插空法解排列组合题

插空法解排列组合题
插空法解排列组合题

插空法解排列组合题

曾安雄

插空法就是先将其他元素排好,再将所指定的不相邻的元素插入它们的间隙或两端位置,从而将问题解决的策略。运用插空法解答有关元素不相邻问题非常方便。下面举例说明。

一.?数字问题

例1.?把1,2,3,4,5组成没有重复数字且数字1,2不相邻的五位数,则所有不同排法有多少种?

解析:本题直接解答较为麻烦,因为可先将3,4,5三个元素排定,共有种排法,然后再将1,2插入四个空位共有种排法,故由乘法原理得,所有不同的五位数有

二.?节目单问题

例2.?在一张节目单中原有六个节目,若保持这些节目的相对顺序不变,再添加进去三个节目,则所有不同的添加方法共有多少种?

解析:若直接解答则较为麻烦。故可先用一个节目去插七个空位,有种方法;再用另一个节目去插八个空位有种方法;用最后一个节目去插九个空位有种方法。由乘法原理得,所有不同的添加方法为:

三.?关灯问题

例3.?一条马路上有编号1,2,3,4,5,6,7,8,9的九盏路灯,为了节约用电,可以把其中的三盏灯关掉,但不能同时关掉相邻两盏或三盏,则所有不同的关灯方法有多少种?

解析:如果直接解答须分类讨论,故可把六盏亮着的灯看作六个元素,然后用不亮的三盏灯去插七个空位共有种方法,因此所有不同的关灯方法为

种。

四.?停车问题

例4.?停车场划出一排12个停车位置,今有8辆车需要停放,要求空位置连在一起,不同的停车方法有多少种?

解析:先排好8辆车有种方法,要求空位置连在一起,则在每2辆之间及其

两端的9个空当中任选一个,将空位置插入其中有种方法。所以共有种方法。

五.?座位问题

例5. 3个人坐在一排8个椅子上,若每个人左右两边都有空位,则坐法的种类有多少种?

解法1:先将3个人(各带一把椅子)进行全排列有种,产生的四个空中分别放一把椅子,还剩一把椅子再去插空有种,所以每个人左右两边都空位的排法有种。

解法2:先拿出5个椅子排成一排,在5个椅子中间出现4个空,再让3个人每人带一把椅子去插空,于是有种。

初中排列组合公式例题.

复习排列与组合 考试内容:两个原理;排列、排列数公式;组合、组合数公式。 考试要求:1)掌握加法原理及乘法原理,并能用这两个原理分析和解决一些简单的问题。 2)理解排列、组合的意义。掌握排列数、组合数的计算公式,并能用它们解决一些简单的问题。 重点:两个原理尤其是乘法原理的应用。 难点:不重不漏。 知识要点及典型例题分析: 1.加法原理和乘法原理 两个原理是理解排列与组合的概念,推导排列数及组合数公式,分析和解决排列与组合的应用问题的基本原则和依据;完成一件事共有多少种不同方法,这是两个原理所要回答的共同问题。而两者的区别在于完成一件事可分几类办法和需要分几个步骤。 例1.书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书。 (1)若从这些书中任取一本,有多少种不同的取法? (2)若从这些书中取数学书、语文书、英语书各一本,有多少种不同的取法? (3)若从这些书中取不同的科目的书两本,有多少种不同的取法。 解:(1)由于从书架上任取一本书,就可以完成这件事,故应分类,由于有3种书,则分为3类然后依据加法原理,得到的取法种数是:3+5+6=14种。 (2)由于从书架上任取数学书、语文书、英语书各1本,需要分成3个步骤完成,据乘法原理,得到不同的取法种数是:3×5×6=90(种)。 (3)由于从书架上任取不同科目的书两本,可以有3类情况(数语各1本,数英各1本,语英各1本)而在每一类情况中又需分2个步骤才能完成。故应依据加法与乘法两个原理计算出共得到的不同的取法种数是:3×5+3×6+5×6=63(种)。 例2.已知两个集合A={1,2,3},B={a,b,c,d,e},从A到B建立映射,问可建立多少个不同的映射? 分析:首先应明确本题中的“这件事是指映射,何谓映射?即对A中的每一个元素,在B中都有唯一的元素与之对应。” 因A中有3个元素,则必须将这3个元素都在B中找到家,这件事才完成。因此,应分3个步骤,当这三个步骤全进行完,一个映射就被建立了,据乘法原理,共可建立不同的映射数目为:5×5×5=125(种)。 2.排列数与组合数的两个公式 排列数与组合数公式各有两种形式,一是连乘积的形式,这种形式主要用于计算;二是阶乘的形式,这种形式主要用于化简与证明。 连乘积的形式阶乘形式 Anm=n(n-1)(n-2)……(n-m+1) = Cnm= 例3.求证:Anm+mAnm-1=An+1m 证明:左边= ∴等式成立。 评述:这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质:n!(n+1)=(n+1)!可使变形

