发电机差动保护原理

合集下载

发电机零序差动保护原理

发电机零序差动保护原理

发电机零序差动保护原理你看啊,发电机就像一个超级大的能量源,它在发电的时候,里面的电流那可是相当复杂的。

零序差动保护呢,就像是给发电机安排的一个小卫士,专门盯着一些特殊的情况。

咱先从什么是零序电流说起。

想象一下,在发电机的三相线路里,正常情况下,三相电流是平衡的,就像三个小伙伴手拉手,力量均匀分配。

但是呢,一旦有故障了,比如说某一相接地了,这就像这个小伙伴突然被拉走了,平衡就被打破了。

这个时候就会产生零序电流,就好像是多出来的一个小捣蛋鬼。

这个零序电流啊,它有自己独特的路径,在三相四线制系统里,它会通过中性线流回去。

那这个零序差动保护怎么发现这个小捣蛋鬼呢?它是通过比较发电机中性点侧和机端侧的零序电流来工作的。

你可以把中性点侧和机端侧想象成两个小岗哨。

正常的时候,这两个地方的零序电流应该是一样的,就像两个岗哨看到的情况是相同的。

但是当有接地故障之类的问题出现时,中性点侧和机端侧的零序电流就不一样了。

比如说机端侧因为靠近故障点,零序电流可能就变大了,而中性点侧可能还保持原来的状态或者变化比较小。

这时候,零序差动保护就开始发挥作用啦。

它就像一个超级敏感的小侦探,一旦发现这两个岗哨报告的零序电流不一样,而且这个差别达到了它设定的一个小标准,它就会觉得大事不妙,肯定是发电机哪里出问题了。

然后呢,它就会迅速采取行动,比如说给控制中心发送信号,让工作人员知道发电机可能有故障了,严重的时候它还能直接让发电机停下来,避免故障变得更严重。

再说说这个保护原理的好处吧。

它对于发电机的保护那可是相当精准的。

就像给发电机穿上了一件特制的铠甲,专门针对这种零序电流异常的情况。

不像其他一些保护方式可能比较笼统,零序差动保护就像是一把精准的手术刀,直切要害。

而且啊,它能很快地发现故障,这就减少了故障对发电机的损害。

你想啊,如果发电机一直带病工作,就像一个人生病了还一直干活,那肯定会越来越严重的。

但是有了这个小卫士,就可以在故障刚冒头的时候就把它抓住,让发电机得到及时的治疗。

发电机纵差动保护的原理及应用分析

发电机纵差动保护的原理及应用分析

发电机纵差动保护的原理及应用分析
司虎成 朴东浩 包头东华热 电有限公司 内 蒙古包头 0 1 4 0 4 0
【 摘 要】发电机 内部短路 故障主要 是指 定子绕组的相间和匝问短路 故障 , 短路 故障发生时将会形成很 大的冲击电流, 所产生的的 强大电弧将 会烧 毁定子绕组绝 缘, 还有 可能引发大型火灾甚至使 发电机报 废, 后果非 常严重。 故要求安装 发电机纵差动保护作为发电机 定子绕组相间、 匝间短路 故障的主保护, 动作于解列发电 机。 【 关 键词】发电 机; 纵差动保护; 定值整定
定。 2 、 斜 率l 应 大于 最大正常负荷电流下T A 误 差产生 的不平衡 电流 , 通常取2 0 % 。 3 、 拐点1 是 斜率 1 的终结点 , 应 大于发电机 最大正常运行 电流 。 为使
区内故障有 高的灵敏度 , 希望制动 电流 在2 . 0 倍 的发电机额 定电流 以内 时, 动 作特性斜 率不要过大 。 4 、 拐点2 是过 渡 区的终点和斜率 2 的起 点 , 应 设置为 使任一 保护用 T A 开始饱 和时的电流值 。 若 保护用T A 选 为5 P 2 0 , 其饱和 电流值很大 , 而发 电机 最大 外部 短路 电流在6 倍额 定 电流 之 内, 一 般取拐点6 倍发 电

