初三有关圆的知识点
初三数学圆知识点归纳最新

初三数学圆知识点归纳最新(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!初三数学圆知识点归纳最新数学是研究数量、结构、变化、空间以及信息等概念的一门学科。
九年级下数学圆知识点总结

九年级下数学圆知识点总结在九年级下学期的数学课程中,圆是一个重要的几何形状。
学习圆的相关知识对于理解几何学和进一步解决问题至关重要。
在本文中,将对九年级下数学课程的圆相关知识点进行总结。
一、圆的定义和基本性质1. 圆的定义:圆是由平面上离定点距离相等的所有点组成的集合。
2. 圆的要素:圆心、半径和直径是圆的基本要素。
- 圆心:圆的中心点,通常用字母O表示。
- 半径:圆心到圆上任意一点的距离,通常用字母r表示。
- 直径:通过圆心的一条线段,它的两个端点在圆上,通常用字母d表示。
3. 圆的性质:- 圆上任意两点的距离等于半径的长度。
- 圆的直径是半径的两倍。
- 圆的周长等于直径乘以π(圆周率),即C = πd。
- 圆的面积等于半径平方乘以π,即A = πr²。
二、圆的位置关系和判定方法1. 圆的位置关系:- 同心圆:具有相同圆心但半径不同的圆。
- 内切圆:两个圆相交,且较小的圆完全位于较大的圆内部,二者只有一个公共点。
- 外切圆:两个圆相交,且较小的圆完全位于较大的圆外部,二者只有一个公共点。
- 相交圆:两个圆有两个不重叠的公共点。
- 相离圆:两个圆没有公共点。
2. 判定圆的方法:- 已知圆心和半径:根据圆的定义,可以通过圆心和半径确定一个圆。
- 已知圆上的三个点:三点确定一个圆,可以根据圆的性质绘制出圆来。
- 已知直径两端的点:通过两点绘制直径,以直径中点为圆心,直径的一半为半径即可确定圆。
三、圆的相关角度1. 弧度制和角度制:- 弧度制:用圆的弧长与半径的比值表示,一周为2π弧度。
- 角度制:以直角为90度,一周为360度。
2. 弧度和角度之间的转换:- 角度制转弧度制公式:弧度= (π/180) × 角度- 弧度制转角度制公式:角度= (180/π) × 弧度3. 圆心角和弧度:- 圆心角:以圆心为顶点的角。
- 弧度的定义:弧度是圆心角所对应的弧长与半径的比值。
四、圆与直线的位置关系1. 相切关系:- 切线:与圆只有一个交点的直线。
九年级圆的全部知识点归纳

九年级圆的全部知识点归纳圆是几何学中的重要概念,具有广泛的应用价值。
在九年级的学习中,我们需要对圆的相关知识进行全面的了解,包括定义、性质、定理等方面。
本文将对九年级学习中的圆相关知识点进行归纳总结。
一、定义与基本术语1. 圆:由平面上到定点的距离相等的所有点的轨迹称为圆。
2. 圆心:圆上所有点到圆心的距离相等,圆心是圆的中心点。
3. 半径:连接圆心和圆上任意一点的线段称为半径,用字母r 表示。
4. 直径:通过圆心并且两端点都在圆上的线段称为直径,直径的长度等于半径的两倍。
5. 弧:圆上的两点间的部分称为弧。
6. 弦:圆上任意两点之间的线段称为弦。
二、圆的性质与定理1. 弧长公式:在圆心角相等的情况下,弧长和半径的乘积是相等的。
即L = rθ,其中L为弧长,r为半径,θ为对应的圆心角的度数。
2. 弧度制:1个圆周角对应的弧长等于圆周长的2π,使用弧度制时,1个圆周角对应的弧长等于半径的2π,即1圆周角= 2π弧度。
3. 弦弧定理:在圆上,相等弧所对应的弦相等,弦所对应的弧相等。
4. 弦切定理:一条弦上的两个切线所截的弧相等。
5. 切线与半径的关系:切线与半径的垂直分离定理,切线切圆的点与圆心连线垂直。
三、圆的重要定理与推论1. 中心角定理:圆上的中心角的度数等于它所对应的弧的度数。
2. 弧度的定义与利用:弧度是角度制的单位,通过弧长和半径之间的比值得到。
利用弧度可以简便地描述与计算圆的相关问题。
