江苏省天一中学2019届高三第四次诊断性测试

合集下载

江苏省无锡市天一中学2018--2019学年高三11月月考 数学试题 Word版含解析

江苏省无锡市天一中学2018--2019学年高三11月月考 数学试题 Word版含解析

2018-2019学年江苏省无锡市天一中学高三11月月考 数学试题数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、填空题1.设集合,则_______.A ={1,2,3,5},B ={2,3,6}A ∪B =2.命题:“ 使得”的否定为__________.∃x >0,x +1>03.函数的定义域为_________.y =1‒xx 4.曲线在处的切线的斜率为_________.y =x ‒sinx x =π25.若函数是偶函数,则实数______.f (x )=2x +a2x a=6.已知,函数和存在相同的极值点,则a >0f (x )=x (x ‒a )2g (x )=‒x 2+(a ‒)1x +a ________.a =7.已知函数.若,则实数的最小值为______.f (x )=2sin (ωx +φ)(ω>0)f(π3)=0,f (π2)=2ω8.已知函数与函数的图象交于三点,则的面积为f (x )=sinx (x ∈[0,π])g (x )=13tanxA,B,C ΔABC ________.9.已知f (x )是定义在R 上的偶函数,且在区间(−,0)上单调递增.若实数a 满足f (2|a-1|)∞>f (),则a 的取值范围是______.‒210.已知,且, ,则______.0y x π<<<tan tan 2x y =1sin sin 3x y =x y -=11.在平行四边形中,,则线段的长为.ABCD AC AD AC BD ⋅=⋅3=AC 12.已知,,且,则的最大值为π4<α<π2π4<β<π2sin 2αsin 2β=sin (α+β)cosαcosβtan (α+β)______.13.设是自然对数的底数,函数有零点,且所有零点的和不大于a ≠0,e f(x)={ae x ‒x,x ≤0x 2‒ax +a,x >06,则的取值范围为______.a 14.设函数().若存在,使,f(x)=(x ‒a)|x ‒a |‒x |x |+2a +1a <0x 0∈[‒1 , 1]f(x 0)≤0则的取值范围是____.a 二、解答题15.已知,.sinθ+cosθ=3‒12θ∈(‒π4 , π4)(1)求的值;θ(2)设函数,,求函数的单调增区间.f(x)=sin 2x ‒sin 2(x +θ)x ∈R f(x)16.如图,在中,已知是边上的一点,△ABC AC =7,∠B =45∘,D AB ,,求:AD =3∠ADC =120∘(1)的长;CD (2)的面积.△ABC 17.在平面直角坐标系中,已知向量,设向量xOy a =(1,0),b =(0,2),其中.x =a +(1‒cosθ)b,y =‒ka +1sinθb0<θ<π(1)若,,求的值;k =4θ=π6x ⋅y (2)若,求实数的最大值,并求取最大值时的值.x//y k θ18.对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.f(x)x f(‒x)=‒f(x)f(x)(Ⅰ)已知二次函数,试判断是否为“局部奇函数”?并说明理由;f(x)=ax 2+2x ‒4a(a ∈R)f(x)(Ⅱ)若是定义在区间上的“局部奇函数”,求实数的取值范围;f(x)=2x+m [‒1,1]m (Ⅲ)若为定义域上的“局部奇函数”,求实数的取值范围.f(x)=4x ‒m 2x +1+m 2‒3R m 此卷只装订不密封班级姓名准考证号考场号座位号19.如图,、是海岸线、上的两个码头,为海中一小岛,在水上旅游线上.测得A B OM ON Q AB ,,到海岸线、的距离分别为,.tan∠MON =‒3OA =6km Q OM ON 2km 7105km(1)求水上旅游线的长;AB (2)海中 ,且处的某试验产生的强水波圆,生成小时时的半径为P (PQ =6km PQ ⊥OM)P t .若与此同时,一艘游轮以小时的速度自码头开往码头,试研究强水波是否r =66t 32km 182km/A B 波及游轮的航行?20.已知函数,.f (x )=(4x +2)lnxg (x )=x 2+4x ‒5(1)求曲线在点处的切线方程;y =f (x )(1,f (1))(2)证明:当时,曲线恒在曲线的下方;x ≠1y =f (x )y =g (x )(3)当时,不等式恒成立,求实数的取值范围.x ∈(0,k ](2k +1)⋅f (x )≤(2x +1)⋅g (x )k2018-2019学年江苏省无锡市天一中学高三11月月考数学试题数学答案参考答案1.{1,2,3,5,6}【解析】【分析】直接利用集合并集的定义求解即可.【详解】因为集合,A={1,2,3,5},B={2,3,6}所以,故答案为.A∪B={1,2,3,5,6}{1,2,3,5,6}【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合或属于集合的元素的集合.A B2.∀x>0,x+1≤0【解析】【分析】根据特称命题的否定是全称命题,既要改写量词,又要否定结论,可得原命题的否定形式.【详解】因为特称命题的否定是全称命题,既要改写量词,又要否定结论,故命题“ ”∃x>0, x+1>0的否定是,故答案为.∀x>0,x+1≤0∀x>0,x+1≤0【点睛】本题主要考查特称命题的否定,属于简单题.全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词、存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论即可.3.(0,1]【解析】【分析】直接由根式内部的代数式大于等于0 ,分式的分母不等于0 ,列不等式求解即可得结果.【详解】要使函数有意义,y=1‒xx则解得,{1‒x x≥0x≠0⇒{(1‒x)x≥0x≠00<x≤1函数的定义域为,故答案为.∴y=1‒xx(0,1](0,1]【点睛】本题主要考查具体函数的定义域、不等式的解法,属于中档题.定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数的定义域为,则函数的定义域由不f(x)[a,b]f(g(x))等式求出.a≤g(x)≤b4.1【解析】【分析】求出原函数的导函数,可得到曲线在处的导数值,根据导数的几何意义可得结果.y=x‒sinx x=π2【详解】因为曲线在处的切线的斜率就是曲线在处的导数值,y=x‒sinx x=π2y=x‒sinxx=π2由得 ,y=x‒sinx y'=1‒cosx,∴y'|x=π2=1‒cosπ2=1即曲线在处的切线的斜率为1,故答案为1.y=x‒sinx x=π2【点睛】本题考查了利角导数研究曲线上某点处的切线斜率,曲线在某点处的导数值,即为曲线上以该点为切点的切线的斜率,是中档题.5.1【解析】【分析】由函数是偶函数,利用求得,再验证即可得结果.f (x )=2x +a 2xf (‒1)=f (1)a =1【详解】是偶函数,∵f (x )=2x+a2x ,即,解得,∴f (‒1)=f (1)2+a2=12+2aa =1当时,是偶函数,合题意,故答案为1.a =1f (‒x )=2‒x +12‒x=2x +12x 【点睛】本题主要考查函数的奇偶性,属于中档题. 已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由 恒成立求解,(2)偶函数由 恒成立求解;f (x )+f (‒x )=0f (x )‒f (‒x )=0二是利用特殊值:奇函数一般由 求解,偶函数一般由求解,用特殊法求解f (0)=0f (1)‒f (‒1)=0参数后,一定要注意验证奇偶性.6.3【解析】【分析】(1)求出函数的导数,可得极值点,通过与有相同的极值点,列方程求的值.y =f (x )y =g (x )a 【详解】,f (x )=x (x ‒a )2=x 3‒2ax 2+a 2x 则,f'(x )=3x 2‒4ax +a 2=(3x ‒a )(x ‒a )令,得或,f'(x )=0x =a a 3可得在上递增;f (x )(‒∞,a3),(a,+∞)可得在递减,极大值点为,极小值点为,f (x )(a 3,a)a3a 因为函数和存在相同的极值点,f (x )=x (x ‒a )2g (x )=‒x 2+(a ‒)1x +a 而在处有极大值,g (x )x =a ‒12所以,所以 ,故答案为3.a ‒12=a3a =3【点睛】本题主要考查利用导数判断函数的单调性以及函数的极值,属于中档题.求函数极值的步骤:f (x )(1) 确定函数的定义域;(2) 求导数;(3) 解方程求出函数定义域内的所有根;(4) 列表f '(x )f '(x )=0,检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大f '(x )f '(x )=0x 0f (x )x 0值,如果左负右正(左减右增),那么在处取极小值. (5)如果只有一个极值点,则在该处即f (x )x 0是极值也是最值.7.3【解析】试题分析:由题意得,实数的最小值为T4≤π2‒π3⇒T ≤2π3⇒ω=2πT≥3ω3考点:三角函数周期8.2π3【解析】联立方程与可得,解之得,所以f(x)=sinx g(x)=13tanx13tanx =sinxx =0,π,cosx =13⇒sinx =223,因到轴的距离为,所以的面积为A(0,0),B(π,0),C(x,sinx)AB =π,C(x,sinx)x sinx =223ΔABC ,应填答案。

江苏省金陵中学、海安中学、南外三校联考-2019届高三第四次模拟考试 数学试题【含答案解析】

江苏省金陵中学、海安中学、南外三校联考-2019届高三第四次模拟考试 数学试题【含答案解析】

1. 设全集U x | x 5,x N * ,集合 A={1,2},B={2,4},则 ðU A B ▲ .
2.
复数 z
i 2
i
(i
为虚数单位)在复平面内对应的点在第

