蚁群算法

合集下载

蚁群算法整理ppt

蚁群算法整理ppt

TSP问题是经典旳NP完全问题,许多算验证法及算法效率 侧试都以TSP问题为基础。在蚁群算法研究中,第一种蚁群 算法,蚂蚁系统,就是在TSP问题旳基础上提出来旳。而后, 根据TSP问题,又提出了蚁群算法系列中具有代表性旳蚁群 系统,最大一最小蚂蚁系统。
蚁群旳行为是整体协作,相互分工,以一种整体去处理一
蚁群算法求解旅行商问题
蚁群算法最初是经过对蚂蚁群落旳观察,受蚁群行为特征 启发而得出旳。蚂蚁是一种群居昆虫,在觅食、清理巢穴等 活动中,彼此依赖、相互协作共同完毕特定旳任务。就个体 来讲,单个蚂蚁旳智力和体力是极其有限旳,服务于整个群 落旳生存与发展;就群体来讲,蚁群在行为上旳分工协作、 在完毕任务过程中所体现旳自组织特征等反应出蚁群具有较 高旳智能和自我管理能力,具有很高层次组织性,这使得蚁 群能够完毕某些复杂旳任务。
第二、蚂蚁构造途径。蚂蚁按照一定旳概率拟定下一步要 到达旳城市。概率旳计算如(l)式。
(1)式表达蚂蚁在t时刻由城市i选择城市j旳概率。α是信息 素在概率计算中旳权重,它旳值越大,信息素在蚂蚁选择 下一种要到旳城市中起到旳作用越大。β是启发因子(在 TSP问题中常以d旳倒数来表达)在概率计算中所占旳权重, 它旳值越大,启发因子在蚂蚁选择城市旳过程中所起旳作 用越大.allowed是不在蚂蚁禁忌表中旳城市集合。
(4)当全部蚂蚁均完毕了信息素旳更新操作之后,统计目前 旳最短途径,而且对禁忌表以及信息素旳增长值△T(t,t+l) 进行初始化,并转到环节2。依此循环下去,直到满足算法 旳终了条件为止,例如解无法得到进一步旳改善或者到达 了事先要求旳循环次数。
在蚂蚁系统详细涉及了三个方面旳内容。
第一、初始化。对于每条边上旳信息素初始化为一种较小 旳数值r0;对每只蚂蚁,需要一种禁忌表统计自己已经走过 旳结点,初始化其禁忌表为该蚂蚁所在旳结点,禁忌表长 度为l。蚂蚁在各边上释放信息素旳量被初始化为0。

蚁群算法应用场景

蚁群算法应用场景

蚁群算法应用场景
一、蚁群算法的概念
蚁群算法是一种仿生优化算法,以蚂蚁的行为模式为模型,通过模拟蚂蚁搜索食物的行为,在最短的时间内找到最优解的算法。

该算法在搜索路径到达最优解的过程中,可以充分利用食物的信息,以帮助蚂蚁到达最优解。

二、蚁群算法的应用场景
1、多目标优化问题
多目标优化问题是指在满足多个目标的情况下,求出最优解的问题,又称为复合优化问题。

蚁群算法在多目标优化中能够有效地解决这类问题,能够找到具有较高的效率的最优解。

2、网络路径优化
网络路径优化是为了求解两点之间最优路径,在满足网络要求的同时使得传输花费最小,以达到快捷通讯的目的。

蚁群算法可以在网络路径规划时帮助求解最优解,使整个网络路径规划的效率更高。

3、图像处理
图像处理是指对图像进行处理,以达到优化图像的操作,而蚁群算法能够有效地解决图像处理问题。

它可以自动地搜索图像,找出可以优化的特征,并优化图像,以提高图像质量。

4、规划与排序
规划与排序是指将一定的任务进行组合并排序,以达到最大的效率。

蚁群算法在规划与排序中可以有效地搜索任务,找出具有最优解
的排序组合,以提高效率。

5、求解调度问题
调度问题是指在满足约束情况下,求解满足最优的调度任务的问题。

蚁群算法在解决调度问题时可以有效地搜索调度任务,找出最优的调度组合,以达到最佳效果。

蚁群算法的基本原理

蚁群算法的基本原理

2.1 蚁群算法的基本原理蚁群优化算法是模拟蚂蚁觅食的原理,设计出的一种群集智能算法。

蚂蚁在觅食过程中能够在其经过的路径上留下一种称之为信息素的物质,并在觅食过程中能够感知这种物质的强度,并指导自己行动方向,它们总是朝着该物质强度高的方向移动,因此大量蚂蚁组成的集体觅食就表现为一种对信息素的正反馈现象。

