3.2 第2课时 用移项的方法解一元一次方程

合集下载

3.2.2 一元一次方程的解法(一)移项(教学设计)七年级数学上册(人教版)

3.2.2 一元一次方程的解法(一)移项(教学设计)七年级数学上册(人教版)

3.2.2 一元一次方程的解法(一)移项教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第三章“一元一次方程”3.2.2 一元一次方程的解法(一)移项,内容包括:运用移项解形如“ax+b=cx+d”的一元一次方程.2.内容解析本节课的教学内容是新人教版七年级上册第三章《解一元一次方程(一)》的第2课时一移项.方程是现实世界中一类具有等量关系问题的重要的数学模型,是解决问题的重要工县之一,它既与现实生活密切联系,又贯穿于整个初中阶段数学的学习,它在义务教育阶段的数学课程中占重要地位;求属标准中的“数与代数”领域。

解方程是方程中最基本而且重要的初步知识.本章的主要内容是解一元一次方程,以及用方程解决实际问题这些知识是今后学习其它方程、不等式及函数的重要基础.为了使学生牢固掌握解方程的方法,体会方程是刻画现实世界的一个有效的数学模型,产生学习解方程的欲望,教材设置了新颖的问题情境,让学生从具体的情境中获取信息,列方程,然后尝试主动探究方程的解法.并通过练习归纳掌握解方程的基本步骤和技能。

