堤坝隐患的天然源面波成像研究

堤坝隐患的天然源面波成像研究
堤坝隐患的天然源面波成像研究

堤坝隐患的天然源面波成像研究

诸如空洞、软弱层、渗漏、裂缝等病害严重威胁堤坝的安全,因此,堤坝隐患的探测具有重要的现实意义。当前应用到堤坝隐患探测的物理方法主要有直流电法、电磁法、弹性波法、放射性法和流场法等,而这些方法都是有源的,或者向地下供电,或者发射电磁波,或者产生地震波。而微动探测是无源的,它利用地球表面无时不刻存在的微弱震动,从里边提取面波信息,通过对面波频散曲线进一步反演,可以获得地下介质速度结构。通过隐患原型的微动探测试验,表明微动探测技术可以解决部分类似的隐患探测问题,通过长江大堤上的实际应用,微动探测取得了较好的效果。

标签:天然源面波堤坝隐患模型试验长江大堤

0引言

我国现有大中型水库8万余座,江河湖泊堤防26万公里,这些堤防及水库在国民经济及社会发展中产生了巨大的效益。但是随着时间的流逝以及突发自然灾害(如地震、洪水、火山爆发等)的破坏,这些水利设施存在的各种隐患严重威胁堤坝的安全。目前迫切需要更多、更有效、更快捷的隐患探测手段,为堤坝的日常维护和防汛抢险工作提供指导。

在堤坝隐患探测技术方面,国际上,荷兰做过大量工作,但是多停留在室内模型计算试验方面,而且是针对海防工程的。我国应用堤坝隐患探测的地球物理勘探手段包含电法、电磁法、弹性波法、放射性法和流场法等,已探测各类堤防2000Km,水库渗漏100余座,取得了一定的成果。电法类主要是电阻率法探测技术,其中的高密度电法应用较广,国内最早开展堤防隐患探测技术研究的是山东省水利科学研究所,1985年研制出ZDT—1型探测仪,1986年曾获得水利部科技进步2等奖,1990年,九江市水利科学研究所的邓习珠等研制出TTY-1型便携式智能堤坝探测仪,利用电测深探测蚁穴洞穴,取得了一定的效果,1990年,徐广富提出了利用自然电场法探测堤防渗漏入口的设想,但未实施。1993年,刘康和等应用K剖面法探测堤坝的隐患。黄河委员会承担了国家“八五”重点科技攻关课题“堤防隐患探测技术研究”,历时3年,取得了丰硕的成果,其ZDT—1型智能堤坝隐患探测仪,曾在1998年长江流域大洪水中探测汛期隐患立下战功,其HGH-III分布式高密度电阻率法又将隐患探测技术推进一步。电磁类方法包括瞬变电磁(TEM)法和地质雷达等,1994年,陈绍求提出用双频激电法探测堤防隐患,1997年,吴相安等对利用地质雷达探测堤坝隐患的有效性进行了研究,并取得了一定的效果,他们自制了300MHz和500MHz等几种雷达天线,中国水利水电科学研究院成功研制了SDC-2堤坝渗漏探测仪,实际应用效果较好。但电磁波在探测隐患时电磁波衰减很快,不易穿透堤防结构。后来,长江委员会推出了“双频多普勒相控阵探地雷达系统”,进行了方法的改进。弹性波检测技术包含折射法、反射法、Rayleigh面波法、地质B超和地震波CT成像等,1993年,葛建国等采用浅层地震反射波法探测堤坝隐患,取得了一定的效果,但地震波方法对几何尺寸小的隐患分辨差。核物理的同位素示踪技术也在实

在 ansys 中如何 施加 地震波

三向输入简化后的单向输入 首先,将三个方向的地震加速度放到一个文本文件里,如accexyz.txt,在这个数据文件里共放三列数据,每列为一个方向的地震加速度值,这里仅给出数据文件中前几行的数据: -0.227109E-02 -0.209046E+00 0.467072E+01 -0.413893E-02 -0.168195E+00 0.261523E+01 -0.574753E-02 -0.157890E+00 0.809014E-01 -0.731227E-02 -0.152996E+00 0.119975E+01 -0.876865E-02 -0.138102E+00 0.130902E+01 -0.101067E-01 -0.131582E+00 0.143611E+00 ....................... 然后,再建一个文本文件用来存放三个方向的地震加速度时间点,如time.txt,在这个数据文件里仅一列数据,对应于加速度数据文件里每一行的时间点,这里给出数据文件中前几行数据: 0.100000E-01 0.200000E-01 0.300000E-01 0.400000E-01 0.500000E-01 0.600000E-01 ....................... 编写如下的命令流文件,并命名为acce.inp *dim,ACCEXYZ,TABLE,2000,3 !01行 *vread,ACCEXYZ(1,1),accexyz,txt,,JIK,3,2000 !02行(3e16.6) !03行 *vread,ACCEXYZ(1,0),time,txt !04行 (e16.6) !05行 ACCEXYZ(0,1)=1 !06行 ACCEXYZ(0,2)=2 !07行,同上 ACCEXYZ(0,3)=3 !08行,同上 finish /SOLU ANTYPE,trans btime=0.01 !定义计算起始时间 etime=15.00 !定义计算结束时间 dtime=0.01 !定义计算时间步长 *DO,itime,btime,etime,dtime time,itime AUTOTS,0 NSUBST,1, , ,1 KBC,1 acel,ACCEXYZ(itime,1),ACCEXYZ(itime,2),ACCEXYZ(itime,3) !施加三个方向的地震加速度 SOLVE

具有不同频谱特性的地震波(精)

