰长为2a ,由余弦定理可得cos α=(2a )2+(2a )2-a 22(2a )(2a )=78. 4.已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b 等于( ) A.10 B.9 C.8 D.5 答案 D解析 由23cos 2A +cos 2A =0得23cos 2A +2cos 2A -1=0 ∴cos A =±15,∵A 为锐角,∴cos A =15,又a 2=b 2+c 2-2bc cos A , ∴49=b 2+36-2·b ·6×15,∴b =5或b =-135(舍).5.在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且b 2=ac ,则B 的取值范围是( ) A.(0,π3]B.[π3,π) C.(0,π6]D.[π6,π) 答案 A解析 由余弦定理cos B =a 2+c 2-b 22ac =(a -c )2+ac 2ac =(a -c )22ac +12≥12,∵B ∈(0,π),∴B ∈(0,π3].6.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( ) A.8-4 3 B.1 C.43 D.23 答案 C解析 ∵C =60°,∴c 2=a 2+b 2-2ab cos 60°=a 2+b 2-ab . 又(a +b )2-c 2=4,∴c 2=a 2+b 2+2ab -4, 故-ab =2ab -4,∴ab =43.7.在△ABC 中,AB =7,AC =6,M 是BC 的中点,AM =4,则BC 等于( ) A.21 B.106 C.69D.154解析 设BC =a ,则BM =MC =a2.在△ABM 中,AB 2=BM 2+AM 2-2BM ·AM ·cos ∠AMB , 即72=14a 2+42-2×a2×4·cos ∠AMB ,①在△ACM 中,AC 2=AM 2+MC 2-2AM ·MC ·cos ∠AMC , 即62=42+14a 2+2×4×a2·cos ∠AMB ,②①+②,得72+62=42+42+12a 2,解得a =106.8.如图,在△ABC 中,∠BAC =120°,AB =2,AC =1,D 是边BC 上一点,DC =2BD ,则AD →·BC →等于( )A.-212B.-83C.-75D.-27答案 B解析 由余弦定理得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC ,解得BC =7,又cos B =AB 2+BC 2-AC 22AB ·BC =AB 2+BD 2-AD 22AB ·BD ,解得AD =133, 又AD →,BC →的夹角大小为∠ADB , cos ∠ADB =BD 2+AD 2-AB 22BD ·AD=(73)2+(133)2-222×73×133=-891,所以AD →·BC →=|AD →|·|BC →|·cos ∠ADB =-83.二、填空题9.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知b -c =12a,2sin B =3sin C ,则cos答案 34解析 由2sin B =3sin C 及正弦定理可得2b =3c , 由b -c =12a 可得a =c ,b =32c ,由余弦定理可得cos A =b 2+c 2-a 22bc =34.10.△ABC 为钝角三角形,a =3,b =4,c =x ,则x 的取值范围是. 答案 (1,7)∪(5,7)解析 ①若x >4,则x 所对的角为钝角, ∴32+42-x 22·3·4<0且x <3+4=7,∴5<x <7.②若x <4,则4对的角为钝角, ∴32+x 2-422·3·x <0且3+x >4,∴1<x <7.∴x 的取值范围是(1,7)∪(5,7). 11.在△ABC 中,C =3B ,则cb 的范围是.答案 (1,3)解析 由正弦定理可得c b =sin C sin B =sin 3Bsin B=sin (B +2B )sin B =sin B cos 2B +cos B sin 2Bsin B=cos 2B +2cos 2B =4cos 2B -1. ∵A +B +C =180°,C =3B , ∴0°<B <45°, ∴22<cos B <1, ∴1<4cos 2B -1<3, ∴1<c b <3.三、解答题12.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知b 2=ac 且cos B =34.(1)求1tan A +1tan C的值; (2)设BA →·BC →=32,求a +c 的值.解 (1)由cos B =34,B =(0,π2),得 sin B =1-(34)2=74, 由b 2=ac 及正弦定理得sin 2B =sin A sin C ,于是1tan A +1tan C =cos A sin A +cos C sin C=sin C cos A +cos C sin A sin A sin C =sin (A +C )sin 2B =sin B sin 2B =1sin B =477. (2)由BA →·BC →=32得ca ·cos B =32, 由cos B =34,可得ca =2,即b 2=2, 由余弦定理得a 2+c 2=b 2+2ac ·cos B =5,∴(a +c )2=a 2+c 2+2ac =5+4=9,∴a +c =3.13.在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,求证: cos C cos B =b -c cos A c -b cos A证明 左边=a 2+b 2-c 22ab a 2+c 2-b 22ac=c (a 2+b 2-c 2)b (a 2+c 2-b 2), 右边=b -c ·b 2+c 2-a 22bc c -b ·b 2+c 2-a 22bc=c (a 2+b 2-c 2)b (a 2+c 2-b 2)=左边, 得证.。