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1. 相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 例1. A,B,C,D,E 五人并排站成一排,如果 A,B 必须相邻且B 在A 的右边,则不同的排法有( ) A 、60 种 B 、48 种 C 、36 种 D 、24 种 2. 相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几 个元素全排列,再把规定的相离的 几个元素插入上述几个元素的空位和两端 ? 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440 种 B 、3600 种 C 、4820 种 D 、4800 种 3. 定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法 例3.A,B,C,D,E 五人并排站成一排,如果 B 必须站在A 的右边(A, B 可以不相邻)那么不同的排法有 ( ) 4. 标号排位问题分步法:把元素排到指定位置上, 可 先把某个元素按规定排入, 第二步再排另一个元素, 如 此继续下去,依次即可完成 ? 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所 填数字均不相同的填法有( ) A 、6 种 B 、9 种 C 、11 种 D 、23 种 5. 有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法 例5.( 1 )有甲乙丙三项任务,甲需 2人承担,乙丙各需一人承担,从 10人中选出4人承担这三项任务, 不同的选法种数是( ) A 、1260 种 B 、2025 种 C 、2520 种 D 、5040 种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口 6. 全员分配问题分组法: 例6.( 1)4名优秀学生全部保送到 3所学校去,每所学校至少去一名,则不同的保送方案有多少种? A 、24 种 B 、60 种 C 、90 种 D 、 120 种 4人,则不同的分配方案有( 4 4 4 C 12C 8C 4 种 4 4 3C 12C 8C C 、 C 12C 8 A 3 种

十二个技巧速解排列组合题

有关排列组合的常用解题技巧 排列组合问题是高考必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,备考有效方法是题型与解法归类、识别模式、熟练运用,本文介绍十二类典型排列组合题的解答策略. 1.相邻问题捆绑法 题目中规定相邻的几个元素并为一个组(当作一个元素)参与排列. 【例1】A 、B 、C 、D 、E 五人并排站成一排,如果A 、B 必须相邻且B 在A 的右边,那么不同的排法种数有[ ] A .60种 B .48种 C .36种 D .24种 分析 把A 、B 视为一人,且B 固定在A 的右边,则本题相当于4人全排列,=种,故选.P 24D 44 2.不相邻问题插空法 元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定相离的几个元素插入上述几个元素间的空位和两端. 【例2】七个人并排站成一行,如果甲乙两个必须不相邻,那么不同排法的种数是[ ] A .1440 B .3600 C .4820 D .4800 分析 5P 6P P P 3600B 55 62 55 62 除甲、乙外,其余个排列数为种,再用甲、乙去插个空位有种,不同排法种数是=种,故选. 3.多排问题单排法 把元素排成几排的问题,可归结为一排考虑,再分段处理. 【例3】6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是[ ] A .36 B .120 C .720 D .1440. 分析 前后两排可看成一排的两段,因此本题可视为6个不同元素 排成一排,共=种,故选.P 720C 66 【例4】8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某 1个元素要排在后排,有多少种排法? 分析 22P 1P 55P P P 57604 2 41 55 41 42 看成一排,某个元素在前半段四个位置中选排个,有种;某个元素在后半段四个位置中选一个,有种;其余个元素任排在剩余的个位置上有种,故共有=种排法. P 55 4.定序问题倍缩法(标号排位问题分步法) 在排列问题中限制某几个元素必须保持一定顺序,可用缩小倍数的方法. (把元素排到指定号码的位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.) 【例5】A 、B 、C 、D 、E 五个人并排站成一排,如果 B 必须站A 的右边(A 、B 可不相邻),那么不同的排法种数有[ ]

排列组合问题之 插板法应用小结!

