有机电致发光材料及器件导论

合集下载

4 有机电致发光材料

4 有机电致发光材料

一、绪论应用有机化学显示器件主要有两大类: CRT(阴极射线管) FPD(平板显示器件)第四章有机电致发光材料液晶显示器(LCD) 有机电致发光显示器(OLED) 等离子体显示器(PDP) 场致发光显示器(FED) 电致发光显示器(ELD) 真空荧光显示器(VFD) 微显示器(LCOS) 数字光处理器(DLP)平板显示器特点:重量轻、厚度薄、体积小、无辐射、不闪烁。

自上世纪 90 年代以来,随着技术的突破及市场 需求的急剧增长,使得以液晶显示为代表的平板显示 技术迅速崛起。

进入 21 世纪以来,FPD 已超过 CRT 成为主要的显示器件。

2005 年CRT 的市场占有率已 经降为 36%,FPD 的市场占有率已达到 64%。

2007 年,FPD 更将达到 74%。

在目前的平板显示技术中,LCD 在便携式显示 器市场中得到了广泛应用,并占整个平板显示市场 80%以上的份额。

LCD 缺点:• 亮度低 • 对比度弱(与CRT 显示器相比,其图像逼真度和饱和 • 度仍不够理想)• 响应速度慢(毫秒级) • 温度特性差(低温下无法使用) • 自身不能发光而必须依赖于背光源或环境光 • 同时,偏振片在 LCD 显示器中的使用影响其透过率。

考虑到光源的量子效率、光能的散射吸收等问题, LCD 的能源利用率很低。

1有机电致发光器件(Organic Light Emitting Devices,OLEDs)作为新一代的平板显示技术应运而生并逐 渐进入了人们的视野,它是一种很有前途的、新型 的平板显示器,其广泛的应用前景和这些年技术上 的突飞猛进使得 OLEDs 成为 FPD 信息显示领域的希 望之星。

根据分子量的大小可将有机电致发光材料分为小分子材料和 聚合物材料有机材料传统上是作为化工、农用、医用而得到 广泛应用的,而作为信息材料的研究与应用只是近几 十年来的事情。

有机电致发光材料来源广泛,一般具 备以下特点:在固体状态下,在可见光区要有高效率的荧光; 具有较高的导电率,呈现良好的半导体特性; 具有良好的成膜特性,在几百纳米甚至几十纳米的薄 膜内基本无针孔; 成膜后,有机分子不易结晶,微观具有不定型特性;1 有机电致发光研究的进展随后又出现了由含共轭结构的主体与含共轭结构的活 有机电致发光现象的研究可以追溯到二十世纪六十年 代。