3. 圆周角定理:圆周角的度数等于360度,对应的弧度等于2π。
4. 平行弦定理:平行弦所对应的圆心角相等。
5. 弦割定理:当两条弦交于圆的内部一点时,各自所对应的弧之积相等。
四、圆的应用圆具有广泛的应用价值,在日常生活中有很多应用场景。
比如在建筑领域,圆经常用于设计弧形的拱门、圆顶等;在工程测量中,圆常被用于测量水井、桥梁等的半径;在电子工程中,圆被运用于制作集成电路的微缩线路等。
总结:通过本文对九年级学习中的圆相关知识点进行归纳总结,我们了解了圆的定义与基本术语、性质与定理以及应用。
九年级下册圆的知识点总结

九年级下册圆的知识点总结九年级下册的数学学习内容涉及到圆的相关知识,本文将对圆的性质、计算公式以及与其他几何图形之间的关系进行总结。
一、圆的性质1. 定义:圆是由平面上与一个固定点的距离恒定的所有点组成的集合。
2. 圆心与半径:圆心是距离所有边界点相等的点,半径是由圆心指向边界上的任意一点的线段,圆心与半径共同决定了一个圆。
3. 直径与周长:直径是通过圆心的两个边界点的线段,它的长度是半径的两倍。
周长是围绕圆边界的长度,可以用2πr表示,其中r为圆的半径。
4. 弧与弦:弧是圆上两个点之间的一段曲线,弦是圆上两个点之间的一条直线段,弦的两个端点也在圆上。
二、圆的计算公式1. 圆的面积公式:圆的面积可以通过πr²计算,其中π为一个不变的常数,约等于3.14,r是圆的半径。
2. 弧长公式:弧长可以根据圆心角的大小和圆的半径计算,如果圆心角θ(单位为弧度)对应的圆弧长度为L,那么L = rθ。
3. 弦长公式:给定圆心角θ和圆的半径r,弦长可以通过2rsin(θ/2)计算得到。
三、圆与其他几何图形的关系1. 圆与直线:圆与直线可以有多种位置关系,可能相离、相切或相交。
当一条直线与圆相交时,相交的点可能有两个、一个或没有。
2. 圆与三角形:圆可以与三角形有共同的一条边,这种情况下,圆称为三角形的内切圆;也可以与三角形相切于三条边,这种情况下,圆称为三角形的外切圆。
3. 圆与正多边形:正多边形是指所有边和角相等的多边形,能够内切于一个圆。
正多边形的外接圆则是能够将正多边形的所有顶点都包含在内部的一个圆。
总结:九年级下册的圆的知识点主要包括圆的性质、计算公式和与其他几何图形之间的关系。
圆的性质包括圆心和半径、直径和周长、弧和弦;计算公式包括圆的面积公式、弧长公式和弦长公式;圆与其他几何图形的关系包括圆与直线、三角形和正多边形之间的关系。
通过对这些知识点的学习和理解,可以更好地掌握圆的相关概念和运用技巧,为解决与圆相关的问题提供帮助。
中考复习--圆专题(所有知识点和题型(大全),全)

《圆》题型分类资料一.圆的有关概念:1.下列说法:①直径是弦②弦是直径③半圆是弧,但弧不一定是半圆④长度相等的两条弧是等弧,正确的命题有( )A。
1个B.2个C。
3个D。
4个2.下列命题是假命题的是( )A.直径是圆最长的弦B.长度相等的弧是等弧C.在同圆或等圆中,相等的圆心角所对的弧也相等D.如果三角形一边的中线等于这条边的一半,那么这个三角形是直角三角形.3。
下列命题正确的是( )A.三点确定一个圆B.长度相等的两条弧是等弧C.一个三角形有且只有一个外接圆D。
一个圆只有一个外接三角形4.下列说法正确的是()A.相等的圆周角所对的弧相等B.圆周角等于圆心角的一半C.长度相等的弧所对的圆周角相等D.直径所对的圆周角等于90°5。
下面四个图中的角,为圆心角的是( )A.B.C.D.二.和圆有关的角:1. 如图1,点O是△ABC的内心,∠A=50 ,则∠BOC=_________图1 图22。
如图2,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数为( )A.116°B.64°C。
58°D。
32°3. 如图3,点O为优弧AB所在圆的圆心,∠AOC=108°,点D在AB的延长线上,BD=BC,则∠D的度数为A图3 图44。