象限.
3.将一个质地均匀的骰子(一种各个面上分别标有 1,2,3,4,5,6 个点的正方体玩具)先
A
G O
C
B
(第 16 题)
17.(本小题满分 14 分)
在平面直角坐标系
xOy
中,已知椭圆
C:
x2 a2

y2 b2
1a b 0 的离心率为
3 ,短轴 2
长为 2. (1)求椭圆 C 的标准方程;
(2)设 P 为椭圆上顶点,点 A 是椭圆 C 上异于顶点的任意一点,直线 PA 交 x 轴于点 M.点
的取值范围为 ▲ .
14.在△ABC 中,若 cos2A+cos2B+cos2C<1, sin B 2 ,则 tan2 A 2 sin 2C 的最小值 2 为▲.
二、解答题:本大题共 6 小题,共计 90 分.请在答.题.纸.指.定.区.域.内.作答,解答 时应写出文字说明、证明过程或演算步骤.
at ≤ q 1 t1 ,求 a1 的值.
20.(本小题满分 16 分)
已知函数 f x ax ln x a , a∈R.
(1)若 a 1,求方程 f x 0 的根;
(2)已知函数 g x x f x ax2 2ax a 在区间 1, 上存在唯一的零点,求实数
N
B
M
CA
O
(第 18 题图)
19.(本小题满分 16 分) 已知数列{an}的各项均为正数,其前 n 项和为 Sn,且 2Sn+1-3Sn=2a1, n N* .

2019届江苏高三一轮精品卷(四)理综物理试卷

2019届江苏高三一轮精品卷(四)理综物理试卷

2019届江苏高三一轮精品卷(四)理综物理试卷★祝考试顺利★注意事项:1、考试范围:高考范围。

2、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

3、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

6、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。

一、单项选择题1. 2017年4月20日,天舟一号飞船成功发射,与天宫二号空间实验室对接后在离地约393km 的圆轨道上为天宫二号补加推进剂,在完成各项试验后,天舟一号受控离开圆轨道,最后进入大气层烧毁,下列说法中正确的是A. 对接时,天舟一号的速度小于第一宇宙速度B. 补加推进剂后,天宫二号受到地球的引力C. 补加推进器后,天宫二号运行的周期减小D. 天舟一号在加速下降过程中处于超重状态【答案】A【解析】7.9km/s是地球的第一宇宙速度,是卫星最小的发射速度,也是卫星或飞行器若地球做匀速圆周运动的最大速度,所以对接时,天舟一号的速度必定小于第一宇宙速度,故A正确;补加推进剂后,天宫二号的质量增大,就万有引力定律可知,天宫二号受到地球的引力增大,故B错误;补加推进剂后,天宫二号的质量增大,根据万有引力提供向心力可得,解得:,公式中的M是地球的质量,可见天宫二号的周期与其质量无关,所以保持不变,故C错误;“天舟一号”在加速下降过程中加速度的方向向下,所以处于失重状态,故D错误;故选A.2. 如图所示,电源电动势E=12V,内阻r=1.0Ω,电阻R1=4.0Ω,R2=7.5Ω,R3=5.0Ω,电容器的电容C=10μF,闭合开关S,电路达到稳定后电容器的电荷量为A. B. C. D.【答案】B【解析】闭合开关S,和串联,电容器的电压等于的电压,为:,电容器上所带的电荷量,故选A.3. 在匀强磁场中有粗细均匀的同种导线制成的等边三角形线框abc,磁场方向垂直于线框平面,ac两点间接一直流电源,电流方向如图所示,则A. 导线ab受到的安培力大于导线ac所受的安培力B. 导线abc受到的安培力大于导线ac受到的安培力C. 线框受到的安培力的合力为零D. 线框受到的安培力的合力方向垂直于ac向下【答案】D【解析】导线ab受到的安培力大小为:;导线ac所受的安培力大小也为:;故A错误;导线abc的有效长度为L,故受到的安培力大小为:;导线ac受到的安培力:;故B错误;根据左手定则,导线abc受安培力垂直于ac向下,导线ac受到的安培力也垂直于ac向下,故线框受到的安培力的合力:,合力方向垂直于ac向下,故C错误,D正确;故选D.【点睛】通电三角形线圈处于匀强磁场中,受到安培力作用,根据左手定则确定安培力的方向,再由公式F=BIL确定安培力的大小,最后由力的合成来算出安培力的合力.4. 如图所示,某同学以不同的初速度将篮球从同一位置抛出,篮球两次抛出后均垂直撞在竖直墙上,图中曲线为篮球第一次运动的轨迹,O为撞击点,篮球第二次抛出后与墙的撞击点在O点正下方,忽略空气阻力,下列说法正确的是A. 篮球在空中运动的时间相等B. 篮球第一次撞墙时的速度较小C. 篮球第一次抛出时速度的竖直分量较小D. 篮球第一次抛出时的初速度较小【答案】B【解析】将篮球的运动反向处理,即可视为平抛运动,第二次下落的高度较小,所以运动时间较短,故A错误;水平射程相等,由得知第二次水平分速度较大,即篮球第二次撞墙的速度较大,第一次撞时的速度较小,故B正确;第二次时间较短,则由可知,第二次抛出时速度的竖直分量较小,故C错误;根据速度的合成可知,不能确定抛出时的速度大小,故D错误;故选B.5. 一粒石子和一泡沫塑料球以相同初速度同时竖直向上抛出,泡沫塑料球受到的空气阻力大小与其速度大小成正比,忽略石子受到的空气阻力,石子和塑料球运动的速度v随时间t变化的图像如图所示,其中可能正确的是A. B.C. D.【答案】D【解析】忽略石子受到的空气阻力,石子只受重力,加速度恒为g,v-t图象是向下倾斜的直线.对于泡沫塑料球,根据牛顿第二定律得:上升过程有,下降过程有,又,得,则上升过程中,随着v的减小,a减小;,则下降过程中,随着v的增大,a减小;所以a不断减小,方向不变,故ABC错误,D正确;故选D.二、多选题6. 如图所示,理想变压器原线圈接电压为220V的正弦交流电,开关S接1时,原副线圈的匝数比为11:1,滑动变阻器接入电路的阻值为10Ω,电压表和电流表均为理想电表,下列说法正确的有A. 变压器输入功率与输出功率之比为1:1B. 1min内滑动变阻器产生的热量为40JC. 仅将S从1拨到2,电流表示数减小D. 仅将滑动变阻器的滑片向下滑动,两电流表示数均减小【答案】AC【解析】根据理想变压器的特点可知,变压器的输入功率与输出功率之比为1:1,故A正确;原、副线圈的电压与匝数成正比,所以副线圈两端电压为,则1 min 内产生的热量为,若只将S从1拨到2,副线圈的电压减小,副线圈电流减小,原线圈电流即电流表示数减小,故C正确;将滑动变阻器滑片向下滑动,接入电路中的阻值变大,电流表的读数变小,但对原、副线圈两端的电压无影响,即电压表的读数不变,故D错误;故选AC.【点睛】交流电压表和交流电流表读数为有效值,根据根据电压与匝数成正比,电流与匝数成反比,输入功率等于输出功率,再根据电压与匝数成正比即可求得结论.7. 真空中有一半径为r0的均匀带电金属球,以球心为原点建立x轴,轴上各点的电势分布如图所示,r1、r2分别是+x轴上A、B两点到球心的距离。

