解三角形测试题(附答案)
(完整版)解三角形练习题(含答案),推荐文档

2、已知
中,
,
,则角 等于
A.
B.
C.
D.
3、在△ABC 中,a=x,b=2,B=45°,若这样的△ABC 有两个,则实数 x 的取值范围是( )
A.(2,+∞)
B.(0,2)
C.(2, )
D.( )
A.等边三角形 C.锐角三角形
B.直角三角形 D.钝角三角形
11、在△ 中,
,
, ,则此三角形的最大边长为(
,
,若
,则角 的大小为 ( )
13、(2012 年高考(天津理))在
中,内角 , , 所对的边分别是
,已知
,
,则
( )
A.
B.
C.
D.
14、已知△ABC 中, = , = ,B=60°,那么满足条件的三角形的个数为(
)
A、1
B、2
C、3
D、0
A.
B.
C.
D.
15、在钝角
中,a,b,c 分别是角 A,B,C 的对边,若 (
的图象有三个交点;
C.3
D.4
()
21、 若△ABC 的对边分别为 、 、C 且
,
,
A、5
B、25
,则 b=(
)
C、
D、
22、设 A、B、C 是△ABC 三个内角,且 tanA,tanB 是方程 3x2-5x+1=0 的两个实根,那么△ABC 是( ) A.钝角三角形 B.锐角三角形 C.等腰直角三角形 D.以上均有可能
建议收藏下载本文,以便随时学习!
所以
的面积
.
38、解:(1)由
得
sinA=2sinC sinA
《 解直角三角形 》专项训练测试题(二)及答案

万安中学2017年中考总复习绝密资料2017年中考总复习解题能力提升训练《解直角三角形》专项训练测试题(二)时间:45分钟满分:100分 2017.4.24一、选择题(每小题5分,共40分)1.如图,在直角△BAD中,延长斜边BD到点C,使DC=BD,连接AC,若tanB=,则tan∠CAD的值()A.B.C.D.2.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE ⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.3.在△ABC中,AB=12,AC=13,cos∠B=,则BC边长为()A.7 B.8 C.8或17 D.7或174.如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是()A.B. C. D.25.如图,若△ABC 和△DEF 的面积分别为S 1、S 2,则( )A .S 1=S 2B .S 1=S 2C .S 1=S 2D .S 1=S 26.在Rt △ACB 中,∠C=90°,AB=10,sinA=,cosA=,tanA=,则BC 的长为( )A .6B .7.5C .8D .12.57.在直角三角形ABC 中,已知∠C=90°,∠A=40°,BC=3,则AC=( )A .3sin40°B .3sin50°C .3tan40°D .3tan50°8.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A .1,2,3B .1,1,C .1,1,D .1,2,二、填空题(每小题5分,共50分)9.已知在△ABC 中,AB=AC=8,∠BAC=30°,将△ABC 绕点A 旋转,使点B 落在原△ABC 的点C 处,此时点C 落在点D 处,延长线段AD ,交原△ABC 的边BC 的延长线于点E ,那么线段DE 的长等于 .10.如图,在Rt △ABC 中,∠ACB=90°,AC=8,BC=6,CD ⊥AB ,垂足为D ,则tan ∠BCD 的值是 .11.BD 为等腰△ABC 的腰AC 上的高,BD=1,tan ∠ABD=,则CD 的长为 .12.在△ABC 中,AB=AC=5,sin ∠ABC=0.8,则BC= .13.请运用你喜欢的方法求tan75°= .14.如图,在Rt △ABC 中,∠C=90°,∠B=37°,BC=32,则AC= .(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)15.如图,在△ABC中,∠A=30°,∠B=45°,AC=,则AB的长为.16.△ABC中,AB=4,BC=3,∠BAC=30°,则△ABC 的面积为.17.在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为.18.如图,Rt△ABC中,∠C=90°,∠B=30°,BC=6,则AB的长为.三、解答题(10分)19.