如图4,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧BC上的一点,已知∠BAC=80°,那么∠BDC=_________度.5。
如图5,在⊙O中,BC是直径,弦BA,CD的延长线相交于点P,若∠P=50°,则∠AOD=.A图5 图66. 如图6,A,B,C,是⊙O上的三个点,若∠AOC=110°,则∠ABC=°.7.圆的内接四边形ABCD中,∠A:∠B:∠C=2:3:7,则∠D的度数为。
8。
若⊙O的弦AB所对的劣弧是优弧的13,则∠AOB=。
9。
圆的知识点初三

圆的知识点初三圆是初中数学中重要的几何图形之一,它具有许多独特的性质和特点。
本文将从圆的定义、圆的元素、圆的性质和圆的应用等方面进行探讨。
一、圆的定义和元素圆是平面上的一个几何图形,它由平面上距离某一点固定距离的所有点组成。
这个固定距离叫做圆的半径,记作r。
圆心是到圆上任意一点的距离都等于半径的点。
圆的元素有圆心、半径、直径和弧长等。
圆心是圆的中心点,通常用字母O表示。
半径是圆心到圆上任意一点的距离,用字母r表示。
直径是通过圆心的一条线段,它的两个端点在圆上,直径的长度等于半径的两倍,即d=2r。
弧长是圆上两点之间的弧所对应的弧长,用字母l表示。
二、圆的性质1. 圆的任意两点之间的距离都等于半径的长度,即圆上任意两点之间的距离是固定的。
2. 圆的直径是圆的特殊性质之一,它等于半径的两倍。
直径是圆的最长的线段,且通过圆心。
3. 圆的弧长是圆的另一个重要性质,弧长与圆心角的大小成正比。
当圆心角为360度时,弧长等于圆的周长。
4. 圆的周长是圆上所有点到圆心的距离之和,也称为圆的周长。
周长的计算公式为C=2πr,其中π≈3.14。
5. 圆的面积是圆所包围的平面区域的大小,面积的计算公式为A=πr^2,其中^2表示半径的平方。
三、圆的应用圆在生活中有着广泛的应用。
以下列举几个常见的例子:1. 圆形的轮胎和车轮:汽车、自行车等的轮胎和车轮都是圆形的,这是因为圆形的轮胎和车轮能更好地保证车辆的稳定性和平衡性。
2. 圆形的钟表和计时器:钟表和计时器通常都是圆形的,因为圆形的刻度能更直观地显示时间的流逝。
3. 圆形的光学器件:如镜片和透镜等,它们的表面通常是圆形的,这是因为圆形的表面能更好地聚焦光线。
4. 圆形的篮球场和足球场:篮球场和足球场的形状通常是圆形的,这是为了保证比赛的公平性和平衡性,使运动员能够更好地进行比赛。
圆是初中数学中的重要知识点之一。
通过对圆的定义、元素、性质和应用的了解,我们可以更好地理解和应用圆的相关概念,为日常生活和学习中的问题提供解决方案。
九年级圆知识点总结

九年级圆知识点总结圆是几何图形中最基本的图形之一,具有很多特殊性质和运用。
在数学课上,我们学习了关于圆的很多知识,包括圆的定义、性质、定理以及应用等。
下面就让我们一起来总结和回顾一下关于圆的知识点吧。
一、圆的定义及基本性质1. 圆的定义:圆是平面上到一个定点的距离恒定的点的集合。
2. 圆的基本性质:(1)圆的半径:以圆心O到圆上任一点A为边,画得的线段OA,叫做圆的半径。
(2)圆的直径:以圆心O为端点,以圆上一点A为端点的线段OA,叫做圆的直径。
直径是圆的最长线段,其长度等于半径的两倍。
(3)圆的周长:圆的周长又叫做圆周长,是指沿圆周的长度,记作L。
(4)圆的面积:圆的面积是指圆内部的面积,记作A。
二、圆的相关定理1. 圆心角与弦关系:如果圆上的两条弦所对的圆心角相等,则这两条弦的长度也相等。
2. 圆周角定理:圆周角是指以圆心为顶点的角,如果一个角的顶点在圆周上,这个角的两边是两条弦,则这个角的度数等于它所对的圆弧的度数。
3. 弧长定理:圆的圆周长等于360°角对应的圆弧长的长度。