人教版高中数学必修第二册第五单元《概率》测试(包含答案解析)

一、选择题1.甲、乙两人独立地对同一目标各射击一次,命中率分别为0.6和0.8,在目标被击中的条件下,甲、乙同时击中目标的概率为( ) A .2144B .1223C .1225D .21112.斐波那契数列(Fibonacci sequence )又称黄金分割数列,因为数学家昂纳多斐波那契以兔子繁殖为例子引入,故又称为“兔子数列”,在数学上斐波那契数列被以下递推方法定义:数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,现从该数列的前10项中随机的抽取一项,则该数除以3余数为1的概率为( ) A .18B .14C .38D .123.如图,已知电路中4个开关闭合的概率都是12,且是互相独立的,灯亮的概率为( )A .316B .34C .1316D .144.设两个独立事件A 和B 同时不发生的概率是p ,A 发生B 不发生与A 不发生B 发生的概率相同,则事件A 发生的概率为( ) A .2pB .2p C .1p D .12p 5.设A ,B ,C 是三个事件,给出下列四个事件:(Ⅰ)A ,B ,C 中至少有一个发生; (Ⅱ)A ,B ,C 中最多有一个发生; (Ⅲ)A ,B ,C 中至少有两个发生; (Ⅳ)A ,B ,C 最多有两个发生;其中相互为对立事件的是( ) A .Ⅰ和ⅡB .Ⅱ和ⅢC .Ⅲ和ⅣD .Ⅳ和Ⅰ6.从一批产品中取出三件产品,设事件A 为“三件产品全不是次品”,事件B 为“三件产品全是次品”,事件C 为“三件产品不全是次品”,则下列结论正确的是( ) A .事件A 与C 互斥 B .事件B 与C 互斥 C .任何两个事件均互斥D .任何两个事件均不互斥7.甲、乙二人进行围棋比赛,采取“三局两胜制”,已知甲每局取胜的概率为23,则甲获胜的概率为 ( ).A .22213221333C ⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .22232233C ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭C .22112221333C ⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .21112221333C ⎛⎫⎛⎫⎛⎫+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭8.下列说法正确的是( )A .天气预报说明天下雨的概率为0900,则明天一定会下雨B .不可能事件不是确定事件C .统计中用相关系数r 来衡量两个变量的线性关系的强弱,若[]0.75,1,r ∈则两个变量正相关很强D .某种彩票的中奖率是11000,则买1000张这种彩票一定能中奖 9.一个三位数的百位,十位,个位上的数字依次是,,a b c ,当且仅当a b c b >>且时称为“凹数”,若{},,1234a b c ∈,,,,从这些三位数中任取一个,则它为“凹数”的概率是 A .13B .532C .732D .71210.有3位男生和2位女生在周日去参加社区志愿活动,从该5位同学中任取3人,至少有1名女生的概率为( ) A .110B .25C .35D .91011.甲、乙两名同学相约学习某种技能,该技能需要通过两项考核才能拿到证书,每项考核结果互不影响.已知甲同学通过第一项考核的概率是45,通过第二项考核的概率是12;乙同学拿到该技能证书的概率是13, 那么甲、乙两人至少有一人拿到该技能证书的概率是( ) A .1315B .1115C .23D .3512.某班级举办投篮比赛,每人投篮两次.若小明每次投篮命中的概率都是0.6,则他至少投中一次的概率为( ) A .0.24B .0.36C .0.6D .0.8413.今年“五一”小长假期间,某博物馆准备举办-次主题展览,为了引导游客有序参观,该博物馆每天分别在10时,13时,16时公布实时观展的人数.下表记录了5月1日至5日的实时观展人数:1日2日3日4日5日10时观展人数3256427245672737235513时观展人数5035653771494693370816时观展人数61006821658048663521通常用实时观展的人数与博物馆的最大承载量(同一时段观展人数的饱和量)之比来表示观展的舒适度,50%以下称为“舒适”,已知该博物馆的最大承载量是1万人.若从5月1日至5日中任选2天,则这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”的概率为()A.12B.25C.35D.34二、解答题14.一个不透明的袋子中装有5个小球,其中有3个红球,2个白球,这些球除颜色外完全相同.