某一条路径越短,路径上经过的蚂蚁越多,其信息素遗留的也就越多,信息素的浓度也就越高,蚂蚁选择这条路径的几率也就越高,由此构成的正反馈过程,从而逐渐的逼近最优路径,找到最优路径。

蚂蚁在觅食过程时,是以信息素作为媒介而间接进行信息交流,当蚂蚁从食物源走到蚁穴,或者从蚁穴走到食物源时,都会在经过的路径上释放信息素,从而形成了一条含有信息素的路径,蚂蚁可以感觉出路径上信息素浓度的大小,并且以较高的概率选择信息素浓度较高的路径。

(a)蚁穴 1 2 食物源A B (b)人工蚂蚁的搜索主要包括三种智能行为: (1)蚂蚁的记忆行为。

一只蚂蚁搜索过的路径在下次搜索时就不再被该蚂蚁选择,因此在蚁群算法中建立禁忌表进行模拟。

(2)蚂蚁利用信息素进行相互通信。

蚂蚁在所选择的路径上会释放一种信息素的物质,当其他蚂蚁进行路径选择时,会根据路径上的信息素浓度进行选择,这样信息素就成为蚂蚁之间进行通信的媒介。

(3)蚂蚁的集群活动。

通过一只蚂蚁的运动很难达到事物源,但整个蚁群进行搜索就完全不同。

当某些路径上通过的蚂蚁越来越多时,路径上留下的信息素数量也就越多,导致信息素强度增大,蚂蚁选择该路径的概率随之增加,从而进一步增加该路径的信息素强度,而通过的蚂蚁比较少的路径上的信息素会随着时间的推移而挥发,从而变得越来越少。

蚂蚁系统是最早的蚁群算法。

其搜索过程大致如下:在初始时刻,m 只蚂蚁随机放置于城市中,各条路径上的信息素初始值相等,设为:0(0)ij ττ=为信息素初始值,可设0m m L τ=,m L 是由最近邻启发式方法构造的路径长度。