阅读下面的材料,先完成阅读填空,再按要求答题:sin30°=,cos30°=,则sin230°+cos230°= ;①sin45°=,cos45°=,则sin245°+cos245°= ;②sin60°=,cos60°=,则sin260°+cos260°= .③…观察上述等式,猜想:对任意锐角A,都有sin2A+cos2A= .④(1)如图,在锐角三角形ABC中,利用三角函数的定义及勾股定理对∠A证明你的猜想;(2)已知:∠A为锐角(cosA>0)且sinA=,求cosA.参考答案一、选择题1.D;2.A;3.D;4.C;5.C;6.A;7.D;8.D;二、填空题9.4﹣4;10.;11.2或2﹣或;12.6;13.2+;14.24;15.3+;16.2+或2﹣;17.6或2或4;18.4;三、解答题19..1;1;1;1。
解三角形专项练习(含解答题)

解三角形专练1.在ABC △中,已知4,6a b ==,60B =,则sin A 的值为2.在ABC ∆中,若0120,2==A b ,三角形的面积3=S ,则三角形外接圆的半径为( )A.B .2 C..43.边长为8,7,5的三角形的最大角与最小角的和是( ) A . 120 B . 135 C . 90 D . 1504.在△ABC 中,已知a =4,b =6,C =120°,则边C 的值是( ) A .8 B. C. D.5.在三角形ABC 中,若1tan tan tantan ++=B A B A ,则C cos 的值是B. 22C. 21D. 21-6.在△ABC 中,若22tan tan b a B A =,则△ABC 的形状是( )A .直角三角形B .等腰或直角三角形C .不能确定D .等腰三角形7.在△ABC 中,角,,A B C 所对的边分别为,,a b c .若22265b c a bc+-=,则 sin()B C +=( )A .-45 B.45 C .-35 D.358.设△ABC 的三内角A 、B 、C 成等差数列,sinA 、sinB 、 sinC 成等比数列,则这个三角形的形状是( ) A.直角三角形 B.钝角三角形 C.等腰直角三角形 D.等边三角形9.在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,若18=a ,24=b ,︒=45A ,则这样的三角形有( )A.0个 B. 两个 C. 一个 D. 至多一个10.已知锐角A 是ABC ∆的一个内角,,,a b c 是三角形中各角的对应边,若221sin cos 2A A -=,则下列各式正确的是( )A. 2b c a +=B. 2b c a +<C. 2b c a +≤D. 2b c a +≥11.在ABC ∆中,已知30,4,34=∠==B AC AB ,则ABC ∆的面积是A .34B .38 C.34或38D .312.在ABC ∆中,角角,,A B C 的对边分别为,,a b c ,若22a b -=且sin C B =,则A 等于A .6πB .4π C .3πD .23π13.若∆ABC 的三角A:B:C=1:2:3,则A 、B 、C 分别所对边a :b :c=( )A.1:2:3B.2 D. 1:2: 14.△ABC 的三个内角A,B,C 的对边分别a ,b ,c ,且a cosC,b cosB,c cosA 成等差数列,则角B 等于( )A 30B .60C 90 D.12015.在∆ABC 中,三边a ,b,c 与面积S 的关系式为2221()4Sa b c =+-,则角C 为( )A .30B 45C .60D .90 16.△ABC 中,a b sin B =2,则符合条件的三角形有( ) A .1个 B .2个 C .3个D .0个17.设∆ABC 的内角A,B ,C 所对边的长分别为a,b,c ,若b+c= 2a,.3sinA=5sinB ,则角C=( ) A .3πB .23πC .34π D.56π18.若三角形ABC 中,sin(A +B)sin(A -B)=sin 2C ,则此三角形的形状是( ) A .等腰三角形 B .直角三角形 C .等边三角形D .等腰直角三角形19.已知两座灯塔A 、B 与C 的距离都是a ,灯塔A 在C 的北偏东20°,灯塔B 在C 的南偏东40°,则灯塔A 与灯塔B 的距离为 ( )A .a B.2aD20.在△ABC 中,若cos cos A bB a =,则△ABC 的形状( ) A .直角三角形 B .等腰或直角三角形C .不能确定D .等腰三角形21.已知ABC ∆的内角A B C ,,的对边分别为a b c ,,,且120c b B ==︒,则ABC ∆的面积等于________.22.在△ABC 中,角A B C ,,的对边分别为a b c ,,,且a b c <<2sin b A =. 则角B 的大小为_______;23.在△ABC 中,sin :sin :sin 3:2:4A B C =,则cos C 的值为________. 24.在ABC ∆中.若1b =,c =23C π∠=,则a=___________。
