2021年郑州大学医学科学院704药学综合(二)(药理学、生物化学)考研核心题库之生物化学论述题精编

特别说明

本书根据历年考研大纲要求并结合历年考研真题对该题型进行了整理编写,涵盖了这一考研科目该题型常考试题及重点试题并给出了参考答案,针对性强,考研复习首选资料。

版权声明

青岛掌心博阅电子书依法对本书享有专有著作权,同时我们尊重知识产权,对本电子书部分内容参考和引用的市面上已出版或发行图书及来自互联网等资料的文字、图片、表格数据等资料,均要求注明作者和来源。但由于各种原因,如资料引用时未能联系上作者或者无法确认内容来源等,因而有部分未注明作者或来源,在此对原作者或权利人表示感谢。若使用过程中对本书有任何异议请直接联系我们,我们会在第一时间与您沟通处理。

因编撰此电子书属于首次,加之作者水平和时间所限,书中错漏之处在所难免,恳切希望广大考生读者批评指正。

重要提示

本书由本机构编写组多位高分在读研究生按照考试大纲、真题、指定参考书等公开信息潜心整理编写,仅供考研复习参考,与目标学校及研究生院官方无关,如有侵权请联系我们立即处理。一、2021年郑州大学医学科学院704药学综合(二)(药理学、生物化学)考研核心题库之生物化学论述题精编

1.试述肝昏迷的生化机理。

【答案】肝功能严重损伤时,尿素合成发生障碍,血氨浓度增高,称为高氨血症。一般认为氨进入脑组织,可与脑中的酮戊二酸经还原氨基化而合成谷氨酸,氨还可进一步与脑中的谷氨酸结合生成谷氨酰胺。这两步反应需消耗和A TP,并且使脑细胞中的酮戊二酸减少,导致三羧酸循环和氧化磷酸化作用减弱,从而使脑组织中A TP生成减少,引起大脑功能障碍,严重时可产生昏迷,这是肝昏迷氨中毒学说的基础。

另一方面,酪氨酸脱羧基生成酪胺,苯丙氨酸脱羧基生成苯乙胺,酪胺和苯乙胺若不能在肝内分解而进入脑组织,则可分别经羟化而形成羟酪胺(鱆胺)和苯乙醇胺。它们的化学结构与儿茶酚胺类似,称为假神经递质。假神经递质增多,可取代正常神经递质儿茶酚胺,但它们不能传递神经冲动,可使大脑发生异常抑制,这可能与肝昏迷有关。

2.真核生物DNA聚合酶有哪几种?它们的主要功能是什么?

【答案】真核生物的DNA聚合酶有、、、、五种,均具有聚合酶活性,DNA 聚合酶、和有外切酶活性,DNA聚合酶和无外切酶活性。DNA聚合酶用于合成引物,DNA聚合酶用于合成细胞核DNA,DNA聚合酶和主要起修复作用,DNA聚合酶用于线粒体DNA的合成。

3.以原核生物为例简述mRNA的转录过程。

【答案】转录可分为起始、延长和终止三个阶段。

(1)起始:①RNA聚合酶的因子辨认启动子中的启动信号即区的序列,以全酶形式与其松弛结合形成一个封闭的启动子复合物。然后移向区的序列,并跨入转录起始点。这种结合可使该区DNA的构象变化,链间氢键断裂,局部解链,解开长度一般为17个核苷酸对,成为全酶和启动子的开放性复合物,暴露单链模板,形成转录泡。②碱基互补原则,相应的NTP按照DNA模板链的指引依次进入和排列。③在RNA聚合酶亚基的催化下,起始点上相邻排列的第1个和第2个NTP发生聚合,生成RNA链的第1个,磷酸二酯键,端的第1个核苷酸多为GTP或A TP,以GTP常见,由此生成转录起始复合物。④因子从转录起始复合物上脱落,核心酶连同四磷酸二核苷酸继续结合于DNA 模板上并沿DNA链前移,进入延长阶段。而脱落的因子与另一个核心酶结合成全酶而被反复利用。

(2)延长:①因子从转录起始复合物上脱落,核心酶的构象发生改变,与模板的结合较为疏

松,有利于酶蛋白沿DNA模板链方向移动。因此RNA链的合成方向是。②每移动一次(1个核苷酸),新生RNA链的与另一分子相应的核苷酸形成一个新的磷酸二酯键,一般每秒可合成个核苷酸。但并不是以恒定速度进行的。③在转录延长过程中,RNA聚合酶沿DNA 链向前移动,新合成的RNA链与模板链互补形成杂交体,长度约为13个碱基对。由于DNA和RNA形成的杂化双链结合较疏松,RNA链很容易从DNA模板链上脱离。在电子显微镜下观察转录现象,可以看到同一DNA模板上,有长短不一的新合成的RNA链散开成羽毛状图形,这说明在同一DNA基因上可以有很多RNA聚合酶在同时催化转录,生成相应的RNA链。而且较长的RNA链上已看到核糖体附着,形成多聚核糖体。说明某些情况下,转录过程尚未完全终止,即已开始进行翻译。

4.为什么说转氨基反应在氨基酸合成和降解过程中都起重要作用?