具有不同频谱特性的地震波 对单塔悬索桥响应的影响分析 林瑞良(福州市建设委员会 350005) [提要]根据空间有限元计算模型,采用混合结构形式,以某市单塔悬索桥为研究对 象,运用时程分析法,探讨了具有不同频谱特性的地震波对单塔悬索桥响应的影响 问题。 [关键词]单塔悬索桥时程分析地震波 现行公路桥梁工程抗震设计规范《公路工程抗震设计规范》 (JTJ-004-89)是以反 应谱理论为基础的,针对这些问题,本文以某市悬索桥为工程实例,采用动力时程分 析法,探讨了不同频谱特性的地震波对单塔悬索桥横向、纵向和竖向地震响应的影响。 一、动力计算模型的基本假设 (1) 缆索在纵向分析中取水平位移和竖向位移两个自由度,横向分析中取水平位移 一个自由度,竖向分析中取竖向位移一个自由度;(2)吊杆为柔性索,考虑变形; (3) 主塔在纵向和横向分析中均取水平位移和转动两个自由度;(4)加劲桁架在纵向分析 中取水平位移、竖向位移和转动三个自由度,横向分析中取水平位移和转动两个自由 度,竖向分析中取竖向位移和转动两个自由度;(5)作用于全桥纵向、横向上的地震 输入波,均取与基础相垂直的水平方向;作用于全桥竖直方向上的输入波取水平向输

入波的65%加速度值[1]。 二、刚度矩阵与质量矩阵 由于悬索桥结构是由不同类型的构件组成,本文在有限元计算中采用混合结构 形式的三维有限元计算模型[2],将结构划分为如下三类单元:(1)空间梁单元,用 于加劲梁及塔架。(2)空间索单元,用于主缆。(3)杆面单元,由两根吊杆和一个虚 拟刚片组成,用来反映加劲梁与主缆之间的相互作用。单元质量矩阵采用集中(堆聚) 质量矩阵[2]。将单元刚度矩阵和单元质量矩阵经座标变换,组成总刚度矩阵和总质 量矩阵,再利用子空间迭代法计算出结构的特征值和特征向量,即可得到所需的各 阶频率和振型。 三、动力方程的建立和求解 当结构在地面运动加速度X¨g作用下,结构动力方程为 [M]*{U 1}+[C]*{U 1 }+[K]*{U 1 }=-[M]+*{I}X¨g(1) 式中:[M]*和[K]*分别为缩聚后的等效质量矩阵和等效刚度矩阵; U 1 有惯性力的位移;X¨g为输入地震加速度;[C]为阻尼矩阵,按瑞雷阻尼确定。 对于微分方程式(1),可采用逐步积分的数值解法,即求得各节点的位移量,本 文采用的是威尔逊θ法,用SAP5软件进行计算。 四、具有不同频谱特性的地震波对单塔悬索桥地震响应分析实例 某市悬索桥是福建省已建成跨径最大的钢筋砼加劲桁架单塔悬索桥(见图1所示),

地震波运动学理论

第二章地震波运动学理论 一、名词解释 1. 地震波运动学:研究在地震波传播过程中的地震波波前的空间位置与其传播时间的关系,即研究波的传播规律,以及这种时空关系与地下地质构造的关系。 2. 地震波动力学:研究地震波在传播过程中波形、振幅、频率、相位等特征的及其变化规律,以及这些变化规律与地下的地层结构,岩石性质及流体性质之间存在的联系。 3. 地震波:是一种在岩层中传播的,频率较低(与天然地震的频率相近)的波,弹性波在 岩层中传播的一种通俗说法。地震波由一个震源激发。 4. 地震子波:爆炸产生的是一个延续时间很短的尖脉冲,这一尖脉冲造成破坏圈、塑性带,最后使离震源较远的介质产生弹性形变,形成地震波,地震波向外传播一定距离后,波形逐渐稳定,成为一个具有2-3个相位(极值)、延续时间60-100毫秒的地震波,称为地震子波。地震子波看作组成一道地震记录的基本元素。 5.波前:振动刚开始与静止时的分界面,即刚要开始振动的那一时刻。 6.射线:是用来描述波的传播路线的一种表示。在一定条件下,认为波及其能量是沿着一条“路径”从波源传到所观测的一点P。这是一条假想的路径,也叫波线。射线总是与波阵面垂直,波动经过每一点都可以设想有这么一条波线。 7. 振动图和波剖面:某点振动随时间的变化的曲线称为振动曲线,也称振动图。地震勘探中,沿测线画出的波形曲线,也称波剖面。 8. 折射波:当入射波大于临界角时,出现滑行波和全反射。在分界面上的滑行波有另一种特性,即会影响第一界面,并激发新的波。在地震勘探中,由滑行波引起的波叫折射波,也叫做首波。入射波以临界角或大于临界角入射高速介质所产生的波 9.滑行波:由透射定律可知,如果V2>V1 ,即sinθ2 > sinθ1 ,θ2 > θ1。当θ1还没到90o时,θ2 到达90o,此时透射波在第二种介质中沿界面滑行,产生的波为滑行波。 10.同相轴和等相位面:同向轴是一组地震道上整齐排列的相位,表示一个新的地震波的到达,由地震记录上系统的相位或振幅变化表示。 11.地震视速度:当波的传播方向与观测方向不一致(夹角θ)时,观测到的速度并不是波前的真速度V,而是视速度Va。即波沿测线方向传播速度。 12 波阻抗:指的是介质(地层)的密度和波的速度的乘积(Zi=ρiVi,i为地层),在声学中称为声阻抗,在地震学中称波阻抗。波的反射和透射与分界面两边介质的波阻抗有关。只有在Z1≠Z2的条件下,地震波才会发生反射,差别越大,反射也越强。 13.纵波:质点振动方向与波的传播方向一致,传播速度最快。又称压缩波、膨胀波、纵波或P-波。 14.横波:质点振动方向与波的传播方向垂直,速度比纵波慢,也称剪切波、旋转波、横波或S-波,速度小于纵波约0.7倍。横波分为SV和SH波两种形式。 15.体波:波在无穷大均匀介质(固体)中传播时有两种类型的波(纵波和横波),它们在介质的整个立体空间中传播,合称体波。 16共炮点反射道集:在同一炮点激发,不同接收点上接收的反射波记录,称为共炮点道集。在野外的数据采集原始记录中,常以这种记录形式。可分单边放炮和中间放炮。 17.面波:波在自由表面或岩体分界面上传播的一种类型的波。 18.纵测线和非纵测线:激发点与接收点在同一条直线上,这样的测线称为纵测线。用纵测线进行观测得到的时距曲线称为纵时距曲线。激发点不在测线上,用非纵测线进行观测得到的时距曲线称为非纵时距曲线。