解三角形练习题(含答案)

一、选择题1、在△ABC中,角A、B、C的对边分别为、、,若=,则△ABC的形状为()A、正三角形B、直角三角形C、等腰三角形或直角三角形D、等腰直角三角形2、已知中,,,则角等于A .B . C. D .3、在△ABC中,a=x,b=2,B=45°,若这样的△ABC有两个,则实数x的取值范围是()A.(2,+∞) B.(0,2)C.(2,) D.()4、,则△ABC的面积等于A . B. C .或 D .或5、在中,,则角C的大小为A.300B.450C.600D.12006、的三个内角、、所对边长分别为、、,设向量,,若,则角的大小为()A. B . C. D.7、若ΔABC的内角A、B、C所对的边a、b、c满足,则ab的值为()A. B. C.1 D.8、在中,若,且,则是( )A.等边三角形B.等腰三角形,但不是等边三角形C.等腰直角三角形D.直角三角形,但不是等腰三角形9、在中,所对的边分别是且满足,则=A .B . C. D .10、若α是三角形的内角,且sin α+cos α=,则这个三角形是( ).A.等边三角形 B.直角三角形C.锐角三角形 D.钝角三角形11、在△中,,,,则此三角形的最大边长为()A. B. C. D.12、在△ABC中, 角A、B、C的对边分别为a、b、c,若(a2+c2b2)tanB=ac,则角B=()A .B .C .或D .或13、(2012年高考(天津理))在中,内角,,所对的边分别是,已知,,则()A .B .C . D.14、已知△ABC中,=,=,B=60°,那么满足条件的三角形的个数为()A、1B、2C、3D、015、在钝角中,a,b,c分别是角A,B,C的对边,若,则最大边c的取值范围是( ) (A .B .C . D.16、(2012年高考(上海理))在中,若,则的形状是()A.锐角三角形. B.直角三角形. C.钝角三角形. D.不能确定.17、在△ABC中,a=15,b=10, ∠A=,则()A. B . C. D .18、在△ABC中,内角A,B,C的对边分别是a,b,c,若,,则角A= ()A. B . C . D .19、()A. B.C.D.20、给出以下四个命题:(1)在中,若,则;(2)将函数的图象向右平移个单位,得到函数的图象;(3)在中,若,,,则为锐角三角形;(4)在同一坐标系中,函数与函数的图象有三个交点;其中正确命题的个数是() A.1 B.2 C.3 D.421、若△ABC的对边分别为、、C且,,,则b=()A、5B、25C 、D 、22、设A、B、C是△ABC三个内角,且tanA,tanB是方程3x2-5x+1=0的两个实根,那么△ABC是()A.钝角三角形 B.锐角三角形 C.等腰直角三角形 D.以上均有可能23、设△ABC的内角A, B, C所对的边分别为a, b, c, 若, 则△ABC的形状为(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定24、在中,若,则此三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.任意三角形25、在△ABC中,已知A=,BC=8,AC=,则△ABC的面积为▲A.B.16 C.或16 D .或26、在△ABC中,角A,B,C所对的边长分别为a,b,c,且满足c sin A =a cos C,则sin A+sin B的最大值是( )A.1B. C. D.3二、填空题27、在△ABC中,角A、B、C的对边分别为a、b、c, 已知A=, a=, b=1,则c= .28、已知△ABC的面积 .29、在△ABC中,角A、B、C所对的对边分别为a、b、c ,若,则A= 。
解三角形练习题及答案