(1)记事件A为“一次摸出2个球,摸出的球为一个红球,一个白球”.求()P A;(2)记事件B为“第一次摸出一个球,记下颜色后将它放回袋中,再次摸出一个球,两次摸出的球为不同颜色的球”,记事件C为“第一次摸出一个球,不放回袋中,再次摸出一个球,两次摸出的球为不同颜色的球”,求证:1()()()5P C P B P A-=.15.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[)50,60,[)60,70,…[]90,100分成5组,制成如图所示频率分布直方图.(1)求图中x的值;(2)求这组数据的平均数;(3)已知满意度评分值在[)50,60内的男生数与女生数的比为3:2,若在满意度评分值为[)50,60的人中随机抽取2人进行座谈,求恰有1名女生的概率.16.高考改革后,学生除了语数外三门必选外,可在A类科目:物理、化学、生物和B类科目:政治、地理、历史共6个科目中任选3门.(1)求小明同学选A类科目数X的分布列.(2)求小明同学从A类和B类科目中均至少选择1门科目的概率.17.甲、乙两名运动员各投篮一次,甲投中的概率为0.8,乙投中的概率为0.9,求下列事件的概率:(Ⅰ)两人都投中;(Ⅱ)恰好有一人投中;(Ⅲ)至少有一人投中.18.2018年,在《我是演说家》第四季这档节目中,英国华威大学留学生游斯彬的“数学之美”的演讲视频在微信朋友圈不断被转发,他的视角独特,语言幽默,给观众留下了深刻的印象.某机构为了了解观众对该演讲的喜爱程度,随机调查了观看了该演讲的140名观众,得到如下的列联表:(单位:名)(1)根据以上列联表,问能否在犯错误的概率不超过0.05的前提下认为观众性别与喜爱该演讲有关.(精确到0.001)(2)从这60名男观众中按对该演讲是否喜爱采取分层抽样,抽取一个容量为6的样本,然后随机选取两名作跟踪调查,求选到的两名观众都喜爱该演讲的概率.附:临界值表参考公式:22()=)()()()n ad bcKa b c d a c b d(-++++,+n a b c d=++.19.在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.(1)摸出的3个球为白球的概率是多少?(2)摸出的3个球为2个黄球1个白球的概率是多少?(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?20.某校从高一年级的一次月考成绩中随机抽取了50名学生的成绩,这50名学生的成绩都在[50,100]内,按成绩分为[50,60),[60,70),[70,80),[80,90),[90,100]五组,得到如图所示的频率分布直方图.(1)求图中的a值;(2)根据频率分布直方图估计该校高一年级本次考试成绩的中位数;(3)用分层抽样的方法从成绩在[80,100]内的学生中抽取6人,再从这6人中随机抽取2名学生进行调查,求月考成绩在[90,100]内至少有1名学生被抽到的概率.21.某校高二期中考试后,教务处计划对全年级数学成绩进行统计分析,从男、女生中各随机抽取100名学生,分别制成了男生和女生数学成绩的频率分布直方图,如图所示.(1)若所得分数大于等于80分认定为优秀,求男、女生优秀人数各有多少人?(2)在(1)中的优秀学生中用分层抽样的方法抽取5人,从这5人中任意任取2人,求至少有1名男生的概率.22.某社区对安全卫生进行问卷调查,请居民对社区安全卫生服务给出评价(问卷中设置仅有满意、不满意).现随机抽取了90名居民,调查情况如下表:男居民女居民合计a 2560满意35(1)利用分层抽样的方法从对安全卫生服务评价为不满意的居民中随机抽取6人,再从这6人中随机抽取2人,求这2人中男、女居民各有1人的概率;(2)试通过计算判断能否在犯错误的概率不超过0.05的情况下认为男居民与女居民对社区安全卫生服务的评价有差异?附:()()()()()22n ad bcKa b c d a c b d-=++++,n a b c d=+++.23.为了丰富业余生活,甲、乙、丙三人进行羽毛球比赛.比赛规则如下:①每场比赛有两人参加,并决出胜负;②每场比赛获胜的人与未参加此场比赛的人进行下一场的比赛;③依次循环,直到有一个人首先获得两场胜利,则本次比赛结束,此人为本次比赛的冠军.已知在每场比赛中,甲胜乙的概率为23,甲胜丙的概率为35,乙胜丙的概率为12.(1)求甲和乙先赛且共进行4场比赛的概率;(2)请通过计算说明,哪两个人进行首场比赛时,甲获得冠军的概率最大?24.某大学宣传部组织了这样一个游戏项目:甲箱子里面有3个红球,2个白球,乙箱子里面有1个红球,2个白球,这些球除了颜色以外,完全相同.每次游戏需要从这两个箱子里面各随机摸出两个球.(1)设在一次游戏中,摸出红球的个数为X,求X分布列;(2)若在一次游戏中,摸出的红球不少于2个,则获奖.求一次游戏中,获奖的概率. 25.为了解学生“课外阅读日”的活动情况,某校以10%的比例对高二年级500名学生按选修物理和选修历史进行分层抽样调查,测得阅读时间(单位:分钟)的频数统计图如下:(1)分别估计该校高二年级选修物理和选修历史的人数;(2)估计该校高二年级学生阅读时间在60分钟以上的概率;(3)从样本中阅读时间在6090分钟的选修物理的学生中任选2人,求至少有1人阅读时间在7590之间的概率.26.2020年开始,山东推行全新的高考制度,新高考不再分文理科,采用“3+3”模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还需要依据想考取的高校及专业要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科满分100分,2020年初受疫情影响,全国各地推迟开学,开展线上教学.