4. 弧度制:弧度是表示弧长与半径的比值的单位,1弧度等于圆的半径长的弧所对的圆心角的单位面积。
5. 弦切线定理:如果一个弦高点C,它调节在大于直径EF的圆上,C在弦AB的内侧,则EC的平方等于EA*EB。
6. 余弦定理:余弦定理用于直角三角形,可据为a^2=b^2+c^2-2bc*cosA 。
7. 正弦定理:正弦定理用于三角形,可据为a/sinA=b/sinB。
8. 勾股定理:用于直角三角形,根据勾股定理可据为a^2+b^2=c^2。
三、圆的应用1. 圆的求面积和周长:圆的面积可以用公式πr²来表示(其中r代表圆的半径),圆的周长可以用公式2πr来表示。
2. 圆的切线、割线和相交定理:圆外一点与圆相交的两条切线长度相等的关系、圆内一点的切线长度和割线长度乘积相等的关系。
3. 圆的几何位置关系:关于圆的切线和圆的角,可以得到一定的证明和结论。
九年级数学圆的方程知识点

九年级数学圆的方程知识点圆的方程是数学中的一个重要知识点,它在几何学和代数学中都有广泛的应用。
本文将围绕九年级数学课程中的圆的方程知识点展开论述,从基础概念开始,逐步深入探讨。
一、圆的基础概念首先,我们需要了解圆的基础概念。
圆是平面上一组到中心点距离相等的点的集合。
这个中心点通常用字母O表示,我们称之为圆心。
而到圆心距离相等的这些点,就被称为圆上的点。
这些点的距离我们称之为圆的半径,用字母r表示。
二、圆的方程定义在代数学中,我们可以使用方程来表示圆。
圆的方程通常有两种形式:一种是标准方程,另一种是一般方程。
标准方程是指以坐标系的原点为圆心的圆方程,其形式为x² + y² = r²。
而一般方程则可以是(x-a)² + (y-b)² = r²的形式,其中(a,b)表示圆心的坐标。
三、确定圆的方程在实际问题中,我们常常需要确定一个圆的方程。
这时,可以利用已知条件与圆的方程相结合进行求解。
例如,已知圆心为(2,3),半径为5的圆,我们可以得到一般方程(x-2)² + (y-3)² = 25。
四、圆的相关性质在研究圆的方程时,了解其相关性质也是非常有意义的。
首先,圆的直径是通过圆心的一条线段,它的长度是半径的两倍。
其次,我们还可以通过圆的方程求解出圆与坐标轴的交点,这些交点称为圆的截距点。
五、圆的图象我们可以通过绘制圆的图象来直观地理解圆的性质。
绘制圆的图象可以先确定圆心的位置,然后根据半径的长度在平面上画出一个闭合的曲线。
这个曲线就是圆的图象。
在数学课堂上,老师通常会通过黑板上的绘图来演示,让学生深入了解圆的形态。
六、圆的方程与实际问题圆的方程在实际问题中有着广泛的应用。
例如,在建筑领域中,钢筋混凝土顶板的厚度可以用圆的方程来表达。
在工程计算中,圆的方程可以用于计算液体的体积、计算管道的长度等。
因此,学好圆的方程对于今后的学习和实践是非常重要的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三有关圆的知识点一
1、圆的有关概念:
(1)、确定一个圆的要素是圆心和半径。
(2)①连结圆上任意两点的线段叫做弦。
②经过圆心的弦叫做直径。
③圆上任意两点间的部分叫做圆弧,简称弧。
④小于半圆周的圆弧叫做劣弧。
⑤大于半圆周的圆弧叫做优弧。
⑥在同圆或等圆中,能够互相重合的弧叫做等弧。
⑦顶点在圆上,并且两边和圆相交的角叫圆周角。
⑧经过三角形三个顶点可以画一个圆,并且只能画一个,经过三角形三个顶点的圆叫做三角形的外接圆,三角形外接圆的圆心叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形,外心是三角形各边中垂线的交点;直角三角形外接圆半径等于斜边的一半。
⑨与三角形各边都相切的圆叫做三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆外切三角形,三角形的内心就是三角形三条内角平分线的交点。