论地震勘探中几种主要地震波

论地震勘探中的几种主要地震波 论文提要 地震勘探,就是通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下地质构造,为寻找油气田或其它勘探目的服务的一种方法。也可以理解为就是利用地震子波从地下地层界面反射回地面时带回来的旅行时间和形状变化的信息,用以推断地下的底层构造和岩性。地震勘探在勘探已有的各种物探方法中,是最有效地方法。在地震勘探中用炸药激发时,一声炮响之后会产生各种各样的地震波。按波在传播过程中质点震动的方向来区分,可以纵波和横波;根据波动所能传播的空间范围而言,地震波又可以分为体波和面波;按照波在传播过程中的传播路径的特点,又可以把地震波分为直达波、反射波、透射波、折射波,等等。地震勘探在石油勘探中除了能产生来自地层界面有用的反射波外,还会产生各种各样的干扰波。因此,我们要更好的了解各种波的产生、特点、用途,等等。下面简单介绍几种地震勘探中产生的地震波。 正文 一、反射波 (一)反射波的形成 1、几何地震学的观点 当炸药在井中爆炸激发地震波时,在雷管引爆几百微妙之内爆炸便完成了,在接近爆炸点的压强是一个延续时间很短的尖脉冲,爆炸脉冲向外传播,压强逐渐减少,地层开始产生弹性形变,形成地震波。地震波继续传播,由于介质对高频的吸收,地震波信号减小。当波入射到两种介质的分界面时(当上层介质波阻抗与下层介质波阻抗不等时,弹性地震波才会发生反射;上层介质波阻抗与下层介质波阻抗差别越大,反射波越强——反射波条件),一部分波回到第一种介质中,这就是所谓的反射波。如图所示 2、物理地震学观点 地震波从震源出发以球面波的方式向下传播,到达反射界面S,S可以就看成有许多

时程分析中地震波输入位置的讨论

时程分析中地震波输入位置的讨论 摘要:时程分析法通过直接动力分析可得到结构相应随时间的变化关系,能真实地反应结构地震相应随时间变化的全过程,是抗震分析的一种重要方法[1]。目前有限元软件可以实现结构的时程分析,但是在不同的软件中,其实现方式不同,主要区别在地震波的输入位置不同。本文通过有限元软件ABAQUS采用不同的地震波输入位置对同一结构进行时程分析分析,对比结构相同位置的时程位移曲线,结果表明结构在采用不同地震波输入位置的时程分析中,结构的地震响应基本一致。 关键词:时程分析、有限元软件、钢筋混凝土剪力墙 Abstract: The time history analysis method to analyze the available structure through direct power to the relationship between the corresponding changes over time, truly reflect the structure of earthquake corresponding to the whole process of change over time, is an important method of seismic analysis [1]. Finite element software can be time-history analysis of the structure, but in different software in different ways, the main difference between the different positions in the seismic wave input. In this paper the finite element software ABAQUS using different seismic wave input location on the same structure, process analysis analysis, contrast structure the same location of when the process displacement curve, the results show that the structure using different seismic waves enter the position time history analysis, the seismic response basically the same. Keywords: time history analysis, finite element software, reinforced concrete shear walls 一、引言 在时程分析等动力学问题中,地震力以加速度形式从基础固定处输入。由于结构的刚度不是无限大,在结构上的加速度反应与基础输入的加速度并不相同。在很多时候,结构的加速度比基础输入的加速度更大,即对输入的加速度有一个动力放大效应。在单自由度弹性体系中,体系最大绝对加速度与地面运动最大加速度的比值,即称为动力系数[2] (1) 动力系数与结构的动力学特性和输入的地震波的频率特性有关。它与地震系数k的乘积即为单自由度体系的地震影响系数。 因此,从原理上讲,时程分析是将地震波的加速度时程曲线作用到结构的基础约束处,得到上部结构的各种地震反应。但是在不同的软件中,其实现方