昆虫群体行为学中的蚁群算法

昆虫群体行为学中的蚁群算法

昆虫群体行为学中的蚁群算法随着社会的发展和科技的不断进步,人们日常的各种活动都离不开计算机和信息技术的支持,人工智能、机器学习已经成为重要的研究领域。

而昆虫群体行为学中的蚁群算法也成为了这个领域中的热门算法之一。

本文将结合案例深入剖析蚁群算法的工作原理及其应用。

一、蚁群算法概述蚁群算法,又称蚁群优化算法,是一种基于群体智能的优化算法,源于自然界中蚂蚁生活方式的模拟。

自然界中蚂蚁以信息的方式寻找到食物和家,形成了一套完整的优化流程。

在这个过程中,蚂蚁会不断地散发信息素,当有蚂蚁发现了食物或者家后,会回到巢穴,散发出一种信息素,可以引起其他蚂蚁的注意。

一段时间过后,信息素会消失,这样就可以避免信息过时。

蚂蚁就利用这样的方式,在一片茫茫草地中快速找到食物和家。

而蚁群算法就是对这种生物的生命周期进行了模拟。

蚁群算法主要基于以下两大原理:正反馈和负反馈。

正反馈指的是蚂蚁在寻找食物和家的过程中,距离食物和家越近,越有可能被其他蚂蚁选择。

因此,经过一段时间的搜寻,食物或家附近的信息素浓度就会越来越高,吸引越来越多的蚂蚁。

负反馈指的是信息素的挥发时间有限,如果蚂蚁在搜寻过程中进入了死路,无法找到食物或家,很快就会失去它们的踪迹,寻找其它的目标。

二、蚁群算法的原理蚁群算法是一种基于贪心策略和启发式搜索的算法。

贪心策略是指在局部最优解的情况下选择全局最优解。

而启发式搜索则是通过评估函数进行深度优先或广度优先的搜索。

蚁群算法将这两种方法相结合,将其运用到求解优化问题的任务中。

在蚁群算法中,人们把寻优问题抽象成一个图论问题,称之为图。

设有m个蚂蚁在图中寻找最短路径,并假设每个蚂蚁可以移动的来源于强化自身链接的信息素来对图进行搜索,并通过蚁群算法来不断优化搜索的结果。

蚁群算法的核心在于挥发函数(Evaporation Rate)和信息素覆盖(Pheromone Coverage),通过这两个函数控制信息素在搜索过程中的流动和新建,在搜索过程中提高发现最优解的概率。

蚁群算法公式范文

蚁群算法公式范文

蚁群算法公式范文蚁群算法(Ant Colony Optimization, ACO)是一种仿生智能算法,源于对蚂蚁在寻找食物过程中的观察和分析。

蚁群算法通过模拟蚂蚁在寻找食物的过程,来优化解决各种优化问题。

在蚁群算法中,蚂蚁使用信息素和启发式信息来进行,并通过信息素更新和路径选择机制来不断优化过程。

蚂蚁在寻找食物的过程中会释放一种被称为“信息素”的化学物质。

当蚂蚁在条路径上行走时,会释放信息素,而其他蚂蚁通过检测到信息素的浓度来选择路径。

信息素的浓度越高,路径上的蚂蚁越多,其他蚂蚁就更有可能选择这条路径。

蚂蚁在行走结束后,会按照规定的方式更新路径上的信息素浓度。

蚂蚁选择路径的依据除了信息素,还有启发式信息。

启发式信息是根据蚂蚁当前所处位置与目标位置之间的距离进行计算的。

蚂蚁更倾向于选择距离目标位置更近的路径。

启发式信息对蚂蚁的路径选择起到了一定的引导作用。

蚁群算法中的公式主要涉及到信息素的更新和路径选择机制。

下面是蚁群算法中常用的公式:1.信息素的更新公式:τij(t+1) = (1-ρ) * τij(t) + Δτij(t)其中,τij(t+1)为第i只蚂蚁在第j条路径上的信息素浓度更新后的值;τij(t)为第i只蚂蚁在第j条路径上的当前信息素浓度;Δτij(t)为第i只蚂蚁在第j条路径上释放的信息素量;ρ为信息素蒸发系数,用于控制信息素的挥发速度。

2.蚂蚁选择路径的概率公式:Pij(t) = (τij(t)^α) * (ηij(t)^β) / Σ(τik(t)^α) * (ηik(t)^β)其中,Pij(t)为第i只蚂蚁在第j条路径上的选择概率;τij(t)为第i只蚂蚁在第j条路径上的信息素浓度;ηij(t)为第i只蚂蚁在第j条路径上的启发式信息;α和β分别为信息素和启发式信息的重要程度参数。

3.蚂蚁更新路径的公式:Δτij(t) = Q / Lk其中,Δτij(t)为第i只蚂蚁在第j条路径上释放的信息素量;Q为常数,表示每只蚂蚁释放的信息素总量;Lk为第k只蚂蚁的路径长度。

蚁群算法

蚁群算法


蚁群算法

这样形成一个正反馈。最优路径上的激索浓 度越来越大.而其它的路径上激素浓度却会随着 时间的流逝而消减。最终整个蚁群会找出最优路 径。

蚁群算法
蚂蚁从A点出发,速度相同,食物在D点,可能随机选择路线ABD 或ACD。假设初始时每条分配路线一只蚂蚁,每个时间单位行走 一步,本图为经过9个时间单位时的情形:走ABD的蚂蚁到达终 点,而走ACD的蚂蚁刚好走到C点,为一半路程。