2、圆的有关性质
(1)定理在同圆或等圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对的其余各组量都分别相等。
(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
(3)圆周角定理:一条弧所对的圆周角等于该弧所对的圆心角的一半。
推论1在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等。
推论2半圆或直径所对的圆周角都相等,都等于90 。
90 的圆周角所对的弦是圆的直径。
推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
(4)切线的判定与性质:判定定理:经过半径的外端且垂直与这条半径的直线是圆的切线。
性质定理:圆的切线垂直于经过切点的半径;经过圆心且垂直于切线的直线必经过切点;经过切点切垂直于切线的直线必经过圆心。
(5)定理:不在同一条直线上的三个点确定一个圆。
(6)圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长;切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角。
(7)圆内接四边形对角互补,一个外角等于内对角;圆外切四边形对边和相等;
(8)弦切角定理:弦切角等于它所它所夹弧对的圆周角。
(9)和圆有关的比例线段:相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。
切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
从圆外一点引圆的两条割线,这一点到每条割线与圆交点的两条线段长的积相等。
(10)两圆相切,连心线过切点;两圆相交,连心线垂直平分公共弦。
初三有关圆的知识点二
圆与圆的位置关系:(其中d表示圆心到圆心的距离,其中R、r表示两个圆的半径且R≥r)
两圆外离Û d>R+r;
两圆外切Û d=R+r;
两圆相交Û R-r
两圆内切Û d=R-r;
两圆内含Û d
初三有关圆的知识点三
一、圆的基本性质
1.圆的定义(两种)
2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3.“三点定圆”定理
4.垂径定理及其推论
5.“等对等”定理及其推论
5. 与圆有关的角:⑴圆心角定义(等对等定理)
⑵圆周角定义(圆周角定理,与圆心角的关系)
⑶弦切角定义(弦切角定理)
二、直线和圆的位置关系
1.三种位置及判定与性质:
2.切线的性质(重点)
3.切线的判定定理(重点)。
圆的切线的判定有⑴…⑵…
4.切线长定理
三、圆换圆的位置关系
1.五种位置关系及判定与性质:(重点:相切)
2.相切(交)两圆连心线的性质定理
3.两圆的公切线:⑴定义⑵性质
四、与圆有关的比例线段
1.相交弦定理
2.切割线定理
五、与和正多边形
1.圆的内接、外切多边形(三角形、四边形)
2.三角形的外接圆、内切圆及性质
3.圆的外切四边形、内接四边形的性质
4.正多边形及计算
中心角:
内角的一半: (右图)
(解Rt△OAM可求出相关元素, 、等)
六、一组计算公式
1.圆周长公式
2.圆面积公式
3.扇形面积公式
4.弧长公式
5.弓形面积的计算方法
6.圆柱、圆锥的侧面展开图及相关计算
七、点的轨迹
六条基本轨迹
八、有关作图
1.作三角形的外接圆、内切圆
2.平分已知弧
3.作已知两线段的比例中项
4.等分圆周:4、8;6、3等分
九、基本图形
十、重要辅助线
1.作半径
2.见弦往往作弦心距
3.见直径往往作直径上的圆周角
4.切点圆心莫忘连
5.两圆相切公切线(连心线)
6.两圆相交公共弦。