91-杨志勇、王雁昆等-弹性及弹塑性时程分析地震波有效选取方法

弹性及弹塑性时程分析地震波有效选取方法 杨志勇,王雁昆,黄吉锋 (中国建筑科学研究院建研科技股份有限公司PKPM设计软件事业部北京100013) [摘要] 以工程实例说明弹性及弹塑性时程分析地震波选取的重要性;从“统计意义上相符”和“基底剪力的下限要求”等角度探讨了弹性时程分析选择地震波的基本原则和实际工程应用注意事项;通过基本理论分析和工程实例说明了如何利用位移谱在进行弹塑性时程分析时有效选取地震波。 [关键词] 弹性时程分析,弹塑性时程分析,地震波选取,反应谱,位移谱 1引言 正确选取地震波是保障建筑结构弹性、弹塑性时程分析有效性的重要因素,但设计人员在实际选取地震波时往往具有很大的随意性,甚至存在刻意筛选响应较小地震波的现象。本文将从提高结构抗震安全性角度探讨地震波正确选取方法,以避免弹性、弹塑性时程分析流于形式,并为地震波的正确选取提供一些理论参考。 2弹性及弹塑性时程分析在结构设计中的必要性 对于“小震”弹性阶段抗震设计而言,振型分解反应谱方法是现阶段的主流方法。该方法依据规范规定的反应谱,在结构模态空间内得到各振型所对应的地震响应,进而采用CQC等组合方法进行振型叠加得到结构的最终地震响应。其中规范所规定的反应谱是由数百条地震波通过概率平均化和平滑化后得到,且CQC振型组合方法也是基于平稳随机过程的概率保证方法,所以振型分解反应谱方法可以从概率意义上保证大多数结构地震响应计算足够保守。但对于复杂高层建筑结构等一些特殊情况,该方法可能出现计算结果偏于不安全的个别现象,所以要选取多条实际或人造地震波进行附加弹性时程分析,以进一步保证结构的安全。 对于“大震”弹塑性阶段抗震分析而言,由于非线性问题的特殊性,目前阶段尚无法找到一种类似于弹性阶段振型分解反应谱方法的,基于概率的,可以应用振型解耦和叠加原理的,漂亮且简化的分析方法。虽然学术界近年来在基于性能设计的PushOver方法等方面有所进展,但选取多条地震波进行弹塑性时程分析仍然是目前阶段保证结构“大震不倒”的主流分析方法。 从图1、图2可以看出,无论是弹性阶段还是弹塑性阶段,结构在不同地震波(指峰值相同、特征周期相同但波形不同的地震波)作用下的响应差别很大,因此正确地选取地震波对于保证结构安全十分重要。 作者简介:杨志勇(1974—), 男, 博士, 研究员

纵波速度模型约束的首都圈地壳横波速度结构成像

第9卷第2期2012年3月   CHINESE JOURNAL OF ENGINEERING  GEOPHYSICSVol.9,No.2 Mar.,2012 文章编号:1672—7940(2012)02—0175—09doi:10.3969/j .issn.1672-7940.2012.02.010纵波速度模型约束的首都圈地壳 横波速度结构成像 张 智1,李良杰1,张艳瑾1,熊 彬1,赵国敏2 (1.桂林理工大学地球科学学院,广西桂林541004;2.天津市地震局,天津210003 )基金项目:国家自然科学基金(编号:40804017和40974077及41164004);国家科技专项项目(编号:SinoProbe-02-02-02)联合资助。作者简介:张 智(1975-),男,湖南衡阳人,主要从事地震波层析成像技术研究。E-mail:zhang zhi@glite.edu.cn摘 要:通过搜集首都圈地震台网记录到的634个地震事件的近三万条地震射线,并从中挑选出274条信 噪比高、发育良好的面波频散曲线,并将已有的纵波速度转换为横波速度,作为横波速度反演的初始模型,利用最小二乘反演方法进行面波频散层析成像, 得到了研究区地壳S波速度结构和地壳的厚度分布以及一些初步结论: 地壳可分为地表、基底、上地壳、中地壳、下地壳五层,中地壳整体横波速度表现为弱梯度,局部出现负速度梯度,下地壳横波速度均呈现不同程度的异常,证实了中地壳低速层的存在;研究区内速度存在明显横向不均匀性,这是复杂的地质构造特征在地球物理场中的响应;各构造单元表现明显不同的速度结构变化,中地壳层位速度变化范围较小; 同一构造单元在不同深度的层位上速度变化明显,出现高低速异常交替现象,特别是在张渤断裂带上地壳层位以上,高速和低速异常块体交替明显;地壳平均厚度29~40km,并且从东南向西北逐渐变厚加深,其中张北地区地壳最厚达40km,华北裂陷盆地地壳厚度为29~32km,华北裂陷盆地中部的深浅交叉的异常块体内的冀中坳陷构造最薄。 关键词:首都圈;面波反演;S波速度结构中图分类号:P631.4 文献标识码:A 收稿日期:2012-01-10 Crustal S-Wave Velocity Tomography  Constrained byP-Wave Velocity  Model in the Capital RegionZhang Zhi 1,Li Liangjie1,Zhang Yanjin1,Xiong  Bin1,Zhao Guomin2 (1.College of Earth Sciences,Guilin University of Technology,Guilin Guangxi 541004,China;2.Earthquake Administrator of Tianjin Municipality,Tianj in210003,China)Abstract:We picked up 274well-developed and high signal to noise performance surfacewave ray-paths recorded by 38seismic stations in the Capital Seismic station Network andstudy the crust of the Capital region by surface wave tomography  method through the origi-nal velocity model from P velocity transformation.Then we obtain,analyze and interpretthe depth section and S wave velocity structure.Here are some preliminary  results:firstly,the area crust could be divided into five layers:surface,basement,upper crust,mid-crustand lower crust.The mid-crust S velocity  structure shows low gradient,even negative ve-locity gradient partly,and S velocity shows different degree anomaly  in lower crust.So this