有机电致发光材料的研究

有机电致发光材料的研究

有机电致发光材料的研究近年来,随着有机电致发光技术的发展,越来越多的研究者将目光投向了这一领域。

有机电致发光材料的研究是有机光电子学研究的重要组成部分,也是未来发展的重点领域之一。

在本文中,我们将就有机电致发光材料的研究进行探讨。

一、什么是有机电致发光材料?有机电致发光材料是指一类能够在外加电场的作用下发出明亮光芒的有机材料。

由于其具有色彩丰富、亮度高、易加工等特点,广泛应用于LED、平板显示器、照明等领域中。

目前已有很多种有机电致发光材料,如氧化锌、聚乙烯基萘、聚合物材料等。

二、有机电致发光材料的研究现状1. 氧化锌氧化锌作为一种广泛应用于LED领域的有机电致发光材料,其特点是色彩鲜艳、亮度高、耐腐蚀等。

目前,研究人员正在研发新型氧化锌材料,以提高其发光效率和稳定性。

例如,最近的研究表明,将纳米颗粒添加到氧化锌中可以大幅提高其发光效率。

2. 聚乙烯基萘聚乙烯基萘是一种利用分子中的Pi电子进行电致发光的有机材料。

它具有高发光效率、带宽跃迁特点鲜明等优点,在LED和照明领域具有广泛的应用前景。

目前,研究人员正在对其发光机理进行研究,以提高其光电转换效率。

3. 聚合物材料聚合物材料由于其低成本、可加工性强等优点,近年来备受关注。

其中,具有PVK、PPV、PFO等结构的材料是比较常见的有机电致发光材料。

目前,研究人员正在研发新型聚合物材料,旨在提高其发光效率和稳定性。

三、有机电致发光材料的应用前景有机电致发光材料的应用前景非常广阔。

在LED领域,有机电致发光材料可以用于制造高效LED灯具和照明设备。

在平板显示器领域,有机电致发光材料可以用于制造高分辨率的屏幕。

在生物医药领域,有机电致发光材料可以用于生物成像,例如生物组织的动态监测和癌症病灶的定位等。

四、发展趋势目前,研究人员正致力于提高有机电致发光材料的发光效率和稳定性。

其中,开发高效的有机电致发光材料是当前的研究重点。

此外,随着人们对环境保护意识的增强,绿色环保型的有机电致发光材料也备受关注。

有机小分子电致发光材料

有机小分子电致发光材料

5.1.1只含碳和氢两种元素的芳香型蓝光材料 5.1.1.1 苝类蓝光材料
苝是由Kodak公司用作蓝色发光材料,但它的能级与Alq3的能级 不匹配,需要掺杂在发射光谱蓝移的Alq3衍生物Q2Al-OAr中才 能获得蓝光OLED。
将大休积的TBPe掺杂在BAlq中构成的EL器件,能有效地 降低浓度淬灭现象。
5.1.3有机硅类蓝光材料
基于四苯基硅单元的蓝色发光化合物Ph3Si(PhTPAOXD) , Ph2Si(PhTPAOXD)2,PhSi(PhTPAOXD)3和Si(PhTPAOXD)4,分别含 有三苯胺噁二唑单元(TPAOXD) ,
玻璃化温度高,如Si(PhTPAOXD)4 的 Tg=174 , 蓝色发光材料,发射峰值在 450 465 nm之间。
色坐标为(0.15, 0.15)。
5.1.2芳胺类蓝光材料
5.1.2.3具有D--A结构的芳胺类蓝光材料
具有 D--A结构的芳胺类化合物的分子 偶极矩较大,当电子给体和共轭基团相同 时,D--A结构的芳胺类化合物的荧光光谱 比D--D结构的芳胺类化合物的要红移。
所以,要求共轭体系不能太大且电子 受体基团不能太强。
器件ITO / NPB(40nm) / Ph3Si(Ph-TPAOXD (20nm) / Alq3 (40nm) / Mg:Ag显示了纯蓝色的窄带发射,半峰宽(FWHM)为75 nm,器件的最大亮度超过20 000 cd/m2,外量子效率为1. 7 %。
基于MPS的蓝光OLED的最大效率达到20 cd/A (外量子效 率为8%)。通过调节阴极材料,功率效率可以达到14 lrn/W,但 EL器件的发射峰值在490 nm处,色度不纯。
具有蓝色荧光发射的含有嘧啶的螺芴衍生物TBPSF的荧光 量子产率为80%,最大发射波长为430 nm。较大的空间位阻使 得化合物具有非常好的成膜性和很高的玻璃化转变温度(Tg = 195℃)。

第二章-有机电致发光的基本原理

第二章-有机电致发光的基本原理

第二章 有机电致发光的基本原理2.1 有机电致发光器件的发光机理有机电致发光材料均为共轭有机分子,依据休克尔分子轨道理论(HMO ),并结合半导体理论中的能带理论,可将有机共轭分子中的最高分子占有轨道HOMO 类比为能带理论中的价带顶,最低空轨道LUMO 为导带底,这样就可以用半导体理论模型对有机电致发光进行理论研究。

有机电致发光和无机电致发光相似,属于载流子双注入型发光器件,所以又称为有机发光二极管,其发光机理一般认为是:在外界电压驱动下,从阴极注入的电子与从阳极注入的空穴在有机层中形成激子,并将能量传递给有机发光物质的分子,使其受到激发,从基态跃迁到激发态,当受激分子从基态回到基态时辐射跃迁而产生发光。

具体发光过程可分以下几个阶段:(1) 载流子的注入:在外加电场的条件下,空穴和电子分别从阳极和阴极向夹在电极之间的有机功能薄膜层注入,即空穴向空穴传输层的HOMO 能级(相当于半导体的价带)注入,而电子向电子传输层LUMO 能级(相当于半导体的导带)注入。

电子的注入机理比较复杂,可分为电场增强热电子发射;场致发射,其过程是在强电场作用下,电子通过势垒从金属至半导体的量子力学隧穿。

在低温时,大多数电子是在金属的费米能级上隧穿势垒的,这形成场致发射(F 发射),在中等温度时,大多数电子是在能级Em (高于金属的费米能级)上隧穿势垒的,这形成所谓的热电子场致发射或热助场致发射(T-F 发射),在极高温度时,主要贡献是热电子发射;隧穿发射,如果绝缘体足够薄或者含有大量的缺陷,或者两者兼有,则电子可直接从电极注入到有机层。

(2) 载流子的迁移:载流子在有机分子薄膜中的迁移被认为是跳跃运动和隧穿运动[9,10],并认为这两种运动是在能带中进行的。

当载流子一旦从两极注入到有机分子中,有机分子就处在离子基(A +、A -)状态,(见下图)并与相邻的分子通过传递的方式向对面电极运动。

此种跳跃运动是靠电子云的重叠来实现的,从化学的角度来说,就是相邻的分子通过氧化-还原方式使载流子运动。

有机电致发光器件(OLED) 的结构和发光机理

有机电致发光器件(OLED) 的结构和发光机理

摘要OLED 具有全固态、主动发光、高对比度、超薄、低功耗、无视角限制、响应速度快、低电压直流驱动、工作温度范围宽、易于实现柔性显示和3D 显示等诸多优点,将成为未来20 年最具“钱景”的新型显示技术。