比率制动式纵差保护工作原理
比率制动 式 纵差 保护 的动作 电流 是在 变化的 , 它随 短路 电流 的变 化而 自 动变化 , 保证外 部短路故 障不误动的同时又对内部短路 故障有很
高 的 灵敏 度 。
以 发电机一相为 例 , 规 定一次 电流流入 发电机 为正方向 。 当正常 运 行以及 发生保护区外 的故障时, 流 入差动继 电器的差动 电流为 零, 差 动 继电器将不动 作。 当发 生发电机 内部 故障时 , 流 入差动继 电器的差动 电流将会 出现 较大的 数值, 当差动 电流 超过 整定值时, 差动继 电器判为

发电机组差动保护

发电机组差动保护
发电机组差动保护
发电机是电力系统中重要的组成部分,发电机的安全运行对保证电力系统的正常工作和电能质量起着决定性的作用,同时发电机本身也是十分贵重的电气设备,尤其是大型同步发电机组,对电力系统的影响可谓是举足轻重。随着电力系统的不断发展,发电机的单机容量也越来越大。在国内,单机600 MW以上的发电机组已不再少见。发电机的主要故障类型有定子绕组相间短路、定子绕组匝间短路、定子绕组单相接地、转子绕组一点或两点接地等,对发电机破坏性最大的就是定子绕组相间短路,发电机差动保护作为发电机定子绕组相间短路故障的主保护已广泛在电力系统中应用。发电机单机容量的提高,相应地对完成发电机定子短路主保护的差动保护也提出了更高的要求。自微机在继电保护上应用以后,由于微机保护的智能的特点及高速运算的能力,微机发电机差动保护的新原理大量涌现,给继电保护带来了一片生机。差动保护的性能也得到了前所未有的提高。
子绕组发生短路和匝间短路时,TAO上会流过较大的基频零序短路流过电流大于动作门槛电压时,横差保护出口, 即Id> Id.set(Id为横差电流的基波分量, Id.set为横差保护电流定值)。
2 比率制动式微机
为了防止差动保护在外部短路时,发电机有很大穿越电流使CT误差增大时误动作,采用比率差动原理。该保护采用机端电流If作为制动电流,而不采用中性点侧电流或两侧电流的综和电流作为制动电流。这样既能在外部短路时取得足够的制动电流,又能在内部短路时减少中性点电流的制动作用,特别是发电机尚未与系统并联运行而发生内部短路时,机端三相没有电流,中性点侧电流只作为动作电流,因此提高了内部短路的灵敏度.为防止因CT断线引起比率差动保护误动该保护带有CT断线闭锁功能。该保护采用分相式,即A、B、C任一相保护动作均出口,以下判据均以一相为例。
当满足以下条件时比率差动保护动作

发电机保护类型及原理介绍

发电机保护类型及原理介绍

3.保护的整定原则 动作电流
Iop (0.2 ~ 0.3)Ig.n
需增设 0.5~1 秒的延时, 以躲过转子回路的瞬时两点接地故障。
(二) 纵向零序电压原理的匝间短路保护
适用于中性点侧没有6个或4个引出端子的 发电机定子匝间短路。
该保护利用发电机定子绕组发生匝间短路 时,机端三相对发电机中性点出现的零序电压 而构成。
对发电机并未造成直接危害。
1.1正常时 正极对地电压
U
E R2 E R2R2 2
负极对地电压
U
E 2
加在绝缘介质上的电压为励磁电压的一半。
1.2一点接地时
设:正极接地, U ,0 U E
则:另一端对地电压上升为E,如某点绝缘比较薄弱,则有可 能被击穿,造成两点接地故障。
转子绕阻绝缘破坏的故障形式及其危害
一、发电机相间短路的纵联差动保护
作用: 反映发电机定子绕组及其引出线相间短路 故障的主保护 发电机纵差保护的接线方式 完全纵差动保护 不完全纵差动保护
发电机完全纵差保护和不完全纵差保护均是比较 发电机两侧同相电流的大小和相位而构成
发电机完全纵差动保护

G

● ●
图9—1 发电机纵差保护原理接线示意图
2.保护的原理分析
1)当定子绕组的同分支匝间短路时:
2)定子绕组不同分支间发生短路时:
3)保护的接线
2
跳闸
t
图9-6 单元件式横联差保护原理接线图 1-三次谐波滤过器;2-横差保护
4)评价:
保护接线较简单,灵敏度较高。
保护存在死区:当 很小时或者不同分 支间的短路匝数相同时, 保护不能动作。
电桥式转子两点接地保护
RL’