地震波使用说明

地震波使用说明 此目录下提供了四类场地土的地震波时程曲线和上海人工波。 按照场地土类型(1,2,3或4),选择时程曲线。在定义时程工况时,对于多遇或罕遇地震,按比例调整时程曲线的最大值。中国抗震规范规定,作为抗震计算中底部剪力法和振型分解反应谱法的补充方法,对于特别不规则,特别重要的和较高的结构应采用时程分析法进行多遇地震下的补充计算。 可取多条时程曲线的计算结果的平均值与振型分解反应谱法计算结果的较大值。 采用时程分析法时,应咱建筑场地类别和设计地震分组选用不少于二组的实际强震记录和一组人工模拟的加速度时程曲线,其平均地震影响系数曲线应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符。 其加速度时程最大值可按规范中对于多遇和罕遇地震在不同烈度下的值。 弹性时程分析时,每条时程曲线计算所得结构底部剪力不应小于振型分解反应谱法计算结果的65%,多条时程曲线计算所得结构底部剪力的平均值不应小于振型分解反应谱法计算结果的80% 。 可使用弹塑性时程分析法计算罕遇地震下结构的变形。 时程分析是一个承受随时间变化的指定荷载结构的逐步动态反应分析,可以是线性或非线性的。 此章对时程分析进行一般的描述,特别是线性时程分析。 定义时程函数 用户可使用“从文件中添加函数”,导入已定义的文本文件,即实测的时程曲线;也可使用程序内置的时程函数。

时程函数定义对话框 时程函数定义对话框中的条目解释如下: ?函数名 通过在编辑框中直接键入以指定或修改时程函数的名称。 ?函数文件 1.在函数文件域点击浏览按钮以调出一个对话框,在此可找出包含时程函数的 文本文件名。注意文件名显示在文件名框中 2.在 "要跳过的标题行" 编辑框中输入一个希望ETABS在文本文件中跳过的 行数。 3.在 "每行要跳过的前缀字符" 编辑框中输入一个希望ETABS在文本文件中 每行要跳过的字符数。 4.在 "每行的点数" 编辑框中输入一个数告诉ETABS文本文件每行的绘图点 数。

abaqus如何施加地震波

施加地震波: 1 *amplitude,name=amp,input=seismicdata.dat 输入地震波 2 *boundary,type=acceleration,amplitude=amp施加荷载 方法:module选load,在tools-----amplitude-----creat默认的continue在Edit A mplitude里面输入时间和加速度,点OK。点creat boundary condition,涌现对 话框creat boundary condition,选择acceleration/angular acceleration,continu e---选择要施加的边界---done----涌现对话框edit bondary condition对话框,在 amplitude里选择你所定义的时间和加速度。点ok就完工了。 在网上查了些方法: module选load,在tools-----amplitude-----creat默认的continue在Edit Amplitude 里面输入时间和加速度,点OK。点creat boundary condition,出现对话框creat boundary condition,选择acceleration/angular acceleration,continue---选择要施加的边界---done----出现对话框edit bondary condition对话框,在amplitude里选择你所定义的时间和加速度。点ok就完工了。 这是在CAE里输入地震波的方式,我用的方法是直接在inp文件里加地震波的。 首先在CAE里建好模型,定义两个分析步。 第一个分析步是加自重,采用线性加载的方式。 (a) 加载方式:ABAQUS在施加Gravity时,默认为Instantaneous(瞬时加载),如果把结构自重以瞬间加载方式加到结构上,相当于对结构施加了一个脉冲荷载,会引起结构在竖向的振动,在不考虑结构阻尼的情况,这种振动会一直持续下去。如果是混凝土结构,这种竖向振动也会造成混凝土受拉损伤,所以这种加载方式不太合理。 (b)新建加载方式:创建一个新的Amplitude,Type=smooth tpye,0时刻Am=0,然后再选择一个0.5s~1s时刻,Am=1,在这个区间内线性插值,实现幅值从0到1。这种方式加载要优于上述瞬时加载,但是在起初的0.5s(或者1s,即smooth tpye中设置的终点时间)内计算结果是不准确的,所以要把这部分的计算结果剔除,剔除方法就是,创建2个step,第一个step主要分析自重作用,待自重稳定后开始第二个step地震时程反应分析。 第二个分析步就是加地震波。 输入地震波有两种方法: 1、在如下位置加入下面加黑的字体部分。格式如下:时间,地震波,时间,地震波,时间, 地震波,时间, 地震波…………每行8个数据(我下到的地震波文件是不带时间的,自己用C++处理了一下)。%%%%%%%%%%%%%%%%%%%%%% *End Assembly *Amplitude, name=Amp-1 0.005, -7.5e-08, 0.01, -3.55e-07, 0.015, -7.03e-07, 0.02, -4.53e-07 0.025, 1.82e-06, 0.03, 7.01e-06, 0.035, 1.5e-05, 0.04, 2.49e-05 0.045, 3.54e-05, 0.05, 4.5e-05, 0.055, 5.2e-05, 0.06, 5.5e-05 ………………

ANSYS地震波的输入

对于地震波的输入,可以把荷载记录作成文件,利用apdl的读取功能读入数据库中。下面的例子是自己编的一个小文件。修改一下可以更简洁。 Fini /config,nres,1000 *dim,aceX,TABLE,3000,1 *dim,aceY,TABLE,3000,1 *dim,aceZ,TABLE,3000,1 *creat,ff *vread,aceX(1,1),acex,txt,,1 (e16.6) *vread,aceX(1,0),acexTT,txt,,,1 (e16.6) ACEX(0,1)=1 *end /input,ff *creat,ff *vread,aceY(1,1),txt,,1 (e16.6) *vread,aceY(1,1),ACETT,,,1 (e17.6) ACEY(0,1)=1 *end /input,ff *creat,ff *vread,aceZ(1,1),txt,,1 (e16.6) *vread,aceZ(1,0),ACETT,,,1 (e17.6) ACEZ(0,1)=1 *end /input,ff !地震波时程记录分成了3个文件,每个文件是一列。分别记录x,y,z方向的加速度。Accett是时间记录。 这样就可以把加速度记录读取到ansys数据库中作为数组。 也可以把加速度记录作成一个文件,这样程序就简单多了。 下面是计算部分语句: /SOLU ANTYPE,trans !求解其自己选了 TM_START=0.01 TM_END=15.00 TM_INCR=0.01 *DO,TM,TM_START,TM_END,TM_INCR TIME,tm