江苏省天一2019届高三上学期期初调研测试

江苏省天一2019届高三上学期期初调研测试

江苏省天一中学2019届高三上学期期初调研测试数 学 试 题一、填空题:本大题共14小题,每小题5分,共70分. 1.函数f (x )=ln 11-x的定义域为 ▲ .2. 在平面直角坐标系xOy 中,角α的始边为射线Ox ,点()12P -,在其终边上,则sin α的值为▲ .3.公比为2的等比数列{}n a 的各项都是正数,且41016a a =,则10a = ▲ . 4.若曲线ln y kx x =+在点(1,)k 处的切线平行于x 轴,则k =_▲____.5.函数()sin f x x x =,[]0πx ∈,的单调减区间为 ▲ . 6.已知点P 在抛物线24y x =上,那么点P 到点(2,1)Q -的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为 ▲ .7. 已知双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线平行于直线l :y =2x +10,且它的一个焦点在直线l 上,则双曲线C 的方程为 ▲ .8. 设{}n a 是首项为正数的等比数列,公比为q ,则“0q <”是“对任意的正整数n , 2120n n a a-+<”的 ▲ 条件.(选填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”之一) 9.已知函数2()||2x f x x +=+,x ∈R ,则2(2)(2)f x x f x -<-的解集是 ▲ .10.定义在区间π02⎛⎫ ⎪⎝⎭,上的函数5cos 2y x =的图象与2sin y x =-的图象的交点横坐标为0x ,则0tan x 的值为 ▲ .11. 已知函数⎪⎩⎪⎨⎧≤---=)1()1(,5)(2x >xa x ax x x f 是R 上的增函数,则a 的取值范围是▲12.设P 是有公共焦点F 1,F 2的椭圆C 1与双曲线C 2的一个交点,且PF 1⊥PF 2,椭圆C 1的离心率为e 1,双曲线C 2的离心率为e 2,若e 2=3e 1,则e 1= ▲ .13.若数列{}n a 满足112(2)n n n a a a n +-+≥≥,则称数列{}n a 为凹数列.已知等差数列{}n b 的公差为d ,12b =,且数列n b n ⎧⎫⎨⎬⎩⎭是凹数列,则d 的取值范围为____▲________.14.已知偶函数()y f x =满足(2)(2)f x f x +=-,且在[]2,0x ∈-时,2()1f x x =-+,若存在12n x x x ,,,满足120n x x x <<<≤,且()()()()1223f x f x f x f x -+-+()()12018n n f x f x -+-=,则n x 最小值为 ▲ .二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)设函数)0π( )2sin()(<<-+=ϕϕx x f .()y f x =图像的一条对称轴是直线8π=x . (1)求函数()f x 的解析式; (2)若3(),(0,)25f ααπ=∈,试求5()8f πα+的值. 16.(本小题满分14分)已知A B 、分别在射线CM CN 、(不含端点C )上运动,23MCN ∠=π,在ABC ∆中,角A 、B 、C 所对的边分别是a 、b 、c .⑴ 若a 、b 、c 依次成等差数列,且公差为2.求c 的值;⑵若c =ABC ∠=θ,试用θ表示ABC ∆的周长,并求周长的最大值.17.(本小题满分16分)在平面直角坐标系xOy 中,圆O :224x y +=,直线l :43200x y +-=.43()55A ,为 圆O 内一点,弦MN 过点A ,过点O 作MN 的垂线交l 于点P . (1)若MN ∥l ,求△PMN 的面积.(2)判断直线PM 与圆O 的位置关系,并证明. 18.(本小题满分16分)A BMN已知在平面直角坐标系xOy 中,椭圆C :22221(0)y x a b a b+=>>,其短轴长为2.(1)求椭圆C 的标准方程;(2)如图,A 为椭圆C 的左顶点,P ,Q 为椭圆C 上两动点,直线PO 交AQ 于E ,直线QO 交AP 于D ,直线OP 与直线OQ 的斜率分别为1k ,2k ,且121k k =-,AD DP λ=,AE EQ μ=(λμ,为非零实数),求22λμ+的值.19.(本小题满分16分)已知函数2()ln f x x x ax =+.(1)若曲线()y f x =在1x =处的切线过点(22)A -,.①求实数a 的值;② 设函数()()f x g x x =,当0s >时,试比较()g s 与1()g s的大小; (2)若函数()f x 有两个极值点1x ,2x (12x x <),求证:11()2f x >-.20.(本小题满分16分)设n S 数列{}n a 的前n 项和,对任意n *∈N ,都有1()()n n S an b a a c =+++(a b c ,,为 常数).(1)当3022a b c ===-,,时,求n S ; (2)当1002a b c ===,,时, (ⅰ)求证:数列{}n a 是等差数列;(ⅱ)若对任意,m n *∈N ,必存在p *∈N 使得p m n a a a =+,已知211a a -=,且1111129nii S =∈∑[,),求数列{}n a 的通项公式.。

江苏省无锡市天一中学2018--2019学年高三数学11月月考试卷(含解析)

江苏省无锡市天一中学2018--2019学年高三数学11月月考试卷(含解析)

12018-2019学年江苏省无锡市天一中学高三11月月考数学试题注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、填空题 1.设集合,则_______.2.命题:“ 使得”的否定为__________.3.函数的定义域为_________。

4.曲线在处的切线的斜率为_________.5.若函数是偶函数,则实数______.6.已知,函数和存在相同的极值点,则________. 7.已知函数.若,则实数的最小值为______。

8.已知函数与函数的图象交于三点,则的面积为________.只装订不密封准考证号 考场号 座位号9.已知f(x)是定义在R上的偶函数,且在区间(−,0)上单调递增。

若实数a满足f(2|a-1|)>f (),则a的取值范围是______。

10.已知0y xπ<<<,且tan tan2x y=,1 sin sin3x y=,则x y-=______.11.在平行四边形ABCD中,AC AD AC BD⋅=⋅3=,则线段AC的长为.12.已知,,且,则的最大值为______.13.设是自然对数的底数,函数有零点,且所有零点的和不大于6,则的取值范围为______.14.设函数().若存在,使,则的取值范围是____.二、解答题15.已知,.(1)求的值;(2)设函数,,求函数的单调增区间.16.如图,在中,已知是边上的一点,,,求:(1)的长;(2)的面积.217.在平面直角坐标系中,已知向量,设向量,其中。

2019届江苏省无锡市天一中学高三11月月考数学试题(解析版)

2019届江苏省无锡市天一中学高三11月月考数学试题(解析版)

2019届江苏省无锡市天一中学高三11月月考数学试题一、填空题1.设集合,则_______.【答案】【解析】直接利用集合并集的定义求解即可.【详解】因为集合,所以,故答案为.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合或属于集合的元素的集合.2.命题:“ 使得”的否定为__________.【答案】【解析】根据特称命题的否定是全称命题,既要改写量词,又要否定结论,可得原命题的否定形式.【详解】因为特称命题的否定是全称命题,既要改写量词,又要否定结论,故命题“”的否定是,故答案为.【点睛】本题主要考查特称命题的否定,属于简单题.全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词、存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论即可.3.函数的定义域为_________.【答案】【解析】直接由根式内部的代数式大于等于0 ,分式的分母不等于0 ,列不等式求解即可得结果.【详解】要使函数有意义,则,解得,函数的定义域为,故答案为.【点睛】本题主要考查具体函数的定义域、不等式的解法,属于中档题.定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数的定义域为,则函数的定义域由不等式求出.4.曲线在处的切线的斜率为_________.【答案】1【解析】求出原函数的导函数,可得到曲线在处的导数值,根据导数的几何意义可得结果.【详解】因为曲线在处的切线的斜率就是曲线在处的导数值,由得,,即曲线在处的切线的斜率为1,故答案为1.【点睛】本题考查了利角导数研究曲线上某点处的切线斜率,曲线在某点处的导数值,即为曲线上以该点为切点的切线的斜率,是中档题.5.若函数是偶函数,则实数______.【答案】1【解析】由函数是偶函数,利用求得,再验证即可得结果.【详解】是偶函数,,即,解得,当时,是偶函数,合题意,故答案为1.【点睛】本题主要考查函数的奇偶性,属于中档题. 已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由恒成立求解,(2)偶函数由恒成立求解;二是利用特殊值:奇函数一般由求解,偶函数一般由求解,用特殊法求解参数后,一定要注意验证奇偶性.6.已知,函数和存在相同的极值点,则________.【答案】3【解析】(1)求出函数的导数,可得极值点,通过与有相同的极值点,列方程求的值.【详解】,则,令,得或,可得在上递增;可得在递减,极大值点为,极小值点为,因为函数和存在相同的极值点,而在处有极大值,所以,所以 ,故答案为3.【点睛】本题主要考查利用导数判断函数的单调性以及函数的极值,属于中档题.求函数极值的步骤:(1) 确定函数的定义域;(2) 求导数;(3) 解方程求出函数定义域内的所有根;(4) 列表检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值. (5)如果只有一个极值点,则在该处即是极值也是最值.7.已知函数.若,则实数的最小值为______.【答案】【解析】试题分析:由题意得,实数的最小值为【考点】三角函数周期8.已知函数()[]()sin 0,f x x x π=∈和函数()1tan 3g x x =的图像相交于,,A B C 三点,则ABC ∆的面积为__________.【解析】联立方程()sin f x x =与()1tan 3g x x =可得1t a n s i n 3x x =,解之得10,,cos sin 3x x x π==⇒=,所以()()()0,0,,0,,s i nA B C x x π,因(),,s in A B C xπ=到x 轴的距离为sin x =,所以ABC ∆的面积为1233S π=⨯⨯=,应填答案3。

江苏省无锡市天一中学2025届高三第四次模拟考试数学试卷含解析

江苏省无锡市天一中学2025届高三第四次模拟考试数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.使得()3nx n N+⎛+∈ ⎝的展开式中含有常数项的最小的n 为( )A .4B .5C .6D .72.若集合M ={1,3},N ={1,3,5},则满足M ∪X =N 的集合X 的个数为( ) A .1 B .2 C .3D .43.已知236a b ==,则a ,b 不可能满足的关系是() A .a b ab +=B .4a b +>C .()()22112a b -+-< D .228a b +>4.设集合A 、B 是全集U 的两个子集,则“A B ⊆”是“UA B =∅”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知函数2()(2)g x f x x =+为奇函数,且(2)3f =,则(2)f -=( )A .2B .5C .1D .36.已知函数()()2sin 1f x x ωϕ=+-(0>ω,0ϕπ<<)的一个零点是3π,函数()y f x =图象的一条对称轴是直线6x π=-,则当ω取得最小值时,函数()f x 的单调递增区间是( )A .3,336k k ππππ⎡⎤--⎢⎥⎣⎦(k ∈Z ) B .53,336k k ππππ⎡⎤--⎢⎥⎣⎦(k ∈Z ) C .22,236k k ππππ⎡⎤--⎢⎥⎣⎦(k ∈Z ) D .2,236k k ππππ⎡⎤--⎢⎥⎣⎦(k ∈Z ) 7.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知23C π=,1c =.当,a b 变化时,若z b a λ=+存在最大值,则正数λ的取值范围为A .(0,1)B .(0,2)C .1(,2)2D .(1,3)8.2019年10月1日,中华人民共和国成立70周年,举国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为 A .96B .84C .120D .3609.设{1,0,1,2}U =-,集合2{|1,}A x x x U =<∈,则U C A =( )A .{0,1,2}B .{1,1,2}-C .{1,0,2}-D .{1,0,1}-10.已知双曲线22221x y a b-=的一条渐近线方程为43y x =,则双曲线的离心率为( )A .43B .53C .54D .3211.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面叙述不正确的是( )A .1月至8月空气合格天数超过20天的月份有5个B .第二季度与第一季度相比,空气达标天数的比重下降了C .8月是空气质量最好的一个月D .6月份的空气质量最差.12.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且cos sin a B b A c +=.若2a =,ABC 的面积为21),则b c +=( ) A .5B .22C .4D .16二、填空题:本题共4小题,每小题5分,共20分。