发变组保护保护原理

发变组保护保护原理

华北电力大学
发变组保护原理
4、转子接地保护
• 对1MW及以下发电机的转子一点接地故障,可装设定期 检测装置。
• 1MW及以上的发电机应装设专用的转子一点接地保护装 置延时动作于信号,宜减负荷平稳停机,有条件时可动作 于程序跳闸。
• 对旋转励磁的发电机宜装设一点接地故障定期检测装置。
-摘自GB14285-2006继电保护和安全自动装置技术规程
华北电力大学
发变组保护原理
1、发电机差动保护
• 和应涌流,区外故障及其切除过程中由于两侧TA传变特 性不一致,都易导致差动保护误动;
dia
Id
dIA
Ir
图a 相电流波形
图b 差动电流和制动电流波形
1次判别 25次判别
华北电力大学
发变组保护原理
1、发电机差动保护
• 采用循环闭锁原理,进一步提高差动保护的可靠性; • 具有完善的抗TA饱和能力,以及故障恢复过程中不平
发变组保护原理
6、失步保护
jX
6区
5区 4区 3区
2区
1区
Xs B
Xt
减速失步
加速失步
-Rs -Rj 0
Rj
Rs
R
δ4
δ3
δ2 δ1
A
华北电力大学
7、逆功率保护
理论 传统
动作区 动作区
发变组保护原理
jQ
理想
P -Pset
• 对发电机变电动机运行的异常运行 方式,200MW及以上的汽轮发电机, 宜装设逆功率保护。
华北电力大学
发变组保护原理
华北电力大学
发变组保护原理
9、变压器差动保护
• 难点:
涌流的识别; TA饱和的识别; 和应涌流或区外故障切除后各侧TA暂态特性不一致导致的 差动保护误动。

发电机差动保护

发电机差动保护

一、发电机完全差动与不完全差动保护的区别:
由图1可以看出,发电机完全纵差保护与不完全纵差保护的区别是:对于完全纵差保护,在发电机中性点侧,输入到差动元件的电流为每相的全电流,而不完全差动保护,由中性点输入到差动元件的电流为每相定子绕组某一分支的电流。

1 、完全纵差保护:
发电机完全纵差保护,是发电机相间故障的主保护。

由于差动元件两侧TA的型号、变比完全相同,受其暂态特性的影响较小。

其动作灵敏度也较高,但不能反应定子绕组的匝间短路及线棒开焊。

2 、不完全纵差保护:
不完全纵差保护除保护定子绕组的相间短路之外,尚能反应定子线棒开焊及某些匝间短路。

但是,由于在中性点侧只引入其一分支的电流,故在整定计算时,尚应考虑各分支电流不相等产生的差流。

另外,当差动元件两侧TA型号不同及变比不同时,受系统暂态过程的影响较大。

二、纵差保护与横差保护的区别:
以发电机为例:横差保护是反映发电机定子绕组的一相匝间短路和同一相两关联分支间的匝间短路的保护。

纵差保护是指反映发电机定子相间及引线的短路的保护。

区别:在定子引出线或中性点附近相间短路时,两中性点连线中的电流较小,横差保护不能动作,出现死区,而纵差保护就能取代。

继电保护技术培训(差动保护)

继电保护技术培训(差动保护)

利用变压器励磁涌流中含有大量二次谐波分量的特征,通 过检测差动电流中的二次谐波分量大小来闭锁差动保护。 动作方程如下:
I cd 2>K xb I cd
Icd2 Kxb Kxb A、B、C任一相中二次谐波分量值; 二次谐波制动系数;取值范围为0.1~0.35 对应相的差动电流数值;
二次谐波制动系数一般取0.2,若出现变压器空载合闸(充电)时 差动保护误动情况,可将系数值适当降低。
3.4 两折线比率差动保护整定值 A 制动系数Kz取值范围一般为0.3~0.5, 三折线特性时取较小值。 B 制动电流Ig取值范围一般为0.5~1.0IN, 一般取 1.0IN 较为合理。 C 门槛电流Iqd=Kz×IN 确保制动系数不随制动电流而变化。 D 差动速断电流Isd取值范围一般为4~ 10IN ,小容量变压器取较大值,反之 亦然。 注意:
外部故障时: I1 与 I 2 数值大小不等,但相位相反。 制动电流IZd > 差动电流Icd 内部故障时: I1 与 I 2 数值大小不等,相位相同。 制动电流IZd ≈
1 差动电流Icd 2


