王镜岩生化课件07激素
合集下载
生物化学(王镜岩版)第七章 生物氧化

复合体Ⅰ 复合体Ⅰ
FMN; Fe-SN-1a,b; Fe-SN-4; Fe-SN-3; Fe-SN-2 NADH→ →CoQ
NAD+和NADP+的结构
R=H: NAD+;
R=H2PO3:NADP+
NAD+(NADP+)和NADH(NADPH)相互转变 ( )
氧化还原反应时变化发生在五价氮和三价氮之间。 氧化还原反应时变化发生在五价氮和三价氮之间。
NADH
NADH-Q 还原酶
琥珀酸-Q 还原酶
FADH2
FMN、Fe-S
辅酶Q
FAD、Fe-S
细胞色素 b-562
细胞色素还原酶 细胞色素c 血红素a 血红素a3 CuA和 CuB 细胞色素氧化酶 O2
细胞色素b-566 细胞色素c1 Fe-S
1. 复合体Ⅰ: NADH-泛醌还原酶 复合体Ⅰ NADH功能: 将电子从NADH传递给泛醌 (ubiquinone) 功能 将电子从 传递给泛醌
二、氧化还原电势 氧化还原反应——凡是反应中有电子从一种 物质转移到另一种物质的化学反应称为氧化 还原反应。即电子转移反应就是氧化还原反 应。 如: Fe 3+ + e
氧化型 电子受体
Fe 2+
还原型 电子供体
氧化还原电势——还原剂失掉电子或氧化剂 得到电子的倾向称氧化还原电势。
标准电势——任何的氧化-还原物质即氧还电对都 有其特定的电动势,称标准电势。用E0或ε0表示。 氧还电对的标准电势值越大,越倾向于获得电子。 例如,异柠檬酸/α-酮戊二酸 + CO2电对在浓度均 为1.0mol/L时,其标准电势为-0.38V, 这个氧化电对倾向于将电子传递给氧还电对 NADH/NAD+,因为其标准电势为-0.32V。
FMN; Fe-SN-1a,b; Fe-SN-4; Fe-SN-3; Fe-SN-2 NADH→ →CoQ
NAD+和NADP+的结构
R=H: NAD+;
R=H2PO3:NADP+
NAD+(NADP+)和NADH(NADPH)相互转变 ( )
氧化还原反应时变化发生在五价氮和三价氮之间。 氧化还原反应时变化发生在五价氮和三价氮之间。
NADH
NADH-Q 还原酶
琥珀酸-Q 还原酶
FADH2
FMN、Fe-S
辅酶Q
FAD、Fe-S
细胞色素 b-562
细胞色素还原酶 细胞色素c 血红素a 血红素a3 CuA和 CuB 细胞色素氧化酶 O2
细胞色素b-566 细胞色素c1 Fe-S
1. 复合体Ⅰ: NADH-泛醌还原酶 复合体Ⅰ NADH功能: 将电子从NADH传递给泛醌 (ubiquinone) 功能 将电子从 传递给泛醌
二、氧化还原电势 氧化还原反应——凡是反应中有电子从一种 物质转移到另一种物质的化学反应称为氧化 还原反应。即电子转移反应就是氧化还原反 应。 如: Fe 3+ + e
氧化型 电子受体
Fe 2+
还原型 电子供体
氧化还原电势——还原剂失掉电子或氧化剂 得到电子的倾向称氧化还原电势。
标准电势——任何的氧化-还原物质即氧还电对都 有其特定的电动势,称标准电势。用E0或ε0表示。 氧还电对的标准电势值越大,越倾向于获得电子。 例如,异柠檬酸/α-酮戊二酸 + CO2电对在浓度均 为1.0mol/L时,其标准电势为-0.38V, 这个氧化电对倾向于将电子传递给氧还电对 NADH/NAD+,因为其标准电势为-0.32V。
生物化学王镜岩第三版

21
4.整体水平的代谢调节
机体通过神经系统和神经体液途径对机体的生 理功能和物质代谢进行调节,以适应环境的变 化,从而维持内环境的相对恒定。
23
思考题
物质代谢之间的联系? 为什么高糖膳食可使人肥胖? 为什么食物中的蛋白质不能被糖、脂替 代,而蛋白质却能替代糖和脂供能? 试述物质代谢中乙酰CoA的来源和去路。
作用。
氨基酸是核酸合成的重要原料。 磷酸核糖由磷酸戊糖途径提供。
P540
13
生物大分子 分解代谢 合成代谢
生物构件小分子 ATP NADPH 6-磷酸葡萄糖 丙酮酸 乙酰辅酶A
生物构件小分子
中间产物
中间产物
二、代谢的调节
1.酶水平调节 2.细胞内酶的隔离分布 3.激素水平的代谢调节 4.整体水平的代谢调节
24
必答题 默契题 选择题 街头陷阱 抢答题
25
气质佳
形象好
思维敏捷 汉语口语六级
19
2. 细胞内酶的隔离分布
代谢途径的多酶体系分布于细胞的某一区域或亚细胞结构中。
20
3.激素水平的代谢调节
激素调节是高等动物体内代谢调节的重要方式。 靶细胞有能特异识别和结合相应激素的受体。当激素与靶 细胞受体结合后,能将激素的信号,跨膜传递入细胞内,
转化为一系列化学反应,表现出激素的生物学效应。
Asn Met Thr Ile
HMP
生糖氨基酸
Cys 4-磷酸-赤藓糖
Phe Tyr Trp
氨基酸的生物合成
• • • • • • Glu族氨基酸的合成 Asp族氨基酸的合成 丙酮酸族氨基酸的合成 Ser族的氨基酸的合成 芳香族氨基酸的合成 His的合成
生物化学王镜岩版上PPT课件