江苏省天一中学2019-2020学年上学期高三年级十二月份调研考试含附加题(含答案)

2019年江苏省天一中学十二月份调研考试高三数学(Ⅰ)试题一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.设全集{|5,*}U x x x N=<∈,集合{1A=,3},{3B=,4},则()UC A B=_____.2.已知i是虚数单位,若复数(12)()z i a i=++的实部与虚部相等,则实数a的值为.3. 函数2()log(1)f x x=-的定义域为_____.4.从甲,乙,丙,丁4个人中随机选取两人,则甲、乙两人中有且只一个被选取的概率为.5.对一批产品的质量(单位:克)进行抽样检测,样本容量为800,检测结果的频率分布直方图如图所示.根据标准,单件产品质量在区间[25,30)内为一等品,在区间[20,25)和[30,35)内为二等品,其余为次品.则样本中次品件数为.6.如图是一个算法流程图,则输出的b的值为.7.若抛物线22y px =(0)p >的焦点恰好是双曲线22451x y -=的右焦点,则p =____.8.已知函数())cos(2)(0)f x x x ϕϕϕπ=+-+<<是定义在R 上的奇函数,则()8f π-的值为 .9.已知数列{}n a 与2{}na n均为等差数列(*)n N ∈,且12a =,则10a = .10.如图,在ABC ∆中,4AB =,2AC =,60BAC ∠=︒,已知点E ,F 分别是边AB ,AC 的中点,点D 在边BC 上,若134DE DF =,则线段BD 的长为 .11.已知点(3,0)A -,(1,2)B --,若圆222(2)(0)x y r r -+=>上恰有两点M ,N ,使得MAB ∆和NAB ∆的面积均为4,则r 的取值范围是 .12.已知函数2()234x a a x f x x x lnx e e --=--++,其中e 为自然对数的底数,若存在实数0x 使0()3f x =成立,则实数a 的值为 .13.已知函数32ln ,0(),0e x xf x x x x >⎧=⎨+≤⎩,若函数2()()g x f x ax =-有三个不同的零点,则实数a 的取值范围是_____. 14.在锐角三角形ABC ,AD 是边BC 上的中线,且AD AB =,则111tan tan tan AB C++的最小值为 . 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、证明过程或演算步骤 15.(本小题满分14分)如图,在平面直角坐标系xOy 中,以x 轴正半轴为始边的锐角α的终边与单位圆O 交于点A ,且点A 的纵. (1)求3cos()4πα-的值;(2)若以x 轴正半轴为始边的钝角β的终边与单位圆O 交于点B ,且点B 的横坐标为,求αβ+的值.16.(本小题满分14分)如图,在正三棱柱111ABC A B C -中,点D 在棱BC 上,1AD C D ⊥,点E ,F 分别是1BB ,11A B 的中点. (1)求证:D 为BC 的中点; (2)求证://EF 平面1ADC .17.(本小题满分14分)某市有一特色酒店由10座完全相同的帐篷构成(如图1).每座帐篷的体积为354m π,且分上下两层,其中上层是半径为(1)r r …(单位:)m 的半球体,下层是半径为rm ,高为hm 的圆柱体(如图2).经测算,上层半球体部分每平方米建造费用为2千元,下方圆柱体的侧面、隔层和地面三个部分平均每平方米建造费用为3千元设所有帐篷的总建造费用为y 千元.(1)求y 关于r 的函数解析式,并指出该函数的定义域;(2)当半径r 为何值时,所有帐篷的总建造费用最小,并求出最小值.18.(本小题满分16分)如图,已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为1F ,2F ,若椭圆C 经过点,离心率为12,直线l 过点2F 与椭圆C 交于A ,B 两点. (1)求椭圆C 的方程;(2)若点N 为△12F AF 的内心(三角形三条内角平分线的交点),求△12F NF 与△12F AF 面积的比值; (3)设点A ,2F ,B 在直线4x =上的射影依次为点D ,G ,E .连结AE ,BD ,试问:当直线l 的倾斜角变化时,直线AE 与BD 是否相交于定点T ?若是,请求出定点T 的坐标;若不是,请说明理由.19.(本小题满分16分)设数列{}n a ,{}n b 分别是各项为实数的无穷等差数列和无穷等比数列. (1)已知11b =,23260b b b -+=,求数列{}n b 的前n 项的和n S ;(2)已知22a =,4710++21a a a =,且数列{+}n n a b 的前三项成等比数列,若数列{}n b 唯一,求1b 的值. (3)已知数列{}n a 的公差为(0)d d ≠,且11122(1)22n n n a b a b a b n +++⋯+=-+,求数列{}n a ,{}n b 的通项公式(用含n ,d 的式子表达);20. (本小题满分16分)设a 为实数,已知函数()x f x axe =()a R ∈. (1)当0a <时,求函数()f x 的单调区间;(2)设b 为实数,若不等式2()2f x x bx +…对任意的1a …及任意的0x >恒成立,求b 的取值范围; (3)若函数()()ln g x f x x x =++(0)x >有两个相异的零点,求a 的取值范围.2019年江苏省天一中学十二月份调研考试高三数学(Ⅱ)试题21.本题共2小题,每小题10分,共计20分,请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤.A .选修4—2:矩阵与变换 已知矩阵11a A b ⎡⎤=⎢⎥-⎣⎦,A 的一个特征值2λ=,其对应的一个特征向量是121α⎡⎤=⎢⎥⎣⎦(1)求矩阵A ;(2)设直线l 在矩阵1A -对应的变换作用下得到了直线:4m x y -=,求直线l 的方程.B .选修4—4:坐标系与参数方程在极坐标系中,直线l 的极坐标方程为()4R πθρ=∈,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,曲线C 的参数方程为4cos ,(1cos 2x y ααα=⎧⎨=+⎩为参数),求直线l 与曲线C 的交点P 的直角坐标.第22题、第23题,每题10分,共计20分,请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在直四棱柱1111ABCD A B C D -中,底面四边形ABCD 为菱形,12A A AB ==,3ABC π∠=,E ,F 分别是BC ,1A C 的中点.(1)求异面直线EF ,AD 所成角的余弦值; (2)点M 在线段1A D 上,11A MA Dλ=.若//CM 平面AEF ,求实数λ的值.23.(本小题满分10分)已知袋中装有大小相同的2个白球、2个红球和1个黄球.一项游戏规定;每个白球、红球 和黄球的分值分别是0分、1分和2分,每一局从袋中一次性取出三个球,将3个球对应的 分值相加后称为该局的得分,计算完得分后将球放回袋中.当出现第n 局得n 分(*)n N ∈的 情况就算游戏过关,同时游戏结束,若四局过后仍未过关,游戏也结束. (1)求在一局游戏中得3分的概率;(2)求游戏结束时局数X 的分布列和数学期望()E X .2019年江苏省天一中学十二月份调研考试高三数学(Ⅰ)试题一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.设全集{|5,*}U x x x N =<∈,集合{1A =,3},{3B =,4},则()U C A B =_____. 答案:{2},分析:由全集{|5,*}U x x x N =<∈,可得{1U =,2,3,4},然后根据集合混合运算的法则即可求解. 解:{1A =,3},{3B =,4},{1A B ∴=,3,4},{|5,*}{1U x x x N =<∈=,2,3,4},(){2}U C AB ∴=2.已知i 是虚数单位,若复数(12)()z i a i =++的实部与虚部相等,则实数a 的值为 . 答案:3-分析:利用复数代数形式的乘除运算化简,再由实部与虚部相等列式求得a 值. 解:(12)()(2)(21)z i a i a a i =++=-++,且z 的实部与虚部相等,221a a ∴-=+,即3a =-.故答案为:3-.3. 函数2()log (1)f x x =-的定义域为_____. 答案:[0,1)分析:利用偶次根式被开方数大于等于0,再结合对数函数的真数大于0即可求解. 解:由题意得010x x ≥⎧⎨->⎩,解得01x ≤<故函数()f x 的定义域为[0,1)4.从甲,乙,丙,丁4个人中随机选取两人,则甲、乙两人中有且只一个被选取的概率为 . 答案:23分析:根据古典概型的概率公式即可得到结论.解:从甲,乙,丙,丁4个人中随机选取两人,共有(甲乙),(甲丙),(甲丁),(乙丙), (乙丁),(丙丁)六种,其中甲乙两人中有且只一个被选取,则(甲丙),(甲丁),(乙丙), (乙丁),共4种,故甲乙两人中有且只一个被选取的概率为4263=,故答案为:235.对一批产品的质量(单位:克)进行抽样检测,样本容量为800,检测结果的频率分布直方图如图所示.根据标准,单件产品质量在区间[25,30)内为一等品,在区间[20,25)和[30,35)内为二等品,其余为次品.则样本中次品件数为 .答案:200分析:结合频数分布直方图确定落在[10,15,)、[15,20)、[35,40]的人数由容量⨯⨯频率组距组距求出. 解:样本容量为800,检测结果的频率分布直方图如图所示.根据标准,单件产品质量在区间[25,30)内为一等品,在区间[20,25)和[30,35)内为二等品, 其余为次品.其件数为:800(0.01250.02500.0125)5200⨯++⨯= 故答案为:2006.如图是一个算法流程图,则输出的b 的值为 . 答案:8分析:根据程序框图进行模拟运算即可. 解:1a =,1b =,10a >否,2a =,1b =,10a >否,123a =+=,211b =-=, 10a >否,314a =+=,312b =-=, 10a >否,426a =+=,422b =-=, 10a >否,628a =+=,624b =-=, 10a >否,8412a =+=,1248b =-=, 10a >是,输出8b =,故答案为:87.若抛物线22y px =(0)p >的焦点恰好是双曲线22451x y-=的右焦点,则p =____. 分析:根据双曲线方程求出焦点坐标,根据抛物线的几何性质求得p .解:双曲线22451x y -=的右焦点是(3,0), ∴抛物线22y px =的焦点为(3,0),∴32p =,6p ∴=故答案为:68.已知函数())cos(2)(0)f x x x ϕϕϕπ=+-+<<是定义在R 上的奇函数,则()8f π-的值为 .答案:分析:利用辅助角公式进行化简,结合三角函数奇偶性的性质进行求解即可. 解:())cos(2)2sin(2)6f x x x x πϕϕϕ+-+=+-,()f x 是奇函数,6k πϕπ∴-=,即6k πϕπ=+,k Z ∈,0ϕπ<<,0k ∴=时,6πϕ=,即()2sin 2f x x =,则()2sin()284f ππ-=-=-=故答案为:.9.已知数列{}n a 与2{}na n均为等差数列(*)n N ∈,且12a =,则10a = .答案:20分析:设等差数列{}n a 的公差为d .又数列2{}na n均为等差数列(*)n N ∈,且12a =,可得222(2)2(22)2213d d ++⨯=+,解得d ,即可得出.解:设等差数列{}n a 的公差为d .又数列2{}na n均为等差数列(*)n N ∈,且12a =,222(2)2(22)2213d d ++∴⨯=+,解得2d =.则1029220a =+⨯=.故答案为:20.10.如图,在ABC ∆中,4AB =,2AC =,60BAC ∠=︒,已知点E ,F 分别是边AB ,AC 的中点,点D 在边BC 上,若134DE DF =,则线段BD 的长为 .分析:先由平面向量数量积的运算可得:4AB AC =,再由余弦定理可得:BC =然后设(01)BD BC λλ=剟,结合平面向量的线性运算可得: 213()()121874DE DF BE BD DC CF λλ=-+=-+=,解得:14λ=,即可得解.