专题练习 带电粒子在复合场中的运动及应用实例
专题(26)带电粒子在复合场中运动的实例分析(原卷版)

2021年(新高考)物理一轮复习考点强化全突破专题(26)带电粒子在复合场中运动的实例分析(原卷版)一、带电粒子在复合场中的运动1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠,或相邻或在同一区域电场、磁场交替出现.2.带电粒子在复合场中的运动分类(1)静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.(2)匀速圆周运动当带电粒子所受的重力与电场力大小相等、方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.(3)较复杂的曲线运动当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一条直线上时,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.(4)分阶段运动带电粒子可能依次通过几个情况不同的复合场区域,其运动情况随区域发生变化.二、电场与磁场的组合应用实例命题热点一质谱仪的原理和分析1.作用测量带电粒子质量和分离同位素的仪器.2.原理(如图所示)(1)加速电场:qU=12mv2;(2)偏转磁场:qvB=mv2r,l=2r;由以上两式可得r=1B2mUq,m=qr2B22U,qm=2UB2r2.例1如图所示,在x轴的上方存在垂直纸面向里,磁感应强度大小为B0的匀强磁场,位于x轴下方的离子源C发射质量为m、电荷量为q的一束负离子,其初速度大小范围为0~3v0.这束离子经电势差为U=mv022q的电场加速后,从小孔O(坐标原点)垂直x轴并垂直磁场射入磁场区域,最后打到x轴上.在x轴上2a~3a区间水平固定放置一探测板(a=mv0qB0).假设每秒射入磁场的离子总数为N0,打到x轴上的离子数均匀分布(离子重力不计).(1)求离子束从小孔O 射入磁场后打到x 轴的区间;(2)调整磁感应强度的大小,可使速度最大的离子恰好打在探测板的右端,求此时的磁感应强度大小B 1;(3)保持磁感应强度B 1不变,求每秒打在探测板上的离子数N ;若打在板上的离子80%被板吸收,20%被反向弹回,弹回速度大小为打板前速度大小的0.6倍,求探测板受到的作用力大小.【答案】见解析【解析】(1)对于初速度为0的粒子:qU =12mv 12 由B 0qv 1=m v 12r 1得r 1=mv 1qB 0=a 恰好打在x =2a 的位置 对于初速度为3v 0的粒子qU =12mv 22-12m (3v 0)2 由B 0qv 2=m v 22r 2得 r 2=mv 2qB 0=2a , 恰好打在x =4a 的位置离子束打在x 轴上的区间为[2a,4a ](2)由动能定理qU =12mv 22-12m (3v 0)2 由B 1qv 2=m v 22r 3得 r 3=mv 2qB 1r 3=32a 解得B 1=43B 0 (3)离子束能打到探测板的实际位置范围为2a ≤x ≤3a即a ≤r ≤32a ,对应的速度范围为43v 0≤v ′≤2v 0 每秒打在探测板上的离子数为N =N 02v 0-43v 02v 0-v 0=23N 0 根据动量定理被吸收的离子受到板的作用力大小F 吸=Δp 吸Δt =0.8N 2(2mv 0+43mv 0)=8N 0mv 09被反弹的离子受到板的作用力大小F 反=Δp 反Δt =0.2N 2[2m (v 0+0.6v 0)+43m (v 0+0.6v 0)]=1645N 0mv 0 根据牛顿第三定律,探测板受到的作用力大小F =F 吸′+F 反′=5645N 0mv 0. 命题热点二 回旋加速器的原理和分析1.构造:如图所示,D 1、D 2是半圆形金属盒,D 形盒处于匀强磁场中,D 形盒的缝隙处接交流电源.2.原理:交流电周期和粒子做圆周运动的周期相等,使粒子每经过一次D 形盒缝隙,粒子被加速一次.3.粒子获得的最大动能:由qv m B =mv 2m R 、E km =12mv m 2得E km =q 2B 2R 22m,粒子获得的最大动能由磁感应强度B 和盒半径R 决定,与加速电压无关.例2 小明受回旋加速器的启发,设计了如图5甲所示的“回旋变速装置”.两相距为d 的平行金属栅极板M 、N ,板M 位于x 轴上,板N 在它的正下方.两板间加上如图乙所示的幅值为U 0的交变电压,周期T 0=2πm qB .板M 上方和板N 下方有磁感应强度大小均为B 、方向相反的匀强磁场.粒子探测器位于y 轴处,仅能探测到垂直射入的带电粒子.有一沿x 轴可移动、粒子出射初动能可调节的粒子发射源,沿y 轴正方向射出质量为m 、电荷量为q (q >0)的粒子.t =0时刻,发射源在(x,0)位置发射一带电粒子.忽略粒子的重力和其它阻力,粒子在电场中运动的时间不计.(1)若粒子只经磁场偏转并在y =y 0处被探测到,求发射源的位置和粒子的初动能;(2)若粒子两次进出电场区域后被探测到,求粒子发射源的位置x 与被探测到的位置y 之间的关系.【答案】(1)x =y 0 q 2B 2y 022m(2)见解析 【解析】(1)根据题意,粒子沿着y 轴正方向射入,只经过磁场偏转,探测器仅能探测到垂直射入的粒子,粒子轨迹为14圆周,因此射入的位置为x =y 0 根据R =y 0,qvB =m v 2R, 可得E k =12mv 2=q 2B 2y 022m(2)根据题意,粒子两次进出电场,然后垂直射到y 轴,由于粒子射入电场后,会做减速直线运动,且无法确定能否减速到0,因此需要按情况分类讨论①第一次射入电场即减速到零,即当E k0<qU 0时,轨迹如图所示根据图中几何关系则x =5y ;①第一次射入电场减速(速度不为0)射出电场,第二次射入电场后减速到0,则当qU 0<E k0<2qU 0时,轨迹如图所示r 0=mv 0qB ,r 1=mv 1qB-qU 0=12mv 12-12mv 02x =2r 0+3r 1,y =r 1联立解得x =2y 2+2mU 0qB 2+3y ①两次射入电场后均减速射出电场,即当E k0>2qU 0时,轨迹如图所示r 0=mv 0qB ,r 1=mv 1qB ,r 2=mv 2qB-qU 0=12mv 12-12mv 02 -qU 0=12mv 22-12mv 12 且x =r 2+2r 1+2r 0,y =r 2联立解得x =2⎝⎛⎭⎫ y 2+2mU 0qB 2+y 2+ 4mU 0qB 2+y 命题热点三 电场与磁场叠加的应用实例分析共同特点:当带电粒子(不计重力)在复合场中做匀速直线运动时,qvB =qE .1.速度选择器(1)平行板中电场强度E 和磁感应强度B 互相垂直.如图(2)带电粒子能够沿直线匀速通过速度选择器的条件是qvB =qE ,即v =E B. (3)速度选择器只能选择粒子的速度,不能选择粒子的电性、电荷量、质量.(4)速度选择器具有单向性. 例3 在如图所示的平行板器件中,匀强电场E 和匀强磁场B 互相垂直.一束初速度为v 的带电粒子从左侧垂直电场射入后沿图中直线①从右侧射出.粒子重力不计,下列说法正确的是( )A .若粒子沿轨迹①射出,则粒子的初速度一定大于vB .若粒子沿轨迹①射出,则粒子的动能一定增大C .若粒子沿轨迹①射出,则粒子可能做匀速圆周运动D .若粒子沿轨迹①射出,则粒子的电势能可能增大【答案】D【解析】若粒子沿题图中直线①从右侧射出,则qvB =qE ,若粒子沿轨迹①射出,粒子所受向上的力大于向下的力,但由于粒子电性未知,所以粒子所受的电场力与洛伦兹力方向不能确定,不能确定初速度与v 的关系,故A 、B 错误;若粒子沿轨迹①射出,粒子受电场力、洛伦兹力,不可能做匀速圆周运动,故C 错误;若粒子沿轨迹①射出,如果粒子带负电,所受电场力向上,洛伦兹力向下,电场力做负功,粒子的电势能增大,故D 正确.2.磁流体发电机(1)原理:如图所示,等离子体喷入磁场,正、负离子在洛伦兹力的作用下发生偏转而聚集在B 、A 板上,产生电势差,它可以把离子的动能通过磁场转化为电能.(2)电源正、负极判断:根据左手定则可判断出图中的B 是发电机的正极.(3)设A 、B 平行金属板的面积为S ,两极板间的距离为l ,磁场磁感应强度为B ,等离子气体的电阻率为ρ,喷入气体的速度为v ,板外电阻为R .电源电动势U :当正、负离子所受电场力和洛伦兹力平衡时,两极板间达到的最大电势差为U (即电源电动势),则q U l=qvB ,即U =Blv . 电源内阻:r =ρl S. 回路电流:I =U r +R. 例4 磁流体发电的原理如图10所示,将一束速度为v 的等离子体垂直于磁场方向喷入磁感应强度为B 的匀强磁场中,在相距为d 、宽为a 、长为b 的两平行金属板间便产生电压.如果把上、下板和电阻R 连接,上、下板就是一个直流电源的两极,若稳定时等离子体在两板间均匀分布,电阻率为ρ,忽略边缘效应,下列判断正确的是( )A .上板为正极,电流I =Bdvab Rab +ρdB .上板为负极,电流I =Bvad 2Rad +ρbC .下极为正极,电流I =Bdvab Rab +ρdD .下板为负极,电流I =Bvad 2Rab +ρb【答案】C【解析】根据左手定则可知,正离子在磁场中受到的洛伦兹力向下,故下板为正极,设两板间的电压为U ,则q U d =Bqv ,得U =Bdv ,电流I =U R +ρd ab=Bdvab Rab +ρd ,故C 正确. 3.电磁流量计(1)流量(Q )的定义:单位时间流过导管某一截面的导电液体的体积.(2)公式:Q =Sv ;S 为导管的横截面积,v 是导电液体的流速.(3)导电液体的流速(v )的计算如图所示,一圆形导管直径为d ,用非磁性材料制成,其中有可以导电的液体向右流动.导电液体中的自由电荷(正、负离子)在洛伦兹力作用下发生偏转,使a 、b 间出现电势差,当自由电荷所受电场力和洛伦兹力平衡时,a 、b 间的电势差(U )达到最大,由q U d =qvB ,可得v =U Bd.(4)流量的表达式:Q =Sv =πd 24·U Bd =πdU 4B. (5)电势高低的判断:根据左手定则可得φa >φb .例5 为监测某化工厂的含有离子的污水排放情况,技术人员在排污管中安装了监测装置,该装置的核心部分是一个用绝缘材料制成的空腔,其宽和高分别为b 和c ,左、右两端开口与排污管相连,如图所示.在垂直于上、下底面方向加磁感应强度大小为B 的匀强磁场,在空腔前、后两个侧面上各有长为a 的相互平行且正对的电极M 和N ,M 、N 与内阻为R 的电流表相连.污水从左向右流经该装置时,电流表将显示出污水排放情况.下列说法中错误的是( )A .N 板带正电,M 板带负电B .污水中离子浓度越高,则电流表的示数越小C .污水流量越大,则电流表的示数越大D .若只增大所加磁场的磁感应强度,则电流表的示数也增大【答案】B【解析】污水从左向右流动时,正、负离子在洛伦兹力作用下分别向N 板和M 板偏转,故N 板带正电,M板带负电,A 正确.稳定时带电离子在两板间受力平衡,qvB =q U b ,此时U =Bbv =BbQ bc =BQ c,式中Q 是流量,可见当污水流量越大、磁感应强度越强时,M 、N 间的电压越大,电流表的示数越大,而与污水中离子浓度无关,B 错误,C 、D 正确.4.霍尔效应的原理和分析(1)定义:高为h 、宽为d 的导体(自由电荷是电子或正电荷)置于匀强磁场B 中,当电流通过导体时,在导体的上表面A 和下表面A ′之间产生电势差,这种现象称为霍尔效应,此电压称为霍尔电压.(2)电势高低的判断:如图,导体中的电流I 向右时,根据左手定则可得,若自由电荷是电子,则下表面A ′的电势高.若自由电荷是正电荷,则下表面A ′的电势低.(3)霍尔电压的计算:导体中的自由电荷(带电荷量为q )在洛伦兹力作用下偏转,A 、A ′间出现电势差,当自由电荷所受电场力和洛伦兹力平衡时,A 、A ′间的电势差(U )就保持稳定,由qvB =q U h,I =nqvS ,S =hd ;联立得U =BI nqd =k BI d ,k =1nq称为霍尔系数. 例6 如图所示,厚度为h 、宽度为d 的金属导体,当磁场方向与电流方向垂直时,在导体上、下表面会产生电势差,这种现象称为霍尔效应.下列说法正确的是( )A .上表面的电势高于下表面的电势B .仅增大h 时,上、下表面的电势差增大C .仅增大d 时,上、下表面的电势差减小D .仅增大电流I 时,上、下表面的电势差减小【答案】C【解析】因电流方向向右,则金属导体中的自由电子是向左运动的,根据左手定则可知上表面带负电,则上表面的电势低于下表面的电势,A 错误;当电场力等于洛伦兹力时,q U h=qvB ,又I =nqvhd (n 为导体单位体积内的自由电子数),得U =IB nqd,则仅增大h 时,上、下表面的电势差不变;仅增大d 时,上、下表面的电势差减小;仅增大I 时,上、下表面的电势差增大,故C 正确,B 、D 错误.。