蚁群算法

Pij
( ) ( ) il il
lU
( ij ) (ij )


k ij Q,
new old k ij ij ij k 1
NA
Q d ij
k ij
Q or k L
k ij
蚁群算法

Dorigo M., G. Di Caro & L. M. Gambardella (1999). Ant Algorithms for Discrete Optimization. Artificial Life, 5(2):137-172
蚁群算法
k=1 while k <= ItCount do (执行迭代) for i = 1 :m (对m只蚂蚁循环) 随机放置m只蚂蚁的起点,为每只蚂蚁建立禁忌表tabuk 将各蚂蚁的初始节点置入禁忌表中; for j = 2 :n (对n个城市循环) 根据轮盘赌法,选择下一个城市j; 将j置入禁忌表tabui,蚂蚁转移到j; end end 计算每只蚂蚁的路径长度lk; 根据公式更新所有蚂蚁路径上的信息素浓度; k = k + 1; end while 输出找到的最短路径,结束算法

蚁群算法ppt课件

10
2 简化旳蚂蚁寻食过程
假设蚂蚁每经过一处所留下旳信息素为一种单位,则经过36个时间单位 后,全部开始一起出发旳蚂蚁都经过不同途径从D点取得了食物,此时ABD 旳路线来回了2趟,每一处旳信息素为4个单位,而 ACD旳路线来回了一趟, 每一处旳信息素为2个单位,其比值为2:1。
寻找食物旳过程继续进行,则按信息素旳指导,蚁群在ABD路线上增派一 只蚂蚁(共2只),而ACD路线上依然为一只蚂蚁。再经过36个时间单位后, 两条线路上旳信息素单位积累为12和4,比值为3:1。
8
2 简化旳蚂蚁寻食过程
蚂蚁从A点出发,速度相同,食物在D点,可能随机选择路线 ABD或ACD。假设初始时每条分配路线一只蚂蚁,每个时间单位 行走一步,本图为经过9个时间单位时旳情形:走ABD旳蚂蚁到 达终点,而走ACD旳蚂蚁刚好走到C点,为二分之一旅程。
9
2 简化旳蚂蚁寻食过程
本图为从开始算起,经过18个时间单位时旳情形:走ABD旳蚂 蚁到达终点后得到食物又返回了起点A,而走ACD旳蚂蚁刚好走 到D点。
若按以上规则继续,蚁群在ABD路线上再增派一只蚂蚁(共3只),而 ACD路线上依然为一只蚂蚁。再经过36个时间单位后,两条线路上旳信息素 单位积累为24和6,比值为4:1。
若继续进行,则按信息素旳指导,最终全部旳蚂蚁会放弃ACD路线,而都 选择ABD路线。这也就是前面所提到旳正反馈效应。
11
3 自然蚁群与人工蚁群算法
15
5 初始旳蚁群优化算法—基于图旳蚁群 系统(GBAS)
初始旳蚁群算法是基于图旳蚁群算法,graph-based
ant system,简称为GBAS,是由Gutjahr W J在2023年
旳Future Generation Computing Systems提出旳.

伪随机比例选择规则 蚁群算法的路径选择规则

伪随机比例选择规则蚁群算法的路径选择规则蚁群算法(Ant Colony Optimization Algorithm)是一种被广泛应用于寻优问题求解的启发式算法。