同时,由于OLED 具有可大面积成膜、功耗低以及其它优良特性,因此还是一种理想的平面光源,在未来的节能环保型照明领域也具有广泛的应用前景。

本文将系统介绍OLED的发展背景、发展史、制备及应用,介绍了有机电致发光器件(OLED) 的结构和发光机理。

典型的传统OLED是生长在透明的阳极例如ITO玻璃上的,发射出来的光是由最底层衬底透出,这使得它与其他电子元件如硅基显示驱动器的集成变得非常复杂。

因此,理想的做法是研发一种OLED,其光的发射由器件顶部的透明电极透出。

重点介绍一种具有阴极作为底层接触层,阳极ITO薄膜作为顶部电极的表面发射型或者说有机“反转”的LED(OILED)。

介绍了该器件的制备工艺,对该OILED的I一V特性及EL谱进行了测试,发现与传统的OLED相类似,而工作电压有所升高,效率一定程度上降低。

为了进一步改善器件性能,我们对器件增加了保护层(PL),研究了PL对OILED器件性能的影响。

最后概述了器件的技术进展和应用前景, 并展望了未来OLED 发展的方向。

关键词:有机电致发光器件,有机反转电致发光器件,发光机理,保护层(PL),阳极ITO 薄膜AbstractOLED has a solid state, self-luminous, high contrast, ultra-thin, low power consumption, viewing angle, fast response, low-voltage DC drive, the operating temperature range, easy to implement many of the advantages of flexible displays and 3D displays future20 years of the most "money scene" of the newdisplay because OLED has a large-area film, low power consumption, and other fine features, so an ideal plane light source, also has broad application prospects in the future of energy saving lighting in the area. In this paper, the systematic introduction of OLED development background, history of the development, preparation and application, the structure of the organic electroluminescent devices (OLED) and the luminescence mechanism.Typical traditional OLED is growth in transparent anode ITO glass, for example, the light is emitted by bottom gives fully substrate, this makes it and other electronic components such as that the integration of the silica based drive become very complex. Therefore, the ideal way is developing a OLED, its light emission from the top of the device gives fully transparent electrodes. Focuses on a cathode as the bottom contact layer, the anode of ITO films as the top electrode surface emission or organic LED of the "reverse" (OILED). Of the device preparation process, the OILED I-V characteristics and EL spectra of the test, found that similar to the conventional OLED, the working voltage was increased efficiency to a certain extent on the lower. To further improve the device performance of the device to increase the protective layer (PL), PL OILED device performance. Finally an overview of the technical progress and prospects of the device, and looked to the future OLED, the direction of development.Keywords:Organic Electroluminescent Devices,Organic reverse electroluminescent devices, Luminescence mechanism,Protective layer (PL), the anode of ITO films.目录摘要 (I)Abstract........................................................... I I 目录.............................................................. I II 1.绪论.. (1)1.1课题背景 (1)1.2 OLED技术的发展概况 (2)1.2.1 全球OLED发展史 (4)1.2.2 中国OLED发展状况 (5)1.2.3 OLED的应用 (6)1.2.3 OLED的制备 (6)2.有机电致发光器件 (8)2.1 引言 (8)2.2 有机电致发光器件 (8)2.3 有机电致发光器件的结构 (9)2.4 OLED发光机理 (10)2.5 我国发展OLED产业存在的问题及发展趋势 (13)2.5.1 存在的问题 (13)2.5.2 发展趋势 (14)2.6 结论及建议 (14)3.有机反转电致发光器件 (16)3.1 引言 (16)3.2 器件制备工艺 (17)3.2.1 基片的清洗及表面处理 (17)3.2.2 阴极的蒸镀 (17)3.2.3 有机层的成膜 (18)3.2.4 阳极的溅射 (18)/ PVK:TPD/PTCDA/ITO结构的有机反转电致发光器件的研究3.3 Si/Al/Alq3 (19)3.3.1 OILED的I一V特性及亮度测试 (19)3.4 保护层(PL)对器件性能的影响 (26)3.4.1 PL厚度对器件j一V特性的影响 (26)的影响 (28)3.4.2 PL对器件的最大驱动电流Im ax的影响 (28)3.4.3 PL对器件外量子效率qe3.4.4 PL对EL发射谱的影响 (29)3.4.5 顶电极(阳极)面积对载流子注入效率的影响 (30)3.4.6 PL层对器件最表面状态的影响 (31)4.OLED与OILED的特性及存在的问题 (32)4.1 与目前占主流地位的CRT及LCD技术相比,OLED与OILED具有以下更多的优点: (32)4.2 与OLED相比OILED的不同 (34)4.3 OLED与OILED 急待解决的问题和未来发展趋势 (34)结论 (37)5.致谢 (38)6.参考文献: (39)1.绪论1.1课题背景信息显示是信息产业的核心技术之一, 而信息显示技术及显示器件多种多样, 到目前为止,有四种发光物理机制完全不同的固态场致发光形式。