带电粒子在复合场、组合场中的运动(解析版)2024年高考物理压轴题专项训练(新高考通用)

压轴题08带电粒子在复合场、组合场中的运动1.本专题是电磁场的典型题型之一,包括应用电场力洛伦兹力的知识解决实际问题。
高考中经常在选择题中命题,更是在在计算题中频繁出现。
2024年高考对于复合场、组合场的考查仍然是热点。
2.通过本专题的复习,不仅利于完善学生的知识体系,也有利于培养学生的物理核心素养。
3.用到的相关知识有:电场的知识,磁场的知识等。
近几年的高考命题中一直都是以压轴题的形式存在,重点考查类型带电粒子在复合场中的运动,组合场中的运动等。
考向一:带电体在磁场中的运动1.带电体在匀强磁场中速度变化时洛伦兹力往往随之变化,并进一步导致弹力、摩擦力等的变化,带电体将在变力作用下做变加速运动。
2.利用牛顿运动定律和平衡条件分析各物理量的动态变化时要注意弹力为零的临界状态,此状态是弹力方向发生改变的转折点。
考向二:带电粒子在叠加场中的运动1.三种场的比较力的特点功和能的特点重力场大小:G =mg 方向:竖直向下重力做功与路径无关;重力做功改变物体的重力势能电场大小:F =qE方向:正电荷受力方向与场强方向相同,负电荷受力方向与电强方向相反电场力做功与路径无关;W =qU ;电场力做功改变电势能磁场大小:f =qvB (v ⊥B )方向:可用左手定则判断洛伦兹力不做功,不改变带电粒子的动能2.分析的基本思路(1)弄清叠加场的组成。
(2)进行受力分析,确定带电粒子的运动状态,注意运动情况和受力情况的结合。
(3)画出粒子的运动轨迹,灵活选择不同的运动规律。
①由于洛伦兹力的大小与速度有关,带电粒子在含有磁场的叠加场中的直线运动一定为匀速直线运动,根据平衡条件列式求解。
②当带电粒子在叠加场中做匀速圆周运动时,一定是电场力和重力平衡,洛伦兹力提供向心力,应用平衡条件和牛顿运动定律分别列方程求解。
③当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解。
考向三:带电粒子在组合场中的运动带电粒子在电场、磁场组合场中的运动是指粒子从电场到磁场或从磁场到电场的运动。
高考物理专题——带电粒子在复合场中运动的实例分析(解析版)

2021年高考物理一轮复习考点全攻关专题 ——带电粒子在复合场中运动的实例分析(解析版)专题解读:1.本专题是磁场、力学、电场等知识的综合应用,高考往往以计算压轴题的形式出现.2.学习本专题,可以培养同学们的审题能力、推理能力和规范表达能力.针对性的专题训练,可以提高同学们解决难题、压轴题的信心.3.用到的知识有:动力学观点(牛顿运动定律)、运动学观点、能量观点(动能定理、能量守恒定律)、电场的观点(类平抛运动的规律)、磁场的观点(带电粒子在磁场中运动的规律). 命题热点一:质谱仪的原理和分析 1.作用测量带电粒子质量和分离同位素的仪器. 2.原理如图所示(1)加速电场:qU =12mv 2;(2)偏转磁场:qvB =mv 2r ,l =2r ;由以上两式可得r =1B 2mUq, m =qr 2B 22U ,q m =2U B 2r 2.例1 质谱仪可利用电场和磁场将比荷不同的离子分开,这种方法在化学分析和原子核技术等领域有重要的应用.如图所示,虚线上方有两条半径分别为R 和r (R >r )的半圆形边界,分别与虚线相交于A 、B 、C 、D 点,圆心均为虚线上的O 点,C 、D 间有一荧光屏.虚线上方区域处在垂直纸面向外的匀强磁场中,磁感应强度大小为B .虚线下方有一电压可调的加速电场,离子源发出的某一正离子由静止开始经电场加速后,从AB 的中点垂直进入磁场,离子打在边界上时会被吸收.当加速电压为U 时,离子恰能打在荧光屏的中点.不计离子的重力及电、磁场的边缘效应.求: (1)离子的比荷;(2)离子在磁场中运动的时间;(3)离子能打在荧光屏上的加速电压范围.【答案】 (1)8UB 2R +r2(2)πB R +r28U(3)U R +3r 24R +r2≤U ′≤U 3R +r 24R +r2【解析】(1)由题意知,加速电压为U 时,离子在磁场区域做匀速圆周运动的半径r 0=R +r2洛伦兹力提供向心力,qvB =m v 2r 0在电场中加速,有qU =12mv 2解得:q m =8UB 2R +r2(2)离子在磁场中运动的周期为T =2πmqB在磁场中运动的时间t =T2解得:t =πBR +r 28U(3)由(1)中关系,知加速电压和离子轨迹半径之间的关系为U ′=4U R +r2r ′2若离子恰好打在荧光屏上的C 点,轨道半径r C =R +3r4U C =U R +3r 24R +r2若离子恰好打在荧光屏上的D 点,轨道半径r D =3R +r4U D =U 3R +r 24R +r2即离子能打在荧光屏上的加速电压范围:U R +3r24R +r 2≤U ′≤U 3R +r 24R +r2.变式1】 (2019·福建龙岩市5月模拟)质谱仪的原理如图所示,虚线AD 上方区域处在垂直纸面向外的匀强磁场中,C 、D 间有一荧光屏.同位素离子源产生a 、b 两种电荷量相同的离子,无初速度进入加速电场,经同一电压加速后,垂直进入磁场,a 离子恰好打在荧光屏C 点,b 离子恰好打在D 点.离子重力不计.则( )A .a 离子质量比b 的大B .a 离子质量比b 的小C .a 离子在磁场中的运动时间比b 的长D .a 、b 离子在磁场中的运动时间相等 【答案】B【解析】设离子进入磁场的速度为v ,在电场中qU =12mv 2,在磁场中Bqv =m v 2r ,联立解得:r =mv Bq =1B2mUq,由题图知,b 离子在磁场中运动的轨道半径较大,a 、b 为同位素,电荷量相同,所以b 离子的质量大于a 离子的质量,所以A 错误,B 正确;在磁场中运动的时间均为半个周期,即t =T 2=πmBq ,由于b 离子的质量大于a 离子的质量,故b 离子在磁场中运动的时间较长,C 、D 错误.命题热点二:回旋加速器的原理和分析1.构造:如图所示,D 1、D 2是半圆形金属盒,D 形盒处于匀强磁场中,D 形盒的缝隙处接交流电源.2.原理:交流电周期和粒子做圆周运动的周期相等,使粒子每经过一次D 形盒缝隙,粒子被加速一次. 3.最大动能:由qv m B =mv m 2R 、E km =12mv m 2得E km =q 2B 2R 22m ,粒子获得的最大动能由磁感应强度B 和盒半径R 决定,与加速电压无关. 4.总时间:粒子在磁场中运动一个周期,被电场加速两次,每次增加动能qU ,加速次数n =E kmqU ,粒子在磁场中运动的总时间t =n 2T =E km 2qU ·2πm qB =πBR 22U.例2 (多选)(2019·山东烟台市第一学期期末)如图所示是回旋加速器的示意图,其核心部分是两个D 形金属盒,分别与高频交流电源连接,两个D 形金属盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两个D 形金属盒处于垂直于盒底的匀强磁场中,下列说法中正确的是( )A .加速电压越大,粒子最终射出时获得的动能就越大B .粒子射出时的最大动能与加速电压无关,与D 形金属盒的半径和磁感应强度有关C .若增大加速电压,粒子在金属盒间的加速次数将减少,在回旋加速器中运动的时间将减小D .粒子第5次被加速前、后的轨道半径之比为5∶ 6 【答案】BC【解析】粒子在磁场中做圆周运动,由牛顿第二定律得:qv m B =m v m 2R ,解得:v m =qBRm ,则粒子获得的最大动能为:E km =12mv m 2=q 2B 2R 22m ,知粒子获得的最大动能与加速电压无关,与D 形金属盒的半径R 和磁感应强度B 有关,故A 错误,B 正确;对粒子,由动能定理得:nqU =q 2B 2R 22m ,加速次数:n =qB 2R 22mU ,增大加速电压U ,粒子在金属盒间的加速次数将减少,粒子在回旋加速器中运动的时间:t =n 2T =n πmqB 将减小,故C正确;对粒子,由动能定理得:nqU =12mv n 2,解得v n =2nqUm,粒子在磁场中做圆周运动,由牛顿第二定律得:qv n B =m v n 2r n ,解得:r n =1B 2nmU q ,则粒子第5次被加速前、后的轨道半径之比为:r 4r 5=45,故D 错误.变式2 (多选)(2019·福建龙岩市3月质量检查)回旋加速器是加速带电粒子的装置,如图所示.其核心部件是分别与高频交流电源两极相连接的两个D 形金属盒(D 1、D 2),两盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底的匀强磁场中,D 形盒的半径为R .质量为m 、电荷量为q 的质子从D 1半盒的质子源(A 点)由静止释放,加速到最大动能E km 后经粒子出口处射出.若忽略质子在电场中的加速时间,且不考虑相对论效应,则下列说法正确的是( )A .质子加速后的最大动能E km 与交变电压U 大小无关B .质子在加速器中的运行时间与交变电压U 大小无关C .回旋加速器所加交变电压的周期为πR2mE kmD .D 2盒内质子的轨道半径由小到大之比为1∶3∶5∶… 【答案】ACD【解析】质子在回旋加速器中做圆周运动,洛伦兹力提供向心力,有qvB =m v 2r ,则v =qBrm ,当r =R 时,质子有最大动能:E km =12mv m 2=q 2B 2R 22m ,知质子加速后的最大动能E km 与交变电压U 大小无关,故A 正确;质子离开回旋加速器时的动能是一定的,与加速电压无关,由T =2πmqB 可知相邻两次经过电场加速的时间间隔不变,获得的动能为qU ,故电压越大,加速的次数n 越少,在加速器中的运行时间越短,故B 错误;回旋加速器所加交变电压的周期与质子在D 形盒中运动的周期相同,由T =2πm qB ,R =mv m qB ,E km =12mv m 2知,T=πR2mE km,故C 正确;质子每经过1次加速电场动能增大qU ,知D 2盒内质子的动能由小到大依次为qU 、3qU 、5qU …,又r =mv qB =2mE kqB ,则半径由小到大之比为1∶3∶5∶…,故D 正确.命题热点四:电场与磁场叠加的应用实例共同特点:当带电粒子(不计重力)在复合场中做匀速直线运动时,qvB =qE .1.速度选择器(1)平行板中电场强度E 和磁感应强度B 互相垂直.如图所示(2)带电粒子能够沿直线匀速通过速度选择器的条件是qvB =qE ,即v =EB .(3)速度选择器只能选择粒子的速度,不能选择粒子的电性、电荷量、质量. (4)速度选择器具有单向性.例3 如图所示是一速度选择器,当粒子速度满足v 0=EB 时,粒子沿图中虚线水平射出;若某一粒子以速度v 射入该速度选择器后,运动轨迹为图中实线,则关于该粒子的说法正确的是( )A .粒子射入的速度一定是v >EBB .粒子射入的速度可能是v <EBC .粒子射出时的速度一定大于射入速度D .粒子射出时的速度一定小于射入速度 【答案】B 2.磁流体发电机(1)原理:如图所示,等离子体喷入磁场,正、负离子在洛伦兹力的作用下发生偏转而聚集在B 、A 板上,产生电势差,它可以把离子的动能通过磁场转化为电能.(2)电源正、负极判断:根据左手定则可判断出图中的B 是发电机的正极.(3)电源电动势U :设A 、B 平行金属板的面积为S ,两极板间的距离为l ,磁场磁感应强度为B ,等离子体的电阻率为ρ,喷入气体的速度为v ,板外电阻为R .当正、负离子所受电场力和洛伦兹力平衡时,两极板间达到的最大电势差为U (即电源电动势),则q Ul =qvB ,即U =Blv .(4)电源内阻:r =ρlS .(5)回路电流:I =Ur +R.例4 (2019·福建三明市期末质量检测)磁流体发电机的原理如图所示.将一束等离子体连续以速度v 垂直于磁场方向喷入磁感应强度大小为B 的匀强磁场中,可在相距为d 、面积为S 的两平行金属板间产生电压.现把上、下板和电阻R 连接,上、下板等效为直流电源的两极.等离子体稳定时在两极板间均匀分布,电阻率为ρ.忽略边缘效应及离子的重力,下列说法正确的是( )A .上板为正极,a 、b 两端电压U =BdvB .上板为负极,a 、b 两端电压U =Bd 2vρS RS +ρdC .上板为正极,a 、b 两端电压U =BdvRSRS +ρdD .上板为负极,a 、b 两端电压U =BdvRSRd +ρS【答案】C【解析】根据左手定则可知,等离子体射入两极板之间时,正离子偏向a 板,负离子偏向b 板,即上板为正极;稳定时满足U ′d q =Bqv ,解得U ′=Bdv ;根据电阻定律可知两极板间的电阻为r =ρdS ,根据闭合电路欧姆定律:I =U ′R +r ,a 、b 两端电压U =IR ,联立解得U =BdvRSRS +ρd ,故选C.3.电磁流量计。