其主要灵感来源于观察蚂蚁在寻找食物时的行为,利用蚁群中的信息素和路径选择规则完成问题求解。

其中,路径选择规则被认为是蚁群算法的重要组成部分之一。

伪随机比例选择规则是常用的蚁群算法路径选择规则之一。

该规则的核心思想是根据路径上的信息素浓度和启发因子对路径进行选择。

具体来说,蚂蚁在选择下一步要走的路径时,会根据当前路径上的信息素和启发因子计算选择概率,并以一定概率选择信息素浓度较高的路径,同时在一定概率内随机选择其他路径。

这样,蚂蚁沿着信息素激励的路径前进,同时也能够随机探索其他可能更优的路径。

该规则的目的是在信息素重要的情况下保持多样性,因为如果蚂蚁仅依靠信息素选择,将会选择最短路径,但这并不一定是最优的路径。

伪随机比例选择规则主要包括三个部分:信息素强度、启发因子和选择概率计算。

信息素强度部分指的是在路径上存储的信息素浓度。

信息素是一些特定的数值,反映了蚂蚁走过一条路径的“好坏程度”。

蚂蚁在路径上遇到环境条件良好的情况下会释放信息素来吸引其他的蚂蚁跟随,最终形成一条蚂蚁们共同使用的路径。

路径的信息素强度高,说明蚂蚁在这条路径上摆脱了危险,并找到了食物。

因此,蚂蚁在选择下一步要走的路径时,会更倾向于选择信息素浓度较高的路径。

启发因子部分是指根据问题本身的特点设计的一些因素。

例如,在解决旅行商问题(TSP)时,启发因子可以根据两个城市之间的距离大小进行计算。

启发因子能够提供一些关于路径好坏的信息,辅助蚂蚁进行路径选择。

选择概率计算部分是将信息素强度和启发因子转换为蚂蚁选择路径的概率。

这里的选择概率计算一般采用轮盘赌(Roulette Wheel)算法,根据概率大小随机选择路径。

其中,伪随机比例选择规则与传统的比例选择规则不同之处在于,它引入了一个随机性因素,使其更具有多样性。

毕业论文:蚁群算法的研究应用(定稿)-精品【范本模板】

第一章绪论1。

1选题的背景和意义受社会性昆虫行为的启发,计算机工作者通过对社会性昆虫的模拟产生了一系列对于传统问题的新的解决方法,这些研究就是群体智能的研究。

群体智能作为一个新兴领域自从20世纪80年代出现以来引起了多个学科领域研究人员的关注,已经成为人工智能以及经济社会生物等交叉学科的热点和前沿领域。

群体智能(Swarm Intelligence)中的群体(Swarm)指的是“一组相互之间可以进行直接通信或者间接通信(通过改变局部环境)的主体,这组主体能够合作进行分布问题求解,群体智能指的是无智能或者仅具有相对简单智能的主体通过合作表现出更高智能行为的特性;其中的个体并非绝对的无智能或只具有简单智能,而是与群体表现出来的智能相对而言的。

当一群个体相互合作或竞争时,一些以前不存在于任何单独个体的智慧和行为会很快出现。

群体智能的提出由来已久,人们很早以前就发现,在自然界中,有的生物依靠其个体的智慧得以生存,有的生物却能依靠群体的力量获得优势。

在这些群体生物中,单个个体没有很高的智能,但个体之间可以分工合作、相互协调,完成复杂的任务,表现出比较高的智能。

它们具有高度的自组织、自适应性,并表现出非线性、涌现的系统特征。

群体中相互合作的个体是分布式的,这样更能够适应当前网络环境下的工作状态;没有中心的控制与数据,这样的系统更具有鲁棒性,不会由于某一个或者某几个个体的故障而影响整个问题的求解。

可以不通过个体之间直接通信而是通过非直接通信进行合作,这样的系统具有更好的可扩充性。

由于系统中个体的增加而增加的系统的通信开销在这里十分小.系统中每个个体的能力十分简单,这样每个个体的执行时间比较短,并且实现也比较简单,具有简单性。

因为具有这些优点,虽说群集智能的研究还处于初级阶段,并且存在许多困难,但是可以预言群集智能的研究代表了以后计算机研究发展的一个重要方向。

随着计算机技术的飞速发展,智能计算方法的应用领域也越来越广泛,当前存在的一些群体智能算法有人工神经网络,遗传算法,模拟退火算法,群集智能,蚁群算法,粒子群算等等。

蚁群算法(C语言实现)

蚁群算法(C语⾔实现)蚁群算法(ant colony optimization, ACO),⼜称蚂蚁算法,是⼀种⽤来在图中寻找优化路径的机率型算法。

它由Marco Dorigo于1992年在他的中提出,其灵感来源于蚂蚁在寻找⾷物过程中发现路径的⾏为。

蚁群算法是⼀种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进⾏了⽐较,数值仿真结果表明,蚁群算法具有⼀种新的模拟进化优化⽅法的有效性和应⽤价值。

预期的结果: 各个蚂蚁在没有事先告诉他们⾷物在什么地⽅的前提下开始寻找⾷物。

当⼀只找到⾷物以后,它会向⼀种信息素,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到⾷物!有些蚂蚁并没有象其它蚂蚁⼀样总重复同样的路,他们会另辟蹊径,如果令开辟的道路⽐原来的其他道路更短,那么,渐渐,更多的蚂蚁被吸引到这条较短的路上来。