电致发光材料

电致发光材料

电致发光材料
电致发光材料(Electroluminescent Materials,简称EL材料)是一种能够在电
场的作用下产生发光现象的材料。

它具有在室温下工作、发光效率高、寿命长、能耗低等优点,因此在显示、照明、生物医学、安全标识等领域有着广泛的应用前景。

EL材料的基本原理是在外加电场的作用下,通过电子和空穴的复合发生辐射
而产生光。

目前,主要的EL材料包括有机EL材料和无机EL材料两大类。

有机EL材料是指以有机化合物为基础的EL材料,其优点是制备工艺简单、
可制备成薄膜、柔性度高,适合于柔性显示器件的制备。

有机EL材料的发光颜色
丰富,可以通过不同的有机分子设计实现多种颜色的发光,因此在显示领域有着广泛的应用前景。

无机EL材料是指以无机化合物为基础的EL材料,其优点是发光效率高、寿
命长、稳定性好,适合于大面积照明和显示领域的应用。

无机EL材料的发光机理
复杂,通常包括发光中心和激活剂等组成,通过控制发光中心和激活剂的种类和浓度可以实现不同颜色的发光。

除了有机EL材料和无机EL材料,近年来还出现了混合型EL材料,即有机无
机杂化EL材料。

混合型EL材料综合了有机EL材料和无机EL材料的优点,具有
发光效率高、寿命长、制备工艺简单等特点,因此备受关注。

随着科学技术的不断发展,EL材料的研究和应用也在不断拓展。

未来,随着
新材料、新工艺的不断涌现,EL材料将会在显示、照明、生物医学等领域发挥越
来越重要的作用,为人类社会的发展和进步做出更大的贡献。

第3章有机电致发光器件结构和工作原理

第3章有机电致发光器件结构和工作原理
第三章 有机电致发光器件结构 和工作原理
有机电致发光器件分为小分子型和高分子型,小分子型器件一 般为多层型,高分子型器件大多为单层器件。
3.1有机小分子器件结构
1.单层器件结构 单层器件具有结构简单、制作方便的优点,但是由于大多数有 机材料都是单极性的,同时具有均等的传输空穴和电子性能的材料 很少,这种结构的器件性能较差。 主要原因: a.两种载流子注入不平衡,载流 子复合几率较低,影响器件的发光 效率。 b.厚度较大,引起驱动电压高。 c.由于两个电极之间只隔了一 个发光层,复合发光区靠近金属电 极,该处缺陷较多,非辐射复合几 率大,载流子很容易从一个电极进 入另一个电极,引起效率降低 。
金属阴极
电子传输 — 发光层
金属阴极 电 子 传 输 层 空穴传输—发光层 ITO阳极
空 穴 传 输 层 ITO阳极
DL-A型 含有空穴传输层(HTL) 和集电子传输功能和受激 发光的发光层(EML)。
DL-B型 含有电子传输层(ETL) 和集空穴传输功能和受激 发光的发光层(EML)
3 . 三层器件结构 三层器件结构由空穴传输层(HTL)、电子传输层(EML)和发光 层(EML)组成。在此结构中,三层功能层各行其职,有利于器件 的性能的优化。这种结构是目前应用较多的结构。
相对于无机半导体材料来说,有机材料的载流子迁移率 较低,一般在10-4-10-8cm2/VS量级。低载流子迁移率不利 于载流子在有机材料内有效传输。 由于OLED器件采用的是薄膜结构,通常在低电压下便可 在发光层内产生104-106V/cm的高电场。在高电场作用下, 载流子在有机材料中的传输基本不成问题。
对于有机材料来说,难以实现电子和空穴从两极的等速率注入, 因为有机材料的禁带宽度较大,很难同时使低功函数的阴极和高功 函数的阳极与有机材料的导带和价带相匹配。同时,电子和空穴的 迁移率也不一样。一般来说,空穴注入相对容易,而电子注入却较 困难。 为解决载流子注入不平衡问题,通常在金属电极和发光层之间 引入电子亲和势和离化势都较大的电子传输层;在发光层与阳极之 间引入电子亲和势和离化势较小的空穴传输层。

利用有机小分子为发光材料制成的有机电致发光器件(OLED)

利用有机小分子为发光材料制成的有机电致发光器件(OLED)