在解决实际问题的过程中使学生了解到数学的价值,发展学生“用数学”的信心,提高学生的数学素养.本节课不管是在知识的运用上,还是在对学生技能形成、思维训练、能力发展、智能提升、应用意识培养上,都有着举足轻重的作用.另外,其中蕴涵的类比、归纳、化归的数学思想方法,对学生今后研究问题、解决问题以及终身的发展都是非常有益:在教学时尤其要注重对这些数学思想方法的渗透.基于以上分析,确定本节课的教学重点为:运用移项解形如“ax+b=cx+d”的一元一次方程.二、目标和目标解析1.目标(1)理解移项的意义,掌握移项的方法.(2)学会运用移项解形如“ax+b=cx+d”的一元一次方程.(3)能够抓住实际问题中的数量关系列一元一次方程解决实际问题.2.目标解析知道移项的依据和移项的必要性;给定一个方程,能够准确地进行移项解方程,知道移项的作用可以简化方程,使方程向x-a 的形式转化,在此过程中体会化归思想;通过对图书分配问题的研究,建立axtb=cx+d类型的方程观察与分析方程的特征,进而能够讨论出通过移项解这类方程;在“列方程”“解方程”的过程中,能够体会方程思想的应用价值.三、教学问题诊断分析七年级学生性格开朗活泼,对新鲜事物特别敏感,且较易接受,因此,教学过程中创设的问题情境应较生动活泼、直观形象,且贴近学生的生活,从而引起学生的有意注意;七年级学生的概括能力较弱,推理能力还有待发展,所以在教学时,可让学生充分探讨、分析,帮助他们直观形象地感知;七年级学生已经具备了一定的学习能力,所以本节课中,应多为学生创造自主学习、合作学习的机会,让他们主动参与、勤于动手、从而乐于探究.基于以上学情分析,确定本节课的教学难点为:分析实际问题中的已知量和未知量,找出相等关系,列出方程解决.四、教学过程设计(一)复习回顾解下列方程:(1)4x -9x=10; (2)-52y+32y=5; (3)x 2+x+2x=210; (4)x 2-x 3=-5. (1)解:合并同类项,得-5x=10系数化为1,得 x=-2(2)解:合并同类项,得 -y=5系数化为1,得y=-5(3)解:合并同类项,得 72x=210 系数化为1,得 x=60(4)解:合并同类项,得 x 6=-5 系数化为1,得 x=-30(二)自学导航问题:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少名学生?这批书的总数有几种表示法?它们之间有什么关系?本题哪个相等关系可作为列方程的依据呢? 解:设这个班有x 名学生.每人分3本,共分出____本,加上剩余的20本,这批书共____________本.每人分4本,需要______本,减去缺的25本,这批书共______________本.这批书的总数是一个定值,表示它的两个式子应相等,即表示同一个量的两个不同的式子相等.根据这一相等关系列方程得:+=-3x204x25思考:方程3x+20=4x-25的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25),怎样才能使它向x=a(常数)的形式转化呢?3x+20=4x-253x-4x+20=4x-4x-253x-4x+20=-253x-4x+20-20=-25-203x-4x=-25-20思考:比较下面的两个方程,你发现了什么?移项的定义一般地,把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项.移项的依据及注意事项移项实际上是利用等式的性质1.注意:移项一定要变号由上可知,这个班有45名学生.思考:上面解方程中“移项”起了什么作用?解方程时经常要“合并同类项”和“移项”,前面提到的古老的代数书中的“对消”和“还原”,指的就是“合并同类项”和“移项”. 早在一千多年前,数学家阿尔-花拉子米就已经对“合并同类项”和“移项”非常重视了.(三)考点解析例1.解下列方程:(1)2x -6=4x -1; (2)13x -6=-12x+4.解:(1)移项,得2x -4x=-1+6.合并同类项,得-2x=5.系数化为1,得x=-52. (2)移项,得13x+12x=4+6. 合并同类项,得56x=10.系数化为1,得x=12.【迁移应用】1.解方程5x -3=2x+2,移项正确的是( )A.5x -2x=2+3B.5x+2x=2+3C.5x -2x=2-3D.5x+2x=2-32.若x 的2倍与8的和等于6与x 的2倍的差,则x=_____.3.当:x=_____时,2x -3与3x+1的值互为相反数.4.若单项式-2a 3b 2n-1与a m -1b 3n+2的和仍是单项式,则m+n=_____. 5.解下列方程:(1)4-3x=6-5x ; (2)2.5m+10m -15=6m -21.5; (3)13x -2=x+14. 解:(1)移项,得-3x+5x=6-4.合并同类项,得2x=2.系数化为1,得x=1.(2)移项,得2.5m+10m -6m=-21.5+15.合并同类项,得6.5m=-6.5.系数化为1,得m=-1.(3)移项,得13x -x=14+2.合并同类项,得-23x=94. 系数化为1,得x=-278.例2.七年级(2)班全班同学去郊游,需要一定费用,如果每位同学付5元,那么还差5.6元;如果每位同学付5.5元,那么就多出10.4元.这个班有多少名同学?总费用是多少元?解:设这个班有x名同学.根据题意,得5x+5.6=5.5x-10.4.移项,得5x-5.5x=-10.4-5.6.合并同类项,得-0.5x=-16.系数化为1 ,得x=32.所以5x+5.6=165.6.答:这个班有32名同学,总费用为165.6元.【迁移应用】1.甲仓库有200t煤,乙仓库有80t煤,若甲仓库每天运出15t煤,乙仓库每天运进25t煤,则_____天后两仓库存煤量相等.2.《九章算术》中有一个“盈不足术”的问题,其大意是:若干人共同出资买羊,每人出5钱,则差45钱;每人出7钱,则差3钱.问:人数和羊价各是多少?解:设人数为x.根据题意,有5x+45=7x+3.移项,得5x-7x=3-45.合并同类项,得-2x=-42.系数化为1, 得x=21.所以5x+45=150.答:人数为21,羊价为150钱.例3.一个两位数,个位上的数是十位上的数的2倍,如果把十位上的数与个位上的数交换位置,所得的新两位数比原两位数大27,求原两位数的大小.分析:设原两位数十位,上的数为x.相等关系:新两位数=原两位数+27.解:设原两位数十位上的数为x,则个位上的数为2x.根据题意,得10×2x+x=10x+2x+27.移项,得20x+x-10x-2x=27.合并同类项,得9x=27.系数化为1,得x=3.所以2x=6.答:原两位数为36.【迁移应用】1.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内的数字为x.则列出的方程正确的是( )A.3×2x+5=2xB.3×20x+5=10x×2C.3×20+x+5=20xD.3(20+x)+5=10x+22.有一个两位数,个位上的数比十位上的数大4,且个位上的数与十位上的数的和比这个两位数小9.求这个两位数.解:设这个两位数十位上的数为x,则个位上的数为x+4.根据题意,得x+4+x=10x+x+4-9,解得x=1.所以x+4=5.答:这个两位数为15.例4.在如图的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是( )A.28B.54C.65D.75月历中数的关系:同一行中,相邻两数相差1;同一列中,相邻两数相差7.另外,月历上的日期数最小为1,日期数的最大值(不超过31)与月份有关,且日期数都是正整数.解析:设三个数中中间的数为2x,则最小的数为x-7,最大的数为x+7,所以三个数的和为(x-7)+x+(x+7)=3x.故三个数的和是3的倍数.【迁移应用】1.小明在某月的日历上圈出了三个数a,b,c,并求出了它们的和为39,则这三个数在日历中的排列位置不可能是( )2.如图,规定:上方相邻两数之和等于这两数下方箭头共同指向的数.(1)用含有x的式子表示:m=_____,n=________;(2)若y=-2,求x的值.解:由题意得m=3x,n=2x+3,y=m+n,因为y=-2,所以3x+2x+3=-2.解得x=-1.(四)小结梳理移项的定义一般地,把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项.移项的依据及注意事项移项实际上是利用等式的性质1.注意:移项一定要变号五、教学反思。

