移项法解一元一次方程练习
移项、合并同类项、去分母法则解一些简单的一元一次方程练习

移项、合并同类项、去分母法则解一些简单的一元一次方程练习巩固练习一判断正误,并改错:(1)6+x=8,移项得 x =8+6(2)3x=8-2x ,移项得3x+2x=-8 (3) 5x -2=3x+7,移项得5x+3x=7+2(4)方程1024x x --=去分母,得214x x -+= (5)方程1136x x-+=去分母,得122x x +-= (6)方程11263x x --=去分母,得312x x --= (7)方程1123xx -=+去分母,得3261x x -=+(8)由b a =,得xb x a =; (9)由y x =,53=y ,得53=x (10)由x =-2,得2-=x 巩固练习二解下列方程: (1)42112+=+x x ; (2) (3)5x +3=4x +7(4)2(x -2)-(4x -1)=3(1-x ) (5)452168x x +=+23x x =-+当堂检测一、填空1、在等式b a =-32两边都加3,可得等式 ;2、在等式12-=+x 两边都减2,可得等式 ;3、如果b a =-53,那么+=b a 3( );4、如果62=-x y ,那么=y ( )+6;5.由等式152103+=-x x 的两边都________,得到等式25=x ,这是根据_____ _____ 由等式-8331=x 的两边都______ __,得到等式x =_______ ; 6.已知2=x 是方程065=--x ax 的解,则_____=a ; 7、已知方程①3x -1=2x +1 ②x x =-123 ③23231-=+x x ④413743127+-=++x x 中,解为x=2的是方程 ( ) 8、方程312-x =x -2的解是( )二.选择题9.下列各式中,不属于方程的是 ( ) A 、 )2(32+-+x x B. 0)24(13=--+x x C. 2413+=-x x D. 7=x 10.方程513=-x 的解是 ( ) A. 34=x B 35=x C 18=x D 2=x 11.下列结论中正确的是 ( ) A .若73-=+y x ,则4=x B 、若y y 2567-=-,则y y 21767-=+ C. 若425.0-=x , 则1-=x D.若x x 88-=,则88=12.下列变形中,错误的是 ( )A 、062=+x 变形为62-=x B.x x +=+223变形为x x 243+=+ C. 2)4(2=--x 变形为14=-x D.2121x =+-可变形为11=+-x 13.某长方形的长与宽的和是12,长与宽的差是4,这个长方形的长宽分别为 ( ) A. 10和2B. 8和4C. 7和5D. 9和314.小彬的年龄乘以2再减去1是15岁,那么小彬现在的年龄为 ( ) A. 7岁B. 8岁C. 16岁D. 32岁15.下列说法中,正确的个数是 ( )① 若my mx =,则0=-my mx ;②若my mx =,则y x =; ③ 若my mx =,则my my mx 2=+;④若y x =,则my mx = A. 1B. 2C. 3D. 416.下列变形符合等式性质的是 ( ) A. 如果732=-x ,那么372-=x B. 如果123+=-x x ,那么213-=-x x C. 如果52=-x ,那么25+=x D. 如果131=-x ,那么3-=x 三、解下列方程1、6x=3x -122、2y ―21=21y ―33、4-3x = 4x -34、2x -8=3x5、6x -7=4x -5;6、 4-3(2-x)=5x7、8、 ;9、 10、 2x -13 =x+22 +1 11、3142125x x -+=-四、列方程解应用题1.一桶油连桶的重量为8千克,油用去一半后,连桶重量为4.5千克,桶内有油多少千克?设桶内原有油x 千克,则可列出方程________ ___________;2.不明的妈妈今年44岁,是小明年龄的3倍还大2岁,设小明今年x 岁,则可列出方程:____________ _______;x x 43621=-1623+=x x 253231+=-x x3.3年前,父亲的年龄是儿子年龄的4倍,3年后父亲的年龄是儿子年龄的3倍,求父子今年各是多少岁?设3年前儿子年龄为x岁,则可列出方程:______ ______;4.修一段公路,如果每天修21m,13天可以完成,修4天后,加派工人每天多修6m,还要几天才能完成?5.为改善生态环境,避免水土流失,某村积极植树造林,原计划每天植树60棵,实际每天植树80棵,结果比预计时间提前4天完成植树任务,则计划植树多少棵?五、拓展延伸1、2a—3x=12是关于x的方程.在解这个方程时,粗心的小虎误将-3x看做3x,得方程的解为x=3.请你帮助小虎求出原方程的解.。
六年级上册数学习题课件 4.2.2用移项法解一元一次方程 鲁教版