解三角形练习题及答案1.已知△ABC中,三内角A、B、C的度数成等差数列,边a、b、c依次成等比数列.则△ABC是()A.直角三角形B.等边三角形C.锐角三角形D.钝角三角形2.△ABC中,若sin2A+sin2B>sin2C,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定3.在△ABC中,内角A,B,C所对的边分别是a,b,c,若a=ccosB,则△ABC是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形4.在△ABC中,若•=•=•,则该三角形是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形5.在△ABC中,acosA=bcosB,则三角形的形状为()A.直角三角形B.等腰三角形或直角三角形C.等边三角形D.等腰三角形6.在△ABC中,若b=asinC,c=acosB,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形7.在△ABC中,角A、B、C所对的边分别是a、b、c,若==则△ABC的形状是()A.等边三角形B.等腰直角三角形C.直角非等腰三角形D.等腰非直角三角形8.在△ABC中,P是BC边中点,若,则△ABC的形状是()A.等边三角形B.直角三角形C.等腰直角三角形D.等腰三角形但不一定是等边三角形9.在△ABC中,若(b﹣bcosB)sinA=a(sinB﹣sinCcosC),则这个三角形是()A.等腰直角三角形B.底角不等于45°的等腰三角形C.等腰三角形或直角三角形D.锐角不等于45°的直角三角形10.在△ABC中,sinA•sinB<cosA•cosB,则这个三角形的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形11.△ABC的三个内角A、B、C成等差数列,,则△ABC一定是()A.直角三角形B.等边三角形C.非等边锐角三角形D.钝角三角形12.若O是△ABC所在平面内的一点,且满足,则△ABC的形状是()A.等边三角形B.等腰三角形C.等腰直角三角形D.直角三角形13.设△ABC的内角A,B,C的对边分别为a,b,c,若a=(b+c)cosC,则△ABC的形状是()A.等腰三角形B.等边三角形C.直角三角形D.锐角三角形14.在△ABC中,∠ABC=30°,AB=,BC边上的中线AD=1,则AC的长度为()A.1或B.C.D.1或15.如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10m到位置D,测得∠BDC=45°,则塔AB的高是()(单位:m)A.10B.10C.10D.1016.如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个观测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30米,并在C测得塔顶A的仰角为60°,则塔的高度AB为()A.15米B.15米C.15(+1)米D.15米17.在△ABC中,已知AB=4,cosB=,AC边上的中线BD=,则sinA=()A. B.C. D.18.在△ABC中,AB=AC,AC边上的中线长为9,当△ABC的面积最大时,AB的长为()A.9 B.9C.6D.619.在△ABC中,如果cos(B+A)+2sinAsinB=1,那么△ABC的形状是.20.给出下列命题:①在△ABC中,若,则△ABC是钝角三角形;②在△ABC中,若cosA•tanB•cotC<0,则△ABC是钝角三角形;③在△ABC中,若sinA•sinB<cosA•cosB,则△ABC是钝角三角形;④在△ABC中,若acosA=bcosB,则△ABC是等腰三角形.其中正确的命题序号是.21.在△ABC中,点D是BC的中点,若AB⊥AD,∠CAD=30°,BC=2,则△ABC的面积为.22.在三角形ABC中,已知AB=4,AC=3,BC=6,P为BC中点,则三角形ABP的周长为.23.在△ABC中,已知=,且cos(A﹣B)+cosC=1﹣cos2C.(1)试确定△ABC的形状;(2)求的范围.24.设△ABC中的内角A,B,C所对的边分别为a,b,c,已知a=2,(a+b)(sinA﹣sinB)=(c﹣b)sinC.(Ⅰ)若b=2,求c边的长;(Ⅱ)求△ABC面积的最大值,并指明此时三角形的形状.25.设△ABC的内角A,B,C所对的边a,b,c,=,=若,共线,请按以下要求作答:(1)求角A的大小;(2)当BC=2,求△ABC面积S的最大值,并判断S取得最大值时△ABC的形状.26.如图,某炮兵阵地位于A点,两观察所分别位于C,D两点.