面波勘探原理及其应用

毕业设计(论文) 题目:面波在地震波场中的特性研究及其应用Surface wave in the characteristics of seismic wave field research and its application 学生姓名:高振兵 专业:勘查技术与工程 班级:07023209 指导教师:方根显 二零一一年六月

摘要 瑞利面波勘探是近年发展起来的一种新的浅层地球物理勘探方法,具有简便、快速、经济、分辨率高、成果直观、适用场地小等优点,已在许多领域得到应用,并取得了良好的应用效果[1]。瑞利面波是一类频率较低、能量较强的次生波,且主要沿着介质的分界面传播,其能量随着与界面距离的增加迅速衰减。瑞利面波与反射波、折射波一样都含有地下介质的地质信息。本文从瑞利面波的概念、工作原理及方法、频散特征、反演研究以及实际资料的应用等方面,用多道检波器测量来了解面波勘探在浅层地表调查中的应用。 关键词:瑞利面波、频散曲线、波动方程、瞬态瑞雷波勘探。

ABSTRACT Rayleigh wave exploration is developed in recent years, a new shallow geophysical exploration methods, it is a simple, quick, economy, high resolution, achievements intuitive, applicable site, has the advantages of small find application in many fields, and have achieved good application effect.Rayleigh's is a kind of lower frequency, energy strong secondary wave, and mainly the boundary surface along the medium, the energy with the spread of interface distance attenuation increases rapidly. Rayleigh wave reflection wave, with all contain the same refraction wave of underground medium geological information.This article from Rayleigh's concept, principle and method , frequency dispersion characteristics, and inversion study and the actual material application etc, with multi-channel detectors measurements to understand surface wave exploration in the application of shallow surface survey. keywords: Rayleigh wave,frequency disperse curve, wave equation, transient state Rayleigh wave prospecting.

利用PEER网站选取地震波的方法

利用PEER网站选取地震波的方法 云南省土木建筑学会建筑结构专业委员会 PEER是Pacific Earthquake Engineering Research Center(太平洋地震工程研究中心)的简称,设立在美国的加州大学伯克利分校(University of California, Berkeley)。由其运作的PEER Ground Motion Database(PEER地震动数据库)提供了大量的世界各地的地震记录,可自由下载。该网站提供了丰富的查询手段,可按距离、场地、震源类型等条件选择地震记录,也提供了按目标反应谱选择的手段。 该网站是https://www.360docs.net/doc/dd11946695.html,/peer_ground_motion_database,首页如下:

如果要按目标反应谱(例如我国GB50011-2010的地震影响系数曲线)选取地震波,需要事先准备好目标反应谱的数据文件。云南省土木建筑学会建筑结构专业委员会和昆明理工大学提供了Microsoft Excel 2003格式的文件Spectrum-2010.xls,可用于生成我国建筑、公路、水工等抗震设计规范规定的反应谱对应的数据文件。用法简述如下: 一、生成中国规范的目标谱 1、打开该文件后,在“图形”工作表(左下角选择)上进行最大地震影响系数(αmax)、地震分组、场地类别的选择(均为下拉菜单)。 2、在“表格”工作表(左下角选择)上即可得到所需要的各种数据。例如,PEER地震动数据库的目标谱格式为“周期(s)-谱加速度(g)”,复制拷贝其中的A列和D列即可。

3、利用具有“列编辑模式”功能的文本编辑软件(例如UltraEdit 等。也可直接使用Excel,注意粘贴时采用“选择性粘贴”-“数值”), 得到如下形式的文本: 4、将其保存为“.csv”后缀的文本文件。 二、利用PEER地震动数据库获得地震记录 1、上述准备工作完成后,进入PEER地震动数据库首页。点击 “Scaled”。