最准确可靠的方法是超离心法(Svedberg于 1940年设计):蛋白质颗粒在25-50*104 g离心 力作用下从溶液中沉降下来。
沉降系数(s):单位(cm)离心场里的沉降速度。
v =沉降速度(dx/dt)
s = ——v—— ω2x
ω=离心机转子角速度(弧度/s)
x =蛋白质界面中点与转子中心的距离(cm)
试剂
颜色
反应有关基团
双缩脲反应
米伦反应
黄色反应
乙醛酸反应 (Hopking-Cole 反 应) 坂口反应 (Sakaguchi反应)
酚试剂反应 (Folin-Cioculteu 反应) 茚三酮反应
NaOH、CuSO2
AgNO3
、
Hg(NO3)2 及
HNO3混合物
浓HNO3及NH3
乙醛酸试剂及浓 H2SO4
蛋白质与多肽一样,能够发生两性离解, 也有等电点。在等电点时,蛋白质的溶解 度最小,在电场中不移动。
在不同的pH环境下,蛋白质的电学性质 不同。在等电点偏酸性溶液中,蛋白质粒 子带正电荷,在电场中向负极移动;在等 电点偏碱性溶液中,蛋白质粒子带负电荷, 在电场中向正极移动。这种现象称为蛋白 质电泳
3
阳离子 PH<PI
兼性离子 PH=PI
阴离子 PH>PI
没有盐类 干扰时的 等电点叫 等离子点
可解离基团有末端和侧链 故pI与酸性、碱性氨基酸的数目有关 如胃蛋白酶酸性氨基酸多,等电点偏酸性 有些球蛋白的可解离基团只有变性后才能完全滴定
4
2、蛋白质的胶体性质:
蛋白质分子的颗粒直径已达1-100nm,处于胶体 颗粒的范围。因此,蛋白质具有亲水溶胶的性质。 由于胶体溶液中的蛋白质不能通过半透膜,因此 可以应用透析法将非蛋白的小分子杂质除去。8Fra bibliotek可逆沉淀
王镜岩生物化学经典课件0绪论考研必备学生物化学必备

规律性 1.遗传密码已经破译;基因
表达的根本过程已经清楚; 2.生物大分子构造与功能的
关系逐渐明晰; 3.研究方法日新月异。
三.生物化学与分子生物学同生产实践的关系
启蒙阶段 食品选择和加工; 医疗。 开展阶段 维生素、抗生素→医疗; 代谢→食品、医疗; 分子生物学→ 基因工程、 蛋白质工程。
开展前景 生物制品; 转基因动植物; 基因芯片; 基因诊断; 基因治疗。
五.生物化学与分子生物学 同有关学科的关系
1.生物化学与分子生物学是生物学深层次问题的研究和 探索,已深入到生命科学的各个分支学科。
2.生物化学与分子生物学是对化学领域最复杂研究对象 的研究和探索,引起化学工作者广泛的关注。
3.生物化学与分子生物学为农学、医学和食品科学提供 理论依据和研究手段,推动了这些学科的长足开展。
元素→构件小分子→聚 合物〔生物大分子〕;
构造与功能相适应。
免疫球蛋白局部分子的空间构造
噬菌体
动物病毒 植物病毒
〔二〕物质和能量代谢〔动态生物化学〕: 包括下册的19-33章,重点是糖类和氨基酸的分解代谢、
脂类和核苷酸的分解和合成代谢,及物质代谢和能量代谢 的关系,第31章氨基酸生物合成和第32章生物固氮只作概 要介绍,第27章光合作用只作简短概述,由同学自己阅读, 植物生理学详细讲述。
四.生物化学的开展史
1.炼金术阶段: 现代化学起源于炼金术(alchemy)。换言之,炼金活动是
化学的前史。“ chemistry〞 一词也来自alchemy, 而 alchemy = al (the) + chem, 其中的chem来自中国的“ 金〞 的古汉语发音。炼金术在各个古代文明中都占重要位置, 并不 是中国特有, 一般而言都是如何将铜, 铅, 锡变成金、银这样 的贵金属的实用学问。在西方, 炼金术从公元前几百年开场到 17世纪为止, 延续了2000年;在中国也生存了差不多同样长的 时间。