已知△ACD为正三角形,且DC=km,当目标出现在B点时,测得∠BCD=75°,∠CDB=45°,求炮兵阵地与目标的距离.27.在数学研究性学习活动中,某小组要测量河对面C和D两个建筑物的距离,作图如下,所测得的数据为AB=50米,∠DAC=75°,∠CAB=45°,∠DBA=30°,∠CBD=75°,请你帮他们计算一下,河对岸建筑物C、D的距离?28.如图,△ABC中,∠ABC=90°,点D在BC边上,点E在AD上.(l)若点D是CB的中点,∠CED=30°,DE=1,CE=求△ACE的面积;(2)若AE=2CD,∠CAE=15°,∠CED=45°,求∠DAB的余弦值.【答案】1-5BDCDB 6-10CBACB 11-15BDAAB 16-18DAD 19.等腰三角形20.①②③21.222.7+23.解:(1)由=,可得cos2C+cosC=1﹣cos(A﹣B)得cosC+cos(A﹣B)=1﹣cos2C,cos(A﹣B)﹣cos(A+B)=2sin2C,即sinAsinB=sin2C,根据正弦定理,ab=c2,①,又由正弦定理及(b+a)(sinB﹣sinA)=asinB可知b2﹣a2=ab,②,由①②得b2=a2+c2,所以△ABC是直角三角形,且B=90°;(2)由正弦定理化简==sinA+sinC=sinA+cosA=sin(A+45°),∵≤sin(A+45°)≤1,A∈(0,)即1<sin(A+45°),则的取值范围是(1,].24.解:(I)由正弦定理得:(a+b)(a﹣b)=(c﹣b)c,即a2﹣b2=c2﹣bc因为a=2且b=2,所以解得:c=2.(II)由(I)知,则A=60°因为a=2,∴b2+c2﹣bc=4≥2bc﹣bc=bc,∴,此时三角形是正三角形25.解:(1)∵∥,∴sinA•(sinA+cosA)﹣=0.∴+sin2A﹣=0,即sin2A﹣cos2A=1,即sin(2A﹣)=1,∵A∈(0,π),∴2A﹣∈(﹣,),∴2A﹣=,A=.(2)由余弦定理得:4=b2+c2﹣bc,又S△ABC=bcsinA=bc,而b2+c2≥2bc⇒bc+4≥2bc⇒bc≤4,(当且仅当b=c时取等号)∴S△ABC=bcsinA=bc≤×4=.当△ABC的面积取最大值时,b=c,又A=,∴此时△ABC为等边三角形.26.解:∠CBD=180°﹣∠CDB﹣∠BCD=180°﹣45°﹣75°=60°,在△BCD中,由正弦定理,得:BD==.在△ABD中,∠ADB=45°+60°=105°,由余弦定理,得AB2=AD2+BD2﹣2AD•BDcos105°=3+()2﹣2×××=5+2.∴AB=.27.解:在ABD中,∴,∵A+B+C=π,∴,所以a2=b2+c2﹣2bc•cosA,△ABD为为等腰三角形,即在中,∴bc=4,∴,由于∠ACB=30°,由正弦定理可得,计算得;在△ACD中,∠DAC=75°,,AD=50,根据余弦定理可得=28.解:(1)在△CDE中,CD==,解得CD=1,在直角三角形ABD中,∠ADB=60°,AD=2,AE=1,S△ACE===;(2)设CD=a,在△ACE中,=,CE==()a,在△CED中,=,sin∠CDE===﹣1,则cos∠DAB=cos(∠CDE﹣90°)=sin∠CDE=﹣1.。
解三角形基础练习题(含答案)

解三角形基础练习题(含答案)一、选择题:1、在ABC ∆中,已知8a =,60B =︒,75C =︒,则b 的值为( C )A. B. C. D.3232、在ABC ∆中,15a =,10b =,60A =︒,则cos B =( B )3、在ABC ∆中,222a c b ab -+=,则C =( A )A.60︒B.45︒或135︒C.120︒D.30︒4、在△ABC 中,若60A ∠=,45B ∠=,BC =AC = BA. B. C. D. 25、已知ABC ∆中,C B A ∠∠∠,,的对边分别为a,b,c 若a=c=26+且75A ∠=,则b=AA. 2 B .4+ C .4— D 6、若△ABC 的内角,,,A B C 满足6sin 4sin 3sin A B C ==,则cos B =( D )A B .34C D .1116 7、在△ABC 中,若222sin sin sin A B C +<,则△ABC 的形状是(A )A 、钝角三角形B 、直角三角形C 、锐角三角形D 、不能确定二、填空题:8、在△ABC 中,若a=3,b=3,∠A=3π,则∠C 的大小为_________。