数算]排列组合问题之插板法应用小结! 插板法就是在n个元素间的(n-1)个空中插入若干个(b)个板,可以把n个元素分成(b+1)组的方法。 应用插板法必须满足三个条件: (1)这n个元素必须互不相异 (2)所分成的每一组至少分得一个元素 (3) 分成的组别彼此相异 分享一点个人的经验给大家,我的笔试成绩一直都是非常好的,不管是行测还是申论,每次都是岗位第一。其实很多人不是真的不会做,90%的人都是时间不够用,要是给足够的时间,估计很多人能够做出大部分的题。公务员考试这种选人的方式第一就是考解决问题的能力,第二就是考思维,第三考决策力(包括轻重缓急的决策)。非常多的人输就输在时间上,我是特别注重效率的。第一,复习过程中绝对的高效率,各种资料习题都要涉及多遍;第二,答题高效率,包括读题速度和答题速度都高效。我复习过程中,阅读和背诵的能力非常强,读一份一万字的资料,一般人可能要二十分钟,我只需要两分钟左右,读的次数多,记住自然快很多。包括做题也一样,读题和读材料的速度也很快,一般一份试卷,读题的时间一般人可能要花掉二十几分钟,我统计过,我最多不超过3分钟,这样就比别人多出20几分钟,这在考试中是非常不得了的。QZZN有个帖子专门介绍速读的,叫做“得速读者得行测”,我就是看了这个才接触了速读,也因为速读,才获得了笔试的好成绩。其实,不只是行测,速读对申论的帮助更大,特别是那些密密麻麻的资料,看见都让人晕倒。学了速读之后,感觉有再多的书都不怕了。而且,速读对思维和材料组织的能力都大有提高,个人总结,拥有这个技能,基本上成功一半,剩下的就是靠自己学多少的问题了。平时要多训练自己一眼看多个字的习惯,慢慢的加快速度,尽可能的培养自己这样的习惯。有条件的朋友可以到这里用这个软件训练速读,大概30个小时就能练出比较厉害的快速阅读的能力,这是给我帮助非常大的一个网站,极力的推荐给大家(给做了超链接,按住键盘左下角Ctrl键,然后鼠标左键点击本行文字)。大家好好学习吧!最后,祝大家早日上岸。此段是纯粹个人经验分享,可能在多个地方看见,大家读过的就不用再读了,只是希望能和更多的童鞋分享。 =================================================== 举个很普通的例子来说明 把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况? 问题的题干满足条件(1)(2),适用插板法,c9 2=36 下面通过几道题目介绍下插板法的应用 a 凑元素插板法(有些题目满足条件(1),不满足条件(2),此时可适用此方法) 例1 :把10个相同的小球放入3个不同的箱子,问有几种情况? 3个箱子都可能取到空球,条件(2)不满足,此时如果在3个箱子种各预先放入 1个小球,则问题就等价于把13个相同小球放入3个不同箱子,每个箱子至少一个,有几种情况? 显然就是c12 2=66 ------------------------------------------------- 例2:把10个相同小球放入3个不同箱子,第一个箱子至少1个,第二个箱子至少3个,第三个箱子可以放空球,有几种情况?

高中数学排列组合公式排列组合计算公式.

排列组合公式/排列组合计算公式 排列P------和顺序有关 组合C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn (两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标))

排列组合问题经典题型解析含答案

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A 的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种D、120种

4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( ) A 、6种 B 、9种 C 、11种 D 、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( ) A 、1260种 B 、2025种 C 、2520种 D 、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( ) A 、44412 8 4 C C C 种 B 、44412 8 4 3C C C 种 C 、44312 8 3 C C A 种 D 、 4441284 33 C C C A 种

排列组合问题,常见解题策略

排列组合问题,常见解题策略 曹永玉 排列组合问题是高考的必考内容,也是高考题中正确率最低的题目之一。究其原因,是因为其思维方式独特,解题思路新颖,如果对题意认识出现偏差的话,极易出现计数中的“重复”和“遗漏”。教学中,提高学生解排列组合题的有效途径是将一些常见题型进行方法归类,构造模型解题,这样有利于学生认识模式,进而熟练应用。本文列举了几种常见的排列组合问题的解题策略,以期对大家有所帮助。 一、排列问题 1.某个(或某几个)元素要排在指定位置——特殊元素“优先法”。 例1. 乒乓球队的10 名队员中有3名主力队员,派5名参加比赛,3名主力要排在第一、三、五位置,其余7队员中选2名排在第二、四位置,那么不同的出场安排共有多少种? 解析:3名主力的位置确定在第一、三、五位中选,将他们优先安排,有A72A33种可能,然后从其他队员中选2 人安排在第二、四位置,有A72种排法,因此结果有A33种。 点评:先排特殊(特殊元素或特殊位置)是解决排列问题的基本方法。 2.某个元素不排在指定位置——排除法。 例2. 5个人排队,其中甲不在排头的排法有多少? 解析1:(排除法)5人的全排列数A55,其中甲在排头的排列数A44,故甲不在排头的排列数A55 --A44=96种 解析2:(特殊元素优先法):先从余下的4个位置中选一位置排上,甲有