《3.2.2解一元一次方程—移项》教学设计

《3.2.2解一元一次方程—移项》教学设计

3.2.2解一元一次方程——移项一、教学目标:1.理解移项的概念;2.会用移项法解一元一次方程;3.经历用方程解决实际问题的过程。

二、教学重点、难点:重点:用移项法解方程;难点:移项是难点。

三、学法与教学用具:学法:学生通过阅读教材,自主学习、思考、交流、讨论和概括,从而更好地完成本节课的教学目标。

教学用具:投影仪四、教学过程:(一)创设情景,揭示课题问题导入上节课学习的一元一次方程都有这样的特点:一边是含有未知数的项,一边是常数项。

这样的方程我们可以用合并同类项来解,那么像3x+7=32-2x这样的方程怎么解呢?(二)研探新知我们来看下面的问题。

问题:把一些图书分给某班学生阅读,如果每人3本,则剩余20本;如果每人4本,则还缺25本,这个班有多少学生?设这个班有x人,那么这批书有多少本?还可以怎么表示?这批书共有(3x+20)本,还可表示为(4x-25)本。

因为3x+20与4x-25都表示这批书,所以3x+20=4x-25由上节课的学习,你能猜想怎么解这个方程吗?把未知项移一到边,把常数项移到一边。

怎样才能做到这一点呢?由等式的性质,把等式两边同时减去4x,加上20。

4x从右边移到了左边,并且改变了符号,20从左边移到了右边,并且改变了符号。

像这样,把等式一边的某项变号后移到另一边,叫做移项。

-x=-45∴x=45所以这个班有45名学生。

注意:表示同一个量的两个不同的式子相等,这是一个基本的等量关系。

思考:上面解方程中“移项”有什么作用?通过移项,使含未知数的项在等号的一边,常数项在另一边,从而把方程转化为我们熟悉的类型,这就是化归思想的运用。

解方程经常要合并与移项。

前面提到的古老代数书中的“对消”和“还原”,指的就是“合并”与“移项”。

现在我们来解前面提到的方程。

例1 3x+7=32-2x解:移项,得3x+2x=32-7合并同类项,得5x=25∴x=5注意:移项要变号。

(三)巩固深化,反馈矫正1.下面的移项对不对?如果不对,错在哪里?应当怎样改正?(1)从3x+6=0得到3x=6;(2)从2x=x-1得到2x= 1-x(3)从2+x-3=2x+1得到2-3-1=2x-x。

人教版七年级数学上册作业课件 第三章 一元一次方程 第2课时 利用移项解一元一次方程

人教版七年级数学上册作业课件 第三章 一元一次方程 第2课时 利用移项解一元一次方程
(2)8y-3=5y+3; 解:y=2
(3)4x+5=3x+3-2x. 解:x=-23
知识点2:根据“表示同一个量的两个不同式子相等”列方程解决问题 7.某汽车队运送一批货物,每辆汽车装4 t还剩下8 t未装,每辆汽车装 4.5 t就恰好装完.该车队运送货物的汽车共有多少辆?设该车队运送货 物的汽车共有x辆,可列方程为( A ) A.4x+8=4.5x B.4x-8=4.5x C.4x=4.5x+8 D.4(x+8)=4.5x
人教版
第3章 一元一次方程
3.2 解一元一次方程(一) ——合并同类项与移项
第2课时 利用移项解一元一次方程
知识点1:利用移项解一元一次方程
1.下列变形中属于移项的是( C ) A.由 2x=2,得 x=1 B.由x2 =-1,得 x=-2 C.由 3x-72 =0,得 3x=72 D.由 2x-1=3,得 2x=3-1
2.解方程4x-2=3-x的步骤是( C ) ①合并同类项,得5x=5;②移项,得4x+x=3+2;③系数化为1,得x =1. A.①②③ B.③②① C.②①③ D.③①②
3.下列说法中正确的是( D ) A.3x=5+2 可以由 3x+2=5 移项得到 B.1-x=2x-1 移项后得 1-1=2x+x
C.由 5x=15 得 x=155 这种变形也叫移项 D.1-7x=2-6x 移项后得 1-2=7x-6x
4.(成都中考)若m+1与-2互为相反数,则m的值为___1____. 5.已知m1=3y+1,m2=5y-3,当y=__2__时,m1=m2.
6.解下列方程: (1)4x=9+x; 解:x=3
14.我国民间流传着许多趣味算题,它们多以顺口溜的形式表达,请 看这样的一个数学问题:一群老头去赶集,半路买了一堆梨,一人一 个多一个,一人两个少两个,请问君子知道否,几个老头几个梨? (1)若设有 x 个老头,则列出的方程为_x_+__1_=__2_x_-__2_ (2)若设有 x 个梨,则列出的方程为_x_-__1__=__x_+2__2__________