为了了解高一学生的选科意向,某学校对学生所选科目进行线上检测,下面是100名学生的物理、化学、生物三科总分成绩,以组距20分成7组:[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],画出频率分布直方图如图所示.(1)求频率分布直方图中a的值;(2)由频率分布直方图;(i)求物理、化学、生物三科总分成绩的中位数;(ii)估计这100名学生的物理、化学、生物三科总分成绩的平均数(同一组中的数据用该组区间的中点值作代表);(3)为了进一步了解选科情况,由频率分布直方图,在物理、化学、生物三科总分成绩在[220,240)和[260,280)的两组中,用分层随机抽样的方法抽取7名学生,再从这7名学生中随机抽取2名学生进行问卷调查,求抽取的这2名学生来自不同组的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据题意,记甲击中目标为事件A ,乙击中目标为事件B ,目标被击中为事件C ,由相互独立事件的概率公式,计算可得目标被击中的概率,进而计算在目标被击中的情况下,甲、乙同时击中目标的概率,可得答案. 【详解】根据题意,记甲击中目标为事件A ,乙击中目标为事件B ,目标被击中为事件C , 则()()()()()1110.610.80.92P C P A P B =-=--⨯-=; 则在目标被击中的情况下,甲、乙同时击中目标的概率为0.60.80.921223P ⨯==. 故选:B. 【点睛】本题考查条件概率的计算,是基础题,注意认清事件之间的关系,结合条件概率的计算公式正确计算即可.属于基础题.2.D解析:D 【分析】写出斐波那契数列的前10项,列举出被3除所得的余数,由概率公式可得答案. 【详解】数列{}n a 满足:121a a ==,()*21Nn n n a a a n ++=+∈,数列的前10项为:1,1,2,3,5,8,13,21,34,55 该数列被3除所得的余数为1,1,2,0,2,2,1,0,1,1 所以10项中共有5项满足除以3余数为1, 故概率为51102P . 故选:D 【点睛】本题考查概率的求法,考查列举法的应用,属于基础题.3.C解析:C【分析】灯泡不亮包括四个开关都开,或下边的2个都开,上边的2个中有一个开,这三种情况是互斥的,每一种情况中的事件是相互独立的,根据概率公式得到结果. 【详解】由题意知,本题是一个相互独立事件同时发生的概率,灯泡不亮包括四个开关都开,或下边的2个都开,上边的2个中有一个开, 这三种情况是互斥的,每一种情况中的事件是相互独立的,∴灯泡不亮的概率是111111111322222222216111222⨯+⨯⨯⨯+⨯⨯⨯⨯=⨯,灯亮和灯不亮是两个对立事件,∴灯亮的概率是31311616-=, 故选:C . 【点睛】本题结合物理的电路考查了有关概率的知识,考查对立事件的概率和项和对立事件的概率,本题解题的关键是看出事件之间的关系,灯亮的情况比较多,需要从反面来考虑,属于中档题.4.C解析:C 【分析】利用A 发生B 不发生与A 不发生B 发生的概率相同,事件A 和B 同时不发生的概率是p ,建立方程,即可求得事件A 发生的概率. 【详解】根据题意设事件A 发生的概率为a ,事件B 发生的概率为b , 则有(1)(1)(1)(1)a b p a b a b --=⎧⎨-=-⎩①②由②知a b =,代入①得1a =故选:C . 【点睛】本题主要考查相互独立事件的概率的计算,解题的关键是正确理解题意,列出方程,属于中档题.5.B解析:B 【分析】利用互斥事件、对立事件的定义直接求解. 【详解】解:A ,B ,C 是三个事件,给出下列四个事件: (Ⅰ)A ,B ,C 中至少有一个发生;(Ⅱ)A,B,C中最多有一个发生;(Ⅲ)A,B,C中至少有两个发生(Ⅳ)A,B,C最多有两个发生;在A中,Ⅰ和Ⅱ能同时发生,不是互斥事件,故A中的两个事件不能相互为对立事件;在B中,Ⅱ和Ⅲ既不能同时发生,也不能同时不发生,故B中的两个事件相互为对立事件;在C中,Ⅲ和Ⅳ能同时发生,不是互斥事件,故C中的两个事件不能相互为对立事件;在D中,Ⅳ和Ⅰ能同时发生,不是互斥事件,故D中的两个事件不能相互为对立事件.故选:B.【点睛】本题考查相互为对立事件的判断,考查互斥事件、对立事件的定义等基础知识,考查运算求解能力,属于基础题.6.B解析:B【分析】根据互斥事件的定义,逐个判断,即可得出正确选项.【详解】A为三件产品全不是次品,指的是三件产品都是正品,B为三件产品全是次品,C为三件产品不全是次品,它包括一件次品,两件次品,三件全是正品三个事件由此知:A与B是互斥事件;A与C是包含关系,不是互斥事件;B与C是互斥事件,故选B.【点睛】本题主要考查互斥事件定义的应用.7.C解析:C【分析】先确定事件“甲获胜”包含“甲三局赢两局”和“前两局甲赢”,再利用独立重复试验的概率公式和概率加法公式可求出所求事件的概率.【详解】事件“甲获胜”包含“甲三局赢两局”和“前两局甲赢”,若甲三局赢两局,则第三局必须是甲赢,前面两局甲赢一局,所求概率为2121233C⎛⎫⋅⋅ ⎪⎝⎭,若前两局都是甲赢,所求概率为223⎛⎫⎪⎝⎭,因此,甲获胜的概率为22112221333C⎛⎫⎛⎫⎛⎫+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C.