A41种方法,然后其他4个元素排在余下的四个位置A44,所以总计A44A41种排法。 解析3:(特殊元素优先法):先从甲以外的4人中选出一人排在特殊位置——排头A41,然后其他四个元素排在余下的4个位置A44,所以总计A41A44种排法。 3. 相邻问题——捆绑法 例3. 4名男生和4名女生排成一排照相,要求4名女生必须相邻,有多少种排法? 解析:4名女生看作一个整体(捆绑),与4名男生共五个元素全排列A55,但这4名女生内部又有顺序A44,故A44A55种不同排法。 4. 小团体问题——捆绑法 例4.5人站一排,其中甲、乙之间有且只有一人的站法有多少? 解析:先从甲、乙之外的3人中选一人,然后将甲、乙排在他的两边有C31A22种方式,3人形成一个小团体,看作一个元素再与余下的2人排列有A33种。因此共A31A22A33种不同站法。 5. 不相邻问题——插空法 例5.要排一个有5个独唱节目和3个舞蹈节目单,如果舞蹈节目不排在开头,并且任意两个舞蹈节目不排在一起,则不同的排法有多少? 解析:先将5个独唱节目排列A55,形成的6个空挡中,从后面5个空挡中选3个排在舞蹈节目A53,故有A55A53种不同排法。 6. 定序排列问题——缩短法 例6.书架上有6本书,新买了3本书插进去,保持原来6本书的顺序不变,有多少种排法? 解析:9本书作全排列A99,考虑到原来6本书的顺序不变,原来的每一种

排列组合--插板法、插空法、捆绑法32415

排列组合问题——插板法(分组)、插空法(不相邻)、捆绑法(相邻) 插板法(m为空的数量) 【基本题型】 有n个相同的元素,要求分到不同的m组中,且每组至少有一个元素,问有多少种分法? ”表示相同的名额,“”表示名额间形成的空隙,设想在这几个空隙中插入六块“挡板”,则将这10 个名额分割成七个部分,将第一、二、三、……七个部分所包含的名额数分给第一、二、三……七所学校,则“挡板”的一种插法恰好对应了10 个名额的一种分配方法,反之,名额的一种分配方法也决定了档板的一种插法,即挡板的插法种数与名额的分配方法种数是相等的, 【总结】 需满足条件:n个相同元素,不同个m组,每组至少有一个元素,则只需在n个元素的n-1个间隙中放置m-1块隔板把它隔成m份即可,共有种不同方法。 注意:这样对于很多的问题,是不能直接利用插板法解题的。但,可以通过一定的转变,将其变成符合上面3个条件的问题,这样就可以利用插板法解决,并且常常会产生意想不到的效果。 插板法就是在n个元素间的(n-1)个空中插入若干个(b)个板,可以把n个元素分成(b+1)组的方法. 应用插板法必须满足三个条件: (1)这n个元素必须互不相异 (2)所分成的每一组至少分得一个元素 (3) 分成的组别彼此相异 举个很普通的例子来说明 把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况? 问题的题干满足条件(1)(2),适用插板法,c9 2=36 下面通过几道题目介绍下插板法的应用 e 二次插板法 例8 :在一张节目单中原有6个节目,若保持这些节目相对次序不变,再添加3个节目,共有几种情况? -o - o - o - o - o - o - 三个节目abc 可以用一个节目去插7个空位,再用第二个节目去插8个空位,用最后个节目去插9个空位 所以一共是c7 1×c8 1×c9 1=504种 【基本解题思路】 将n个相同的元素排成一行,n个元素之间出现了(n-1)个空档,现在我们用(m-1)个“档板”插入(n-1)个空档中,就把n个元素隔成有序的m份,每个组依次按组序号分到对应位置的几个元素(可能是1个、2个、3个、4个、….),这样不同的插入办法就对应着n个相同的元素分到m组的一种分法,这种借助于这样的虚拟“档板”分配元素的方法称之为插板法。

排列组合公式排列组合计算公式----高中数学!