利⽤有机⼩分⼦为发光材料制成的有机电致发光器件(OLED)利⽤有机⼩分⼦为发光材料制成的有机电致发光器件(OLED)有机电致发光(0LE)就是指有机材料在电流或电场的激发作⽤下发光的现象。

根据所使⽤的有机电致发光材料的不同,⼈们有时将利⽤有机⼩分⼦为发光材料制成的器件称为有机电致发光器件,简称OLED;⽽将利⽤⾼分⼦作为电致发光材料制成的器件称为⾼分⼦电致发光器件,简称PLED。

有机电致发光器件特点:⼀:结构简单,体积⼩,重量轻,成本低,易进⾏⼤规模、⼤⾯积⽣产,具有超薄、⼤⾯积、便于携带、平板显⽰等特点⼆:主动发光,视⾓范围⼤,接近于180° ;响应速度快,图像稳定,图像刷新率⽐液晶显⽰器快100倍~1000倍;发光效率⾼,亮度⼤,可实现全⾊显⽰。

三:有机材料的机械性能好,易加⼯成各种形状;可以采⽤树脂作为基板。

四:驱动电压低,能耗低,能与半导体集成电路的电压相匹配,使⼤屏幕平板显⽰的驱动电路容易实现。

五:全固态结构,抗震性能好,因⽽可以适应巨⼤的加速度和剧烈振动等恶劣环境。

有机电致发光期间的结构⽰意图:⽬前,在实现彩⾊的三种主要颜⾊(红、绿、蓝)的有机电致发光器件中,红光和绿光器件发展得较为成熟,⽽蓝光器件与之相⽐还存在着较⼤差距,制约了全彩⾊显⽰的发展。

因为有机发光材料中,蓝光材料的能带间隙要求⽐较宽;同时由于能隙较⼤,容易受杂质影响,使发光效率和⾊纯度可能因此降低。

第⼀,对蓝⾊有机电致发光器件的特性进⾏了研究。

采⽤新型的蓝⾊有机⼩分⼦发光材料2P9PPF和DPPPF作为发光层,利⽤真空镀膜机制备了单层和多层结构的有机电致发光器件并且研究了其电学和发光特性。

通过对器件结构进⾏优化和各功能层的研究,研制出性能⽐较优异的蓝⾊有机电致发光器件。

器件的最⾼亮度和效率分别达到了19885 cd/m2 (13 V)和3.08 cd/A (9V),启动电压为3.5V, EL光谱峰值和1931CIE⾊坐标分别为460 nm和(0.18, 0.19)(12 V)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 电致发光(EL):发光材料在电场作用下,受到电流和电场的激发而发光的现象,是一个将电能直接转化为光能的一种发光过程(非热转换即不是通过热辐射实现的)。 2. FED,PDP,LCD都存在问题,不能满足时代需求,所以研究更为高效的有机电致发光器件(OLED)。OLED特点:材料选择有机物,高分子,因而选择范围宽;驱动电压低;发光亮度和发光效率高,发光视角宽,相应速度快;器件可弯曲,不受尺寸限制,分辨率高等。 3. 基态:分子的稳定态即能量最低状态;激发态:被激发后,分子的电子排布不遵循构造原理。激发态分子内的物理失活:辐射跃迁和非辐射跃迁。而辐射跃迁:释放光子而从高能激发态失活到低能基态的过程。导致电子运动轨道界面减少;在势能面上跃迁是垂直发生的。 4. 有机半导体:在外电场作用下,电子和空穴在LUMO和HOMO间的跳跃产生电流。而掺杂半导体中的载流子浓度大于本征半导体(电子和空穴浓度相同),所以导电性更好 5. 直流注入式有机电致发光:在有机EL器件的两端电机上加上直流电源,通电后发光器件受电激发的作用而发光的现象。过程:载流子注入,载流子传输,电子和空穴碰撞形成激子(激子是彼此束缚在一起的电子和空穴对),激子辐射退激发发出光子。 6. 单线态激子是总自旋为0的激发状态;注入的电子和空穴形成的单线态和三线态激子的比例正比于其状态数,有机电致发光的量子效率最大为25%;Forster能量转移:能量从主体向掺杂材料的传递方式,能在较远距离内实现,为单线态激子;Dexter能量转移:只能在紧邻分子间实现,为三线态激子。 7. 单层器件:单层有机薄膜被夹在ITO阴极和金属极之间,形成的是单层有机电致发光器件。但是单层器件的载流子的注入不平衡,器件发光效率低。三层器件是目前OLED中最常用的一种。在实际的器件中,在发光层往往采用掺杂的方式提高器件性能 8. 器件制备过程:刻蚀好的ITO玻璃—清洗—臭氧/氧等离子体处理—基片置于真空腔体—抽真空—蒸发沉积有机薄膜和阴极—取出器件并封装—测试表征 9. 有机小分子发光器件通常用真空蒸发沉积的方法制备构成器件的薄膜,整个过程要在真空腔内完成(真空度高于10^-4Pa)。共聚物发光器件主要是通过涂璇的方法制备的,涂璇过程中要精确的控制加速,转速。但涂璇浪费材料且不能全彩显示,而喷墨打印则弥补此缺点。 10. 在OLED贮存和工作器件受到化学反应的影响,所以要选择阻隔性好的封装材料。有刚性封装材料(玻璃和聚合物,玻璃可形成密闭空腔,聚合物可满足显示器大屏化);柔性封装材料(玻璃和聚合物);边缘缝隙封装材料(紫外固化得聚合物黏结剂) 11. 有机电致发光器件封装材料的高阻隔性可通过在聚合物薄膜上沉积小分子图层形成复合薄膜获得,多层复合薄膜可使粗糙的器件表面光滑化,保证无机层的完整,以致渗透分子的传导受阻更好,也可在封装中加捕捉剂来提高阻隔性。 12. 器件发光效率:量子效率(器件向外发射的光子数与注入电子空穴对数之比。内量子数ηint指器件产生的所有光子数与注入电子空穴对数之比;外量子数ηext指器件在全空间发射的光子数Np与注入的电子空穴对数量Nc之比);流明效率(ηl=AL/Ioled,A为器件有效面积,L为器件发光亮度,Ioled为有机发光器件发光亮度为L时的工作电流);功率效率(ηp=Lp/IoledV,ηp为光功率效率,Lp为器件前方发射出来的光功率,IoledV是驱动电压V驱动下的器件总电功率) 13. 有机电致发光器件效率可以用积分球光度计测量。但这是一个理想模型,要对测量结果进行修正;发光效率用积分球光度计加光谱仪的方法测量。