【点睛】本题考查独立重复事件的概率,考查概率的加法公式,解题时要弄清楚事件所包含的基本情况,考查分类讨论思想,考查计算能力,属于中等题.8.C解析:C 【分析】运用概率的相关知识对四个选项逐一进行分析即可 【详解】对于A ,天气预报说明天下雨的概率为90%,表示下雨的可能性比较大,是不确定事件,在一定条件下可能下雨,也可能不下雨,但明天一定会下雨是不正确的,故错误; 对于B ,根据定义可知不可能事件是确定事件,故错误;对于C ,统计中用相关系数r 来衡量两个变量的线性关系的强弱,若[]0.75,1,r ∈则两个变量正相关很强,故正确; 对于D ,某种彩票的中奖率是11000,每一次买彩票的中奖是独立的,并不是买1000张这种彩票一定能中奖,故错误 故选C 【点睛】本题主要考查了辨别生活中的概率,理解并运用概率知识即可判断,较为基础.9.C解析:C 【解析】 【分析】先分类讨论求出所有的三位数,再求其中的凹数的个数,最后利用古典概型的概率公式求解. 【详解】先求所有的三位数,个位有4种排法,十位有4种排法,百位有4种排法,所以共有44464⨯⨯=个三位数.再求其中的凹数,第一类:凹数中有三个不同的数,把最小的放在中间,共有3428C ⨯=种,第二类,凹数中有两个不同的数,将小的放在中间即可,共有2416C ⨯=种方法,所以共有凹数8+6=14个, 由古典概型的概率公式得P=1476432=. 故答案为:C 【点睛】本题主要考查排列组合的运用,考查古典概型的概率,意在考查学生对这些知识的掌握水平和分析推理能力.10.D解析:D 【分析】将3位男生分别记为A 、B 、C ,2位女生分别记为a 、b ,列举出所有的基本事件,并确定事件“从这5位同学中任取3人,至少有1名女生”所包含的基本事件数,利用古典概型的概率公式可求得所求事件的概率. 【详解】将3位男生分别记为A 、B 、C ,2位女生分别记为a 、b ,从这5位同学中任取3人,所有的基本事件有:ABC 、ABa 、ABb 、ACa 、ACb 、Aab 、BCa 、BCb 、Bab 、Cab ,共10种,其中,事件“从这5位同学中任取3人,至少有1名女生”包含的基本事件有:ABa 、ABb 、ACa 、ACb 、Aab 、BCa 、BCb 、Bab 、Cab ,共9种,因此,所求概率为910P =. 故选:D. 【点睛】方法点睛:求解古典概型概率的方法如下: (1)列举法; (2)列表法; (3)树状图法; (4)排列、组合数的应用.11.D解析:D 【分析】由已知先求得甲取得证书的概率,再求得甲,乙两人都取不到证书的概率,由对立事件的概率公式可得选项. 【详解】由已知得甲拿到该技能证书的概率为412525⨯=,则甲,乙两人都没有拿到证书的概率为:21211535⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭, 所以甲、乙两人至少有一人拿到该技能证书的概率是23155-=, 故选:D. 【点睛】方法点睛:在解决含有“至少”,“至多”等一类问题的概率问题时,正面求解时情况较复杂,可以求其对立事件的概率,再用1减去所求的对立事件的概率,就是所求的概率.12.D解析:D 【分析】先求出对立事件:一次都未投中的概率,然后可得结论. 【详解】由题意小明每次投篮不中的概率是10.60.4-=,再次投篮都不中的概率是20.40.16=,∴他再次投篮至少投中一次的概率为10.160.84-=.故选:D.【点睛】本题考查相互独立事件同时发生的概率公式,在出现至少、至多等词语时,可先求其对立事件的概率,然后由对立事件概率公式得出结论.13.C解析:C【分析】5月1日至5日中,该博物馆每天在10时,13时,16时这3个时刻的观展舒适度都是“舒适”的有2天,从5月1日至5日中任选2天,基本事件总数2510n C==,这2天中,恰有1天这3个时刻的观展舒适度都是"舒适"包含的基本事件个数11236m C C==,由此能求出这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”的概率.【详解】5月1日至5日中,该博物馆每天在10时,13时,16时这3个时刻的观展舒适度都是“舒适”的有2天,分别为5月4日和5月5日,从5月1日至5日中任选2天,基本事件总数2510n C==,这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”包含的基本事件个数11 236m C C==,所以这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”的概率63105mPn===.故选:C【点睛】本题主要考查了概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,属于基础题.二、解答题14.(1)35;(2)证明见解析.【分析】(1)列举出从袋中一次摸出2个球的所有基本事件,找出其中满足事件A的基本事件有6个,即可求解()P A;(2)同样列举出从袋中第一次摸出一个球,记下颜色后将它放回袋中,再次摸出一个球的所有基本事件,找出其中满足事件B的基本事件;同理列举出从袋中第一次摸出一个球,不放回袋中,再次摸出一个球的所有基本事件,找出其中满足事件C的基本事件,即可计算出1()()()5P C P B P A-=.