排列组合公式/排列组合计算公式 公式P是指排列,从N个元素取R个进行排列。 公式C是指组合,从N个元素取R个,不进行排列。 N-元素的总个数 R参与选择的元素个数 !-阶乘,如9!=9*8*7*6*5*4*3*2*1 从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r 举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数? A1: 123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。 上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积) Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”? A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。 上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1 排列、组合的概念和公式典型例题分析 例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每

名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法? 解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法. (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法. 点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算. 例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种? 解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出: ∴ 符合题意的不同排法共有9种. 点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型. 例3判断下列问题是排列问题还是组合问题?并计算出结果. (1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手? (2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法? (3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积? (4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法? 分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析. (1)①是排列问题,共用了封信;②是组合问题,共需握手(次). (2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法. (3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积. (4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法. 例4证明. 证明左式

排列组合问题经典题型#精选.

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种 D、120种 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有() A、6种 B、9种 C、11种 D、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是() A、1260种 B、2025种 C、2520种 D、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有() A、 444 1284 C C C 种 B、 444 1284 3C C C 种 C、 443 1283 C C A 种 D、 444 1284 3 3 C C C A种 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为() A、480种 B、240种 C、120种 D、96种 7.名额分配问题隔板法: 例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 8.限制条件的分配问题分类法: 例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案? 9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()A、210种 B、300种 C、464种 D、600种 (2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种? (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?

数学解排列组合应用题的21种策略

解排列组合应用题的21种策略 排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略. 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有( ) A 、60种 B 、48种 C 、36种 D 、24种 解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列, 4424A =种,答案:D . 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例 2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440种 B 、3600种 C 、4820种 D 、4800种 解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同 的排法种数是525 63600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是( ) A 、24种 B 、60种 C 、90种 D 、120种 解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602 A =种,选 B . 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( ) A 、6种 B 、9种 C 、11种 D 、23种 解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B . 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( )

插板法插空法解排列组合问题

插板法、插空法解排列组合问题 华图教育 邹维丽 排列组合问题是行测数学运算中的经常碰到的一类问题,试题具有一定的灵活性、机敏性和综合性,也是考生比较头疼的问题。掌握排列组合问题的关键是明确基本概念,熟练基本题型。解决排列组合问题的方法很多,有插板法,捆绑法,优先法等等,本文主要介绍插板法、插空法在行测数学运算中的应用,以供大家参考。 所谓插板法,就是在n 个元素间的n-1个空中插入若干个(b )个板,可以把n 个元素分成b+1组的方法,共有b n C 1-种方法。 应用插板法必须满足三个条件: (1) 这n 个元素必须互不相异; (2) 所分成的每一组至少分得一个元素; (3) 分成的组别彼此相异 举个普通的例子来说明。 把8个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况?问题的题 干满足条件(1),(2),(3),所以适用插板法。在8个小球间的7个空插入3个板,共有3537=C 种情况。 上面介绍的插板法主要是用解决相同元素的名额分配问题,而对于排列组合中常出现的几个元素的不相邻问题,我们可以用插空法来解决,对这种问题,可先将余下的元素进行排列,然后在这些元素形成的空隙中将不相邻的元素进行排列。 下面我们通过几道题来熟悉这两种方法的应用。 例1 某单位订阅了30份学习材料发放给3个部门,每个部门至少发放9份材料。问一共有多少种不同的发放方法?( )(国2010 -46) A.7 B.9 C.10 D.12 【解析】C 。本题乍一看不满足应用插板法的条件,插板法的条件(2)要求所分成的每一组至少分得一个元素,可本题要求每个部门至少发放9份材料。事实上,我们可以分两步来解这道题: 1. 先给每个部门发放8份材料,则还剩下30-8*3=6份材料。 2. 本题即可转化为:将6份学习材料发放给3个部门,每个部门至少发放1份材料。 问一共有多少种不同的发放方法?应用插板法可得共有1035=C