原理示意图
四川能投集团继保培训
差动保护整定计算
四、变压器差动保护的整定计算
3.3 两折线比率差动保护动作方 程 任一相动作方程如下:
2.5 变压器励磁涌流的影响
所谓励磁涌流,就是变压器空载合闸时的暂态励磁电流。 由于变压器的励磁电流只流经它的电源侧,故造成变压 器两侧电流不平衡,从而在差动回路内产生不平衡电流。
四川能投集团继保培训
差动保护整定计算
Hale Waihona Puke 三、几种差动保护方案的比较
1、需考虑相位补偿方案
变压器差动保护
2、需考虑励磁涌流的影响 3、需考虑分接头调整的影响

发电机保护实验

发电机保护实验

1、发电机差动保护所谓“循环闭锁”方法,即当两相动作则认为是相间短路;单相动作且机端负序电压大于6V认为一点区内另一点区外的相间短路;仅单相动作且负序电压小于6V,则判为TA 断线,可选择闭锁差动或不闭锁差动。

为防止TA断线误闭锁差动保护,当机端电流或中性点侧电流大于过流解锁定值时,解除TA断线闭锁。

过流解除闭锁定值一般可整定为1.2Ie。

附变压器TA断线试验方法:(1)、单侧有负序电流且负序电流>0.1Ie。

(2)、各侧最大相电流小于1.2Ie。

(3)、其他任何侧加三相对称电流。

(4)、断线侧至少一相无流。

(5)、若投入TA断线时闭锁比例差动,TA断线判据满足时30ms闭锁差动保护,判据不满足时瞬时解锁。

(6)、TA断线判据满足40ms后发TA断线报告,断线后10s不满足断线条件发TA断线恢复报告其中“Ie”为主变高压侧二次额定电流3倍。

我们的发电机和变压器差动保护采用“综合时差”法结合TA暂态及稳态饱和时的波形特征来区分区内故障还是区外故障。

当TA线性传变时间不小于5ms时可保证区内故障TA饱和不拒动,区外故障且TA饱和不误动。

此算法原理为我南自特有,大大提高了差动保护动作的可靠性。

差动CT接线原则:由于差流计算取自变压器各侧(或发电机两侧)电流的向量和,所以差动用CT的极性端必须同为靠近变压器侧(发电机)或远离变压器侧(发电机),且为全“Y“型接线。

实际上差动保护的原理就是把变压器或者发电机作为电路中的一个节点,在主变或者发电机不发生内部短路的情况下,根据基尔霍夫电流定律,流进节点的电流肯定等于流出节点的电流,逆极性的接线原则,就是在正常情况下使A、B、C各相差流为0,而发生内部短路时,故障相的差流是叠加的,差流很大。

2、匝间保护(元件横差保护或者纵向零序电压保护)(1)发电机单元件横差保护装设在发电机两个中性点连线上的横差保护,用作发电机定子绕组的匝间短路、分支开焊故障以及相间短路的主保护。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可编辑范本 5.1 发电机比率制动式差动保护 比率制动式差动保护是发电机内部相间短路故障的主保护。 5.1.1保护原理 5.1.1.1比率差动原理。 差动动作方程如下: Iop  Iop.0 ( Ires  Ires.0 时) Iop  Iop.0 + S(Ires – Ires.0) ( Ires > Ires.0 时) 式中:Iop为差动电流,Iop.0为差动最小动作电流整定值,Ires为制动电流,Ires.0

为最小制动电流整定值,S为比率制动特性的斜率。各侧电流的方向都以指向发

电机为正方向,见图5.1.1。

差动电流: NTopIII

制动电流: 2NTresIII 式中:IT,IN分别为机端、中性点电流互感器(TA)二次侧的电流,TA的极性见图5.1.1。

图5.1.1 电流极性接线示意图 (根据工程需要,也可将TA极性端均定义为靠近发电机侧) 5.1.1.2 TA断线判别 当任一相差动电流大于0.15倍的额定电流时启动TA断线判别程序,满足下列条件认为TA断线: a. 本侧三相电流中至少一相电流为零; b. 本侧三相电流中至少一相电流不变; c. 最大相电流小于1.2倍的额定电流。 5.2发电机匝间保护 发电机匝间保护作为发电机内部匝间短路的主保护。根据电厂一次设备情况,可选择以下方案中的一种: 5.2.1故障分量负序方向(ΔP2) 匝间保护 该方案不需引入发电机纵向零序电压。 可编辑范本