高中物理-带电粒子在复合场中运动的应用实例

高中物理-带电粒子在复合场中运动的应用实例一、速度选择器如图所示,粒子经加速电场后得到一定的速度v 0,进入正交的电场和磁场,受到的电场力与洛伦兹力方向相反,若使粒子沿直线从右边孔中飞出,则有q v 0B =qE ,v 0=E B ,若v =v 0=EB,粒子做直线运动,与粒子电荷量、电性、质量无关.若v <EB,电场力大于洛伦兹力,粒子向电场力方向偏转,电场力做正功,动能增加.若v >EB,洛伦兹力大于电场力,粒子向洛伦兹力方向偏转,电场力做负功,动能减少.如图所示的装置,左半部为速度选择器,右半部为匀强的偏转电场.一束同位素离子流从狭缝S 1射入速度选择器,能够沿直线通过速度选择器并从狭缝S 2射出的离子,又沿着与电场垂直的方向,立即进入场强大小为E 的偏转电场,最后打在照相底片D 上.已知同位素离子的电荷量为q (q >0),速度选择器内部存在着相互垂直的场强大小为E 0的匀强电场和磁感应强度大小为B 0的匀强磁场,照相底片D 与狭缝S 1、S 2的连线平行且距离为L ,忽略重力的影响.(1)求从狭缝S 2射出的离子速度v 0的大小;(2)若打在照相底片上的离子在偏转电场中沿速度v 0方向飞行的距离为x ,求出x 与离子质量m 之间的关系式(用E 0、B 0、E 、q 、m 、L 表示).[解析] (1)能从速度选择器射出的离子满足 qE 0=q v 0B 0①v 0=E 0B 0.②(2)离子进入匀强偏转电场E 后做类平抛运动,则 x =v 0t ③L =12at 2④由牛顿第二定律得qE =ma ⑤由②③④⑤解得x =E 0B 0 2mLqE.[答案] (1)E 0B 0 (2)E 0B 0 2mLqE二、磁流体发电机与电磁流量计磁流体发电机:如图甲所示,正、负离子(等离子体)以速度v 进入匀强磁场B 中,在洛伦兹力作用下,正、负离子分别向上、下极板偏转、积累,从而在板间形成一个向下的电场,两板间形成一定的电势差.当q v B =qUd时电势差稳定,U =d v B ,这就相当于一个可以对外供电的电源.电磁流量计:如图乙所示,一圆形导管直径为d ,用非磁性材料制成,其中有可以导电的液体向左流动.导电液体中的自由电荷(正、负离子)在洛伦兹力作用下纵向偏转,a 、b 间出现电势差.当自由电荷所受电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定.由Bq v =Eq =Uq d ,可得v =UBd.流量Q =S v =πUd4B.两者应用的都是霍尔效应原理,当达到稳定时,出现的是一种受力的动态平衡现象.(2014·高考福建卷)如图,某一新型发电装置的发电管是横截面为矩形的水平管道,管道的长为L 、宽为d 、高为h ,上下两面是绝缘板,前后两侧面M 、N 是电阻可忽略的导体板,两导体板与开关S 和定值电阻R 相连.整个管道置于磁感应强度大小为B ,方向沿z 轴正方向的匀强磁场中.管道内始终充满电阻率为ρ的导电液体(有大量的正、负离子),且开关闭合前后,液体在管道进、出口两端压强差的作用下,均以恒定速率v 0沿x 轴正向流动,液体所受的摩擦阻力不变.(1)求开关闭合前,M 、N 两板间的电势差大小U 0; (2)求开关闭合前后,管道两端压强差的变化Δp ;(3)调整矩形管道的宽和高,但保持其他量和矩形管道的横截面积S =dh 不变,求电阻R 可获得的最大功率P m 及相应的宽高比d /h 的值.[解析] (1)设带电离子所带的电荷量为q ,当其所受的洛伦兹力与电场力平衡时,U 0保持恒定,有q v 0B =q U 0d①得U 0=Bd v 0.②(2)设开关闭合前后,管道两端压强差分别为p 1、p 2,液体所受的摩擦阻力均为f ,开关闭合后管道内液体受到的安培力为F 安,有p 1hd =f ③p 2hd =f +F 安④ F 安=BId根据欧姆定律,有⑤I =U 0R +r⑥ 两导体板间液体的电阻r =ρd Lh⑦由②③④⑤⑥⑦式得Δp =p 2-p 1=Ld v 0B 2LhR +dρ.(3)电阻R 获得的功率为P =I 2RP =⎝ ⎛⎭⎪⎪⎫L v 0B LR d +ρh 2R当d h =LRρ时,电阻R 获得最大功率P m =LS v 20B 24ρ. [答案] (1)Bd v 0 (2)Ld v 0B 2LhR +dρ(3)LS v 20B24ρ LR ρ三、质谱仪组成:如图所示,离子源O ,加速电场U ,速度选择器(E 、B 1),偏转磁场B 2,胶片.原理:加速电场中qU =12m v 2,速度选择器中v =EB 1,偏转磁场中d =2r ,q v B 2=m v2r .可得比荷q m =2E B 1B 2d ,质量m =B 1B 2dq2E.对铀235的进一步研究在核能的开发和利用中具有重要意义.如图所示,质量为m 、电荷量为q 的铀235离子,从容器A 下方的小孔S 1不断飘入加速电场,其初速度可视为零,然后经过小孔S 2垂直于磁场方向进入磁感应强度为B 的匀强磁场中,做半径为R 的匀速圆周运动.离子行进半个圆周后离开磁场并被收集,离开磁场时离子束的等效电流为I .不考虑离子重力及离子间的相互作用.(1)求加速电场的电压U ;(2)求出在离子被收集的过程中任意时间t 内收集到离子的质量M ; (3)实际上加速电压的大小会在U ±ΔU 范围内微小变化.若容器A 中有电荷量相同的铀235和铀238两种离子,如前述情况它们经电场加速后进入磁场中会发生分离,为使这两种离子在磁场中运动的轨迹不发生交叠,ΔUU应小于多少?(结果用百分数表示,保留两位有效数字) [解析] (1)设离子经电场加速后进入磁场时的速度为v ,由动能定理得qU =12m v 2①离子在磁场中做匀速圆周运动,所受洛伦兹力充当向心力,即q v B =m v 2R②由①②式解得U =qB 2R 22m.③(2)设在任意时间t 内收集到的离子个数为N ,总电荷量为Q ,则 Q =It ④N =Q q⑤M =Nm ⑥由④⑤⑥式解得M =mItq .⑦(3)由③式有R =1B 2mUq⑧设m ′为铀238离子质量,由于电压在U ±ΔU 之间有微小变化,铀235离子在磁场中最大半径为R max =1B 2m (U +ΔU )q⑨铀238离子在磁场中最小半径为R ′min =1B 2m ′(U -ΔU )q⑩这两种离子在磁场中运动的轨迹不发生交叠的条件为 R max <R ′min ⑪即1B 2m (U +ΔU )q <1B 2m ′(U -ΔU )q 则有m (U +ΔU )<m ′(U -ΔU )⑫ ΔU U <m ′-m m ′+m⑬ 其中铀235离子的质量m =235 u(u 为原子质量单位),铀238离子的质量m ′=238 u ,故ΔU U <238 u -235 u 238 u +235 u解得ΔUU<0.63%.[答案] (1)qB 2R 22m (2)mItq(3)0.63%四、回旋加速器1.组成:如图所示,两个D 形盒(静电屏蔽作用),大型电磁铁,高频振荡交变电压,两缝间可形成电场.2.作用:电场用来对粒子(质子、α粒子等)加速,磁场用来使粒子回旋从而能反复加速.3.加速原理(1)回旋加速器中所加交变电压的频率f ,与带电粒子做匀速圆周运动的频率相等,f =1T =qB2πm;(2)回旋加速器最后使粒子得到的能量,可由公式E k =12m v 2=q 2B 2R 22m来计算,在粒子电荷量、质量m 和磁感应强度B 一定的情况下,回旋加速器的半径R 越大,粒子的能量就越大.而粒子最终得到的能量与加速电压的大小无关.电压大,粒子在盒中回旋的次数少;电压小,粒子回旋次数多,但最后获得的能量一定.(3)粒子在磁场中运动的总时间:粒子运动一个周期,被电场加速两次,并且加速次数由加速电压决定,n =E km Uq ,则运动的总时间t =n 2T =E km 2Uq ·2πmBq=πBR 22U.(忽略电场中被加速的时间.) (2014·高考天津卷)同步加速器在粒子物理研究中有重要的应用,其基本原理简化为如图所示的模型.M 、N 为两块中心开有小孔的平行金属板.质量为m 、电荷量为+q 的粒子A (不计重力)从M 板小孔飘入板间,初速度可视为零.每当A 进入板间,两板的电势差变为U ,粒子得到加速,当A 离开N 板时,两板的电荷量均立即变为零.两板外部存在垂直纸面向里的匀强磁场,A 在磁场作用下做半径为R 的圆周运动,R 远大于板间距离.A 经电场多次加速,动能不断增大,为使R 保持不变,磁场必须相应地变化.不计粒子加速时间及其做圆周运动产生的电磁辐射,不考虑磁场变化对粒子速度的影响及相对论效应.求:(1)A 运动第1周时磁场的磁感应强度B 1的大小;(2)在A 运动第n 周的时间内电场力做功的平均功率P n ;(3)若有一个质量也为m 、电荷量为+kq (k 为大于1的整数)的粒子B (不计重力)与A 同时从M 板小孔飘入板间,A 、B 初速度均可视为零,不计两者间的相互作用,除此之外,其他条件均不变.下图中虚线、实线分别表示A 、B 的运动轨迹.在B 的轨迹半径远大于板间距离的前提下,请指出哪个图能定性地反映A 、B 的运动轨迹,并经推导说明理由.[解析] (1)设A 经电场第1次加速后速度为v 1,由动能定理得qU =12m v 21-0①A 在磁场中做匀速圆周运动,所受洛伦兹力充当向心力q v 1B 1=m v 21R②由①②式得B 1=1R 2mUq.③(2)设A 经n 次加速后的速度为v n ,由动能定理得nqU =12m v 2n-0④设A 做第n 次圆周运动的周期为T n ,有T n =2πRv n⑤设在A 运动第n 周的时间内电场力做功为W n ,则 W n =qU ⑥在该段时间内电场力做功的平均功率为P n =W nT n⑦由④⑤⑥⑦式解得P n =qU πR nqU2m.(3)A 图能定性地反映A 、B 运动的轨迹.A 经过n 次加速后,设其对应的磁感应强度为B n ,A 、B 的周期分别为T n 、T ′,综合②⑤式并分别应用A 、B 的数据得T n =2πm qB nT ′=2πm kqB n =T nk由上式可知,T n 是T ′的k 倍,所以A 每绕行1周,B 就绕行k 周.由于电场只在A 通过时存在,故B 仅在与A 同时进入电场时才被加速.经n 次加速后,A 、B 的速度分别为v n 和v ′n ,考虑到④式v n =2nqUmv ′n =2nkqUm=k v n由题设条件并考虑到⑤式,对A 有T n v n =2πR 设B 的轨迹半径为R ′,有T ′v n ′=2πR ′比较上述两式得R ′=Rk上式表明,运动过程中B的轨迹半径始终不变.由以上分析可知,两粒子运动的轨迹如图A所示.[答案](1)1R 2mUq(2)qUπRnqU2m(3)A理由见解析1.(多选)(2016·成都月考)如图所示,a、b是一对平行金属板,分别接到直流电源两极上,右边有一挡板,正中间开有一小孔d,在较大空间范围内存在着匀强磁场,磁感应强度大小为B,方向垂直纸面向里,在a、b两板间还存在着匀强电场E.从两板左侧中点c处射入一束负离子(不计重力),这些负离子都沿直线运动到右侧,从d孔射出后分成3束.则下列判断正确的是()A.这三束负离子的速度一定不相同B.这三束负离子的比荷一定不相同C.a、b两板间的匀强电场方向一定由a指向bD.若这三束离子改为带正电而其他条件不变,则仍能从d孔射出解析:选BCD.离子在复合场中运动情况相同,即沿水平方向做直线运动,故有qE=q v B,所以v=EB,故三束负离子的速度一定相同,故A错误.三束离子在磁场中有q v B=mv2r,故r=m vqB=mq×EB2,由于三束负离子在磁场中做圆周运动的轨道半径不同,故比荷一定不相同,故B正确.由于在复合场中洛伦兹力竖直向下,则电场力一定竖直向上,故匀强电场方向一定竖直向下,即由a指向b,故C正确.若将三束离子改为带正电后,电场力和洛伦兹力方向都发生改变,由于其他条件不变,故合力仍为0,所以仍能从d孔射出,故D正确.2.(多选)(2016·河南省实验中学模拟)如图是医用回旋加速器示意图,其核心部分是两个D形金属盒,两金属盒置于匀强磁场中,并分别与高频电源相连.现分别加速氘核(21H)和氦核(42He).下列说法中正确的是()A.它们的最大速度相同B.它们的最大动能相同C .它们在D 形盒中运动的周期相同D .仅增大高频电源的频率可增大粒子的最大动能解析:选AC.