排列组合的数学公式

排列组合的数学公式 排列组合的数学公式 1. 排列及计算公式从n 个不同元素中,任取m(m≤n) 个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m 个宝鸡博瀚教 育元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m) 表示. p(n,m)=n(n-1)(n- 2) ...... (n -m+1)= n!/(n-m)!( 规定 0!=1). 2. 组合及计算公式 从n 个不同元素中,任取m(m≤n) 个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不 同元素中取出m(m≤n) 个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3. 其他排列与组合公式 从n 个元素中取出r 个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.

n 个元素被分成k 类,每类的个数分别是n1,n2,...nk 这 n 个元素的全排列数为n!/(n1!*n2!*...*nk!). k 类元素, 每类的个数无限, 从中取出m 个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)(n- m+1);Pnm=n!/(n-m)!(注:是阶乘符号);Pnn(两个n 分别为上标和下标) =n!;0!=1;Pn1(n 为下标1 为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n 分别为上标和下标) =1 ;Cn1(n 为下标 1 为上标)=n;Cnm=Cnn-m 排列组合的数学解题技巧 1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。 2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。 3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。 4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

排列组合知识点汇总及典型例题(全)

排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!!!! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意:分类不重复不遗漏。即:每两类的交集为空集, 所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排列组合问题时,常常既要分 类,又要分步。其原则是先分类,后分步。 (43.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相 邻接元素在已排好的元素之间及两端的空隙之间插入。 (5)、顺序一定,除法处理。先排后除或先定后插 解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。即先全排,再除以定序元素的全排列。 解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法; (6)“小团体”排列问题——采用先整体后局部策略 对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。 (7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排考虑,再分段处理。 (8).数字问题(组成无重复数字的整数) ① 能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数。②能被3整除的数的特征:各位数字之和是3的倍数; ③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数。 ⑤能被5整除的数的特征:末位数是0或5。 ⑥能被25整除的数的特征:末两位数是25,50,75。 ⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数。 4.组合应用题:(1).“至少”“至多”问题用间接排除法或分类法: (2). “含”与“不含” 用间接排除法或分类法: 3.分组问题: 均匀分组:分步取,得组合数相乘,再除以组数的阶乘。即除法处理。 非均匀分组:分步取,得组合数相乘。即组合处理。 混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘。 4.分配问题: 定额分配:(指定到具体位置)即固定位置固定人数,分步取,得组合数相乘。

解排列组合问题的利器之一:“隔板法”

解排列组合问题的利器之一:“隔板法” 发表时间:2014-01-20T14:00:41.903Z 来源:《职业技术教育》2013年第10期供稿作者:赵善辉[导读] 上述问题还可以转化为方程x1+x2+x3+x4=8的正整数解的个数,方程的一组解(x1,x2,x3,x4) 赵善辉(山东省齐河县职业中专山东德州251114) 排列、组合是历年对口高考必考内容之一,它联系实际,生动有趣,题型多样,思路灵活。教材中出现的解决这类问题常见的方法有插空法、捆绑法、排除法等,本文在这里介绍教材里没有出现的一种方法——隔板法。 隔板法可解决相同元素的分配问题,在相同元素之间插入隔板来达到分配的目的,它强调的是分配之后每组元素的个数,而与每一组包含哪几个元素无关。 【例1】把8个相同的篮球任意分给甲乙丙丁四所学校,每所学校至少一个,有多少种不同的分法? 解析:可把8个相同的篮球排成一列,8个篮球中间有7个空隙(不包括两端),用3个隔板分别插在7个空隙中,把8个篮球分成4组,例如OOIOOOIOIOO依次分配给甲乙丙丁四所学校的篮球数为2、3、1、2,所以每一种分隔法都对应了一种分法,于是分法种数为C73=35。 上述问题还可以转化为方程x1+x2+x3+x4=8的正整数解的个数,方程的一组解(x1,x2,x3,x4)对应一种分配方案,有8个1排成一列,中间有7个空隙(不包括两端),7个空隙中选出3个分别插入3个“+”,8个1被分成4组,每种插入方法对应着方程的一个解,此方程正整数解的个数为 C73=35。 【例2】把8个相同的篮球任意分给甲乙丙丁四所学校,有多少种不同的分法? 解析:设分给甲乙丙丁四所学校的篮球数分别为x1、x2、x3、x4,方程x1+x2+x3+x4=8(x1∈N,x2∈N, x3∈N,x4∈N)解的个数即为分配方案的种数,(x1+1)+(x2+1)+(x3+1)+(x4+1)=8+1+1+1+1=12。 设x1+1=y1,x2+1=y2,x3+1=y3,x4+1=y4, y1+y2+y3+y4=12 (y1∈N,y2∈N,y3∈N,y4∈N) 两个方程解的个数相同,由【例1】中的方法知,第二年方程的解有C113=165个,方程x1+x2+x3+x4=8(x1∈N,x2∈N,x3∈N,x4∈N)解的个数为C113=165,所以有165种分法。 可用借球法这样解释:本题中有的学校可能没分到球,先借4个球分别给4个学校,以上问题变成了:12个相同的篮球任意分给甲乙丙丁四所学校,每所学校至少一个,有多少种不同的分法?用隔板法可得有C113=165种分配方案。 隔板法在解题过程中带有一定的格式化、程序化,可使解题过程简单明了、快捷准确,但任何一种方法都不是包治百病的灵药,在解决具体问题时还应灵活掌握,各种方法综合运用。 以下几题,同学们可小试牛刀。 练习:(1)把20台电脑分给18个村,要求每村至少分一台,共有多少种分配方法? A.190 B.171 C.153 D.19 (2)(a+b+c+d)10的展开式中共有多少项? (3)在所有的三位数中,各位数字之和是19的数共有多少个? 答案:(1)B (2)C143=364 (3)C102=45 【分析】三位数的数字和等于19,这个三位数的三个数字不可能有0。可以想象成19个1排成一排,中间插2个木板,分成三部分,这三部分的和肯定等于19。第一部分是百位上的数字,第二部分是十位上的数字,第三部分是个位上的数字。但是每一部分有可能大于9,不能作为一个三位数的某一个位上的数字,找一个新的三位数,新三位数的每一位加原来三位数的对应位的数字都等于10(百位数字加百位数字,十位数字加十位数字,个位数字加个位数字)。新三位数和老三位数是一一对应的,有多少个这样的新三位数就有多少个这样的老三位数。新三位数的数字和等于30-19=11,可以用“隔板法”,就不会出现上面的问题了。