【答案】︒909、在△ABC 中,已知∠BAC=60°,∠ABC=45°,3=BC ,则AC=_______.【答案】2.10、设△ABC 的内角A B C 、、 的对边分别为a b c 、、,且1cos 4a b C ==1,=2,,则sin B = 【答案】41511、在三角形ABC 中,角A,B,C 所对应的长分别为a ,b ,c ,若a=2 ,B=6π,则b= .【答案】2.12、在△ABC 中,三边a 、b 、c 所对的角分别为A 、B 、C ,若2220a b c +-+=,则角C 的大小为 .34π(或135)13、△ABC 的三个内角A 、B 、C 所对边的长分别为a 、b 、c ,已知2,3a b ==,则sin sin()A A C =+ .2314、 若△ABC 的面积为3,BC=2,C=︒60,则边AB 的长度等于_____________. 解析:12sin 603,22s AC AC =⋅⋅⋅==, 所以△ABC 为等边三角形,故边AB 的长度等于2.答案应填2.15:在ABC ∆中,已知6:5:4)(:)(:)(=+++b a a c c b ,则ABC ∆中最大内角 。
(完整版)解三角形高考大题-带答案

解三角形高考大题,带答案1. (宁夏17)(本小题满分12分)如图,ACD △是等边三角形,ABC △是等腰直角三角形,90ACB =∠,BD 交AC 于E ,2AB =.(Ⅰ)求cos CAE ∠的值; (Ⅱ)求AE .解:(Ⅰ)因为9060150BCD =+=∠,CB AC CD ==,所以15CBE =∠.所以6cos cos(4530)4CBE =-=∠. ···················································· 6分 (Ⅱ)在ABE △中,2AB =, 由正弦定理2sin(4515)sin(9015)AE =-+.故2sin 30cos15AE=124⨯== 12分2. (江苏17)(14分) 某地有三家工厂,分别位于矩形ABCD 的顶点A 、B 及CD 的中点P 处,已知AB=20km ,BC=10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A 、B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO 、BO 、OP ,设排污管道的总长为ykm 。
(1)按下列要求写出函数关系式:①设∠BAO=θ(rad ),将y 表示成θ的函数关系式; ②设OP=x (km ),将y 表示成x 的函数关系式;(2)请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短。
解直角三角形练习题(带答案)

解直角三角形—题集1.如图,在地面上的点处测得树顶的仰角为度,米,则树高为( ).A.米B.米C.米D.米【答案】A【解析】米.【标注】【知识点】仰角与俯角2.如图,斜坡,坡顶到水平地面的距离为米,坡底为米,在处,处分别测得顶部点的仰角为,,求的长度.(结果保留根号).【答案】的长度为米.【解析】设米,则米,由题意得,四边形为矩形,∴,在中,∴ ,在中,,∴,∴,解得,,∴.答:的长度为米.【标注】【知识点】仰角与俯角A.的值越小,梯子越陡B.的值越小,梯子越陡C.的值越小,梯子越陡D.陡缓程度与的函数值无关3.如图,梯子跟地面的夹角为,关于的三角函数值与梯子的倾斜程度之间,叙述正确的是().【答案】B【标注】【知识点】坡度4.某地的一座人行天桥如图所示,天桥高为米,坡面的坡度为,文化墙在天桥底部正前方米处(的长),为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为.(1)(2)若新坡面坡角为,求坡角度数.有关部门规定,文化墙距天桥底部小于米时应拆除,天桥改造后,该文化墙是否需要拆除?请说明理由.(参考数据:,)【答案】(1)(2).该文化墙需要拆除,证明见解析.【解析】(1)(2)∵新坡面坡角为,新坡面的坡度为,∴,∴.作于点,则米,∵新坡面的坡度为,∴,解得,米,∵坡面的坡度为,米,∴米,∴米,又∵米,∴米米,故该文化墙需要拆除.【标注】【知识点】坡度游船港口海警船北(1)(2)5.一艘观光游船从港口以北偏东的方向出港观光,航行海里至处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东方向,马上以海里每小时的速度前往救援.求点到直线的距离.求海警船到达事故船处所需的大约时间.(温馨提示:,)【答案】(1)(2)海里.小时.【解析】游船港口海警船北(1)(2)如图,过点作交延长线于.