因为21H 和42He 的比荷相同,由T =2πm qB可得它们在D 形盒中运动的周期相同,C 正确;根据R =m v qB ,粒子的最大速度v =qBRm,所以它们的最大速度相同,A 正确;由粒子的最大动能E k =q 2B 2R 22m知,最大动能与电源的频率f 无关,且它们的最大动能也不同,所以B 、D 错误.3.(多选)如图所示为一种质谱仪示意图,由加速电场、静电分析器和磁分析器组成.若静电分析器通道中心线的半径为R ,通道内均匀辐射电场在中心线处的电场强度大小为E ,磁分析器有范围足够大的有界匀强磁场,磁感应强度大小为B 、方向垂直纸面向外.一质量为m 、电荷量为q 的粒子从静止开始经加速电场加速后沿中心线通过静电分析器,由P 点垂直边界进入磁分析器,最终打到胶片上的Q 点.不计粒子重力.下列说法正确的是( )A .粒子一定带正电B .加速电场的电压U =12ERC .直径PQ =2BqmERD .若一群离子从静止开始经过上述过程都落在胶片上同一点,则该群离子具有相同的比荷解析:选ABD.在磁分析器中由左手定则可知,粒子带正电,故A 正确;根据电场力提供向心力,则有qE =m v 2R,又由加速电场加速,则有qU=12m v 2,从而解得U =ER2,故B 正确;根据洛伦兹力提供向心力,则在磁分析器中有q v B =m v 2r ,故PQ =2ER B ·mq,故C 错误;由上式易知,若一群离子从静止开始经过上述过程都落在胶片上同一点,说明运动的直径相同,由于磁场、电场与静电分析器的半径不变,则该群离子具有相同的比荷,故D 正确.4.(2014·高考浙江卷)离子推进器是太空飞行器常用的动力系统.某种推进器设计的简化原理如图甲所示,截面半径为R 的圆柱腔分为两个工作区.Ⅰ为电离区,将氙气电离获得1价正离子;Ⅱ为加速区,长度为L ,两端加有电压,形成轴向的匀强电场.Ⅰ区产生的正离子以接近0的初速度进入Ⅱ区,被加速后以速度v M 从右侧喷出.Ⅰ区内有轴向的匀强磁场,磁感应强度大小为B ,在离轴线R /2处的C 点持续射出一定速率范围的电子.假设射出的电子仅在垂直于轴线的截面上运动,截面如图乙所示(从左向右看).电子的初速度方向与中心O 点和C 点的连线成α角(0<α≤90°).推进器工作时,向Ⅰ区注入稀薄的氙气.电子使氙气电离的最小速度为v 0,电子在Ⅰ区内不与器壁相碰且能到达的区域越大,电离效果越好.已知离子质量为M ;电子质量为m ,电量为e .(电子碰到器壁即被吸收,不考虑电子间的碰撞)(1)求Ⅱ区的加速电压及离子的加速度大小; (2)为取得好的电离效果,请判断Ⅰ区中的磁场方向(按图乙说明是“垂直纸面向里”或“垂直纸面向外”);(3)α为90°时,要取得好的电离效果,求射出的电子速率v 的范围; (4)要取得好的电离效果,求射出的电子最大速率v max 与α角的关系.解析:(1)由动能定理得12M v 2M=eU ①U =M v 2M 2e ②a =eE M =e U ML =v 2M2L .③(2)垂直纸面向外.(3)设电子运动的最大半径为r2r =32R ④eB v =m v 2r⑤所以有v 0≤v <3eBR4m⑥要使⑥式有解,则磁感应强度B >4m v 03eR.⑦(4)如图所示,OA =R -r ,OC =R2,AC =r根据几何关系可知:cos ⎝⎛⎭⎫π2-α=r 2+⎝⎛⎭⎫R 22-(R -r )22r ·R 2(余弦定理),解得r =3R4(2-sin α)⑧由⑤⑧式得v max =3eBR4m (2-sin α).答案:(1)M v 2M 2e v 2M2L (2)垂直纸面向外(3)v 0≤v <3eBR 4m (4)v max =3eBR4m (2-sin α)。
带电粒子在复合场中的运动-高中物理专题(含解析)

带电粒子在复合场中的运动目标:1. 掌握带电粒子在电场、磁场中运动的特点2. 理解复合场、组合场对带电粒子受力的分析。
重难点:重点: 带电粒子在电场、磁场中运动的特点;带电粒子在复合场中受力分析 难点: 带电粒子在复合场中运动受力与运动结合。
知识:知识点1 带电粒子在复合场中的运动 1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存. (2)组合场:电场与磁场各位于一定的区域内,并不重叠,或相邻或在同一区域电场、磁场交替出现. 2.带电粒子在复合场中的运动形式(1)静止或匀速直线运动:当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.(2)匀速圆周运动:当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.(3)较复杂的曲线运动:当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线. 易错判断(1)带电粒子在复合场中不可能处于静止状态.(×) (2)带电粒子在复合场中可能做匀速圆周运动.(√) (3)带电粒子在复合场中一定能做匀变速直线运动.(×) 知识点2 带电粒子在复合场中的运动实例 1.质谱仪(1)构造:如图所示,由粒子源、加速电场、偏转磁场和照相底片等构成.(2)原理:粒子由静止被加速电场加速,qU =12mv 2.粒子在磁场中做匀速圆周运动,有qvB =m v 2r .由以上两式可得r =1B2mUq , m =qr 2B 22U , q m =2UB 2r 2.2.回旋加速器(1)构造:如图所示,D 1、D 2是半圆形金属盒,D 形盒的缝隙处接交流电源,D 形盒处于匀强磁场中.(2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子经电场加速,经磁场回旋,由qvB =mv 2r ,得E km =q 2B 2r 22m ,可见粒子获得的最大动能由磁感应强度B 和D 形盒半径r 决定,与加速电压无关.3.速度选择器(1)平行板中电场强度E 和磁感应强度B 互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器(如图所示).(2)带电粒子能够沿直线匀速通过速度选择器的条件是qE =qvB ,即v =E/B. 4.磁流体发电机(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能. (2)根据左手定则,图中的B 是发电机正极. (3)磁流体发电机两极板间的距离为L ,等离子体速度为v ,磁场的磁感应强度为B ,则由qE =qU/L =qvB 得两极板间能达到的最大电势差U =BLv . 易错判断(1)电荷在速度选择器中做匀速直线运动的速度与电荷的电性有关.(×) (2)不同比荷的粒子在质谱仪磁场中做匀速圆周运动的半径不同.(√)(3)粒子在回旋加速器中做圆周运动的半径、周期都随粒子速度的增大而增大.(×)题型分类:题型一 带电粒子在组合场中的运动题型分析:1.带电粒子在匀强电场、匀强磁场中可能的运动性质在电场强度为E 的匀强电场中 在磁感应强度为B 的匀强磁场中 初速度为零 做初速度为零的匀加速直线运动 保持静止 初速度垂直场线 做匀变速曲线运动(类平抛运动) 做匀速圆周运动 初速度平行场线 做匀变速直线运动 做匀速直线运动特点 受恒力作用,做匀变速运动洛伦兹力不做功,动能不变2.“电偏转”和“磁偏转”的比较垂直进入匀强磁场(磁偏转)垂直进入匀强电场(电偏转)情景图受力F B =qv 0B ,大小不变,方向总指向圆心,方向变化,F B 为变力F E =qE ,F E 大小、方向不变,为恒力 运动规律匀速圆周运动r =mv 0Bq ,T =2πmBq类平抛运动v x =v 0,v y =Eqm t x =v 0t ,y =Eq2m t 2运动时间 t =θ2πT =θmBqt =Lv 0,具有等时性动能不变变化3.常见模型(1)从电场进入磁场(2)从磁场进入电场考向1 先电场后磁场【例1】.(2018·哈尔滨模拟)如图所示,将某正粒子放射源置于原点O ,其向各个方向射出的粒子速度大小均为v 0,质量均为m 、电荷量均为q ;在0≤y ≤d 的一、二象限范围内分布着一个匀强电场,方向与y 轴正向相同,在d <y ≤2d 的一、二象限范围内分布着一个匀强磁场,方向垂直于xOy 平面向里.粒子第一次离开电场上边缘y =d 时,能够到达的位置x 轴坐标范围为-1.5d ≤x ≤1.5d, 而且最终恰好没有粒子从y =2d 的边界离开磁场.已知sin 37°=0.6,cos 37°=0.8,不计粒子重力以及粒子间的相互作用,求: (1)电场强度E ; (2)磁感应强度B ;(3)粒子在磁场中运动的最长时间.(只考虑粒子第一次在磁场中的运动时间) [解析](1)沿x 轴正方向发射的粒子有:由类平抛运动基本规律得1.5d =v 0t, d =12at 2a =qE m ,联立可得:E =8mv 209qd .(2)沿x 轴正方向发射的粒子射入磁场时有:d =v y 2t,联立可得:v y =43v 0,电场中:加速直线运动⇓磁场中:匀速圆周运动 电场中:类平抛运动⇓磁场中:匀速圆周运动磁场中:匀速圆周运动 ⇓v 与E 同向或反向 电场中:匀变速直线运动磁场中:匀速圆周运动⇓v 与E 垂直 电场中:类平抛运动v =v 2x+v 2y=53v 0 方向与水平成53°,斜向右上方,据题意知该粒子轨迹恰与上边缘相切,则其余粒子均达不到y =2d 边界,由几何关系可知:d =R +35R根据牛顿第二定律得:Bqv =m v 2R 联立可得:B =8mv 03qd .(3)粒子运动的最长时间对应最大的圆心角,经过(1.5d ,d)恰与上边界相切的粒子轨迹对应的圆心角最大,由几何关系可知圆心角为:θ=254°粒子运动周期为:T =2πR v =3πd4v 0则时间为:t =θ360°T =127πd240v 0.考向2 先磁场后电场 【例2】.(2018·潍坊模拟)在如图所示的坐标系中,第一和第二象限(包括y 轴的正半轴)内存在磁感应强度大小为B 、方向垂直xOy 平面向里的匀强磁场;第三和第四象限内存在平行于y 轴正方向、大小未知的匀强电场.p 点为y 轴正半轴上的一点,坐标为(0,l );n 点为y 轴负半轴上的一点,坐标未知.现有一带正电的粒子由p 点沿y 轴正方向以一定的速度射入匀强磁场,该粒子经磁场偏转后以与x 轴正半轴成45°角的方向进入匀强电场,在电场中运动一段时间后,该粒子恰好垂直于y 轴经过n 点.粒子的重力忽略不计.求: (1)粒子在p 点的速度大小;(2)第三和第四象限内的电场强度的大小;(3)带电粒子从由p 点进入磁场到第三次通过x 轴的总时间.[解析] 粒子在复合场中的运动轨迹如图所示(1)由几何关系可知rsin 45°=l 解得r =2l 又因为qv 0B =m v 20r ,可解得v 0=2Bql m .(2)粒子进入电场在第三象限内的运动可视为平抛运动的逆过程,设粒子射入电场坐标为(-x 1,0),从粒子射入电场到粒子经过n 点的时间为t 2,由几何关系知x 1=(2+1)l ,在n 点有v 2=22v 1=22v 0由类平抛运动规律有(2+1)l =22v 0t 2;22v 0=at 2=Eqm t 2 联立以上方程解得t 2=2+1m qB ,E =2-1qlB 2m. (3)粒子在磁场中的运动周期为T =2πmqB粒子第一次在磁场中运动的时间为t 1=58T =5πm4qB 粒子在电场中运动的时间为2t 2=22+1mqB粒子第二次在磁场中运动的时间为t 3=34T =3πm2qB故粒子从开始到第三次通过x 轴所用时间为t =t 1+2t 2+t 3=(11π4+22+2)mqB .[反思总结] 规律运用及思路①带电粒子经过电场区域时利用动能定理或类平抛的知识分析; ②带电粒子经过磁场区域时利用圆周运动规律结合几何关系来处理; ③注意带电粒子从一种场进入另一种场时的衔接速度.【巩固】如图所示,在第Ⅱ象限内有水平向右的匀强电场,电场强度为E ,在第Ⅰ、Ⅳ象限内分别存在如图所示的匀强磁场,磁感应强度大小相等.有一个带电粒子以垂直于x 轴的初速度v 0从x 轴上的P 点进入匀强电场中,并且恰好与y 轴的正方向成45°角进入磁场,又恰好垂直于x 轴进入第Ⅳ象限的磁场.已知OP 之间的距离为d ,则带电粒子在磁场中第二次经过x 轴时,在电场和磁场中运动的总时间为( ) A.7πd 2v 0B.dv 0(2+5π) C.d v 0⎝ ⎛⎭⎪⎫2+3π2D.d v 0⎝ ⎛⎭⎪⎫2+7π2D [带电粒子的运动轨迹如图所示.由题意知,带电粒子到达y 轴时的速度v =2v 0,这一过程的时间t 1=d v 02=2dv 0.又由题意知,带电粒子在磁场中的偏转轨道半径r =22d.故知带电粒子在第Ⅰ象限中的运动时间为:t 2=38×2πr v =32πd 2v =3πd2v 0带电粒子在第Ⅳ象限中运动的时间为:t 3=12×2πr v =22πd v =2πd v 0故t 总=d v 0⎝ ⎛⎭⎪⎫2+7π2.