排列组合公式

排列组合公式 1.分类计数原理(加法原理) 12n N m m m =+++ . 2.分步计数原理(乘法原理) 12n N m m m =??? . 3.排列数公式 m n A =)1()1(+--m n n n =!! )(m n n -.(n ,m ∈N*,且m n ≤). 注:规定1!0=. 4.排列恒等式 (1)1 (1)m m n n A n m A -=-+; (2) 1 m m n n n A A n m -= -; (3) 1 1m m n n A nA --=; (4)11n n n n n n nA A A ++=-; (5)11m m m n n n A A mA -+=+. (6) 1!22!33!!(1)!1n n n +?+?++?=+- . 5.组合数公式 m n C =m n m m A A =m m n n n ???+-- 21)1()1(=!!!)(m n m n -?(n ∈N*,m N ∈,且m n ≤). 6.组合数的两个性质 (1)m n C =m n n C - ; (2) m n C +1-m n C =m n C 1+. 注:规定 10 =n C . 7.组合恒等式 (1) 1 1m m n n n m C C m --+= ;

(2) 1 m m n n n C C n m -= -; (3) 1 1m m n n n C C m --= ; (4)∑=n r r n C =n 2; (5) 1121++++=++++r n r n r r r r r r C C C C C . (6)n n n r n n n n C C C C C 2210=++++++ . (7)14205312-+++=+++n n n n n n n C C C C C C . (8)1321232-=++++n n n n n n n nC C C C . (9) r n m r n r m n r m n r m C C C C C C C +-=+++0110 . (10)n n n n n n n C C C C C 22222120)()()()(=++++ . 8.排列数与组合数的关系 m m n n A m C =?! . 9.单条件排列 以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位” ①某(特)元必在某位有11--m n A 种; ②某(特)元不在某位有11---m n m n A A (补集思想)1 111---=m n n A A (着眼位置)1 1111----+=m n m m n A A A (着眼元素)种. (2)紧贴与插空(即相邻与不相邻) ①定位紧贴:)(n m k k ≤≤个元在固定位的排列有k m k n k k A A --种. ②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有k k k n k n A A 1 1+-+-种. 注:此类问题常用捆绑法; ③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的 一组互不能挨近的所有排列数有 k h h h A A 1+种. (3)两组元素各相同的插空

相关文档
最新文档