在中,∵,,海里,∴点到直线距离海里.在中,∵,,∴(海里),∴海警船到达事故船处所需的时间大约为:(小时).【标注】【知识点】方位角在锐角三角函数中的应用6.一副直角三角板按如图所示放置,点在的延长线上,,,,,,则的长为 .【答案】【解析】过点作于点,在中,,,,∴.∵,∴.,在中,,,∴,∴,∴.【标注】【知识点】三角板拼接问题7.如图,是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧与墙平行且距离为米,一辆小汽车车门宽为米,当车门打开角度为时,车门是否会碰到墙? .(填“是”或“否”)请简述你的理由 .(参考数据:,,).【答案】否 ; 点到的距离小于与墙的距离【解析】过点作,垂足为点,如图.在中,∵,米,∴米,∵汽车靠墙一侧与墙平行且距离为米,∴车门不会碰到墙(点到的距离小于与墙的距离).故答案为:否;点到的距离小于与墙的距离.【标注】【知识点】测量物体之间的距离8.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为米,坡面上的影长为米.已知斜坡的坡角为,同一时刻,一根长为米、垂直于地面放置的标杆在地面上的影长为米,求树的高度.【答案】米.【解析】延长交延长线于点,则,作于,在中,,,∴(米),(米),在中,∵同一时刻,一根长为米、垂直于地面放置的标杆在地面上的影长为米,(米),,∴(米),∴(米),在中,(米),故答案为:米.【标注】【知识点】影子问题(1)(2)9.如图,在中,,点是边的中点,,.求和的长.求的值.【答案】(1)(2),..【解析】(1)(2)∵点是边的中点,且∴.∵,∴.∵在中,,,∴.在中,,,∴.故,.如图,作交于点.∵在中,,,∴设,,由勾股定理可得,解得,∴.在中,∵,,∴.即.【标注】【知识点】解直角三角形的综合应用10.如图,在四边形中,,于点,已知,,,求的长.【答案】.【解析】过点作于.∵在中,,,∴,.∵,,∴,∵,∴.∴在中,,,∴,.又∵在中,,,.∴.【标注】【知识点】解直角三角形的综合应用11.如图,在中,,,=, ,求.【答案】.【解析】 在中,,,,,,由勾股定理得:,∵,∴,∵∴,,∴.【标注】【知识点】解直角三角形的综合应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 -
解三角形测试题
一、选择题:
1、ΔABC中,a=1,b=3, ∠A=30°,则∠B等于 ( )
A.60° B.60°或120° C.30°或150° D.120°
2、符合下列条件的三角形有且只有一个的是 ( )
A.a=1,b=2 ,c=3 B.a=1,b=2 ,∠A=30°C.a=1,b=2,∠A=100° D.b=c=1, ∠B=45°
3、在锐角三角形ABC中,有 ( )
A.cosA>sinB且cosB>sinA B.cosA
4、若(a+b+c)(b+c-a)=3abc,且sinA=2sinBcosC, 那么ΔABC是 ( )
A.直角三角形 B.等边三角形 C.等腰三角形 D.等腰直角三角形
5、设A、B、C为三角形的三内角,且方程(sinB-sinA)x2+(sinA-sinC)x +(sinC-sinB)=0有等根,
那么角B ( )
A.B>60° B.B≥60° C.B<60° D.B ≤60°
6、满足A=45,c=6 ,a=2的△ABC的个数记为m,则a m的值为 ( )
A.4 B.2 C.1 D.不定
7、如图:D,C,B三点在地面同一直线上,DC=a,从C,D两点测得A点仰角分别是β,
α(α<β),则A点离地面的高度AB等于 ( )
A
B
- 2 -
A.)sin(sinsina B.)cos(sinsina
C.)sin(cossina D.)cos(sincosa
8、两灯塔A,B与海洋观察站C的距离都等于a(km), 灯塔A在C北偏东30°,B在C南
偏东60°,则A,B之间的相距 ( )
A.a (km) B.3a(km) C.2a(km) D.2a (km)
二、填空题:
9、A为ΔABC的一个内角,且sinA+cosA=127, 则ΔABC是______三角形.
10、在ΔABC中,A=60°, c:b=8:5,内切圆的面积为12π,则外接圆的半径为_____.
11、在ΔABC中,若SΔABC=41 (a2+b2-c2),那么角∠C=______.
12、在ΔABC中,a =5,b = 4,cos(A-B)=3231,则cosC=_______.