人教版七年级上册数学作业课件 第三章 第2课时 用移项的方法解一元一次方程

人教版七年级上册数学作业课件 第三章 第2课时 用移项的方法解一元一次方程
未知数的项 Nhomakorabea到等式右边.
知识要点 2 利用移项解方程的实际应用 关键是根据题意找到等量关系,基本题型是利用表示 同一个量的两个不同式子相等列方程.
(建议用时:12 分钟)
1.一元一次方程 6x -5=x-1 移项后正确的是
(D)
A.6x+x=-1+5 B.6x+x=-1-5
C.6x-x=-1-5 D.6x-x=-1+5
第2课时 用移项的方法 解一元一次方程
知识要点 1 移项 内容
把等式一边的某项变号后移到另一边,叫做 移项
移项. 利用移项 解方程 3x+5=8x-10 的一般步骤是:①移 解方程的 项,得 3x-8x=-10-5;②合并同类项, 一般步骤 得-5x=-15;③系数化为 1,得 x=3.
移项时注意:(1)移项必须是由等式的 一边移到另一边,而不是在等式的同 一边交换位置;(2)所移动的项的符号 解题策略 一定改变;(3)不要把移项和加法交换 律相混淆;(4)移项时,一般都习惯把 含未知数的项移到等式左边,把不含
2.方程 2x-1=3 的解是( D )
A.x=-1 C.x=1
B.x=12 D.x=2
3.判断下面各式的变形是否正确(对的打“√”, 错的打“×”):
(1)方程 2x-4=3 变形为 2x=3+4.(√) (2)方程 1=-2x-3 变形为 2x=3-1.(×) (3)方程 5x-1-4x=2 变形为 5x+4x=2+1.(×) (4)方程 3+2x=x+7 变形为 2x-x=7-3.(√)
4.解方程:
(1)12x-3=5;
(2)2x-3=3x+2.
解:(1)移项,得 12x=5+3.
合并同类项,得 1x=8,系数化为 1.得 x=16. 2

第2课时 利用移项解一元一次方程课件2024-2025学年人教版七年级数学

第2课时 利用移项解一元一次方程课件2024-2025学年人教版七年级数学

溯源
约 820 年,阿拉伯数学家花拉子米著有《代数学》 (又称《还原与对消计算概要》),其中,“还原”指 的是“移项”,“对消”隐含着移项后合并同类项,我国 古代数学著作《九章算术》的“方程”章,更早使用了 “对消”和“还原”的方法.
练 习 【选自教材P124 练习 第1题】
1. 解下列方程:
(1)3x = 4x + 3;
例 题 【教材P123】
例 4 某制药厂制造一批药品,如用旧工艺,则废水排 量要比环保限制的最大量还多 200 t;如用新工艺,则废水 排量比环保限制的最大量少 100 t. 新、旧工艺的废水排量 之比为 2∶5,采用两种工艺的废水排量各是多少?
分析:因为采用新、旧工艺的废水排量之比为 2∶5,所以可设它们分别为 2x t 和 5x t,再根据它们 与环保限制的最大量之间的关系列方程.
3
2
(2)移项,得
11
3 x + 2 x = 4 + 6.
合并同类项,得 5 x = 10.
6
系数化为 1,得 x = 12 .
利用移项解一元一次方程的步骤:
(1)移项:把含未知数的项移到等号一边, 把常数项移到等号另一边;
(2)合并同类项; (3)系数化为 1.
一般把含未知数的项 放等号左边,常数项 放等号右边.
2y = 2 系数化为 1,得
y= 1
1 y3 y6 24
合并同类项,得
1 y6 4
系数化为 1,得
y 24
【选自教材P124 练习 第2题】
2. 解根据本章引言中的问题列出的方程 1.2x + 1 = 0.8x + 3. 1.2x + 1 = 0.8x + 3