故障分量负序方向(ΔP2)保护应装在发电机端,不仅可作为发电机内部匝间短路的主保护,还可作为发电机内部相间短路及定子绕组开焊的保护。 5.2.1.1保护原理 当发电机三相定子绕组发生相间短路、匝间短路及分支开焊等不对称故障

时,在故障点出现负序源。故障分量负序方向元件的2.U和2.I分别取自机端TV、TA,其TA极性图见图5.2.1.1,则故障分量负序功率P2为:



•2.2223senjeeIURP

式中2I为2•I的共轭相量,sen。2为故障分量负序方向继电器的最大灵敏角。一般取60~80(2.I滞后2.U的角度)。 故障分量负序方向保护的动作判据可表示为:

PeIUR•22'

2.22'senjeII

实际应用动作判据综合为:

uU•2

iI•2

 P2 =  U2r   I’2r +  U2i   I’2i > P

(u、i、P为动作门槛)

保护逻辑框图见图5.2.1.2。

图5.2.1.1 故障分量负序方向保护极性图 可编辑范本

图5.2.1.2 故障分量负序方向保护逻辑框图 5.2.2发电机纵向零序过电压及故障分量负序方向型匝间保护 本保护不仅作为发电机内部匝间短路的主保护,还可作为发电机内部相间短路及定子绕组开焊的保护。 5.2.2.1保护原理 发电机定子绕组发生内部短路,三相机端对中性点的电压不再平衡,因为机端电压互感器中性点与发电机中性点直接相连且不接地,所以互感器开口三角绕组输出纵向3U0,保护判据为: | 3U0 | > Uset 式中,Uset为保护的整定值。 发电机正常运行时,机端不平衡基波零序电压很小,但可能有较大的三次谐波电压,为降低保护定值和提高灵敏度,保护装置中增设三次谐波阻波功能。 为保证匝间保护的动作灵敏度,纵向零序电压的动作值一般整定较小,为防止外部短路时纵向零序不平衡电压增大造成保护误动,须增设故障分量负序方向元件为选择元件,用于判别是发电机内部短路还是外部短路。 故障分量负序方向元件采用图5.2.1.2所示的逻辑,方案二的综合框图见图5.2.2。 发电机并网后运行时,纵向零序电压元件及故障分量负序方向元件组成“与”门实现匝间保护;在并网前,因ΔI2=0,则故障分量负序方向元件失效,仅由纵向零序电压元件经短延时t1实现匝间保护。并网后不允许纵向零序电压元件单独出口,为此以过电流I>Iset闭锁该判据,固定Iset=0.06In。

&&&&

图5.2.2 匝间保护方案二逻辑框图5.2.3高灵敏零序电流型横差保护 可编辑范本

高灵敏零序电流型横差保护,作为发电机内部匝间、相间短路及定子绕组开焊的主保护。 5.2.3.1保护原理 本保护检测发电机定子多分支绕组的不同中性点连线电流(即零序电流)3I0

中的基波成分,保护判据为:

判据1(无制动特性): Iop  Iset, Iset为动作电流的整定值,见后 判据2(有制动特性): Iop  Iop.0 ( Ires  Ires.0 时)

0.0.0.0.)(opresresresopopIIIISII ( Ires > Ires.0 时)

式中:Iop为横差电流,Iop.0为横差最小动作电流整定值,Ires为制动电流(取机端三相电流最大值),Ires.0为最小制动电流整定值,S为比率制动特性的斜率。 判据1、2均可单独构成横差保护,用户可通过控制字进行选择。 发电机正常运行时,接于两中性点之间的横差保护,不平衡电流主要是基波,在外部短路时,不平衡电流主要是三次谐波成分,为降低保护定值和提高灵敏度,保护中还增加有三次谐波阻波功能。横差保护瞬时动作于出口,当转子发生一点接地时,横差保护经延时t动作于出口,t一般整定为0.5s。该方案的综合逻辑框图如图5.2.3。