14. 亮度,Lv为发光亮度,Km为光功当量,Le. λ为辐射亮度,V(λ)为明视觉光谱光视效率。Lθ=Iθ/d a cosθ,Lθ为某方向发光功率,Iθ为改方向上的光强,da为一个发光表面。发光亮度一般用各种亮度计测量,测量被测光源表面的像在光电器件表面所产生的光照度,则该像表面的照度正比于光源的亮度,不随光度计与光体之间的距离而变化。 15. 色度测量通常用光谱辐射计,如PR-705;有机电致发光器件的电流-电压曲线则可用普通的伏安法测量。亮度-电压曲线表现器件光电性质;发射光谱测量:使荧光或者磷光通过单色器后照射于检测器上,扫描发射单色器并检 测各种波长下相应的发光强度,然后记录仪记录发光强度对发射波长的单色曲线,从而得到发射光谱;器件的寿命是指器件发光亮度下降至原始亮度的50%所经历的时间,但由于器件寿命很长,测量工作不会持续那么长时间,所以通过对测得的亮度-时间-电压曲线分析计算就可得到器件寿命 16. 提高器件性能:材料提纯;材料掺杂(在有机发光层掺杂荧光效率高的有机染料;在电荷传输层掺入迁移效率高的有机材料);有机/无机界面光滑化,提高平滑界面层能带的连续性,加强界面层的连接;选择电极(阳极为高功函数的透明金属,透明导电聚合物和ITO导电玻璃;阴极为低功函数的金属,合金阴极,复合型阴极;掺杂有低功函数金属的有机层夹在阴极和有机发光层之间);改变基地结构,减少光的耦合损失,提高光输出; 17. 有机半导体只能靠从外部注入到导带中的电子和注入到价带中的空穴来导电。电子电流:I=neν(n为电子浓度,ν为电子平均飘逸速度,e为一个电子携带的能量),I=Q/t(Q为单价面积注入的电荷,t为为从阳极渡越到阴极的时间),Q=neL(L为阳极到阴极的距离),Q=CV(C为单位面积电容),C0=2ε/Leh,Leh=L/2,I=ενV/L2,ν=μE=μV/L得I=εμ(V2/L3)这是理想绝缘体的空间电荷限制电流公式。Poole-FrenKel公式