故D 正确.] 题型二 带电粒子在叠加场中的运动考向1 电场、磁场叠加【例3】(多选)(2018·临川模拟)向下的匀强电场和水平方向的匀强磁场正交的区域里, 一带电粒子从a 点由静止开始沿曲线abc 运动到c 点时速度变为零, b 点是运动中能够到达的最高点, 如图所示,若不计重力,下列说法中正确的是( ) A .粒子肯定带负电, 磁场方向垂直于纸面向里 B .a 、c 点处于同一水平线上 C .粒子通过b 点时速率最大D. 粒子达到c 点后将沿原路径返回到a 点ABC [粒子开始受到电场力作用而向上运动,受到向右的洛伦兹力作用,则知电场力方向向上,故粒子带负电;根据左手定则判断磁场方向垂直于纸面向里,故A 正确.将粒子在c 点的状态与a 点进行比较,c 点的速率为零,动能为零,根据能量守恒可知,粒子在c 与a 两点的电势能相等,电势相等,则a 、c 两点应在同一条水平线上;由于在a 、c 两点粒子的状态(速度为零,电势能相等)相同,粒子将在c 点右侧重现前面的曲线运动,因此,粒子是不可能沿原曲线返回a 点的,故B 正确,D 错误.根据动能定理得,粒子从a 运动到b 点的过程电场力做功最大,则b 点速度最大,故C 正确.考向2 电场、磁场、重力场的叠加【例4】(2017·全国Ⅰ卷)如图所示,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里.三个带正电的微粒a 、b 、c 电荷量相等,质量分别为m a 、m b 、m c .已知在该区域内,a 在纸面内做匀速圆周运动,b 在纸面内向右做匀速直线运动,c 在纸面内向左做匀速直线运动.下列选项正确的是( ) A .m a >m b >m c B .m b >m a >m c C .m c >m a >m b D .m c >m b >m aB [设三个微粒的电荷量均为q ,a 在纸面内做匀速圆周运动,说明洛伦兹力提供向心力,重力与电场力平衡,即 m a g =qE ①b 在纸面内向右做匀速直线运动,三力平衡,则m b g =qE +qvB ②c 在纸面内向左做匀速直线运动,三力平衡,则m c g +qvB =qE ③ 比较①②③式得:m b >m a >m c ,选项B 正确.]考向3 复合场中的动量、能量综合问题【例5】(2018·南昌模拟)如图所示,带负电的金属小球A 质量为m A =0.2 kg ,电量为q =0.1 C ,小球B 是绝缘体不带电,质量为m B =2 kg ,静止在水平放置的绝缘桌子边缘,桌面离地面的高h =0.05 m ,桌子置于电、磁场同时存在的空间中,匀强磁场的磁感应强度B =2.5 T ,方向沿水平方向且垂直纸面向里,匀强电场电场强度E =10 N/C ,方向沿水平方向向左且与磁场方向垂直,小球A 与桌面间的动摩擦因数为μ=0.4,A 以某一速度沿桌面做匀速直线运动,并与B 球发生正碰,设碰撞时间极短,B 碰后落地的水平位移为0.03 m ,g 取10 m/s 2,求: (1)碰前A 球的速度? (2)碰后A 球的速度?(3)若碰后电场方向反向(桌面足够长),小球A 在碰撞结束后,到刚离开桌面运动的整个过程中,合力对A 球所做的功.[答案](1)2 m/s (2)1 m/s ,方向与原速度方向相反 (3)6.3 J 【例5-2】 (1)上题中,A 与B 的碰撞是弹性碰撞吗?为什么?(2)在第(3)问中,根据现有知识和条件,能否求出电场力对A 球做的功?提示:A 、B 碰前,只有A 有动能E kA =12m A v 2A1=12×0.2×22 J =0.4 JA 、B 碰后,E kA ′=12m A v 2A2=12×0.2×12 J =0.1 JE kB =12m B v 2B =12×2×0.32=0.09 J 因E kA >E kA ′+E kB故A 、B 间的碰撞不是弹性碰撞.提示:不能.因无法求出A 球的位移.【巩固1】(多选)(2017·济南模拟)如图所示,在正交坐标系O xyz 中,分布着电场和磁场(图中未画出).在Oyz 平面的左方空间内存在沿y 轴负方向、磁感应强度大小为B 的匀强磁场;在Oyz 平面右方、Oxz 平面上方的空间内分布着沿z 轴负方向、磁感应强度大小也为B 的匀强磁场;在Oyz 平面右方、Oxz 平面下方分布着沿y 轴正方向的匀强电场,电场强度大小为aqB 24m .在t =0时刻,一个质量为m 、电荷量为+q 的微粒从P 点静止释放,已知P 点的坐标为(5a ,-2a,0),不计微粒的重力.则( )A .微粒第一次到达x 轴的速度大小为aqb mB .微粒第一次到达x 轴的时刻为4mqBC .微粒第一次到达y 轴的位置为y =2aD .微粒第一次到达y 轴的时刻为⎝ ⎛⎭⎪⎫40+5π2mqBBD [微粒从P 点由静止释放至第一次到达y 轴的运动轨迹如图所示.释放后,微粒在电场中做匀加速直线运动,由E =aqB 24m ,根据动能定理有Eq ·2a =12mv 2,解得微粒第一次到达x 轴的速度v =aqB m ,又Eq m t 1=v ,解得微粒第一次到达x 轴的时刻t 1=4mqB ,故选项A 错误,B 正确;微粒进入磁场后开始做匀速圆周运动,假设运动的轨道半径为R ,则有qvB =m v 2R ,可得:R =a ,所以微粒到达y 轴的位置为y =a ,选项C 错误;微粒在磁场中运动的周期T =2πR v =2πm qB ,则运动到达y 轴的时刻:t 2=5t 1+54T ,代入得:t 2=⎝ ⎛⎭⎪⎫40+5π2m qB ,选项D 正确.]【巩固2】 (多选)(2018·兰州模拟)如图所示,空间中存在一水平方向的匀强电场和一水平方向的匀强磁场,磁感应强度大小为B ,电场强度大小为E =3mgq ,且电场方向和磁场方向相互垂直,在正交的电磁场空间中有一足够长的固定粗糙绝缘杆,与电场正方向成60°夹角且处于竖直平面内,一质量为m ,带电量为q (q >0)的小球套在绝缘杆上,若小球沿杆向下的初速度为v 0时,小球恰好做匀速直线运动,已知重力加速度大小为g ,小球电荷量保持不变,则以下说法正确的是( )A .小球的初速度v 0=mg2qBB .若小球沿杆向下的初速度v =mgqB ,小球将沿杆做加速度不断增大的减速运动,最后停止C .若小球沿杆向下的初速度v =3mgqB ,小球将沿杆做加速度不断减小的减速运动,最后停止D. 若小球沿杆向下的初速度v =4mgqB ,则从开始运动到稳定过程中,小球克服摩擦力做功为6m 3g 2q 2B 2BD题型三 带电粒子在复合场中运动的常见实例考向1 回旋加速器的工作原理【例6】(多选)(2018·成都模拟)粒子回旋加速器的工作原理如图所示,置于真空中的D 形金属盒的半径为R ,两金属盒间的狭缝很小,磁感应强度为B 的匀强磁场与金属盒盒面垂直,高频率交流电的频率为f ,加速器的电压为U ,若中心粒子源处产生的质子质量为m ,电荷量为+e ,在加速器中被加速.不考虑相对论效应,则下列说法正确是( )A .质子被加速后的最大速度不能超过2πRfB .加速的质子获得的最大动能随加速器的电压U 增大而增大C .质子第二次和第一次经过D 形盒间狭缝后轨道半径之比为2∶1 D .不改变磁感应强度B 和交流电的频率f ,该加速器也可加速其它粒子AC [质子出回旋加速器时速度最大,此时的半径为R ,最大速度为:v =2πRT =2πRf ,故A 正确; 根据qvB =m v 2R 得,v =qBR m ,则粒子的最大动能E km =12mv 2=q 2B 2R 22m ,与加速器的电压无关,故B 错误;粒子在加速电场中做匀加速运动,在磁场中做匀速圆周运动,根据qU =12mv 2,得v =2qU m ,质子第二次和第一次经过D 形盒狭缝的速度比为2∶1,根据r =mvqB ,则半径比为2∶1,故C 正确;带电粒子在磁场中运动的周期与加速电场的周期相等,根据T =2πmqB 知,换用其它粒子,粒子的比荷变化,周期变化,回旋加速器需改变交流电的频率才能加速其它粒子,故D 错误.故选AC.]考向2 速度选择器的工作原理【例7】在如图所示的平行板器件中,电场强度E 和磁感应强度B 相互垂直.一带电粒子(重力不计)从左端以速度v 沿虚线射入后做直线运动,则该粒子( ) A .一定带正电B .速度v =EBC .若速度v >EB ,粒子一定不能从板间射出D .若此粒子从右端沿虚线方向进入,仍做直线运动B考向3 质谱仪的工作原理【例7】质谱仪是测量带电粒子的质量和分析同位素的重要工具.如图所示为质谱仪的原理示意图,现利用质谱仪对氢元素进行测量.让氢元素三种同位素的离子流从容器A 下方的小孔S 无初速度飘入电势差为U 的加速电场.加速后垂直进入磁感应强度为B 的匀强磁场中.氢的三种同位素最后打在照相底片D 上,形成a 、b 、c 三条“质谱线”.则下列判断正确的是( ) A .进入磁场时速度从大到小排列的顺序是氕、氘、氚 B .进入磁场时动能从大到小排列的顺序是氕、氘、氚 C .在磁场中运动时间由大到小排列的顺序是氕、氘、氚 D .a 、b 、c 三条“质谱线”依次排列的顺序是氕、氘、氚A [离子通过加速电场的过程,有qU =12mv 2,因为氕、氘、氚三种离子的电量相同、质量依次增大,故进入磁场时动能相同,速度依次减小,故A 项正确,B 项错误;由T =2πmqB 可知,氕、氘、氚三种离子在磁场中运动的周期依次增大,又三种离子在磁场中运动的时间均为半个周期,故在磁场中运动时间由大到小排列依次为氚、氘、氕,C 项错误;由qvB =m v 2R 及qU =12mv 2,可得R =1B 2mUq ,故氕、氘、氚三种离子在磁场中的轨道半径依次增大,所以a 、b 、c 三条“质谱线”依次对应氚、氘、氕,D 项错误.]【巩固3】(多选)如图所示,含有11H 、21H 、42He 的带电粒子束从小孔O 1处射入速度选择器,沿直线O 1O 2运动的粒子在小孔O 2处射出后垂直进入偏转磁场,最终打在P 1、P 2两点.则( ) A .打在P 1点的粒子是42HeB .打在P 2点的粒子是21H 和42He C .O 2P 2的长度是O 2P 1长度的2倍D .粒子在偏转磁场中运动的时间都相等BC [通过同一速度选择器的粒子具有相同的速度,故11H 、21H 、42He 的速度相等,由牛顿第二定律得qvB 2=m v 2R ,解得R =mv qB 2,由此可知,设质子的质量为m ,质子带电量为q ,11H 的半径R 1=mvqB 2,21H的半径R 2=2mv qB 2,42He 的半径R 3=2mvqB 2,故打在P 1点的粒子是11H ,打在P 2点的粒子是21H 和42He ,选项A 错误,B 正确;O 2P 1=2R 1=2mv qB 2,O 2P 2=2R 2=4mvqB 2,故O 2P 2=2O 2P 1,选项C 正确;粒子在磁场中运动的时间t =T 2=πmqB ,11H 运动的时间与21H 和42He 运动的时间不同,选项D 错误.故选B 、C.]基础练习:考查点:速度选择器1.如图所示,一束质量、速度和电荷不全相等的离子,经过由正交的匀强电场和匀强磁场组成的速度选择器后,进入另一个匀强磁场中并分裂为A 、B 两束,下列说法中正确的是( ) A .组成A 束和B 束的离子都带负电 B .组成A 束和B 束的离子质量一定不同 C .A 束离子的比荷大于B 束离子的比荷D .速度选择器中的磁场方向垂直于纸面向外[答案] C考查点:磁流体发电机2.(多选)磁流体发电机是利用洛伦兹力的磁偏转作用发电的.A 、B 是两块处在磁场中互相平行的金属板,一束在高温下形成的等离子束(气体在高温下发生电离,产生大量的带等量异种电荷的粒子)射入磁场.下列说法正确的是( ) A .B 板是电源的正极 B .A 板是电源的正极C .电流从上往下流过电流表D .电流从下往上流过电流表[答案] AD考查点:电磁流量计3.如图所示,电磁流量计的主要部分是柱状非磁性管.该管横截面是边长为d 的正方形,管内有导电液体水平向左流动.在垂直于液体流动方向上加一个水平指向纸里的匀强磁场,磁感应强度为B .现测得液体上下表面a 、b 两点间的电势差为U .则管内导电液体的流量Q (流量是指流过该管的液体体积与所用时间的比值)为( )A.UdB B.Ud 2B C.U BdD.d BU[答案] A考查点:质谱仪4. A 、B 是两种同位素的原子核,它们具有相同的电荷、不同的质量.为测定它们的质量比,使它们从质谱仪的同一加速电场由静止开始加速,然后沿着与磁场垂直的方向进入同一匀强磁场,打到照相底片上.如果从底片上获知A 、B 在磁场中运动轨迹的直径之比是d 1∶d 2,则A 、B 的质量之比为( )A .d 21∶d 22B .d 1∶d 2C .d 22∶d 21D .d 2∶d 1 [答案] A分类巩固:带电粒子在组合场中的运动1.