Midas地震波的选取方法

地震波的选取方法 建筑抗震设计规范(GB 50011-2001)的5.1.2条文说明中规定,正确选择输入的地震加速度时程曲线,要满足地震动三要素的要求,即频谱特性、有效峰值和持续时间要符合规定。 频谱特性可用地震影响系数曲线表征,依据所处的场地类别和设计地震分组确定。这句话的含义是选择的实际地震波所处场地的设计分组(震中距离、震级大小)和场地类别(场地条件)应与要分析的结构物所处场地的相同,简单的说两者的特征周期Tg值应接近或相同。特征周期Tg值的计算方法见下面公式(1)、(2)、(3)。 加速度有效峰值按建筑抗震设计规范(GB 50011-2001)中的表5.1.2-2采用。地震波的加速度有效峰值的计算方法见下面公式(1)及下面说明。 持续时间的概念不是指地震波数据中总的时间长度。持时T d的定义可分为两大类,一类是以地震动幅值的绝对值来定义的绝对持时,即指地震地面加速度值大于某值的时间总和,即绝对值|a(t)|>k*g的时间总和,k常取为0.05;另一类为以相对值定义的相对持时,即最先与最后一个k*a max之间的时段长度,k一般取0.3~0.5。不论实际的强震记录还是人工模拟波形,一般持续时间取结构基本周期的5~10倍。 说明: 有效峰值加速度 EPA=Sa/2.5 (1) 有效峰值速度 EPV=Sv/2.5 (2) 特征周期 Tg = 2π*EPV/EPA(3) 1978年美国ATC-3规范中将阻尼比为5%的加速度反应谱取周期为0.1-0.5秒之间的值平均为Sa,将阻尼比为5%的速度反应谱取周期为0.5-2秒之间的值平均为Sv(或取1s附近的平均速度反应谱),上面公式中常数2.5为0.05组尼比加速度反应谱的平均放大系数。 上述方法使用的是将频段固定的方法来求EPA和EPV,1990年的《中国地震烈度区划图》采用了不固定频段的方法分析各条反应谱确定其相应的平台频段。具体做法是:在对数坐标系中同时做出绝对加速度反应谱和拟速度反应谱,找出加速度反应谱平台段的起始周期T0和结束周期T1,然后在拟速度反应谱上选定平台段,其起始周期为T1(即加速度反应谱平台段的结束周期T1),结束周期为T2,将加速度反应谱在T0至T1之间的谱值求平均得Sa,拟速度反应谱在T1至T2之间的谱值求平均得Sv(注:生成谱的时候一定要用对数谱),加速度反应谱和拟速度反应谱在平台段的放大系数采用2.5,按公式(1)、(2)、(3)求得EPA、EPV、Tg。 在MIDAS程序中提供将地震波转换为绝对加速度反应谱和拟速度反应谱的功能(工具>地震波数据生成器,生成后保存为SGS文件),用户可利用保存的SGS文件(文本格式文件)根据上面所述方法计算Sv、Sa、Tg=Sv/Sa。通过Tg值可判断该地震波是否适合当地场地和地震设计分组,然后将抗震规范中表5.1.2-2中的EPA值与Sa相比求出调整系数(即放大系数),将其代入到地震波调整系数中。将地震波转换为绝对加速度反应谱和拟速度反应谱时注意周期范围要到6秒(建筑抗震规范规定)。 建筑抗震设计规范5.1.2条中规定,采用时程分析方法时,应按照场地类别和设计地震分组选用不少于二组的实际强震记录和一组人工模拟的加速度时程曲线,其平均地震影响系数曲线应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符。所谓“在统计意义上相符”指的是,其平均影响系数曲线与振型分解反应谱法所用的地震影响系数曲线相比,在各周期点上相差不大于20%。 在MIDAS程序中,可选取两组实际强震记录生成两个SGS文件(调整Sa后的),然后将一组人

结构抗震设计时程分地震波的选择

(1)设计用地震记录的选择和调整 用规范的确定性方法和地震危险性分析方法所确定的设计地震动参数,是选择天然地震加速度记录的依据。 (一)实际地震记录的选择方法 选择地震记录应考虑地震动三要素,即强度(峰值)、频谱和持续时间。对某一建筑的抗震设计,最好是选用该建筑所在场地曾经记录 到的地震加速度时间过程。但是,这种机会极少。为此,人们只能从现有的国内外常用的地震记录中去选择,尽可能挑选那些在震级、震中距和场地条件等方面都比较接近设计地震动参数的记录。他的文章给出了相应的地震数据的记录目录。 (二)实际地震记录的调整 1.强度调整。将地震记录的加速度值按适当的比例放大或缩小,使其峰值加速度等于事先所确定的设计地震加速度峰值。即令 其中a(为记录的加速度值为调整后的加速度值;A众为设计地震加速度峰值;。为记录的加速度峰值。这种调整只是针对原记录的强度进行的,基本上保留了实际地震记录的特征。也就是所说的(强度修正。将地震波的加速度峰值及所有的离散点都按比例放大或缩小以满足场地的烈度要求)

2.频率调整考虑到场地条件对地震地面运动的影响,原则上所选择的实际地震记录的富氏谱或功率谱的卓越周期乃至形状,应尽量与场地土相应的谱的特性一致。如果不一致,可以调整实际地震记录的时间步长,即将记录的时间轴“拉长”或“缩短”,以改变其卓越周期而加速度值不变也可以用数字滤波的方法滤去某些频率成分,改变谱的形状。另外,为了在计算中得到结构的最大反应,也可以根据建筑结构基本自振周期,调整实际地震记录的卓越周期,使二者接近。这种调整的结果,改变了实际地震记录的频率结构,从物理意义上分析是不合理的。 另外,在测定场地土和建筑结构的卓越周期时,运用不同的测试仪器和测试技术,往往得到不同的结果。即使是对同一个测试结果,在频谱上确定卓越周期时,不同的分析方法也会导致不同的结果。有的选取谱的第一个峰值所对应的周期作为卓越周期,有的选最大峰值时的,也有的取某一段周期等,很不一致。对如何确定地震加速度记录的卓越周期,也是各行其是,有的利用加速度反应谱,有的用伪速度谱,有的用富氏谱,结果当然是不一样的。上述各种作法在工程中引起了一些混乱。 王亚勇认为,用脉动测试方法测定场地土和结构的卓越周期及自振周期时,应采用速度摆型或加速度摆型的地震仪测定地运动和结构振动,然后计算其富氏谱或功率谱,以谱的最大峰值所对应的周期作为卓越周期和自振周期比较合适。反应而相应地根据记录的位移谱或速度谱。 这也就是所谓的滤波修正。可按要求设计滤波器,对地震波进行时域或频域的滤波修正。这样修正的地震资料不仅卓越周期满足要求,功率谱的形状和面积也可控制。卓越周期修正。将地震波的离散步长按人为比例改变,

地震映像法在采空区勘探中的应用

地震映像法在采空区勘探中的应用 1 2,王东方玉满 ( 1, ,114005; 2, ,114005)辽宁省冶金地质勘查局四?一队鞍山辽宁省冶金地质勘查局地质勘查研究院鞍山 、、,、,摘要地震映像法俗称单道地震法因其配置灵活操作简单资料成果异常简单明了易于辨认的特点以及高 ,。,效经济的优势在工程物探领域中具有广阔的应用前景特别是在浅部空区探测方面具有独到的勘探 。,、,效果文章从空区勘探角度出发阐述了地震映像法的工作原理特点和技术方法通过列举不同类型地 ,,质条件下空区勘探的成功与不成功的实例探讨与分析了在空区勘探中的实际效果和适用场地环境说 。明了地震映像法对空区勘探的可行性与有效性 关键词地震映像采空区勘探应用效果 : P631, 4 : A 中图分类号文献标识码: 1674 ) 7801( 2012) 02 ) 0244 ) 03文章编号 。出地质体沿垂直方向和水平方向的变化 0前言 1, 2地震映像法的特点地震映像法是基于反射波法中最佳偏移距技术 ,,。( 1) 数据采集速度快但抗干扰能力差勘探深发展起来的一种常用浅层地震方法由于其数据采 。,,,度有限集速度快资料处理流程简单浅层勘探效果好工