解:因为在ABC ∆中,4AB =,2AC =,60BAC ∠=︒, 所以4AB AC =,又在ABC ∆中,由余弦定理可得:2222cos BC AB AC AB AC CAB =+-∠,又4AB =,2AC =,60BAC ∠=︒,得BC =设(01)BD BC λλ=剟, 则()()DE DF BE BD DC CF =-+11()[(1))22AB BC BC AC λλ=---- 11[()][()(1)]22AB AC AC AB λλλλ=-----222111()(1)()(22)224AB AC AB AC λλλλλλ=------+212187λλ=-+134=,解得:14λ=,即14BD BC =,即线段BD ,. 11.已知点(3,0)A -,(1,2)B --,若圆222(2)(0)x y r r -+=>上恰有两点M ,N ,使得MAB ∆和NAB ∆的面积均为4,则r 的取值范围是 .答案: 分析:求得||AB 的值,得出两点M ,N 到直线AB 的距离相等,写出AB 的直线方程, 根据圆上的点到直线AB 的距离求出r 的取值范围.解:由题意可得||AB = 根据MAB ∆和NAB ∆的面积均为4,可得两点M ,N 到直线AB 的距离为 由于AB 的方程为032013y x -+=---+,即30x y ++=;若圆上只有一个点到直线AB 的距离为则有圆心(2,0)到直线ABr =+r =;若圆上只有3个点到直线AB 的距离为则有圆心(2,0)到直线ABr =-r =;综上,r 的取值范围是.故答案为:. 12.已知函数2()234x a a x f x x x lnx e e --=--++,其中e 为自然对数的底数,若存在实数0x 使0()3f x =成立,则实数a 的值为 .答案:12ln -分析:令2()233g x x x lnx =---,()4x a a x h x e e --=--,求出()g x 与()h x 的值域即可判断0x 的值,从而得出a 的值.解:令()3f x =可得:22334x a a x x x lnx e e -----=--, 令2()233g x x x lnx =---,()4x a a x h x e e --=--,则21431()43x x g x x x x--'=--=,令()0g x '=可得24310x x --=,即1x =或14x =-(舍),∴当01x <<时,()0g x '<,当1x >时,()0g x '>,()g x ∴在(0,1)上单调递减,在(1,)+∞上单调递增,()g x g ∴…(1)4=-,()4(4)4x a a x x a a x h x e e e e ----=--=-+-=-…(当且仅当4x a a x e e --=即2x a ln =+时取等号), 0()3f x =,即00()()g x h x =, 012x a ln ∴==+,12a ln ∴=-.故答案为:12ln -.13.已知函数32ln ,0(),0e x x f x x x x >⎧=⎨+≤⎩,若函数2()()g x f x ax =-有三个不同的零点,则实数a 的取值范围是_____.答案:(0,1){2}-解:当0x ≤时,由()0g x =得,320x ax x -+=,∴0x =或210x ax -+=①∴当2a <-时,在(,0]-∞上有三个根,当2a =-时,在(,0]-∞上有两个根,当2a >-时,在(,0]-∞上有一根当0x >时,由()0g x =得22ln 0e x ax -=,则22ln e xa x =②,设22ln ()e x h x x =(0x >),32(12l n )'()e xh x x -=∴当x ∈时,'()0h x >,函数单调递增,当)x ∈+∞时,'()0h x <,函数单调递减可结合图像可知,01a h <<=时,方程②有两个根;当1a =或0a ≤时,方程②有一个根;当1a >时,方程②没有实根,综上:当01a <<或2a =-时,()g x 有三个零点.14.在锐角三角形ABC ,AD 是边BC 上的中线,且AD AB =,则111tan tan tan AB C++的最小值为 .答案:2分析:不妨设1BD DC ==,BC 边上的高为h ,则tan 2B h =,2tan 3C h =,再根据正切值求出tan A ,然后用基本不等式可求得.解:不妨设1BD DC ==,BC 边上的高为h ,则tan 2B h =,2tan 3C h =,从而tan tan 2tan tan()3tan tan 114B C A B C B C h+=-+==--,所以11113tan tan tan 28h A B C h ++=+=…, (当且仅当1328h h=,即h =二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、证明过程或演算步骤 15.(本小题满分14分)如图,在平面直角坐标系xOy 中,以x 轴正半轴为始边的锐角α的终边与单位圆O 交于点A ,且点A的纵. (1)求3cos()4πα-的值;(2)若以x 轴正半轴为始边的钝角β的终边与单位圆O 交于点B ,且点B 的横坐标为,求αβ+的值.分析:(1)直接利用三角函数的定义的应用求出结果. (2)利用三角函数的定义和角的变换的应用求出结果.解:因为锐角α的终边与单位圆O 交于点A ,且点A ,所以由任意角的三角函数的定义可知sin α=从而cos α=. (1)3cos()cos4πα-=cos α3sin 4π+sinα34π,(==.(2)因为钝角β的终边与单位圆O 交于点B ,且点B 的横坐标是,所以cos β=sin β==于是sin()sin αβ+=cos αcos β+sin α(2β=. 因为α为锐角,β为钝角,所以(2παβ+∈,3)2π,从而34παβ+=.16.(本小题满分14分)如图,在正三棱柱111ABC A B C -中,点D 在棱BC 上,1AD C D ⊥,点E ,F 分别是1BB ,11A B 的中点. (1)求证:D 为BC 的中点; (2)求证://EF 平面1ADC .分析:(1)推导出1CC ABC ⊥,1AD CC ⊥,从而AD ⊥平面11BCC B ,进而AD BC ⊥,由此能证明D 为BC的中点.(2)连结1AC ,1A C ,交于点O ,连结DO ,1A B ,推导出1//OD A B ,1//EF A B ,从而//EF OD ,由此能证明//EF 平面1ADC .证明:(1)在正三棱柱111ABC A B C -中,点D 在棱BC 上,1AD C D ⊥, 1CC ABC ∴⊥,1AD CC ∴⊥,111C D CC C =,AD ∴⊥平面11BCC B ,AD BC ∴⊥,D ∴为BC 的中点.(2)连结1AC ,1A C ,交于点O ,连结DO ,1A B ,正三棱柱111ABC A B C -中,11ACC A 是矩形,O ∴是1A C 的中点, 1//OD A B ∴,点E ,F 分别是1BB ,11A B 的中点,1//EF A B ∴,//EF OD ∴,EF ⊂/平面1ADC ,DO ⊂平面1ADC .//EF ∴平面1ADC .17.(本小题满分14分)某市有一特色酒店由10座完全相同的帐篷构成(如图1).每座帐篷的体积为354m π,且分上下两层,其中上层是半径为(1)r r …(单位:)m 的半球体,下层是半径为rm ,高为hm 的圆柱体(如图2).经测算,上层半球体部分每平方米建造费用为2千元,下方圆柱体的侧面、隔层和地面三个部分平均每平方米建造费用为3千元设所有帐篷的总建造费用为y 千元.(1)求y 关于r 的函数解析式,并指出该函数的定义域;(2)当半径r 为何值时,所有帐篷的总建造费用最小,并求出最小值.分析:(1)由图可知帐篷体积=半球体积+圆柱体积,即322543r r h πππ+=,表示出h ,则22(222323)10y r r rh πππ=⨯+⨯+⨯⨯,化简得25460()y r r π=+;再由254203r r ->,则1r <…义域为{|1r r <…,(2)254()f r r r=+,1r <…解:(1)由题意可得322543r r h πππ+=,所以25423h r r=-, 所以2222542(222323)1010060()3y r r rh r r r rπππππ=⨯+⨯+⨯⨯=+-,即25460()y r rπ=⨯+;因为1r …,0h >,所以254203r r ->,则1r <…{|1r r <…,(2)设254()f r r r=+,1r < (2)54()2f r r r'=-,令()0f r '=,解得3r =, 当[1r ∈,3)时,()0f r '<,()f r 单调递减;当(3r ∈,时,()0f r '>,()f r 单调递增,所以当3r =时,()f r 取极小值也是最小值,且()1620min f r π=. 答:当半径r 为3m 时,建造费用最小,最小为1620π千元. 18.(本小题满分16分)如图,已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为1F ,2F ,若椭圆C 经过点,离心率为12,直线l 过点2F 与椭圆C 交于A ,B 两点. (1)求椭圆C 的方程;(2)若点N 为△12F AF 的内心(三角形三条内角平分线的交点),求△12F NF 与△12F AF 面积的比值; (3)设点A ,2F ,B 在直线4x =上的射影依次为点D ,G ,E .连结AE ,BD ,试问:当直线l 的倾斜角变化时,直线AE 与BD 是否相交于定点T ?若是,请求出定点T 的坐标;若不是,请说明理由.分析:(1)由题意知b =12c a=,可得b a =,解得a 即可得出椭圆C 的方程. (2)由点N 为△12F AF 的内心,可得点N 为△12F AF 的内切圆的圆心,设该圆的半径为r ,可得12121212121||21(||||||)2F NF F AF F F r S SAF AF F F r =++.(3)若直线l 的斜率不存在时,四边形ABED 是矩形,此时AE 与BD 交于2F G 的中点5(,0)2.下面证明:当直线l 的倾斜角变化时,直线AE 与BD 相交于定点5(,0)2T .设直线l 的方程为(1)y k x =-,与椭圆方程联立化简得2222(34)84120k x k x k +-+-=.设1(A x ,1)y ,2(B x ,2)y ,由题意,得1(4,)D y ,2(4,)E y ,则直线AE 的方程为2121(4)4y y y y x x --=--.令52x =,此时21215(4)42y y y y x -=+--,把根与系数关系代入可得0y =,因此点5(,0)2T 在直线AE 上.同理可证,点5(,0)2T 在直线BD 上.即可得出结论. 解:(1)由题意知b =12c a=,所以b a =,解得2a =, 所以椭圆C 的方程为:22143x y +=. (2)因为点N 为△12F AF 的内心,所以点N 为△12F AF 的内切圆的圆心,设该圆的半径为r , 则12121212121||2121223(||||||)2F NF F AF F F r S c c Sa c a c AF AF F F r ====++++.(3)若直线l 的斜率不存在时,四边形ABED 是矩形, 此时AE 与BD 交于2F G 的中点5(,0)2.下面证明:当直线l 的倾斜角变化时,直线AE 与BD 相交于定点5(,0)2T .设直线l 的方程为(1)y k x =-,联立22(1)143y k x x y =-⎧⎪⎨+=⎪⎩化简得2222(34)84120k x k x k +-+-=.因为直线l 经过椭圆C 内的点(1,0),所以△0>.设1(A x ,1)y ,2(B x ,2)y ,则2122834k x x k +=+,212241234k x x k -=+.由题意,得1(4,)D y ,2(4,)E y ,则直线AE 的方程为2121(4)4y yy y x x --=--.令52x =,此时2112212112(4)3()5(4)422(4)y y x y y y y y x x --+-=+-=-- 12211212112(4)(1)3()825()2(4)2(4)x k x k x x k kx x k x x x x --+-+-+==--22221412882534342(4)k k k k k k k x -+-++=- 3332124328244002(4)(34)k k k k k x k ++--==-+,所以点5(,0)2T 在直线AE 上.同理可证,点5(,0)2T 在直线BD 上.所以当直线l 的倾斜角变化时,直线AE 与BD 相交于定点5(,0)2T .19.(本小题满分16分)设数列{}n a ,{}n b 分别是各项为实数的无穷等差数列和无穷等比数列. (1)已知11b =,23260b b b -+=,求数列{}n b 的前n 项的和n S ;(2)已知22a =,4710++21a a a =,且数列{+}n n a b 的前三项成等比数列,若数列{}n b 唯一,求1b 的值.