【精品课件】3.2解一元一次方程-移项

【精品课件】3.2解一元一次方程-移项

列方 程ቤተ መጻሕፍቲ ባይዱ应用题
1.
2 2. 6 2 3. 3
4.
+ x x x
布置作业
x = = +
= − 2 5 x − 9 3 x + 7 5 = 6 x − 1 3
5. 6. 7. 8.
6 1 x = x − 6 5 5 4 1 x − 3 = x − 5 3 3 0 .8 x + 5 = − 0 .2 x + 6 .2 − 0 .4 x − 6 = − 0 .3 x − 7 .3
(1)X+4=6(2)3x=2x+1 ) ( ) (3)3-x=0(4)9x-2=8x+3 ) ( ) (5)2x+3=-1+0.5x ) :(1) 解:( )X=6-4 (2)3x-2x=+1 ) (3)-x=0-3 (4)9x-8x=+3+2 ) ) (5)2x-0.5x=-1-3 )
一、判断
你知道上述的变化过程 叫什么吗? 叫什么吗?
5x+2=-8 +2 -2 5x =-8
7x=+6x -4 -6x 6x + 7x= -4
要补上“ 要补上“+”
说说看!你知道什么是移项吗? 说说看!你知道什么是移项吗? 根据等式的基本性质, 根据等式的基本性质,方程中的某些项 改变符号后 可以从方程的一边移到另一边, 改变符号后,可以从方程的一边移到另一边, 这样的变形叫做移项。 做做看! 做做看! 把下列各方程中含有未知数的项移 到左边,常数项移到方程的右边。 到左边,常数项移到方程的右边。 (1)X+4=6(2)3x=2x+1 ) ( ) (3)3-x=0(4)9x-2=8x+3 不含有未 ) ( ) 知数的项 (5)2x+3=-1+0.5x )

数学上册《解一元一次方程-移项》教案(高效课堂)2022年人教版数学精品

||k15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、〔1〕2x 〔2〕ba ab- 〔3〕3五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标〔一〕教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. 〔二〕能力训练要求1.经历作〔画〕出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. 〔三〕情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形? [生]有的三角形是轴对称图形,有的三角形不是. [师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两局部能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形. Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,那么可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.〔演示课件〕1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的局部就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的局部互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的局部互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.〔演示课件〕等腰三角形的性质:1.等腰三角形的两个底角相等〔简写成“等边对等角〞〕.2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合〔通常称作“三线合一〞〕.[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程〕.〔投影仪演示学生证明过程〕[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD 〔SSS 〕. 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很标准.下面我们来看大屏幕.〔演示课件〕[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. 〔课件演示〕[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD 〔等边对等角〕.设∠A=x ,那么∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来稳固这节课所学的知识. Ⅲ.随堂练习D CA BD CABDC A B〔一〕课本练习 1、2、3. 练习1. 如图,在以下等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:〔1〕72° 〔2〕30°2.如图,△ABC 是等腰直角三角形〔AB=AC ,∠BAC=90°〕,AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.〔二〕阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等〔等边对等角〕,等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业〔一〕习题13.3 第1、3、4、8题. 〔二〕1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .D C A BEDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,那么它的对称轴一定是〔 〕 A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是〔 〕 A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长.解:设三角形的底边长为x cm ,那么其腰长为〔x+2〕cm ,根据题意,得 2〔x+2〕+x=16.解得x=4.E DC A B P所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算:(1))1)(1(y x x y x y +--+ (2)22242)44122(aa a a a a a a a a -÷-⋅+----+ (3)zxyz xy xy z y x ++⋅++)111( 2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、〔1〕2x 〔2〕ba ab - 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 1 2.原式=422--a a ,当=a -1时,原式=-31.。