,其中μ0,θ,γ气材料相关的因子,k为Boltzmann,T为绝对温度,E为电场强度。产生载流子迁移率对电场强度和温度的Poole-FrenKel形式的依赖性的原因是载流子跳跃式导电机制 18. 改善空穴注入能力:用氧等离子体处理和紫外线臭氧处理;插入一些空穴注入材料;将空穴传输材料部分氧化;阳极界面处理(ITO电极经含硅的三胺空穴传输材料自组装;无机物插层:含聚合物EL器件在ITO上自组装一层PEDOT-PSS作空穴注入和传输层,二价过度金属化合物及相应的氧化物可作为ITO阳极的修饰材料和电子阻挡层) 19. 空穴传输材料:芳香族三胺类化合物(此类化合物具有低的电离能,在传递过程中所客服的结构重组能量较低,有利于空穴传输,但其玻化转变温度低。所以近年来一般采用熔点高和玻化转变温度高的空穴传输材料,具有成对偶联,星形,螺形和枝化等特定空间构型的化合物可以提高玻化转变温度,成膜性好,空穴传输能力高);含三芳胺单元的共轭聚合物(具有很高的玻化转变温度);咔唑类化合物(特定拓扑结构的此类化合物具有很高的空穴传输能力);有机硅空穴传输材料(在ITO上形成的薄膜有效的改善了电极平整度);有机金属配合物。 20. 电子传输材料:具有大共轭结构的平面芳香族化合物(较好的接受电子能力,在一定的正向偏压下又可以有效的传输电子);金属配合物(Alq3,高Ea和Ip及好的热稳定性和成膜性。对其进行化学修饰合成一系列化合物具有更好的的性能);恶二唑类化合物(有机小分子恶二唑类,高Ea,高电子迁移率;星状恶二唑类,高玻化转变温度,高Ea,Ip;恶二唑类聚合物,高Tg,不易结晶易进行掺杂,易溶解于有机溶液中);含氮五元、六元杂环;含氰基和亚胺的电子传输材料;全氟化得电子传输材料,有机硼电子传输材料;噻吩寡聚合物。 21. 空穴阻挡材料要求:具有较低的HOMO能级,有效的阻止空穴的传输,使激子复合区在发光层;具有大的电子亲和势和高的电子迁移率;稳定性好,能形成统一致密的薄膜。常用的空穴阻挡材料:BCP,用于OLED中,有阻挡激子/空穴传输到电子传输层的作用;TPBI,低Ea,高Ip,比BCP有很大的改善;还有有机硼空穴阻挡材料(TBB,FTBB,TFBD,TFPB与一些具有空穴传输能力的化合物F2PA,TPD等组成具有多层结构的EL器件,有效的将空穴阻挡在发光层,但器件发射蓝紫色光 22. 发光材料要求:高量子效率的荧光特性;良好的半导体特性;良好的成膜性和热稳定性。蓝光材料要求材料化合物结构有一定程度的共轭结构,但分子的偶极矩不能太大。 23. 蓝光材料:只含碳和氢两种元素的芳香性蓝光材料(1,在双(2-甲基-8-羟基喹啉)(对苯基苯酚铝)掺杂TBPE形成的物质;2,芳基取代蒽类材料,AND中掺杂Tbpe具有很好的蓝光发射,还有NPN和AND为主体,PPVBi为客体混合制成EL器件,其寿命明显加大;螺芴与蒽形成共轭化合物制成EL器件,效果最为理想。3,芴类蓝光材料,如芳香取代的三芴,玻化转变温度高,成膜性好。4,二苯乙烯基芳基蓝光材料,如芳胺取代的二苯乙烯基芳基材料CDSA-amine。5,还有如TPCP,BTP都可作为蓝光材料);芳胺类蓝光材料(这类材料具有电子传输和空穴传输能力,如1,电子给体-共轭体系D-π蓝光材料具有高荧光量子,2,D-π-D蓝光材料具有偶极矩小,发光峰在蓝光区域。其中线型的有NPN,CBP,星形的有TPBI。3,D-πA蓝光材料,但其偶极矩大,易红移。4,含氮杂环蓝光材料,当取代基为电子给体时,器件效率高);有机硅类蓝光材料(发射峰在蓝光区且玻化转变温度高,在PPSPP中又激基复合物发光现象);有机硼类蓝光材料(玻化转变温度高,有很好的电子传输特性) 24. 纯有机小分子绿光材料:香豆素染料(C-545TBT C-4位引入一个甲基,将其掺杂至Alq3中作OLED的绿色发光材料);喹吖啶酮类绿光材料(用RN=代替NN=基团,器件寿命加长);具有载流子传输性能的绿光材料(1,咔唑衍生物,将载流子传输基团和发光基团构建在同一个分子上。2,二胺基蒽类衍生物作为空穴传输层,与空穴注入层和电子传输层适当组合可获得高效OLED);其他有机小分子绿光材料(1,具有一定共轭长度的有机硅化合物;2,喹喔环的下位上引入二烷基胺形成分子内电荷转移态) 25. 