(3)已知数列{}n a 的公差为(0)d d ≠,且11122(1)22n n n a b a b a b n +++⋯+=-+,求数列{}n a ,{}n b 的通项公式(用含n ,d 的式子表达); (1)解:设{}n b 的公比为q ,则有360q q -+=,即2(2)(23)0q q q +-+=; 解得2q =-;∴1(2)3n n S --=;(2)∵{}n a 为等差数列,又∵22a =,4710++21a a a = ∴7321a =,77a =,则公差1d=,则n a n =数列{+}n n a b 的前三项成等比数列,即11+b ,22+b ,33+b 成等比,2213(2+)(1+)(3+)b b b =,整理得131+=b b设数列{}n b 的公比为q ,显然10b ≠ 则2111+=b b q ,21110b qb --=∵数列{}n b 唯一确定, ∴1104(1)0b b ∆=++= 解得:11b =-或10b =(舍) 即11b =- (3)解:11122(1)22n n n a b a b a b n +++⋯+=-+⋯①112211(2)22n n n a b a b a b n --++⋯+=-+⋯②∴①-②,得2(2)n n n a b n n =…;112a b =;∴*2()n n n a b n n N =∈⋯③ ∴111(1)2(2)n n n a b n n ---=-⋯…④令③÷④,得12(2)1n n a nq n a n -=⋯-…⑤;其中q 是数列{}n b 的公比; ∴122(1)(3)2n n a n q n a n ---=⋯-…⑥ 令⑤÷⑥,得2221(2)(3)(1)n n n a a n n n a n ---=-…; ∴31234a a a =,即1121(2)3()4a d a a d +=+; 解得1a d =或13a d =-;若13a d =-,则40a =,有444420a b ⨯==,矛盾;1a d ∴=满足条件,此时n a dn =;2nn b d=; 20. (本小题满分16分)设a 为实数,已知函数()x f x axe =()a R ∈. (1)当0a <时,求函数()f x 的单调区间;(2)设b 为实数,若不等式2()2f x x bx +…对任意的1a …及任意的0x >恒成立,求b 的取值范围; (3)若函数()()ln g x f x x x =++(0)x >有两个相异的零点,求a 的取值范围. 分析:(1)根据导数和函数单调性的关系即可求出,(2)分离参数,可得2x e x b -…对任意的0x >恒成立,构造函数()2x x e x ϕ=-,利用导数求出函数的最值即可求出b 的范围,(3)先求导,再分类讨论,根据导数和函数单调性以及最值得关系即可求出a 的范围. 解:(1)当0a <时,因为()(1)x f x a x e '=+,当1x <-时,()0f x '>;当1x >-时,()0f x '<.所以函数()f x 单调减区间为(,1)-∞-,单调增区间为(1,)-+∞.(2)由2()2f x x bx +…,得22xaxe x bx +…,由于0x >, 所以2x ae x b +…对任意的1a …及任意的0x >恒成立. 由于0x e >,所以x x ae e …,所以2x e x b -…对任意的0x >恒成立. 设()2x x e x ϕ=-,0x >,则()2x x e ϕ'=-,所以函数()x ϕ在(0,ln 2)上单调递减,在(ln 2,)+∞上单调递增,所以()(min x ln ϕϕ=2)22ln =-2, 所以22b ln -…2.(3)由()ln xg x axe x x =++,得1(1)(1)()(1)1x xx axe g x a x e x x++'=+++=,其中0x >.①若0a …时,则()0g x '>,所以函数()g x 在(0,)+∞上单调递增,所以函数()g x 至多有一个零点,不合题意;②若0a <时,令()0g x '=,得10x xe a=->.由第(2)小题知,当0x >时,()222x x e x ln ϕ=--…20>,所以2x e x >,所以22x xe x >,所以当0x >时,函数x xe 的值域为(0,)+∞.所以存在00x >,使得0010ax ex +=,即001ax ex =- ①,且当0x x <时,()0g x '>,所以函数()g x 在0(0,)x 上单调递增,在0(x ,)+∞上单调递减. 因为函数有两个零点1x ,2x ,所以0000()()max g x g x ax ex x ln ==++001x x ln =-++00x > ②.设()1ln x x x ϕ=-++,0x >,则1()10x xϕ'=+>,所以函数()x ϕ在(0,)+∞上单调递增.由于(1)ϕ0=,所以当1x >时,()0x ϕ>,所以②式中的01x >. 又由①式,得001x ex a=-.由第(1)小题可知,当0a <时,函数()f x 在(0,)+∞上单调递减,所以1e a->,即1(a e∈-,0).()i 由于111()(1)0eae g e e e =+-<,所以01()()0g g x e<. 因为011x e<<,且函数()g x 在0(0,)x 上单调递减,函数()g x 的图象在0(0,)x 上不间断,所以函数()g x 在0(0,)x 上恰有一个零点;()ii 由于1111()()g e ln aaaa-=---+-,令1t e a=->,设()t F t e t ln =-++t ,t e >,由于t e >时,ln t t <,2t e t >,所以设()0F t <,即1()0g a-<.由①式,得当01x >时,0001x ex x a-=>,且01()()0g g x a-<,同理可得函数()g x 在0(x ,)+∞上也恰有一个零点. 综上,1(a e∈-,0).2019年江苏省天一中学十二月份调研考试高三数学(Ⅱ)试题21.本题共2小题,每小题10分,共计20分,请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤.A .选修4—2:矩阵与变换 已知矩阵11a A b ⎡⎤=⎢⎥-⎣⎦,A 的一个特征值2λ=,其对应的一个特征向量是121α⎡⎤=⎢⎥⎣⎦(1)求矩阵A ;(2)设直线l 在矩阵1A -对应的变换作用下得到了直线:4m x y -=,求直线l 的方程. 分析:(1)由111211a A b αλα⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦即可求出a ,b ; (2)设直线:4m x y -=上的任意一点(,)x y 在矩阵A 对应的变换作用下得到点(,)x y '',根据122144x x x y y y x y '+⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥'--+⎣⎦⎣⎦⎣⎦⎣⎦,可得2,3.6x y x x y y '-'⎧=⎪⎪⎨'+'⎪=⎪⎩进而得到l 的方程;. 解:(1)1122112a a A b b α+⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦⎣⎦,124212λα⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,∴24,22,a b +=⎧⎨-+=⎩解得2,4,a b =⎧⎨=⎩故1214A ⎡⎤=⎢⎥-⎣⎦; (2)1214A ⎡⎤=⎢⎥-⎣⎦,121331166A -⎡⎤-⎢⎥∴=⎢⎥⎢⎥⎢⎥⎣⎦, 设直线:4m x y -=上的任意一点(,)x y 在矩阵1A -对应的变换作用下得到点(,)x y '', 则2121333311116666x y x x y y x y ⎡⎤⎡⎤--⎢⎥⎢⎥'⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥'⎢⎥⎢⎥⎣⎦⎣⎦+⎢⎥⎢⎥⎣⎦⎣⎦∴21,3311,66x x y y x y ⎧'=-⎪⎪⎨⎪'=+⎪⎩∴2,4.x x y y x y ''=+⎧⎨''=-⎩4x y -=,23y ∴'=,∴直线l 的方程为23y =.B .选修4—4:坐标系与参数方程在极坐标系中,直线l 的极坐标方程为()4R πθρ=∈,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,曲线C 的参数方程为4cos ,(1cos 2x y ααα=⎧⎨=+⎩为参数),求直线l 与曲线C 的交点P 的直角坐标. 分析:化直线l 的极坐标方程为直角坐标方程,化曲线C 的参数方程为普通方程,联立求解得答案. 解:直线l 的直角坐标方程为y x =. 由方程4cos ,1cos 2x y αα=⎧⎨=+⎩,可得22212cos 2()48x y x α===,又1cos 1α-剟,44x ∴-剟. ∴曲线C 的普通方程为21(44)8y x x =-剟.将直线l 的方程代入曲线方程中,得218x x =,解得0x =,或8x =(舍去).∴直线l 与曲线C 的交点P 的直角坐标为(0,0).第22题、第23题,每题10分,共计20分,请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在直四棱柱1111ABCD A B C D -中,底面四边形ABCD 为菱形,12A A AB ==,3ABC π∠=,E ,F 分别是BC ,1A C 的中点.(1)求异面直线EF ,AD 所成角的余弦值; (2)点M 在线段1A D 上,11A MA Dλ=.若//CM 平面AEF ,求实数λ的值.分析:(1)建立坐标系,求出直线的向量坐标,利用夹角公式求异面直线EF ,AD 所成角的余弦值; (2)点M 在线段1A D 上,11A MA Dλ=.求出平面AEF 的法向量,利用//CM 平面AEF ,即可求实数λ的值. 解:因为四棱柱1111ABCD A B C D -为直四棱柱, 所以1A A ⊥平面ABCD .又AE ⊂平面ABCD ,AD ⊂平面ABCD , 所以1A A AE ⊥,1A A AD ⊥.在菱形ABCD 中3ABC π∠=,则ABC ∆是等边三角形.因为E 是BC 中点,所以BC AE ⊥. 因为//BC AD ,所以AE AD ⊥.建立空间直角坐标系.则(0A ,0,0),C 1,0),(0D ,2,0),1(0A ,0,2),E 0,0),F ,12,1). (1)(0AD =,2,0),(EF =-12,1),所以异面直线EF ,AD=.(2)设(M x ,y ,)z ,由于点M 在线段1A D 上,且11A M A Dλ=,则(x ,y ,2)(0z λ-=,2,2)-.则(0M ,2λ,22)λ-,(CM =,21λ-,22)λ-. 设平面AEF 的法向量为0(n x =,0y ,0)z . 因为(3AE =,0,0),3(AF =,12,1),由0000012y z =++=,得00x =,00102y z +=. 取02y =,则01z =-,则平面AEF 的一个法向量为(0n =,2,1)-.由于//CM 平面AEF ,则0n CM =,即2(21)(22)0λλ---=,解得23λ=.23.(本小题满分10分)已知袋中装有大小相同的2个白球、2个红球和1个黄球.一项游戏规定;每个白球、红球和黄球的分值分别是0分、1分和2分,每一局从袋中一次性取出三个球,将3个球对应的分值相加后称为该局的得分,计算完得分后将球放回袋中.当出现第n 局得n 分(*)n N ∈的情况就算游戏过关,同时游戏结束,若四局过后仍未过关,游戏也结束. (1)求在一局游戏中得3分的概率;(2)求游戏结束时局数X 的分布列和数学期望()E X .分析:(1)根据相互独立事件的概率公式求出对应的概率值;(2)由题意知随机变量X的可能取值,计算在一局游戏中得2分的概率值,求出对应的概率值,写出分布列,计算数学期望.解:(1)设在一局游戏中得3分为事件A,则P(A)1112213525C C CC==;(2)由题意随机变量X的可能取值为1,2,3,4;且在一局游戏中得2分的概率为1221222135310C C C CC+=;则2122351 (1)5C CP XC===,436(2)51025P X==⨯=,43228(3)(1)5105125P X==⨯-⨯=,43342(4)(1)5105125P X==⨯-⨯=,X∴的分布列为:162842337 ()1234525125125125E X=⨯+⨯+⨯+⨯=.。