3.2.2解一元一次方程——移项


3x+20=4x-25
这个方程怎么变形呢?
3x+20=4x-25
利用等式性质:两边同时减20,同时减4x,得 3x-4x=-25-20
移项: 把等式一边的某项变号后,移到另一边,
叫作移项
移项
3x-4x=-25-20
合并同类项
-x=-45
系数化为1
x=45
练习:
(1)5x=3x+2
(2) 7m+5=4m-4
(3)-4y-1=3y-8 (4) 0.5x-3=1.5x+2
例4
:某制药厂制造一批药品,如 用旧工艺,则废水排量要比环保限 制的最大量还多200t;如用新工艺, 则废水排量比环保限制的最大量少 100t.新、旧工艺的废水排量之比 为2:5,两种工艺的废水排量各是 多少?
练习:下面的移项对不对?如果不 对,错在哪里?应当怎样改正?
(1)从7+x=13,得到x=13+7
×
改:从7+x=13,得到x=13–7
(2)从5x=4x+8,得到5x–4x=8
例3 解方程3x+7=32-2x
解: 移项,得 3x+2x=32-7 合并同类项,得 5x=25 系数化为1,得 X=5
——移项
复习练习
① -3x-2x=10 ② -7x+5x=7
③ x 2
3x =3 4
④ -3x+0.5x=5
问题:
把一些图书分给某班学生阅读,如果每人 3本,还剩余20本;如果每人分4本,则还 缺25本,这个班有多少学生?
如果设这个班有学生x人, 每人分3本,共分出了____ 3X 本,加上剩 余的20本,这批书共___________ (3X+20 ) 本。 4X 本,减去缺少 每人分4本,需要____ 的25本,这批书共_____________ 本。 ( 4X-25 )

解一元一次方程(一)——合并同类项与移项(2)


解方程:
5 x=25.
系数化为1,得
系数化为1,得
1 - x=4. 2
x=5.
x=-8.
我思我进步
一、移项法解一元一次方程的一般步骤: 第一步:移项 第二步:合并同类项 第三步:系数化为1 二、移项的方法:
一般将含未知数的项都移到方程的左边, 常数都移到方程右边。(左“元”右 “常” )
错 因 下面是马虎同学在学习解一元一次方程 分 时完成的一道练习题,他的解法对吗? 析 Why? : x-5+2x+1=-5+3x-7-4x-x 思 路 解:移项,得: x-3x+4x+2x=5-7-1-5 不 合并同类项,得:4x=-8 清 系数化为1,得:x=-2 , 程 依次先抄再移 金点子 序 先合并再移项 混 先将左边未知项依次抄写下来,再把右 乱 边未知项变号后依次写下来,右边类推。
义务教育教科书
数学
七年级
上册
3.2 解一元一次方程(一) ——合并同类项与移项(第2课时)
江东初中 屠 欣
学习目标
学习目标: 1. 理解移项法则,会解形如 ax+b=cx+d 型方程; 2.体会等式变形中的化归思想. 学习重点: 利用移项与合并同类项解形如 ax+b=cx+d 的一元一次 方程. 学习难点: 正确地进行移项并解出方程.
3x 4x= 25 20
合作探究
4 x-25 20 3 x+ 20=
方程两边都-4x-20 移项
移项的定义:
3x 4x= 25 20
变号 像上面那样,把等式一边的某项变号后移 到另一边,叫做移项. 点拨 (1)移项是将某项从等式的一边移到另一边; (2)移项要变号.(移“+”为“-” ,移“-”为“+” )

初中七年级数学上册 第三章 3.2一元一次方程的解法-移项课件


(一)创设情境,列出方程
把一些图书分给某班学生阅读,如果每人分3本,则剩余20 本;如果每人分4本,则还缺25本.这个班有多少学这批生书?的总数有几种
表示法? 它们之间有什么关系?
设这个班有x名学生.
每人分3本,共分出 的20本,这批书共
每人分4本,需要 的25本,这批书共
本,加上剩余
3x
本.
本,减去4缺x少
3.2 解一元一次方程 ——移项
温故知新 1:用适当的数或整式填空,使所得结果
仍是等式,并说明是根据等式的哪一条性 质以及怎样变形(改变式子的形状3x)的。 ①、如果2x = 5 - 3x,那么2x +( 50 )= 5 解②:、①如、果2x0+.2(x =31x0,)那=么5 x =( )
根据等式性质 1,等式两边都加上 3x。 ②、x = 50 根据1 等式性质 2,等式两边都除以 0.2 或 除以 5 乘以 5 。
3 x+2 x=32-7.
合并同类项,得
5x=25.
系数化为1,得
x=5.
(21+3.
2
合并同类项,得

1
x=4.
2
系数化为1,得
x=-8.
练习:解下列方程
(1) 5 2x 1
解:移项,得
2x 1 5
即 2x 4
(2) 8 系x数化3为x1,2得 x = - 2
解:移项,得 x 3x 2 8
合并同类项,得 4x 6
x 3
系数化为1,得
2
“移项”应注意什么?
移项时应注意改变项的符号
5 2x 1 2x 1 5
8 x 3x 2
x 3x 2 8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档