夯实基础
14.【中考·聊城】在如图所示的2016年6月份的月历表中, 任意框出表中竖列上三个相邻的数,这三个数的和不 可能是( )
A.27 B.51
C.69
D.72
夯实基础
【点拨】设框出的三个数中最上面的数为x,则中间的 数为x+7,最下面的数为x+14, 故三个数的和为x+x+7+x+14=3x+21. 当3x+21=27时,x=2;当3x+21=51时,x=10; 当3x+21=69时,x=16;当3x+21=72时,x=17,但 x=17这种情况不存在.故选D. 【答案】D
a(x+1)=12
a+x 的解,则 a 的值是 5 .
夯实基础
7.已知关于 x 的方程 3a-x=x2+3 的解为 x=2,则 式子 a2-2a+1 的值是 1 .
夯实基础
8.解方程 3x-4=3-2x 的过程的正确顺序是( C ) ①合并同类项,得 5x=7; ②移项,得 3x+2x=3+4; ③系数化为 1,得 x=75. A.①②③ B.③②① C.②①③ D.③①②
探究培优
22.【中考·安徽】《九章算术》中有一道阐述“盈不足 术”的问题,原文如下: 今有人共买物,人出八,盈三;人出七,不足四. 问人数,物价各几何? 译文为: 现有一些人共同买一个物品,每人出8元,还盈余3 元;每人出7元,则还差4元,问共有多少人?这个 物品的价格是多少?
探究培优
请解答上述问题.
夯实基础
15.解方程:x-3=-12x-4. 错解:移项,得 x-12x=-4-3.合并同类项,得12x =-7.系数化为 1,得 x=-14.
诊断:在解方程移项时,所移的项一定要变号,但 有的学生不管移的项还是没移的项一律都变号或都 不变号,这两种做法都是不正确的.
七年级数学上一次方程与方程组3.1一元一次方程及其解法第3课时用移项法解一元一次方程习题

把方程中某一项___改__变__符__号___________后,从方程的 _一__边__移__到__另__一__边_____,这种变形叫移项.解方程时, 通常将含未知数的项移到等号的左边,不含未知数的 项移到等号的右边.
1.解方程时,移项的依据是( C )
A.加法交换律
B.加法结合律
C.等式的基本性质1
4.把方程2y-6=y+7变形为2y-y=7+6,这种变形叫 ___移__项_______.
5.[2021·安徽模拟]方程1-3y=7的解是( C )
A.y=-12
B.y=12
C.y=-2
D.y=2
6.方程3x-4=3-2x的解答过程的正确顺序是( C ) ①合并同类项,得5x=7; ②移项,得3x+2x=3+4;
D.等式的基本性质2
2.解下列方程时,既要移含未知数的项,又要移常数项
的是( B )
A.2x=6-3x
B.2x-4=3x+1
C.2x-2-x=1
D.x-5=7
3.下列方程中,移项正确的是( C ) A.方程x+5=12,移项,得x=5+12 B.方程10x-3=6-2x,移项,得10x-2x=6+3 C.方程3-2x=4x-9,移项,得3+9=2x+4x D.方程5x+9=4x,移项,得5x-4x=9
(2)[庐江期中]32x-1=72x-3; 解:移项,得32x-72x=-3+1, 合并同类项,得-2x=-2,
系数化为1,得x=1.
(3)5x-3=4x+15; 解:移项,得5x-4x=15+3, 合并同类项,得x=18.
(4)3x+4+x=7x-35.
移项,得3x+x-7x=-35-4, 合并同类项,得-3x=-39, 系数化为1,得x=13.
第3章 3.2 第2课时 用移项的方法解一元一次方程