三、解答题:
13、在ΔABC中,求分别满足下列条件的三角形形状:
①B=60°,b2=ac; ②b2tanA=a2tanB;
③sinC=BABAcoscossinsin④ (a2-b2)sin(A+B)=(a2+b2)sin(A-B).
D C
- 3 -
14、已知ΔABC三个内角A、B、C满足A+C=2B, Acos1+ Ccos1 =- Bcos2 , 求
2
cos
CA
的值.
15、二次方程ax2-2bx+c=0,其中a、b、c是一钝角三角形的三边,且以b为最长.
①证明方程有两个不等实根;
②证明两个实根α,β都是正数;
③若a=c,试求|α-β|的变化范围.
16、海岛O上有一座海拨1000米的山,山顶上设有一个观察站A,上午11时,测得一
轮船在岛北60°东C处,俯角30°,11时10分,又测得该船在岛的北60°西B处,
俯角60°.
①这船的速度每小时多少千米?
②如果船的航速不变,它何时到达岛的正西方向?此时所在点E离岛多少千
米?
- 4 -
一、BDBBD AAC
二、(9)钝角 (10)3314 (11)4 (12)81
三、(13)分析:化简已知条件,找到边角之间的关系,就可判断三角形的形状. ①由余弦定理
acaccaacbcaacbca22222222212260cos
0)(2ca
,
ca
. 由a=c及B=60°可知△ABC为等边三角形. ②由AAbBaAbcossintantan222
,2sin2sin,cossincossinsinsincossincossincossin22222BABBAAABabBAABBBa
∴
A=B或A+B=90°,∴△ABC为等腰△或Rt△. ③BABACcoscossinsinsin,由正弦定理:
,)cos(cosbaBAc
再由余弦定理:baacbcacbccbac22222222
RtABCbacbacba为,,0))((
222222
. ④由条件变形为2222)sin()sin(babaBABA
90,2sin2sinsinsinsincoscossin,)sin()sin()sin()sin(2222BABABABABABAbaBABABABA或
.
∴△ABC是等腰△或Rt△. 点评:这类判定三角形形状的问题的一般解法是:由正弦定理或
余弦定理将已知条件转化为只含边的式子或只含角的三角函数式,然后化简考察边或角的关系,
从而确定三角形的形状. 有时一个条件既可用正弦定理也可用余弦定理甚至可以混用. 如本例
的②④也可用余弦定理,请同学们试试看.
(14)分析:120,60,2CABBCA再代入三角式解得A或C. 解:
120.60,2180,2CABBBBCA
.
∴由已知条件化为:22cos)120cos(.22)120cos(1cos1AAAA
- 5 -
),120cos(cosAA
设60,60,2CACA则.代入上式得:)60cos(
)60cos()60cos(22)60cos(
.化简整理得023cos2cos242
222cos,2
2cos,0)3cos22)(2cos2(CA
即
. 注:本题有多种
解法. 即可以从上式中消去B、C求出cosA,也可以象本例的解法.还可以用和、差化积的公式,
同学们可以试一试.
(15)分析:证明方程有两个不等实根,即只要验证△>0即可.要证α,β为正数,只要证明
αβ>0,α+β>0即可. 解:①在钝角△ABC中,b边最
长.acbacbBaccabB424)2(,cos20cos122222且
.0cos4)(24)cos2(2222BaccaacBacca
(其中0cos40)(22Bacca且
∴方程有两个不相等的实根. ②,0,02acab ∴两实根α、β都是正数.
③a=c时,424)(2)(,12222222abaacab
2||0,4cos40,0cos1,cos44)cos2(22222因此BBB
a
aBacca
.
(16)分析:这是一个立体的图形,要注意画图和空间的简单感觉.
解:①如图:所示. OB=OA 3330tan(千米),3OC(千米)
则313120cos222OCOBOCOBBC(千米)
3926010313v船速
(千米/小时)
- 6 -
②由余弦定理得:OBCEBOBCOBOCBCOBOBCsinsin,261352cos222
)]30(180sin[sin,26135cos,26393)26135(12EBOOEBEBO
.131330sincos30cossin)30sin(EBOEBOEBO
再由正弦定理,得OE=1.5(千米),5),(639vBEBE千米(分钟).
答:船的速度为392千米/小时;如果船的航速不变,它5分钟到达岛的正西方向,此时所在点E离岛1.5
千米.