如图所示,某种带电粒子由静止开始经电压为U 1的电场加速后,射入水平放置、电势差为U 2的两导体板间的匀强电场中,带电粒子沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场中,则粒子射入磁场和射出磁场的M 、N 两点间的距离d 随着U 1和U 2的变化情况为(不计重力,不考虑边缘效应)( )A .d 随U 1变化,d 与U 2无关B .d 与U 1无关,d 随U 2变化C .d 随U 1变化,d 随U 2变化D .d 与U 1无关,d 与U 2无关A [带电粒子在电场中做类平抛运动,可将射出电场的粒子速度v 分解成初速度方向与加速度方向,设出射速度与水平夹角为θ,则有:v 0v =cos θ 而在磁场中做匀速圆周运动,设运动轨迹对应的半径为R ,由几何关系得,半径与直线MN 夹角正好等于θ,则有:d2R =cos θ,所以d =2Rv 0v ,又因为半径公式R =mv Bq ,则有d =2mv 0Bq =2B 2mU 1q .故d 随U 1变化,d 与U 2无关,故A 正确,B 、C 、D 错误.]2.(多选)(2017·烟台模拟)如图所示,在x 轴上方有沿y 轴负方向的匀强电场,电场强度为E ,在x 轴下方的等腰直角三角形CDM 区域内有垂直于xOy 平面向外的匀强磁场,磁感应强度为B ,其中C 、D 在x 轴上,它们到原点O 的距离均为a .现将质量为m 、电荷量为+q 的粒子从y 轴上的P 点由静止释放,设P 点到O 点的距离为h ,不计重力作用与空气阻力的影响.下列说法正确的是( )A .若粒子垂直于CM 射出磁场,则h =B 2a 2q2mEB .若粒子垂直于CM 射出磁场,则h =B 2a 2q8mEC .若粒子平行于x 轴射出磁场,则h =B 2a 2q2mED .若粒子平行于x 轴射出磁场,则h =B 2a 2q8mEAD [粒子在电场中加速,有qEh =12mv 20.在磁场中做圆周运动,若粒子垂直于CM 射出磁场,则轨迹所对的圆心角θ=45°,半径R =a ,由洛伦兹力提供向心力,有qv 0B =mv 20R ,得R =mv 0qB ,联立以上各式得h =B 2a 2q2mE ,A 正确;若粒子平行于x 轴射出磁场,则轨迹所对的圆心有θ=90°,半径R =a 2,同理可得h =B 2a 2q8mE ,D 正确.]3.(2018·银川模拟)如图所示,AB 、CD 间的区域有竖直向上的匀强电场,在CD 的右侧有一与CD 相切于M 点的圆形有界匀强磁场,磁场方向垂直于纸面.一带正电粒子自O 点以水平初速度v 0正对P 点进入该电场后,从M 点飞离CD 边界,再经磁场偏转后又从N 点垂直于CD 边界回到电场区域,并恰能返回O 点.已知OP 间距离为d ,粒子质量为m ,电荷量为q ,电场强度大小E =3mv 20qd ,不计粒子重力.试求: (1)M 、N 两点间的距离;(2)磁感应强度的大小和圆形匀强磁场的半径;(3)粒子自O 点出发到回到O 点所用的时间.[解析](1)据题意,作出带电粒子的运动轨迹,如图所示:粒子从O 到M 的时间:t 1=d v 0;粒子在电场中加速度:a =qE m =3v 2d故PM 间的距离为:PM =12at 21=32d粒子在M 点时竖直方向的速度:v y =at 1=3v 0粒子在M 点时的速度:v =v 20+v 2y =2v 0速度偏转角正切:tan θ=v yv 0= 3 ,故θ=60°粒子从N 到O 点时间:t 2=d 2v 0,粒子从N 到O 点过程的竖直方向位移:y =12at 22故P 、N 两点间的距离为:PN =y =38d.所以MN =PN +PM =538 d.(2)由几何关系得:Rcos 60°+R =MN =538d,可得半径:R =5312d由qvB =m v 2R 解得:B =83mv 05qd ;由几何关系确定区域半径为:R ′=2Rcos 30°,即R ′=54d.(3)O 到M 的时间:t 1=d v 0;N 到O 的时间:t 2=d2v 0在磁场中运动的时间:t 3=4π3R 2v 0=53πd18v 0无场区运动的时间:t 4=Rcos 30°2v 0=5d 16v 0;t =t 1+t 2+t 3+t 4=29d 16v 0+53πd18v 0. 带电物体在叠加场中的运动4.如图所示,界面MN 与水平地面之间有足够大且正交的匀强磁场B 和匀强电场E ,磁感线和电场线都处在水平方向且互相垂直.在MN 上方有一个带正电的小球由静止开始下落,经电场和磁场到达水平地面.若不计空气阻力,小球在通过电场和磁场的过程中,下列说法中正确的是( )A .小球做匀变速曲线运动B .小球的电势能保持不变C .洛伦兹力对小球做正功D .小球的动能增量等于其电势能和重力势能减少量的总和D [带电小球在刚进入复合场时受力如图所示,则带电小球进入复合场后做曲线运动,因为速度会发生变化,洛伦兹力就会跟着变化,所以不可能是匀变速曲线运动,选项A 错误;根据电势能公式E p =q φ,知只有带电小球竖直向下做直线运动时,电势能保持不变,选项B 错误;根据洛伦兹力的方向确定方法知,洛伦兹力方向始终和速度方向垂直,所以洛伦兹力不做功,选项C 错误;从能量守恒角度知道选项D 正确.]5. (2017·桂林模拟)如图所示,空间存在互相垂直的匀强电场和匀强磁场,图中虚线为匀强电场的等势线,一不计重力的带电粒子在M 点以某一初速度垂直等势线进入正交电磁场中,运动轨迹如图所示(粒子在N 点的速度比在M 点的速度大).则下列说法正确的是( )A .粒子一定带正电B .粒子的运动轨迹一定是抛物线C .电场线方向一定垂直等势面向左D .粒子从M 点运动到N 点的过程中电势能增大C [根据粒子在电、磁场中的运动轨迹和左手定则可知,粒子一定带负电,选项A 错误;由于洛伦兹力方向始终与速度方向垂直,故粒子受到的合力是变力,而物体只有在恒力作用下做曲线运动时,轨迹才是抛物线,选项B 错误;由于空间只存在电场和磁场,粒子的速度增大,说明在此过程中电场力对带电粒子做正功,则电场线方向一定垂直等势面向左,选项C 正确;电场力做正功,电势能减小,选项D 错误.]6.如图所示,空间存在水平向左的匀强电场和垂直纸面向里的匀强磁场,电场和磁场相互垂直.在电磁场区域中,有一个光滑绝缘圆环,环上套有一个带正电的小球.O 点为圆环的圆心,a 、b 、c 为圆环上的三个点,a 点为最高点,c 点为最低点, bd 沿水平方向.已知小球所受电场力与重力大小相等.现将小球从环的顶端a 点由静止释放,下列判断正确的是( )A .当小球运动到c 点时,洛伦兹力最大B .小球恰好运动一周后回到a 点C .小球从a 点运动到b 点,重力势能减小,电势能减小D .小球从b 点运动到c 点,电势能增大,动能增大C [电场力与重力大小相等,则二者的合力指向左下方45°,由于合力是恒力,故类似于新的重力,所以ad 弧的中点相当于平时竖直平面圆环的“最高点”.关于圆心对称的位置(即bc 弧的中点)就是“最低点”,速度最大,此时洛伦兹力最大;由于a 、d 两点关于新的最高点对称,若从a 点静止释放,最高运动到d 点,故A 、B 错误.从a 到b ,重力和电场力都做正功,重力势能和电势能都减少,故C 正确.小球从b 点运动到c 点,电场力做负功,电势能增大,但由于bc 弧的中点速度最大,所以动能先增大后减小,故D 错误.所以C 正确,A 、B 、D 错误.]7.(多选)(2018·哈尔滨模拟)如图所示,空间同时存在竖直向上的匀强磁场和匀强电场,磁感应强度为B ,电场强度为E .一质量为m ,电量为q 的带正电小球恰好处于静止状态,现在将磁场方向顺时针旋转30°,同时给小球一个垂直磁场方向斜向下的速度v ,则关于小球的运动,下列说法正确的是( )A .小球做匀速圆周运动B .小球运动过程中机械能守恒C .小球运动到最低点时电势能增加了mgv 2BqD .小球第一次运动到最低点历时πm2qB。
带电粒子在复合场中的运动专题练

二轮专题复习:带电粒子在复合场中的运动例1、如图所示,在y > 0的空间中存在匀强电场,场强沿y轴负方向;在y < 0的空间中,存在匀强磁场,磁场方向垂直xy平面(纸面)向外.一电量为q、质量为m的带正电的运动粒子,经过y轴上y = h处的点P1时速率为v0,方向沿x轴正方向,然后经过x轴上x = 2h处的P2点进入磁场,并经过y轴上y = – 2h处的P3点.不计粒子的重力,求(1)电场强度的大小;(2)粒子到达P2时速度的大小和方向;变式:如图所示的区域中,第二象限为垂直纸面向外的匀强磁场,磁感应强度为B,第一、第四象限是一个电场强度大小未知的匀强电场,其方向如图。
一个质量为m,电荷量为+q的带电粒子从P孔以初速度v0沿垂直于磁场方向进入匀强磁场中,初速度方向与边界线的夹角θ=30°,粒子恰好从y轴上的C孔垂直于匀强电场射入匀强电场,经过x轴的Q点,已知OQ=OP,不计粒子的重力,求:(1)粒子从P运动到C所用的时间t;(3)粒子到达Q点的动能Ek。
3、在图所示的坐标系中,x 轴水平,y 轴垂直,x 轴上方空间只存在重力场,第Ⅲ象限存在沿y 轴正方向的匀强电场和垂直xy 平面向里的匀强磁场,在第Ⅳ象限由沿x 轴负方向的匀强电场,场强大小与第Ⅲ象限存在的电场的场强大小相等。
一质量为m ,带电荷量大小为q 的质点a ,从y 轴上y h =处的1P点以一定的水平速度沿x 轴负方向抛出,它经过2x h =-处的2P 点进入第Ⅲ象限,恰好做匀速圆周运动,又经过y 轴上方2y h =-的3P 点进入第Ⅳ象限,试求:(1)质点a 到达2P 点时速度的大小和方向;(2)第Ⅲ象限中匀强电场的电场强度和匀强磁场的磁感应强度的大小; (3)质点a 进入第Ⅳ象限且速度减为零时的位置坐标25.(19分) 如图,在区域I (0)x d ≤≤和区域Ⅱ(2)d x d <≤内分别存在匀强磁场,磁感应强度大小分别为B 和2B ,方向相反,且都垂直于Oxy 平面,一质量为m 、带电荷量(0)q q >的粒子a 于某时刻从y 轴上的P 点射入区域I ,其速度方向沿x 轴正向。
专题(26)带电粒子在复合场中运动的实例分析(解析版)
2021年(新高考)物理一轮复习考点强化全突破专题(26)带电粒子在复合场中运动的实例分析(解析版)一、带电粒子在复合场中的运动1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠,或相邻或在同一区域电场、磁场交替出现.2.带电粒子在复合场中的运动分类(1)静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.(2)匀速圆周运动当带电粒子所受的重力与电场力大小相等、方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.(3)较复杂的曲线运动当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一条直线上时,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.(4)分阶段运动带电粒子可能依次通过几个情况不同的复合场区域,其运动情况随区域发生变化.二、电场与磁场的组合应用实例命题热点一质谱仪的原理和分析1.作用测量带电粒子质量和分离同位素的仪器.2.原理(如图所示)(1)加速电场:qU =12mv 2; (2)偏转磁场:qvB =mv 2r,l =2r ; 由以上两式可得r =1B2mU q, m =qr 2B 22U ,q m =2U B 2r 2. 例1 如图所示,在x 轴的上方存在垂直纸面向里,磁感应强度大小为B 0的匀强磁场,位于x 轴下方的离子源C 发射质量为m 、电荷量为q 的一束负离子,其初速度大小范围为0~3v 0.这束离子经电势差为U =mv 022q 的电场加速后,从小孔O (坐标原点)垂直x 轴并垂直磁场射入磁场区域,最后打到x 轴上.在x 轴上2a ~3a区间水平固定放置一探测板(a =mv 0qB 0).假设每秒射入磁场的离子总数为N 0,打到x 轴上的离子数均匀分布(离子重力不计).(1)求离子束从小孔O 射入磁场后打到x 轴的区间;(2)调整磁感应强度的大小,可使速度最大的离子恰好打在探测板的右端,求此时的磁感应强度大小B 1;(3)保持磁感应强度B 1不变,求每秒打在探测板上的离子数N ;若打在板上的离子80%被板吸收,20%被反向弹回,弹回速度大小为打板前速度大小的0.6倍,求探测板受到的作用力大小.