纯有机小分子红光材料:DCM系列掺杂红光材料(DCM衍生物掺杂在Alq3中,用于有机EL器件,但易发生浓度淬灭,而DCJTB则极大的改善了DCM型染料的热稳定性,有利于OLED制作);“辅助掺杂”类红光材料(1,红荧烯可作为辅助掺杂和DCJ同时掺杂在Alq3中,则可获得满意的红光器件。2,喹吖啶酮也可作为辅助掺杂剂来提高器件的性能);其他DCM衍生物掺杂红光材料(如非对称D-πA结构的DCM衍生物,对称的D-A-D或A-D-A结构DCM衍生物但效果不是很理想);其他掺杂型红光材料,但是大多不能得到很纯很好的红光 26. 主体发光的非掺杂型红光材料:具有D-πD结构的芳香胺类化合物(ACENs化合物,通常载流子不在红色发光复合层,就要引入TPBI或BCP,但降低了器件的效率);具有D-π-A-π-D芳香胺类化合物(BAM,抑制固态时荧光浓度淬灭;寡聚苯乙烯类化合物可实现红光发射);具有V字形的D-π-A-π-D芳香胺类化合物(这些结构能加强电荷转移吸收和相应荧光发射强度,由有利于材料的空穴电子传输平衡);齐聚物发光材料(联寡吩类齐聚物,但要在分子中引入多个取代基) 27. 金属配合物电致发光材料:8-羟基喹啉类配合物(8-羟基喹啉铝,高Tg,具有电子传输性,成膜性好。而经修饰后的8-羟基喹啉铝荧光彩色从蓝光到红光可调。Caq3,Inq3则是更好的电致发光材料);10-羟基苯并喹啉类配合物(BeBq2,但Be是贵金属且有毒);羟基苯并寡唑类配合物(Zn(BTZ)2,Zn(NBT)2等);2-C2-羟基苯基吡啶类配合物(BePP2,蓝光材料由可作DCM主体使用);Schiff碱类金属配合物(对Alq3修饰使其发蓝光,金属亚甲胺系列配合物);羟基黄酮类配合物((BeC5Fla)2,低亮起电压) 28. 高分子电致发光材料优点:实现能带调控,得到全色发光;可设计具有特定功能的器件;避免晶体析出;可通过掺杂或改变化学结构控制其性能;具有良好的稳定性,易成型,器件响应速度快 29. 高分子电致发光材料:聚苯撑乙烯类电致发光材料(将PPV作发光层制成聚合物电致发光材料PLED;在苯环上引入增加溶解性的基团,增加其溶解性;引入给/吸电子团,提高空穴电子传输/平衡注入能力,提高发光效率);引入大体积单元或刚性液晶单元减小链与链之间的相互作用力,防止电子在链间传递而引起的荧光淬灭,提高发光效率,同时提高聚合物的热转变温度和稳定性)聚乙炔类电致发光材料(烷基和芳香基取代氢原子的方法制备这类聚合物,烷基中π-π*带间传输随链长度增大而增大,激子淬灭点散射速率随链与链之间距离增大而减小。芳香基稳定性高);聚对苯类电致发光材料(可用Yamamo to反应和Suzuki偶联反应合成可溶性芳香类聚合物,但会产生扭转角。若制成梯形结构,引入增溶作用的基团可提高溶解性);聚寡吩类电致发光材料(取代基不同对光电性质影响很大。P3DDT—在侧基上引入杂原子可以提高发光效率,还有用结构规整数目可控的齐聚噻吩,在共轭主链上引入其他基团如硅等原子。聚噻吩与其他共轭聚合物共混提高器件性质);聚芴类电致发光材料(PFs有较高光和热稳定性,但发射的光饱和度和纯度不高。目前主要制备小分子发光材料,在芴上引入不同的侧基后聚合制备芴均聚,芴单体与其他单体共聚物以及制备由芴衍生而来的超支化聚合物等。如芴与炔交替的发光材料,含有联苯侧基的芴均聚物等引入侧基或基团的聚合物,聚芴及具有P-n型双嵌段的芴聚物都是发光效率高,性能好的器件);还有聚吡啶类电致发光材料(较强的电子亲和力,抗氧化性,电子传输能力);聚恶唑类电致发光材料(溶解性好,发光效率高);聚呋喃类发光材料(良好的机械性能和热稳定性) 30. 早期用PtoEP作磷光发光体,磷光掺杂的有机电致发光器件可以充分利用激发三重态的分数,提高器件的外量子效率 31. 磷光电致发光器件:1,金属铀引入小时环后,提高了圈旋和轨道的肥合,缩短了磷光的寿命,使原有的三重态增加了某些单重念酌特件,增加了系间审越的能力,导致禁阻的三重态向基态跃迁变为局部允许,使磷光得以顺利发射。2,PtoEp(客体磷光材料)掺杂到Alq3(主体材料)中去,A1q的荧光发射峰位于530 nm,高于PtOEP的磷光发射峰580nm,这杆A1q3所吸收的能量才能顺利转移到PtOEP中,使PtoFP的发射得以顺利进行。 32. 磷光敏化剂指将一种或多种磷光物质均合适的荧光工作物质,掺入到高分子或小分子主体中,这种磷光物质可以大大提高荧光工作物质的量子效率。实验表明,当重原子铂加入后,势的自旋-轨道耦合作用.使金属到配体的电

相关文档
最新文档