【20套精选试卷合集】江苏省天一中学2019-2020学年高考数学模拟试卷含答案

高考模拟数学试卷第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、设集合{1,0}A =-,集合{0,1,2}B =,则A B 的子集的个数是 A .4 B .8 C .16 D .322、已知i 是虚数单位,若复数(1)z i i =-的实部为A .1B .-1C .iD .i -3、命题“2,x R x ∃∈是无理数”的否定是A .2,x R x ∃∉不是无理数B .2,x R x ∃∈不是无理数C .2,x R x ∀∉不是无理数D .2,x R x ∀∈不是无理数4、已知向量(2,1)a =-与(,3)b m =平行,则m =A .32-B .32C .6-D .6 5、某年级有1000名学生,随机编号为0001,0002,,1000,现在系统抽样方法,从中抽出200人,若0122号被抽到了,则下列编号也被抽到的是A .0116B .0927C .0834D .0726A .4[0,]3B .4[2,]3-C .[0,6]D .[2,6]-A .4[0,]3B .4[2,]3-C .[0,6]D .[2,6]-A .4[0,]3 B .4[2,]3- C .[0,6] D .[2,6]- 6、已知函数()21log (4),412,4x x x f x x --<⎧=⎨+≥⎩,则4(0)(log 32)f f += A .19 B .17 C .15 D .137、在ABC ∆中,sin :sin :sin 2:A B C =,则cos C =A B .13 D .148、将双曲线22221x y a b-=的右焦点,右顶点,虚轴的一个端点所组成的三角形叫做双曲线的“黄金三角形”,则双曲线22:4C x y -=的“黄金三角形”的面积是A 1B .2-C .1D .29、已知e 为自然对数的底数,曲线x y ae x =+在点(1,1)ae +处的切线与直线210ex y --=平行,则实数a =A .1e e -B .21e e -C .12e e -D .212e e- 10、给出一个如图所示的程序框图,若要使输入的x 值与输出的y 值相等,则这样的的x 的个数是A .1B .2C .3D .411、某几何体的三视图如图所示,则其表面积为A .82π+B .102π+C .62π+D .122π+11、已知函数()cos sin (0)f x wx wx w ==>在(,)22ππ-上单调递增,则w 的取值不可能为 A .15 B .14 C .12 D .34第Ⅱ卷本卷包括必考题和选考题两部分,第13题第21题为必考题,每个试题考生都必须作答,第22题第24题为选考题,考生根据要求作答。