【答案】见解析【解析】(1)对于初速度为0的粒子:qU =12mv 12 由B 0qv 1=m v 12r 1得r 1=mv 1qB 0=a 恰好打在x =2a 的位置对于初速度为3v 0的粒子qU =12mv 22-12m (3v 0)2 由B 0qv 2=m v 22r 2得 r 2=mv 2qB 0=2a , 恰好打在x =4a 的位置离子束打在x 轴上的区间为[2a,4a ](2)由动能定理qU =12mv 22-12m (3v 0)2 由B 1qv 2=m v 22r 3得 r 3=mv 2qB 1r 3=32a 解得B 1=43B 0 (3)离子束能打到探测板的实际位置范围为2a ≤x ≤3a即a ≤r ≤32a ,对应的速度范围为43v 0≤v ′≤2v 0 每秒打在探测板上的离子数为N =N 02v 0-43v 02v 0-v 0=23N 0 根据动量定理被吸收的离子受到板的作用力大小F 吸=Δp 吸Δt =0.8N 2(2mv 0+43mv 0)=8N 0mv 09被反弹的离子受到板的作用力大小F 反=Δp 反Δt =0.2N 2[2m (v 0+0.6v 0)+43m (v 0+0.6v 0)]=1645N 0mv 0 根据牛顿第三定律,探测板受到的作用力大小F =F 吸′+F 反′=5645N 0mv 0. 命题热点二 回旋加速器的原理和分析1.构造:如图所示,D 1、D 2是半圆形金属盒,D 形盒处于匀强磁场中,D 形盒的缝隙处接交流电源.2.原理:交流电周期和粒子做圆周运动的周期相等,使粒子每经过一次D 形盒缝隙,粒子被加速一次.3.粒子获得的最大动能:由qv m B =mv 2m R 、E km =12mv m 2得E km =q 2B 2R 22m,粒子获得的最大动能由磁感应强度B 和盒半径R 决定,与加速电压无关.例2 小明受回旋加速器的启发,设计了如图5甲所示的“回旋变速装置”.两相距为d 的平行金属栅极板M 、N ,板M 位于x 轴上,板N 在它的正下方.两板间加上如图乙所示的幅值为U 0的交变电压,周期T 0=2πm qB.板M 上方和板N 下方有磁感应强度大小均为B 、方向相反的匀强磁场.粒子探测器位于y 轴处,仅能探测到垂直射入的带电粒子.有一沿x 轴可移动、粒子出射初动能可调节的粒子发射源,沿y 轴正方向射出质量为m 、电荷量为q (q >0)的粒子.t =0时刻,发射源在(x,0)位置发射一带电粒子.忽略粒子的重力和其它阻力,粒子在电场中运动的时间不计.(1)若粒子只经磁场偏转并在y =y 0处被探测到,求发射源的位置和粒子的初动能;(2)若粒子两次进出电场区域后被探测到,求粒子发射源的位置x 与被探测到的位置y 之间的关系.【答案】(1)x =y 0 q 2B 2y 022m(2)见解析 【解析】(1)根据题意,粒子沿着y 轴正方向射入,只经过磁场偏转,探测器仅能探测到垂直射入的粒子,粒子轨迹为14圆周,因此射入的位置为x =y 0 根据R =y 0,qvB =m v 2R, 可得E k =12mv 2=q 2B 2y 022m(2)根据题意,粒子两次进出电场,然后垂直射到y 轴,由于粒子射入电场后,会做减速直线运动,且无法确定能否减速到0,因此需要按情况分类讨论①第一次射入电场即减速到零,即当E k0<qU 0时,轨迹如图所示根据图中几何关系则x =5y ;①第一次射入电场减速(速度不为0)射出电场,第二次射入电场后减速到0,则当qU 0<E k0<2qU 0时,轨迹如图所示r 0=mv 0qB ,r 1=mv 1qB-qU 0=12mv 12-12mv 02 x =2r 0+3r 1,y =r 1联立解得x =2y 2+2mU 0qB 2+3y ①两次射入电场后均减速射出电场,即当E k0>2qU 0时,轨迹如图所示r 0=mv 0qB ,r 1=mv 1qB ,r 2=mv 2qB-qU 0=12mv 12-12mv 02 -qU 0=12mv 22-12mv 12 且x =r 2+2r 1+2r 0,y =r 2联立解得x =2⎝⎛⎭⎫ y 2+2mU 0qB 2+y 2+ 4mU 0qB 2+y命题热点三 电场与磁场叠加的应用实例分析共同特点:当带电粒子(不计重力)在复合场中做匀速直线运动时,qvB =qE .1.速度选择器(1)平行板中电场强度E 和磁感应强度B 互相垂直.如图(2)带电粒子能够沿直线匀速通过速度选择器的条件是qvB =qE ,即v =E B. (3)速度选择器只能选择粒子的速度,不能选择粒子的电性、电荷量、质量.(4)速度选择器具有单向性.例3 在如图所示的平行板器件中,匀强电场E 和匀强磁场B 互相垂直.一束初速度为v 的带电粒子从左侧垂直电场射入后沿图中直线①从右侧射出.粒子重力不计,下列说法正确的是( )A .若粒子沿轨迹①射出,则粒子的初速度一定大于vB .若粒子沿轨迹①射出,则粒子的动能一定增大C .若粒子沿轨迹①射出,则粒子可能做匀速圆周运动D .若粒子沿轨迹①射出,则粒子的电势能可能增大【答案】D【解析】若粒子沿题图中直线①从右侧射出,则qvB =qE ,若粒子沿轨迹①射出,粒子所受向上的力大于向下的力,但由于粒子电性未知,所以粒子所受的电场力与洛伦兹力方向不能确定,不能确定初速度与v 的关系,故A 、B 错误;若粒子沿轨迹①射出,粒子受电场力、洛伦兹力,不可能做匀速圆周运动,故C 错误;若粒子沿轨迹①射出,如果粒子带负电,所受电场力向上,洛伦兹力向下,电场力做负功,粒子的电势能增大,故D 正确.2.磁流体发电机(1)原理:如图所示,等离子体喷入磁场,正、负离子在洛伦兹力的作用下发生偏转而聚集在B 、A 板上,产生电势差,它可以把离子的动能通过磁场转化为电能.(2)电源正、负极判断:根据左手定则可判断出图中的B 是发电机的正极.(3)设A 、B 平行金属板的面积为S ,两极板间的距离为l ,磁场磁感应强度为B ,等离子气体的电阻率为ρ,喷入气体的速度为v ,板外电阻为R .电源电动势U :当正、负离子所受电场力和洛伦兹力平衡时,两极板间达到的最大电势差为U (即电源电动势),则q U l=qvB ,即U =Blv . 电源内阻:r =ρl S. 回路电流:I =U r +R. 例4 磁流体发电的原理如图10所示,将一束速度为v 的等离子体垂直于磁场方向喷入磁感应强度为B 的匀强磁场中,在相距为d 、宽为a 、长为b 的两平行金属板间便产生电压.如果把上、下板和电阻R 连接,上、下板就是一个直流电源的两极,若稳定时等离子体在两板间均匀分布,电阻率为ρ,忽略边缘效应,下列判断正确的是( )A .上板为正极,电流I =Bdvab Rab +ρdB .上板为负极,电流I =Bvad 2Rad +ρbC .下极为正极,电流I =Bdvab Rab +ρdD .下板为负极,电流I =Bvad 2Rab +ρb【答案】C【解析】根据左手定则可知,正离子在磁场中受到的洛伦兹力向下,故下板为正极,设两板间的电压为U ,则q U d =Bqv ,得U =Bdv ,电流I =U R +ρd ab=Bdvab Rab +ρd ,故C 正确.3.电磁流量计(1)流量(Q )的定义:单位时间流过导管某一截面的导电液体的体积.(2)公式:Q =Sv ;S 为导管的横截面积,v 是导电液体的流速.(3)导电液体的流速(v )的计算如图所示,一圆形导管直径为d ,用非磁性材料制成,其中有可以导电的液体向右流动.导电液体中的自由电荷(正、负离子)在洛伦兹力作用下发生偏转,使a 、b 间出现电势差,当自由电荷所受电场力和洛伦兹力平衡时,a 、b 间的电势差(U )达到最大,由q U d =qvB ,可得v =U Bd.(4)流量的表达式:Q =Sv =πd 24·U Bd =πdU 4B. (5)电势高低的判断:根据左手定则可得φa >φb .例5 为监测某化工厂的含有离子的污水排放情况,技术人员在排污管中安装了监测装置,该装置的核心部分是一个用绝缘材料制成的空腔,其宽和高分别为b 和c ,左、右两端开口与排污管相连,如图所示.在垂直于上、下底面方向加磁感应强度大小为B 的匀强磁场,在空腔前、后两个侧面上各有长为a 的相互平行且正对的电极M 和N ,M 、N 与内阻为R 的电流表相连.污水从左向右流经该装置时,电流表将显示出污水排放情况.下列说法中错误的是( )A .N 板带正电,M 板带负电B .污水中离子浓度越高,则电流表的示数越小C .污水流量越大,则电流表的示数越大D .若只增大所加磁场的磁感应强度,则电流表的示数也增大【答案】B【解析】污水从左向右流动时,正、负离子在洛伦兹力作用下分别向N 板和M 板偏转,故N 板带正电,M板带负电,A 正确.稳定时带电离子在两板间受力平衡,qvB =q U b ,此时U =Bbv =BbQ bc =BQ c,式中Q 是流量,可见当污水流量越大、磁感应强度越强时,M 、N 间的电压越大,电流表的示数越大,而与污水中离子浓度无关,B 错误,C 、D 正确.4.霍尔效应的原理和分析(1)定义:高为h 、宽为d 的导体(自由电荷是电子或正电荷)置于匀强磁场B 中,当电流通过导体时,在导体的上表面A 和下表面A ′之间产生电势差,这种现象称为霍尔效应,此电压称为霍尔电压.(2)电势高低的判断:如图,导体中的电流I 向右时,根据左手定则可得,若自由电荷是电子,则下表面A ′的电势高.若自由电荷是正电荷,则下表面A ′的电势低.(3)霍尔电压的计算:导体中的自由电荷(带电荷量为q )在洛伦兹力作用下偏转,A 、A ′间出现电势差,当自由电荷所受电场力和洛伦兹力平衡时,A 、A ′间的电势差(U )就保持稳定,由qvB =q U h,I =nqvS ,S =hd ;联立得U =BI nqd =k BI d ,k =1nq称为霍尔系数. 例6 如图所示,厚度为h 、宽度为d 的金属导体,当磁场方向与电流方向垂直时,在导体上、下表面会产生电势差,这种现象称为霍尔效应.下列说法正确的是( )A .上表面的电势高于下表面的电势B .仅增大h 时,上、下表面的电势差增大C .仅增大d 时,上、下表面的电势差减小D .仅增大电流I 时,上、下表面的电势差减小【答案】C 【解析】因电流方向向右,则金属导体中的自由电子是向左运动的,根据左手定则可知上表面带负电,则上表面的电势低于下表面的电势,A 错误;当电场力等于洛伦兹力时,q U h=qvB ,又I =nqvhd (n 为导体单位体积内的自由电子数),得U =IB nqd,则仅增大h 时,上、下表面的电势差不变;仅增大d 时,上、下表面的电势差减小;仅增大I 时,上、下表面的电势差增大,故C 正确,B 、D 错误.。
高考物理总复习 第九单元 磁场 微专题8 带电粒子在组合场和复合场中的运动(含解析)
微专题8 带电粒子在组合场和复合场中的运动一带电粒子在组合场中的运动组合场是指电场与磁场同时存在或者磁场与磁场同时存在,但各位于一定的区域内,并不重叠的情况。
所以弄清带电粒子在电场及磁场中的运动形式、规律和研究方法是解决此类问题的基础。
1.基本类型运动类型带电粒子在匀强电场中加速(v0与电场线平行或为零)带电粒子在匀强电场中偏转(v0⊥E)带电粒子在匀强磁场中匀速运动(v0与磁感线平行)带电粒子在匀强磁场中偏转(v0与磁感线垂直)受力特点受到恒定的电场力;电场力做功不受磁场力作用受磁场力作用;但磁场力不做功运动特征匀变速直线运动类平抛运动匀速直线运动匀速圆周运动研究方法牛顿运动定律匀变速运动学规律牛顿运动定律匀变速运动学公式正交分解法匀速直线运动公式牛顿运动定律向心力公式圆的几何知识表达方式如何求运动时间、速度和位移如何求飞行时间、偏移量和偏转角-如何求时间和偏转角用匀变速直线运动的基本公式、导出公式和推论求解飞出电场时间:t=打在极板上t=偏移量:y=偏转角:tan-时间t=T(θ是圆心角,T是周期)偏转角sin θ=(l是磁场宽度,R是粒子轨道半径)α=运动情境2.解题思路题型1电场与磁场的组合例1如图所示,在xOy直角坐标系中,第Ⅰ象限内分布着方向垂直纸面向里的匀强磁场,第Ⅱ象限内分布着沿y轴负方向的匀强电场。
初速度为零、带电荷量为q、质量为m的粒子经过电压为U的电场加速后,从x轴上的A点垂直x轴进入磁场区域,重力不计,经磁场偏转后过y轴上的P点且垂直于y轴进入电场区域,在电场中偏转并击中x轴上的C点。
已知OA=OC=d。
则磁感应强度B和电场强度E分别为多少?解析设带电粒子经电压为U的电场加速后速度为v,则qU=mv2带电粒子进入磁场后,由洛伦兹力提供向心力qBv=依题意可知r=d,联立解得B=带电粒子在电场中偏转,做类平抛运动,设经时间t从P点到达C点,由d=vt,d=t2联立解得E=。
带电粒子在复合场中运动应用实例课件
(2)工作原理 ①电场加速qU=ΔEk. ②磁场约束偏转qBv=mvr2,v=qmBr∝r. ③加速条件:高频电源的周期与带电粒D子形在盒中运动的周期
相同,即T电场=T回旋=2qπBm.