【详解】解:(1)记这3个红球为123,,a a a ,2个白球记为12,b b ,则从袋中一次摸出2个球的所有基本事件为:()12,a a ,()13,a a ,()11,a b ,()12,a b ,()23,a a ,()21,a b ,()22,a b ,()31,a b ,()32,a b ,()12,b b 共10个,其中满足事件A 的基本事件有6个,所以()63105P A ==. (2)从袋中第一次摸出一个球,记下颜色后将它放回袋中,再次摸出一个球的所有基本事件为()11,a a ,()12,a a ,()13,a a ,()11,a b ,()12,a b ,()21,a a ,()22,a a ,()23,a a ,()21,a b ,()22,a b ,()31,a a ,()32,a a ,()33,a a ,()31,a b ,()32,a b ,()11,b a ,()12,b a ,()13,b a ,()11,b b ,()12,b b ,()21,b a ,()22,b a ,()23,b a ,()21,b b ,()22,b b 共25个,满足事件B 的基本事件有12个,所以()1225P B =. 从袋中第一次摸出一个球,不放回袋中,再次摸出一个球的所有基本事件为()12,a a ,()13,a a ,()11,a b ,()12,a b ,()21,a a ,()23,a a ,()21,a b ,()22,a b ,()31,a a ,()32,a a ,()31,a b ,()32,a b ,()11,b a ,()12,b a ,()13,b a ,()12,b b ,()21,b a ,()22,b a ,()23,b a ,()21,b b 共20个,满足事件C 的基本事件有12个,所以()123205P C ==. 因此:()()312352525P C P B -=-=, 又()35P A =,所以()()()15P C P B P A -=. 【点晴】方法点晴:等可能事件概率一般用列举法列举出所有基本事件,找出满足所求事件的基本事件个数,直接用公式求得概率. 15.(1)0.01;(2)77;(3)35. 【分析】(1)由各组的频率和为1,列方程可求出x 的值; (2)由平均数的公式直接求解即可;(3)先计算满意度评分值在[)50,60内有1000.005105⨯⨯=人,按比例男生3人女生2人,从5人中选2人,用列举法列出所有情况,利用概率公式求解即可. 【详解】解:(1)由()0.0050.020.0350.030101x ++++⨯=,解得0.01x =;(2)这组数据的平均数为550.05650.2750.35850.3950.177⨯+⨯+⨯+⨯+⨯=; (3)满意度评分值在[)50,60内有1000.005105⨯⨯=人,男生数与女生数的比为3:2,故男生3人,女生2人,记为12312,,,,A A A B B ,记“满意度评分值为[)50,60的人中随机抽取2人进行座谈,恰有1名女生”为事件A ,从5人中抽取2人有:12A A ,13A A ,11A B ,12A B ,23A A ,21A B ,22A B ,31A B ,32A B ,12B B ,所以总基本事件个数为10个,A 包含的基本事件:11A B ,12A B ,21A B ,22A B ,31A B ,32A B ,共6个,所以 ()63105P A ==. 【点睛】 结论点睛:频率分布直方图的相关公式以及数字特征的计算, ①直方图中各个小长方形的面积之和为1;②直方图中纵轴表示频率除以组距,故每组样本中的频率为组距乘以小长方形的高,即矩形的面积;③直方图中每组样本的频数为频率乘以总数; ④最高的小矩形底边中点横坐标即是众数; ⑤中位数的左边和右边小长方形面积之和相等;⑥平均数是频率分布直方图的重心,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和. 16.(1)分布列见解析;(2)910. 【分析】(1)确定X 的所有取值为0,1,2,3,X 服从超几何分布,代入超几何分布的概率公式,计算每个X 的取值对应的概率,列出X 的分布列即可;(2)即两门A 类科目一门B 类科目或者一门A 类科目两门B 类科目的概率,则概率()()12P P X P X ==+=,从而计算可得;【详解】解:(1)小明同学选A 类科目数X 可能的取值为0,1,2,3,则X 服从超几何分布,()0333361020C C P X C ===, ()1233369120C C P X C ===,()2133369220C C P X C ===,()3033361320C C P X C ===. X 的分布列为:(2)设“小明同学从A 类和B 类科目中均至少选择1门科目”为事件C ,()()()99912202010P C P X P X ==+==+= 【点睛】本题考查了离散型随机变量的概率分布列,考查了超几何分布,古典概型的概率计算,计数原理.属于中档题.17.(Ⅰ)0.72;(Ⅱ)0.26;(Ⅲ)0.98. 【分析】(Ⅰ)由相互独立事件概率的乘法公式即可得解;(Ⅱ)由相互独立事件概率的乘法公式、互斥事件概率的加法公式,运算即可得解; (Ⅲ)由互斥事件概率加法公式即可得解. 