江苏省天一中学2019届高三上学期期初调研测试语文试题 Word版缺答案

2019届高三第一学期期初调研测试卷(语文)一、语言文字运用(15分)1.在下面一段话的空缺处依次填入词语,最恰当的一组是(3分)金黄色的葫芦上有灵动的仕女、威武的罗汉、各式各样的京剧脸谱、可爱的生肖,画面______,线条洗练流畅,看起来_______;54岁的民间艺人栾清明有一手绝活——用烙铁在葫芦上作画。

如今,栾清明不忍传统技艺流失,_______,把技艺传承给自己的儿子。

他们的作品被越来越多的人所喜爱,“上阵父子兵”一时间也被传为佳话。

A.惟妙惟肖别有风味口传心授B.有声有色别有洞天口口相传C.有声有色别有风味口口相传D.惟妙惟肖别有洞天口传心授2、下列各句中,没有语病的一句是(3分)A.类似于几年前手机、楼盘的“饥饿营销”,当前被许多网红餐饮店采用的排队营销术,虽然让商家赚得盆盈钵满,但严重扰乱了餐饮业的市场秩序。

B.除了驾驶员要有熟练的驾驶技术、丰富的驾驶经验外,汽车本身的状况,也是保证行车安全的重要条件之一。

C.研究人员发现:1300名糖尿病患者喝凉开水泡的茶,持续半年,82%的糖尿病患者明显减轻,大约9%的糖尿病患者的血糖水平完全恢复正常。

D.这部由第六代导演执导的青春片带有鲜明的时代印记,表现了主人公拒绝平庸、坚守梦想的成长故事,具有极强的感染力,深深地打动了观众。

3.对下面这幅漫画寓意的解说最恰当的一项是(3分)A.城外的人想进来,城里的人想出去。

B.拥有物质再丰富,精神追求也不停步。

C.拥有资源的多少并不重要,要懂得利用。

D.生活工具的利用方式是多样的,不要僵化。

4. 填入下面一段文字横线处的语句,最恰当的一项是(3分)________。

_______。

_______。

_________,________。

我曾在某一本诗话上读到两句诗:“池花对影落,沙鸟带声飞。

”作者深惜第二句对仗不工。

这也难怪,像“池花对影落”这样的境界究竟有几个人能参悟透呢?①倒影映入水中,风乍起,一片莲瓣坠入水中,它从上面向下落②我在一片寂静中,默默地坐在那里,水面上看到的是荷花的绿肥、红肥③我每天至少有几次徘徊在塘边,坐在石头上,静静地吸吮荷花和荷叶的清香④水中的倒影却是从下边向上落,最后一接触到水面,二者合为一,像小船似地漂在那里⑤“蝉噪林愈静,鸟鸣山更幽。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省天一中学2019届高三第四次诊断性测试
数学 Ⅰ
2019.04
命题:高三数学备课组
一、填空题:(本大题共14小题,每小题5分,共计70分.不需写出解题过程,请把答案直接填写在答题..卡相应位置上......
) 1.已知集合{}0A x x =≥,{}
1B x x =<,则A
B = ▲ .
2.复数
21i
i
+-(i 为虚数单位)的模为 ▲ . 3.如图是一个算法流程图,则输出S 的值是 ▲ .
4.为了解学生在某次比赛中的整体发挥情况,随机抽测了其中100
名同学的成绩,所得数据均在区间[]60,100上,其频率分布直方
图如图所示.则在抽测的100名同学中,成绩不低 于85分的学生数为 ▲ .
5.某巡航队有137号,23号等五艘海监船可选派,现计划选派两艘去钓鱼岛巡航执法,其中137号,23号至少有一艘去执法的概率为 ▲ .
6.已知双曲线12
42
2=-y x 一条渐近线上的一点P 到双曲线中心的距离为3,则点P 到y 轴的距离为 ▲ .
7.已知等比数列}{n a 的前n 项和为n S ,若28362a a a a =,562S =-,则1a = ▲ .
8.ABC ∆中,“角,,A B C 成等差数列”是“sin sin )cos C A A B =+”成立的的 ▲ 条件.
(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”之一) 9.若关于x 的不等式1
log (2)log (6)log a a m x x a
-+-≤(其中1>a )恒成立,则实数m 的取值范围是
▲ .
(第3题)
10.设a b 、是两条不同的直线,α、β是两个不同的平面,则下列四个命题 ①若,a b a α⊥⊥,则//b α, ②若,a βαβ⊥⊥,则//a α, ③若βαβα⊥⊥
则,,//a a
④若,,a b a b αβ⊥⊥⊥,则αβ⊥,
其中正确的命题序号是 ▲ .
11.设()αβ∈0π,,,且5sin()13αβ+=, 1tan 22α=.则cos β的值为 ▲ .
12.已知4AB =,点,M N 是以AB 为直径的半圆上的任意两点, 且2MN =,1AM BN ⋅=,则⋅= ▲ .
13.已知函数211
,0
()62
ln ,0
a x x f x x x x x ⎧++<⎪=⎨⎪->⎩,若关于x 的方程()()0f x f x +-=在定义域上有四个不同的解,则a 的取值范围是 ▲ .
14.在平面直角坐标系xOy 中已知圆C 满足:圆心在x 轴上,且与圆22(2)1x y +-=相外切.设圆C 与x 轴的交点为M,N ,若圆心C 在x 轴上运动时,在y 轴正半轴上总存在定点P ,使得MPN ∠为定值,则点P 的纵.坐标..
为 ▲ .
二、解答题:本大题共6小题,共计90分.请在答题纸指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.
15.(本小题满分14分)
三角形ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,面积为S . (1)若AB →·AC →
≤23S ,求A 的取值范围;
(2)若tan A ∶tan B ∶tan C =1∶2∶3,且c =1,求b .
16.(本小题满分14分)
在正三棱柱ABC -A 1B 1C 1中,点D 是BC 的中点. (1)求证:A 1C ∥平面AB 1D ;
(2)设M 为棱CC 1的点,且满足BM ⊥B 1D , 求证:平面AB 1D ⊥平面ABM .
A B
N
M
A
M
C
1
A 1
B 1
C
(第18题)
17.(本小题满分14分)
某校在圆心角为直角,半径为1km 的扇形区域内进行野外生存训练.如图所示,在相距1km 的A ,B 两个位置分别有300,100名学生,在道路OB 上设置集合地点D ,要求所有学生沿最短路径到D 点集合,记所有学生行进的总路程为S (km ).
(1)设ADO θ∠=,写出S 关于θ的函数表达式; (2)当S 最小时,集合地点D 离点A 多远?
18.(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆22
22:1(0)x y C a b a b
+=>>
过点,
A ,
B 分别为椭圆
C 的右、下顶点,且2OA OB =.
(1)求椭圆C 的方程; (2)设点P 在椭圆C 内,满足直线PA ,PB 的斜率乘积为1
4
-,且直线PA ,PB 分别交椭圆C 于点M ,
N .①若M ,N 关于y 轴对称,求直线PA 的斜率;
②若PMN △和PAB △的面积分别为12,S S ,求12
S
S .
19.(本小题满分16分)已知函数(
)ln f x a x c =-(其中,,a b c 是常数,且,,a b c ∈R ),曲线
()y f x =在1x =处的切线方程为1122
b b y x ⎛⎫
⎛⎫
=--+ ⎪ ⎪⎝



.(1)求,a c 的值;
(2)若存在20e,e x ⎡⎤∈⎣⎦
(其中e 是自然对数的底),使得()00f x x ->成立,求b 的取值范围;
(3)设()()g x f x mx =+,若对任意[)4,b ∈+∞,均存在t ∈R ,使得方程()g x t =有三个不同的实数解,求实数m 的取值范围.
(第17题)
20.(本小题满分16分)已知数列{}n a 是等差数列,数列{}n b 是等比数列,且11a =,n n a b ⎧⎫
⎨⎬⎩⎭
的前n 项和
为n S .若1222n n n S n +=--对任意的*n ∈N 恒成立.(1)求数列{}n a ,{}n b 的通项公式;(2)若数列{}
n c 满足n n n b n c a n ⎧=⎨⎩是奇数是偶数,,
,.
问:是否存在正整数m ,使得1187m m m c c c ++=,若存在求出m 的值,若不存在,说
明理由;(3)若存在各项均为正整数、公差为d '的无穷等差数列{}n d ,满足152018d a =,且存在正整数k ,使得115,,k d d d 成等比数列,求d '的所有可能的值.。

相关文档
最新文档