【答案】(1)在氨基酸合成过程中,转氨基反应是氨基酸合成的主要方式,许多氨基酸的合成可以通过转氨酶的催化作用,接受来自谷氨酸的氨基而形成。

(2)在氨基酸的分解过程中,氨基酸也可以先经转氨基作用把氨基酸上的氨基转移到酮戊二酸上形成谷氨酸,谷氨酸在谷氨酸脱氢酶的作用上脱去氨基。

5.Glu和Lys残基是某酶活性所必需的两个残基。根据pH对酶活性影响研究揭示,该酶的最大催化活性的pH近中性。请你说明这个酶的活性部位的Ghi和Lys残基在酶促反应中的作用,并予以解释。

【答案】谷氨酸的羧基的值约为4.0,在近中性条件下,该基团去质子化,在酶促反应中起着碱催化剂的作用。赖氨酸的氨基的值约为10.0,在近中性条件下,它被质子化,在酶促反应中起着酸催化剂的作用。所以这个酶活性部位的谷氨酸和赖氨酸残基在酶促反应中可以通过酸碱催化提高酶的催化效率。

6.试述糖尿病的发病机理及临床表现。

【答案】糖尿病是由于胰岛素绝对或相对不足而导致的代谢紊乱性疾病,以高血糖、糖尿为其主要临床特点。胰岛素是体内唯一的降糖激素。胰岛素不足可导致:肌肉、脂肪细胞摄取葡萄糖减少;肝葡萄糖分解利用减少;糖原合成减少;糖转变为脂肪减少;糖异生增强。总之使血糖来源增加,去路减少,而致血糖浓度增高。当血糖浓度高于肾糖阈时则出现糖尿。

糖尿病临床以高血糖为主要标志,同时表现“三多一少”。严重时因脂肪动员过多,生成大量乙酰CoA,后者可生成酮体和胆固醇,而出现酮血症、酮尿症、酸中毒和高胆固醇血症等。其原因是糖的氧化发生障碍,机体所需能量不足,感到饥饿而多食;多食地进一步使血糖升高,超过肾糖阈时出现尿糖;糖的大量排出必然带走大量水分引起多尿;多尿失水过多,血液浓缩引起口渴,因而多饮;因为糖氧化供能发生障碍,大量动员体内脂肪及蛋白质氧化供能,严重时因消耗多,身体逐渐消痩,体重减轻。

7.HMGCoA在脂类代谢中有何作用?

【答案】HMGCoA参与脂类代谢中酮体的生成和胆固醇的合成。HMGCoA是由3分子的乙酰CoA缩合而成。在肝细胞,HMGCoA可被HMGCoA裂解酶催化生成酮体,在几乎全身各组织(成人脑组织及成熟红细胞除外)HMGCoA可被HMGCoA还原酶催化生成甲羟戊酸并用于胆固醇的生物合成。

8.磷酸果糖激酶活性受哪些因素的影响?有何生理意义?

【答案】磷酸果糖激酶是糖酵解途径中最重要的限速酶,其催化活性的改变直接影响着糖的分解代谢速率和细胞内能量供应状态。该酶受到多种代谢物的变构调节:2,二磷酸果糖、ADP、AMP等为其变构激活剂;柠檬酸、长链脂肪酸、ATP等为其变构抑制剂。在这些代谢物的共同调节下,机体可根据能量需求状况调整糖的分解代谢速率,以适应机体的生理需要。当细胞内能量不足时,A TP减少,AMP、ADP增多,则磷酸果糖激酶被激活,糖分解速率加快,使ATP生成增加。反之,当细胞内能量供应过剩时,则该酶活性被抑制,糖分解减慢,ATP生成减少,避免了能量不必要的浪费。当饥饿时,脂肪动员增强,长链脂肪酸和柠檬酸均抑制该酶活性,使糖的分解减少,避免血糖浓度的进一步降低。

9.下列物质对呼吸链的电子传递和氧化磷酸化分别有什么影响?(1)鱼藤酮,(2)抗霉素A,(3)叠氮化物,(4)寡霉素,(5)DNP,(6)缬氨霉素,(7)DCCD(二环己基碳二亚胺)。

【答案】(1)阻断复合物的电子传递和跨膜质子梯度的形成;

(2)阻断复合物Ⅲ中的电子传递和跨膜质子梯度的形成;

(3)阻断复合物Ⅳ中的电子传递和跨膜质子梯度的形成;

(4)通过对的抑制阻断质子梯度的利用,从而抑制ATP的生成和ADP刺激氧的利用;

(5)不影响呼吸链的电子传递,甚至刺激氧的利用,但通过消除跨膜质子梯度而阻断ATP 合成;

(6)不影响呼吸链电子传递,通过把钾离子转运到基质中消除跨膜质子梯度产生的高能状态,从而阻断ATP合成;

(7)与寡霉素作用相似。

10.试述乙酰CoA羧化酶在脂肪酸合成中的调控机制。

【答案】乙酰CoA羧化酶在脂肪酸合成中将乙酰CoA转化为丙二酸单酰CoA,后者是脂肪酸合成二碳单位的活性供体,乙酰CoA羧化酶催化的反应是脂肪酸合成中的限速反应,该酶是脂肪酸合成关键酶。在原核生物中乙酰CoA羧化酶是由三个不同亚基组成,每个亚基行使不同的功能,分别称生物素羧基载体蛋白、生物素羧化酶和羧基转移酶,只有当它们聚合成完整的酶后才有活性,乙酰CoA羧化酶受由胰高血糖素和肾上腺素皮质激素激发的磷酸化修饰的抑制。它的活化型为乙酰CoA羧化酶的聚合物,当磷酸化时这个聚合物解离成为单体,遂失去活性。柠檬酸是该酶的别构激活剂,能促进无活性的单体聚集成有活性的全酶,从而加速脂肪酸的合成;软脂酰CoA是该酶别构抑制剂,它促使聚集物的解体,因而抑制脂肪酸的合成。软脂酰CoA是脂肪酸合

相关文档
最新文档