,( 2),作效率高等特点而备受专业人员的青睐目前已成资料解释中可以利用多种波的信息即有 ,、、。,、效波不但是反射波还可以是折射波面波绕射波为适应各种工作环境简洁快速的工程物探勘查手 。,( 3) ,段但由于方法本身的特点其使用范围也受到一在探测目的单一只需研究横向的地质情。,,,,定限制所以在不同工作区此方法是否适用必须况下效果较好而探测目的层较多时不易确定最 ,。通过试验来进行选择本文通过不同地区的工作效佳偏移距 ( 4) ,。由于每个记录都采用了相同的偏移距地果来说明其适用性 震记录上的时间变化主要为地下地质异常体的反 1地震映像法的基本原理及特点,。映给资料解释带来极大的方便 1, 1地震映像法的基本原理 2工作方法及技术要求 ( 地震映像又称高密度地震勘探和地震多波勘 2, 1工作方法 ) ,,探是通过采用最佳偏移距利用多种波作为有效 ,,,波来进行勘探也可以根据探测目的的要求仅采用 ( 1) 在测量过程中每次激发在接收点采用单 。、。,一种特定的波作为有效波除常见的折射波反射个检波器接收仪器记录后激发点和接受点同时 ,、,、向前移动一定距离重复上述过程可获得测线上的波绕射波外还可以利用有一定规律的面波横波 。,。和转换波在这种方法中每一测点的波形记录都地震映像时间剖面 。采用相同的偏移距激发和接收在该偏移距处接收 ( 2) 记录点的位置位于激发和接收距离的中

堤坝隐患的天然源面波成像研究

堤坝隐患的天然源面波成像研究 诸如空洞、软弱层、渗漏、裂缝等病害严重威胁堤坝的安全,因此,堤坝隐患的探测具有重要的现实意义。当前应用到堤坝隐患探测的物理方法主要有直流电法、电磁法、弹性波法、放射性法和流场法等,而这些方法都是有源的,或者向地下供电,或者发射电磁波,或者产生地震波。而微动探测是无源的,它利用地球表面无时不刻存在的微弱震动,从里边提取面波信息,通过对面波频散曲线进一步反演,可以获得地下介质速度结构。通过隐患原型的微动探测试验,表明微动探测技术可以解决部分类似的隐患探测问题,通过长江大堤上的实际应用,微动探测取得了较好的效果。 标签:天然源面波堤坝隐患模型试验长江大堤 0引言 我国现有大中型水库8万余座,江河湖泊堤防26万公里,这些堤防及水库在国民经济及社会发展中产生了巨大的效益。但是随着时间的流逝以及突发自然灾害(如地震、洪水、火山爆发等)的破坏,这些水利设施存在的各种隐患严重威胁堤坝的安全。目前迫切需要更多、更有效、更快捷的隐患探测手段,为堤坝的日常维护和防汛抢险工作提供指导。 在堤坝隐患探测技术方面,国际上,荷兰做过大量工作,但是多停留在室内模型计算试验方面,而且是针对海防工程的。我国应用堤坝隐患探测的地球物理勘探手段包含电法、电磁法、弹性波法、放射性法和流场法等,已探测各类堤防2000Km,水库渗漏100余座,取得了一定的成果。电法类主要是电阻率法探测技术,其中的高密度电法应用较广,国内最早开展堤防隐患探测技术研究的是山东省水利科学研究所,1985年研制出ZDT—1型探测仪,1986年曾获得水利部科技进步2等奖,1990年,九江市水利科学研究所的邓习珠等研制出TTY-1型便携式智能堤坝探测仪,利用电测深探测蚁穴洞穴,取得了一定的效果,1990年,徐广富提出了利用自然电场法探测堤防渗漏入口的设想,但未实施。1993年,刘康和等应用K剖面法探测堤坝的隐患。黄河委员会承担了国家“八五”重点科技攻关课题“堤防隐患探测技术研究”,历时3年,取得了丰硕的成果,其ZDT—1型智能堤坝隐患探测仪,曾在1998年长江流域大洪水中探测汛期隐患立下战功,其HGH-III分布式高密度电阻率法又将隐患探测技术推进一步。电磁类方法包括瞬变电磁(TEM)法和地质雷达等,1994年,陈绍求提出用双频激电法探测堤防隐患,1997年,吴相安等对利用地质雷达探测堤坝隐患的有效性进行了研究,并取得了一定的效果,他们自制了300MHz和500MHz等几种雷达天线,中国水利水电科学研究院成功研制了SDC-2堤坝渗漏探测仪,实际应用效果较好。但电磁波在探测隐患时电磁波衰减很快,不易穿透堤防结构。后来,长江委员会推出了“双频多普勒相控阵探地雷达系统”,进行了方法的改进。弹性波检测技术包含折射法、反射法、Rayleigh面波法、地质B超和地震波CT成像等,1993年,葛建国等采用浅层地震反射波法探测堤坝隐患,取得了一定的效果,但地震波方法对几何尺寸小的隐患分辨差。核物理的同位素示踪技术也在实

相关文档
最新文档