&&&t

5.3 变压器(发-变组、高厂变、励磁变)差动保护 比率制动式差动保护是变压器(发-变组、高厂变、励磁变)的主保护,能反映变压器内部相间短路故障、高压侧单相接地短路及匝间层间短路故障;保护能正确区分励磁涌流、过励磁故障。 保护采取自适应提高定值的方式,防止外部故障时由于TA饱和引起差动误动,当差流中的三次谐波与基波的比值大于某一定值时,自动提高比率制动差动的动作值、改变比率制动系数和最小制动电流,进一步提高保护的可靠性。 发-变组保护装置最多可实现6侧差动,动作特性图如下: 可编辑范本

2 n n制动电流( res)

动作电流( op)

res.0 图5.3.1 比率差动动作特性图 图中阴影部分要经过励磁涌流判别、TA断线判别和TA饱和判别后才出口,双阴影部分只要经过励磁涌流判别就出口。 5.3.1比率差动原理 差动动作方程如下 Iop > Iop.0 ( Ires  Ires.0) Iop  Iop.0 + S(Ires – Ires.0) ( Ires > Ires.0 ) (5-3-1)

Ires >1.2 In

Iop  1.2In + 0.8(Ires –1.2 In) ( Ires >1.2 In ) (5-3-2)

Iop为差动电流,Iop.0为差动最小动作电流整定值,Ires为制动电流,Ires.0为最小制动电流整定值,S为比率制动特性斜率,In为基准侧电流互感器的额定二次电流,各侧电流的方向都以指向变压器为正方向。 对于两侧差动:

Iop = | •I1 + •I2 | (5-3-3) Ires = |•I1 - •I2| / 2 (5-3-4) 对于三侧及以上差动:

Iop = | •I1 +•I2 +…+ •In | (5-3-5) Ires = max{ |•I1|,|•I2|,…,|•In| } (5-3-6) 式中:3≤n≤6,•I1,•I2,。。。•In分别为变压器各侧电流互感器二次侧的电流。 判据(5-3-1)为低定值的比率制动差动,判据(5-3-2)为高定值比率制动差动。 5.3.2 励磁涌流判别 装置提供两种励磁涌流识别判据,用户可根据需要由控制字进行选用,该控可编辑范本

制字设为“1”时,励磁涌流判据为波形畸变判据;该控制字设为“0”时,励磁涌流判据为二次谐波判据。 5.3.2.1二次谐波判据 保护利用三相差动电流中的二次谐波分量作为励磁涌流闭锁判据。 判别方程如下:

1.22.opopIKI (5-3-7)

式中:Iop.2为A,B,C三相差动电流中最大二次谐波电流,K2为二次谐波制动系数,Iop.1为三相差动电流中最大基波电流。 该判据闭锁方式为“或”闭锁,即涌流满足(5-3-7)式,同时闭锁三相保护。

5.3.2.2波形畸变判据 保护利用每相差流波形的畸变作为励磁涌流闭锁判据。 判别方程如下: Ssum+ > K * Ssum— (5-3-8) 式中:Ssum+为差动电流采样点的不对称度值, Ssum-为对应差动电流的对称度值,K为某一固定系数。 该判据闭锁方式为“或”闭锁,即任一相涌流满足(5-3-8)式,同时闭锁三相保护。 5.3.3 TA饱和判别 保护利用每相差流中的三次谐波分量作为TA饱和闭锁判据。 判别方程如下: I3 > K3 * I1 (5-3-9) 式中:I3为每相差流中三次谐波电流,K3为三次谐波比例系数(装置内部固定,不需整定),I1为对应基波电流。 任一相差流满足(5-3-9)式,比率制动差动自动改变该相的最小动作电流和比率制动斜率,保证差动保护正确、可靠动作。 5.3.4 TA断线判据 当任一相差动电流大于0.15倍的额定电流时启动TA断线判别程序,满足下列条件认为TA断线:  本侧三相电流中至少一相电流不变;  最大相电流小于1.2倍的额定电流;  本侧三相电流中至少有一相电流为零。 5.3.5 差流速断保护 当任一相差动电流大于差流速断整定值时瞬时动作于跳各侧断路器。 5.3.6 差流越限 当差动电流超过一定值时,发告警信号。差流越限定值可整定。 5.4 励磁机比率制动式差动保护 比率制动式差动保护是励磁机内部相间短路故障的主保护,保护原理同发电机比率制动式差动保护。 5.5定子接地保护 作为发电机定子回路单相接地故障保护,当发电机定子绕组任一点发生单相接地时,该保护按要求的时限动作于跳闸或信号。 5.5.1 保护原理

相关文档
最新文档