粒子第二次进入电场加速,如果是原电场,能加速吗?第二次进入磁场与第一次 有什么相同和不同点?粒子要一直加速下去,应满足何条件?即极板应接怎样的 电流?两个D形金属盒的半径R,则出加速器的粒子速度可以无限大吗?有几个 原因?粒子在加速器内运动的总时间如何求解?轨道是不等距分布吗?
,若板间只加有如图
所示的电场,粒子做
,偏向与
有关,若要是例子不发生偏转,可以在加电场的
同时加
。满足的条件是: ②现在左
边有一个带正电的粒子源,可以沿垂直 EB方向速
度大小不等的粒子,则从右侧出来的粒子可能会
有几种情况?从abc出来的粒子分别有何特点?
③若粒子源发射的是负粒子,则从右侧出来的粒子可能会有几种情况?从abc出来
从同一个加速电场U1出来的H的三种同位 素进入了同一个速度选择器,只有氘核在
b 场中作直线运动。则氘核做什么运动,各
粒
粒子的速度会变吗?若板足够宽,足够长,
子 源
a 即一定会出场,出场时所有粒子的速度相
c 同吗?若板足够窄,足够长,出场的只
是 ,而其他的粒子会打在板上,就会改
变两极板间的电势差,要使电势差保持不
电磁场在实际中的应用
带电粒子在电场中的运动情况: 带电粒子在磁场中的运动情况: 带电粒子在电磁复合场中的运动情况:
带电粒子在电磁复合场中的实际应用:速度选择器、 磁流体发电机、流量计、霍尔效应、质谱仪、回旋加 速器。
带电粒子在复合场中运动实例 课件
例2 (多选)回旋加速器的工作原理如图4所示,置于真空中的D形金属盒半径 为R,两盒间的狭缝很小,带电粒子在狭缝间加速的时间忽略不计.匀强磁场 的磁感应强度大小为B、方向与盒面垂直.粒子源A产生的粒子质量为m,电荷 量为+q,U为加速电压,则 A.交变电压的周期等于粒子在磁场中回旋周期的一半 B.加速电压U越大,粒子获得的最大动能越大
带电粒子在复合场中运动实例
一、带电粒子在复合场中的运动
1.叠加场与组合场 (1)叠加场:电场、 磁场 、重力场共存,或其中某两场共存. (2)组合场:电场与磁场各位于一定的区域内,并不重叠,或在同一区域,电 场、磁场分时间段或分区域 交替 出现. 2.运动分类 (1)静止或做匀速直线运动 当带电粒子在复合场中所受合外力为零时,将处于静止状态或做 匀速 直线运动.
图7
4.霍尔效应的原理和分析
(1)定义:如图8,高为h、宽为d的导体(自由电荷是电子
或正电荷)置于匀强磁场B中,当电流通过导体时,在导
体的上表面A和下表面A′之间产生电势差,这种现象
称为霍尔效应,此电压称为霍尔电压.
图8
(2)电势高低的判断:导体中的电流I向右时,根据左手定则可得,若自由电荷
是电子,则下表面A′的电势高;若自由电荷为正电荷,则上表面A的电势高.
√B.速度大小 v=EB
C.若速度大小 v>BE,粒子一定不能从板间射出
图8
D.若此粒子从右端沿虚线方向进入,仍做直线运动
模型2 磁流体发电机
例4 磁流体发电机原理如图10所示,等离子体高速喷射到加有强磁场的管道
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 专题练习(二十五) 带电粒子在复合场中的运动及应用实例
1.(2012·海南高考)如图,在两水平极板间存在匀强电场和匀强磁场,电场方向竖直向下,磁场方向垂直于纸面向里.一带电粒子以某一速度沿水平直线通过两极板.若不计重力,下列四个物理量中哪一个改变时,粒子运动轨迹不会改变( ) A.粒子速度的大小 B.粒子所带电荷量 C.电场强度 D.磁感应强度
2.如图所示,虚线间空间存在由匀强电场E和匀强磁场B组成的正交或平行的电场和磁场,有一个带正电小球(电荷量为+q,质量为m)从正交或平行的电磁混合场上方的某一高度自由落下,那么,带电小球可能沿直线通过下列的哪个电磁混合场( )
解析:带电小球进入复合场时受力情况如图所示: A图中由于小球所受合力不为零,所以洛伦兹力不恒定,因此水平方向合力不可能保持为零,所以A图不正确;B图中垂直纸面向外的方向上只有一个洛伦兹力,所以这种情况下小球也不能沿竖直方向运动;C图中小球所受三个力的合力如果为零,小球就可以沿竖直线运动;D图中小球只受竖直方向两个力作用,一定沿竖直线运动. 答案:CD
3.一重力不计的带电粒子以初速度v0(v0<EB)先后穿过宽度相同且相邻的有明显边界的匀强电场E和匀强磁场B,如图甲所示,电场和磁场对粒子总共做功W1;若把电场和磁场正交叠加,如图乙所示,粒子仍以v0的初速度穿过叠加场区,电场和磁场对粒子总共做功W2,比较W1、W2的大小( ) 2
A.一定是W1=W2 B.一定是W1>W2 C.一定是W1<W2 D.可能是W1>W2,也可能是W1<W2
4.如图所示,在匀强电场和匀强磁场共存的区域内,电场的电场强度为E,方向竖直向下,磁场的磁感应强度为B,方向垂直于纸面向里,一质量为m的带电粒子,在场区内的一竖直平面内做匀速圆周运动,则可判断该带电质点( )
A.带有电荷量为mgE的正电荷 B.沿圆周逆时针运动 C.运动的角速度为BgE
D.运动的速率为EB
5.(2013·福州模拟)如图所示,在平行线MN、PQ之间存在竖直向上的匀强电场和垂直纸面的磁场(未画出),磁场的磁感应强度从左到右逐渐增大.一带电微粒进入该区域时,由于受到空气阻力作用,恰好能沿水平直线OO′通过该区域.带电微粒所受的重力忽略不计,运动过程带电量不变.下列判断正确的是( ) 3
A.微粒从左到右运动,磁场方向向里 B.微粒从左到右运动,磁场方向向外 C.微粒从右到左运动,磁场方向向里 D.微粒从右到左运动,磁场方向向外 解析:由微粒恰好能沿水平直线OO′通过该区域说明洛伦兹力qvB与电场力qE平衡,微粒受到空气阻力作用,速度逐渐减小,沿运动方向磁场的磁感应强度必须逐渐增大.因此微粒从左到右运动;磁场方向向外,选项B正确. 答案:B 6.如图所示, 某一真空室内充满竖直向下的匀强电场E,在竖直平面内建立坐标系xOy,在y<0的空间里有与场强E垂直的匀强磁场B,在y>0的空间内,将一质量为m的带电液滴(可视为质点)自由释放,此液滴则沿y轴的负方向,以加速度a=2g(g为重力加速度)做匀加速直线运动,当液滴运动到坐标原点时,被安置在原点的一个装置瞬间改变了带电性质(液滴所带电荷量和质量均不变),随后液滴进入y<0的空间运动.液滴在y<0在的空间内的运动过程中( ) A.重力势能一定不断减小 B.电势能一定先减小后增大 C.动能不断增大 D.动能保持不变 解析:带电液滴在y>0的空间内以加速度a=2g做匀加速直线运动,可知液滴带正电,且电场力等于重力,当液滴运动到坐标原点时变为负电荷,液滴进入y<0的空间内运动,电场力等于重力,液滴做匀速圆周运动,重力势能先减小后增大,电场力先做负功后做正功,电势能先增大后减小,动能保持不变,故选D. 答案:D 7.(2013·南昌一模)劳伦斯和利文斯设计的回旋加速器工作原理如图所示,置于高真空中的D形金属半径为R,两盒间的狭缝很小,带电粒子穿过的时间可忽略,磁感应强度为B的匀强磁场与盒面垂直,高频交流电频率为f,加速电压为U.若A处粒子源产生的质子质量为m、电荷量为+q,在加速器中被加速,且加速过程中不考虑相对论效应和重力的影响,则下列说法正确的是( ) A.质子被加速后的最大速度不可能超过2πRf B.质子离开回旋加速器时的最大动能与加速电压U成正比 C.质子离开回旋加速器时的最大动能与交流电频率f成正比 D.质子第2次和第1次经过两D形盒间狭缝后轨道半径之比为1∶2 4
解析:质子被加速后的最大速度不可能超过2πRT=2πRf,选项A正确.质子离开回旋加速器时的最大动能与加速电压U无关,与交流电频率f无关,选项B、C错误;质子第2次和第1次经过两D形盒间狭缝后其动能之比等于2∶1,轨道半径之比为2∶1,选项D错误. 答案:A 8. 在一绝缘、粗糙且足够长的水平管道中有一带电荷量为q、质量为m的带电球体,管道半径略大于球体半径.整个管道处于磁感应强度为B的水平匀强磁场中,磁感应强度方向与管道垂直.现给带电球体一个水平速度v0,则在整个运动过程中,带电球体克服摩擦力所做的功可能为( )
A.0 B.12mmgqB2
C.12mv20 D.12mv20-mgqB2 解析:若带电球体所受的洛伦兹力qv0B=mg,带电球体与管道间没有弹力,也不存在摩擦力,故带电球体克服摩擦力做的功为0,A正确;若qv0B<mg,则带电球体在摩擦力
的作用下最终停止,故克服摩擦力做的功为12mv20,C正确;若qv0B>mg,则带电球体开始
时受摩擦力的作用而减速,当速度达到v=mgqB时,带电球体不再受摩擦力的作用,所以克服摩擦力做的功为12mv20-mgqB2,D正确. 答案:ACD 9.目前有一种磁强计,用于测定地磁场的磁感应强度.磁强计的原理如图所示,电路有一段金属导体,它的横截面是宽为a、高为b的长方形,放在沿y轴正方向的匀强磁场中,导体中通有沿x轴正方向、大小为I的电流.已知金属导体单位体积中的自由电子数为n,电子电荷量为e,金属导电过程中,自由电子所做的定向移动可视为匀速运动.两电极M、N均与金属导体的前后两侧接触,用电压表测出金属导体前后两个侧面间的电势差为U,则磁感应强度的大小和电极M、N的正负为( )
A.nebUI,M正、N负 B.neaUI,M正、N负
C.nebUI,M负、N正 D.neaUI,M负、N正 解析:由左手定则知,金属中的电子在洛伦兹力的作用下将向前侧面聚集,故M负,N正.由F电=F洛即Uae=Bev,I=nevS=nevab,得B=nebUI. 答案:C 5
10.(2013·莱芜模拟)如图所示,真空中有一以(r,0)为圆心、半径为r的圆柱形匀强磁场区域,磁场的磁感强度大小为B,方向垂直纸面向里.磁场的上方有两等大的平行金属板MN,两板间距离为2r.从O点向不同方向发射速率相同的质子,质子的运动轨迹均在纸面内.当质子进入两板间时两板间可立即加上如图所示的电压,且电压从t=0开始变化,电
压的最大值为16mr2eT2,已知质子的电荷量为e,质量为m,质子在磁场中的偏转半径也为r,不计重力,求:
(1)质子进入磁场时的速度大小; (2)若质子沿x轴正方向射入磁场,到达M板所需的时间; (3)若质子沿与x轴正方向成某一角度θ的速度射入磁场时,粒子离开磁场后能够平行于金属板进入两板间,求θ的范围以及质子打到M板时距坐标原点O的距离.
解析:(1)由牛顿第二定律:evB=mv2r 解得:v=eBrm. (2)如图:质子在磁场运动14周期, t=14T=πm2eB 进入MN间 在0到T2时间内,质子不受电场力t2=T2
在T2到T时间内,质子受的电场力.F=eU2r a=Fm U=16mreT2 x=12at2=r t3=T2 因此t=t1+t2+t3=πm2eB+T. 6
答案:(1)eBrm (2)πm2eB+T 11.(2013·眉山模拟)如图所示,在平面直角坐标系xOy中的第一象限内存在磁感应强度大小为B、方向垂直于坐标平面向内的有界圆形匀强磁场区域(图中未画出);在第二象限内存在沿x轴负方向的匀强电场.一粒子源固定在x轴上坐标为(-L,0)的A点.粒子源沿y轴正方向释放出速度大小为v的电子,电子恰好能通过y轴上坐标为(0,2L)的C点,电子经过磁场偏转后恰好垂直通过第一象限内与x轴正方向成15°角的射线ON(已知电子的质量为m,电荷量为e,不考虑粒子的重力和粒子之间的相互作用).求: (1)匀强电场的电场强度E的大小; (2)电子离开电场时的速度方向与y轴正方向的夹角θ; (3)圆形磁场的最小半径Rm. 解析:(1)从A到C的过程中,电子做类平抛运动,
有:L=12at2,eE=ma 2L=vt 联立解得:E=mv22eL. (2)设电子到达C点的速度大小为vC,方向与y轴正方向的夹角为θ. 由动能定理,有12mv2C-12mv2=eEL 解得vC=2v. cos θ=v/vC=2/2 得θ=45°.
(3)画轨迹如图所示. 电子在磁场中做匀速圆周运动的半径
r=mvCeB=2mveB 电子在磁场中偏转120°后垂直于ON射出. 磁场最小半径为:Rm=PQ/2=rsin 60°,
得:Rm=6mv2eB.