【详解】设A =“甲投中”,B =“乙投中”,则A =“甲没投中”,B =“乙没投中”, 由于两个人投篮的结果互不影响,所以A 与B 相互独立,A 与B ,A 与B ,A 与B 都相互独立, 由己知可得()0.8P A =,()0.9P B =,则()0.2P A =,()0.1P B =; (Ⅰ)AB =“两人都投中”,则()()()0.80.90.72P AB P A P B ==⨯=; (Ⅱ)ABAB =“恰好有一人投中”,且AB 与AB 互斥,则()()()()()()()P AB AB P AB P AB P A P B P A P B ⋃=+=+0.80.10.20.90.26=⨯+⨯=;(Ⅲ)AB ABAB =“至少有一人投中”,且AB 、AB 、AB 两两互斥,所以(()()())P ABABAB P AB P AB P AB =++ )0.720.260.9()(8P AB P ABAB =+==+.【点睛】本题考查了对立事件的概率及概率的加法公式、乘法公式的应用,考查了运算求解能力,属于中档题.18.(1)见解析;(2)0.4 【分析】(1)根据独立性检验求出()221406020402071.167 3.8418060100406K ⨯⨯-⨯==≈<⨯⨯⨯,即得不能在犯错误的概率不超过0.05的前提下认为观众性别与喜爱该演讲有关.(2)利用古典概型求选到的两名观众都喜爱该演讲的概率. 【详解】(1)假设:观众性别与喜爱该演讲无关,由已知数据可求得,()221406020402071.167 3.8418060100406K ⨯⨯-⨯==≈<⨯⨯⨯ ∴ 不能在犯错误的概率不超过0.05的前提下认为观众性别与喜爱该演讲有关.(2)抽样比为616010=,样本中喜爱的观众有40×110=4名,不喜爱的观众有6﹣4=2名.记喜爱该演讲的4名男性观众为a,b,c,d,不喜爱该演讲的2名男性观众为1,2,则基本事件分别为:(a,b),(a,c),(a,d),(a,1),(a,2),(b,c),(b,d),(b,1),(b,2),(c,d),(c,1),(c,2),(d,1),(d,2),(1,2).其中选到的两名观众都喜爱该演讲的事件有6个,故其概率为P(A)=60.4 15=【点睛】本题主要考查独立性检验和古典概型,意在考查学生对这些知识的理解能力,掌握水平和应用能力.19.(1)0.05;(2)0.45;(3)1200.【分析】(1)先列举出所有的事件共有20种结果,摸出的3个球为白球只有一种结果,根据概率公式得到要求的概率,本题应用列举来解,是一个好方法;(2)先列举出所有的事件共有20种结果,摸出的3个球为1个黄球2个白球从前面可以看出共有9种结果种结果,根据概率公式得到要求的概率;(3)先列举出所有的事件共有20种结果,根据摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱,算一下摸出的球是同一色球的概率,估计出结果.【详解】把3只黄色乒乓球标记为A、B、C,3只白色的乒乓球标记为1、2、3.从6个球中随机摸出3个的基本事件为:ABC、AB1、AB2、AB3、AC1、AC2、AC3、A12、A13、A23、BC1、BC2、BC3、B12、B13、B23、C12、C13、C23、123,共20个.(1)事件E={摸出的3个球为白球},事件E包含的基本事件有1个,即摸出123号3个球,P(E)=120=0.05.(2)事件F={摸出的3个球为2个黄球1个白球},事件F包含的基本事件有9个,P(F)=920=0.45.(3)事件G={摸出的3个球为同一颜色}={摸出的3个球为白球或摸出的3个球为黄球},P(G)=220=0.1,假定一天中有100人次摸奖,由摸出的3个球为同一颜色的概率可估计事件G发生有10次,不发生90次.则一天可赚,每月可赚1200元.考点:1.互斥事件的概率加法公式;2.概率的意义20.(1)0.016;(2)约为74.1;(3)35.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学学习材料
金戈铁骑整理制作
芜湖一中2011—2012学年第二学期期中考试
高一数学试卷
命题人:许月兵 校对人:耿静
一、选择题(每小题3分,共30分)
1.在等差数列{an}中,若a2+2a6+a10=120,则a3+a9等于( )
A.30 B.40 C.60 D.80
2.在平行四边形ABCD中,AC为一条对角线,若(2,4)AB,(1,3)AC,则BD( )
A. (-2,-4) B.(-3,-5) C.(3,5) D.(2,4)
3.ABC的三个内角,,ABC的对边分别为,,,abc2sinsincos2aABbAa,则ba
( )A.2 B.22 C.3 D.23
4.设数列nx满足1log1logananxx,且12100100xxx,则
101102
xxx
的值为( )
A.100a B.2101a C.100101a D.100100a
5.一质点受到平面上的三个力123,,FFF (单位:牛顿)的作用而处于平衡状态.已知12,FF成
60
角,且12,FF的大小分别为2和4,则3F的大小为( )
A.6 B.2 C.25 D.27
6.在ABC中,角,,ABC所对的边分别为,,,abc若1,42,45,acB则
sinC
( )
A.441 B.45 C.425 D.44141
7.如图,在等腰ABC中,AB=AC=1,30B,则向量
B
C
A
AB
在向量AC上的投影等于( )
A.12 B.1 C.12 D. 1
8.