最后,经过⼀段时间运⾏,可能会出现⼀条最短的路径被⼤多数蚂蚁重复着。

原理: 为什么⼩⼩的蚂蚁能够找到⾷物?他们具有智能么?设想,如果我们要为蚂蚁设计⼀个⼈⼯智能的程序,那么这个程序要多么复杂呢?⾸先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到⾷物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且⽐较它们的⼤⼩,⽽且更重要的是,你要⼩⼼翼翼的编程,因为程序的错误也许会让你前功尽弃。

这是多么不可思议的程序!太复杂了,恐怕没⼈能够完成这样繁琐冗余的程序。

然⽽,事实并没有你想得那么复杂,上⾯这个程序每个蚂蚁的核⼼程序编码不过100多⾏!为什么这么简单的程序会让蚂蚁⼲这样复杂的事情?答案是:简单规则的涌现。

事实上,每只蚂蚁并不是像我们想象的需要知道整个世界的信息,他们其实只关⼼很⼩范围内的眼前信息,⽽且根据这些局部信息利⽤⼏条简单的规则进⾏决策,这样,在蚁群这个集体⾥,复杂性的⾏为就会凸现出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
物流路径优化问题的蚁群算法实现
311 蚁群算法的不足
虽然蚁群算法能够缩小问题求解搜索范围,
降低问题复杂度,获得较优物流路径,但是与其他
算法相比较,该算法一般需要较长的搜索时间,每
只蚂蚁构造的回路只是可行解的组成部分,各蚂
蚁构造的回路可能组成可行解,但是也可能找不
到可行解,从而出现停滞现象( stagnation behav2
ior) ,即搜索进行到一定程度后,所有个体所发现
的解完全一致,不能对解空间进一步搜索,不利于
发现更优解。
当搜索空间较小时,难以搜索到最优解,而若
要增大搜索空间以提高搜索到最优解的概率,机
器运算次数将迅速增加[8 ] 。
312 蚁群算法的改进与实现流程
蚁群算法本身具有很好的稳定性,算法实现
简单,可进行并行计算,只要稍加修改就可以应用
到许多领域;蚁群之间是通过信息素的正反馈来
进行交流的,信息素的增量会导致错误的引导信
息,使系统出现停滞现象。研究表明,在城市数量
一定的情况下,信息素的挥发度、蚂蚁的数量等因
素对于算法收敛的影响至关重要[7 ] 。为了避免出
现停滞现象无可行解,进行如下改进:
(1) 蚁群初始分布时尽量分布均匀。用随机
的方法将蚂蚁尽量均匀分布在各节点上,避免因
为蚂蚁数的不足,造成某些节点无蚂蚁而导致无
可行解。
(2) 增加蚂蚁数量,但蚂蚁个数AN T ≤n。
蚂蚁数量增加可以扩大组合的范围,增加获得可
行解的可能性。但蚂蚁数增加会造成搜索空间扩
大,从而会增加算法运算次数和迭代的计算时间。
(3) 信息素采用局部更新规则更新。当蚂蚁
经过一个节点后,信息素的局部更新使该路径上
的信息素减少,这样可降低轨迹的持久性,使该路
径对其他蚂蚁的吸引力逐步减弱,从而避免早期
收敛减慢,使后期陷入局部最优。
(4) 引入负反馈机制。正反馈机制的存在促
使某些路径在后面的选择中更具优势。当搜索陷
入局部最优解时,按以前的方式计算无法从局部极小值点跳出来。采用负反馈信息量,通过限

信息素的范围,在陷入局部最优解时,根据所限定
的范围调整信息素值,减少局部解对应的信息素
量,使算法能够从局部极小值点跳出来。
在对相关数据初始化后,利用蚁群算法,通过
蚂蚁的多次周游获取最优路径,图1 所示描述了
相应的算法流程。
图1 算法流程图
4 实验仿真设计
设计过程中使用了Visual C + + 2003 和
Matlab 2006 来实现。利用VC + + 实现图形用
户界面,调用Matlab 生成蚁群算法的DLL (动态
链接库) ,从而实现利用蚁群算法计算最优路径的
功能。参数优化蚁群算法引入了层次式结构,逻
辑上分为4 个层次,如图2 所示。
图2 系统结构
用户通过用户接口调用参数优化蚁群算法,
蚁群算法模块利用数据输入模块从数据文件中获

相关文档
最新文档