已知等差数列{}na的前n项和为nS,且10,0ad,711SS,则nS最大时n为( )
A.7 B.8 C.9 D.10
9. 关于平面向量,,abc,下列结论正确的个数为( )
①若abac,则bc.②若1,,2,6,akbab,则3k.
③非零向量a和b满足,abab则a与ab的夹角为60.
④把向量a=(1,4)沿x轴向右平移1个单位后所得向量坐标为(2,4)
A.3个 B.2个 C.1个 D.4个
10.
已知等差数列na的前n项和为nS,若120OBaOAaOC,且,,ABC三点共线(该
直线不过原点O),则200S( )
A.100 B. 101 C. 200 D. 201
二、填空题(每小题4分,共20分)
11. 设向量,ab满足||25,(2,1),ab且ab与的方向相反,则a的坐标为 .
12.在ABC中,角A、B、C所对应的边分别为,,abc,若角A、B、C依次成等差数列,且
1,3,ab
则ABCS .
13. 已知(cos,sin),(cos,sin)(coscos0)ab,,且abab,
则tantan .
14.已知ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC的面
积为 .
15.已知ABC和点M满足0MAMBMC,若存在实数m使得ABACmAM成
立,则m= .
芜湖一中2011—2012学年第二学期期中考试
高一数学答题卷
一、选择题(每题3分,共30分)
题号
1 2 3 4 5 6 7 8 9 10
答案
二、填空题(每题4分,共20分)
11. 12. 13.
14. 15.
三、解答题:(本大题共5小题,共50分,解答应写出文字说明,证明过程或演算步骤.)
16.(8分) 已知}{na是一个等差数列,且21a,55a.(Ⅰ)求}{na的通项na;
(Ⅱ)求}{na前n项和nS的最大值.
17.(10分)已知三点(2,1)A、(3,2)B、(1,4)D.(1)证明:ABAD;
(2)若点C使得四边形ABCD为矩形,求点C的坐标,并求该矩形对角线所夹锐角的余弦值.
18. (10分)在ABC中,若coscos2BbCac(1)求角B的大小
(2)若13b,4ac,求ABC的面积
19.(10分)已知两个向量,ab满足2,1ab,,ab的夹角为60,27mxab,
naxb
,xR.(1)若,mn的夹角为钝角,求x的取值范围;
(2)设函数()fxmn,求()fx在[1,1]上的最大值与最小值.
20. (12分)在ABC中,角..ABC所对的边分别为a,b,c.
已知sinsinsin,ACpBpR且214acb.
(Ⅰ)当5,14pb时,求,ac的值;
(Ⅱ)若角B为锐角,求p的取值范围;
芜湖一中2011—2012学年度高一年级期中考试
数学参考答案
一、选择题(每题3分,共30分)
题号
1 2 3 4 5 6 7 8 9 10
答案
C B A D D B A C C A
二、填空题(每题4分,共20分)
11.-4-2, 12.32 13.-1 14. 153 15.3
16.(Ⅰ)设等差数列na的公差为d
由已知条件,11145adad
解得13a,2d.
1(1)25n
aandn
.
即52nan4分
(Ⅱ)2,31da
2
1(1)42n
nnSnadnn
2
4(2)n
.
当2n时,nS取到最大值4.8分
17. (1)证明:由已知可得(1,1)AB,(3,3)AD,1(3)130ABAD,
∴ABAD;4分
(2)由(1)及四边形ABCD为矩形,得ABDC,设(,)Cxy,
则(1,1)(1,4)xy,∴1141xy,得05xy,即(0,5)C;6分
∴(2,4),(4,2)ACBD,得8816ACBD,25,25ACBD,
设AC与BD夹角为,则164cos0205,
∴该矩形对角线所夹的锐角的余弦值45.10分
18.解:(1)由余弦定理得cababcbaacbca222222222
化简得:acbca222
∴2122cos222acacacbcaB
∴B=120°…………………5分
注意:也可用正弦定理更简单。
(2)Baccabcos2222
∴)21(22)(132acacca
∴ac=3
∴433sin21BacSABC…………………………………10分
19. 解:(1)cos6021cos601abab,
,mn
的夹角为钝角,得0mn,
∴222(27)()2227xxxxmnababaababb
=28277xxx
=221570xx
解得172x,又142172xxx此时,mn,不合题意。
∴x的取值范围是141417,,222;…………………6分
(2)由(1)得2215169()21572()48fxxxx,
()fx在[1,1]
上单调递增,
∴min()(1)21576fxf,max()(1)215724fxf.……………10分
20. 20.解:(I)由题设并利用正弦定理,得
5
,41,4acac
解得1,1,41,1.4aacc或……………5分
(II)由余弦定理,2222cosbacacB
2
2222
2
()22cos11cos,2231cos,22acacacBpbbbBpB
即
因为0cos1B,得23,22p,
由题设知0,p所以622p……………12分