17.已知整式 5x-7 与 4x+9 的值互为相反数,求 x 的值. 解:由题意得 5x-7+4x+9=0.移项,得 5x+4x=7-9.合并同类项, 得 9x=-2.系数化为 1,得 x=-29.
根据“表示同一个量的两个不同的式子相等”列方程解决问
题
同步考点手册 P24
9.某商品的标价为 200 元,8 折销售仍赚 40 元,则该商品的进价为( B )
A.140 元
B.120 元
C.160 元
D.100 元
10.甲厂库存钢材 100 吨,每月用去 15 吨;乙厂库存钢材 82 吨,每
月用去 9 吨,经过 x 个月后,两厂剩下的钢材相等,则 x 等于( B )
第三章 一元一次方程 3.2 解一元一次方程(一)——合并同类项与移项 第2课时 用移项的方法解一元一次方程
用移项解一元一次方程
同步考点手册 P23
1.解方程时移项的根据是( D )
A.加法的结合律
B.乘法结合律
C.分配律
D.等式的性质 1
2.下列解方程移项正确的是( C ) A.由 3x-2=2x-1,得 3x+2x=1+2 B.由 x-1=2x+2,得 x-2x=2-1 C.由 2x-1=3x-2,得 2x-3x=1-2 D.由 2x+1=3-x,得 2x+x=3+1
①合并同类项,得 5x=7;②移项,得 3x+2x=3+4;③系数化为 1,
得 x=75.
A.①②③
B.③②①
x+2 的值相等,则 x 的值等于( A )
人教版数学七年级上册3.2《用移项法解一元一次方程》训练(有答案)

课时2用移项法解一元一次方程基础训练知识点1(解一元一次方程----移项)1.下列变形中属于移项的是()A.由5x-2x=2,得3x=2B.由6x-3=x+4,得6x-3=4+xC.由8-x=x-5,得﹣x-x=﹣5-8D.由x+9=3x-1,得3x-1=x+92.把方程4x+4=6-3x进行移项,下列变形正确的是()A.4x-3x=6-4B.4x+3x=6-4C.4x-3x=4-6D.4x+3x=4-63.解方程x-4=x,移项,得__________,合并同类项,得________,系数化为1,得________.4.当x=________时,代数式3x-5与1+2x的值相等.5.解下列方程:(1)5x+2=4x-3;(2)7x-3=4x+6;(3)4y=y+16;(4)x-2=x+5.知识点2(列一元一次方程解决实际问题)6.两个水池共存水40吨.现甲池注进水4吨,乙池放出水8吨,甲池中水的吨数与乙池中水的吨数相等,两个水池原来各有水多少吨?7.[2019黑龙江哈尔滨道外区期末]一个长方形的周长为26厘米.若这个长方形的长减少1厘米,宽增加2厘米,就可成为一个正方形,求这个长方形的长和宽.8.[2019广东东莞期末]2019~2019学年度七年级(1)班课外活动小组计划做一批“中国结”.如果每人做6个,那么比计划多了7个;如果每人做5个,那么比计划少了13个.求该小组计划做多少个“中国结”?参考答案1.C【解析】选项A,属于合并同类项,不属于移项;选项B,等式右边运用了加法交换律,不属于移项;选项C,将等式左边的8变号移到等式右边,等式右边的x变号移到等式左边,属于移项;选项D,等式两边交换了位置,不属于移项.故选C.2.B【解析】选项A,-3x移项后没有变号,所以A错误;选项C,4和-3x移项后都没变号,6没移项却改变了符号,所以C错误;选项D,4移项后没变号,6没移项却改变了符号,所以D错误.故选B.3.x-x=4 x=4x=124.6【解析】根据题意,得3x-5=1+2x,移项,得3x-2x=1+5,合并同类项,得x=6.5.【解析】(1)移项,得5x-4x=-3-2,合并同类项,得x=-5.(2)移项,得7x-4x=6+3,合并同类项,得3x=9,系数化为1,得x=3.(3)移项,得4y-y=16,合并同类项,等-y=16,系数化为1,得y=-6.(4)移项,得x-x=2+5,合并同类项,得x=7.6.【解析】设甲池原有水x吨,则乙池原有水(40-x)吨.根据题意,得x+4=40-x-8,解这个方程.得x=14,所以40-x=26..答:甲池原有水14吨,乙池原有水26吨.7.【解析】设这个长方形的长是x厘米,则宽是(13-x)厘米.根据题意,得x-1=13-x+2,解得x=8,所以13-x=5.答:这个长方形的长为8厘米、宽为5厘米.8.【解析】设小组成员共有x名,则计划做(6x-7)或(5x+13)个“中国结”. 根据题意,得6x-7=5x+13,解得x=20,所以6x-7=113.答:计划做113个“中国结”.课时2用移项法解一元一次方程提升训练1.[2019江西高安中学课时作业]下列方程中,解是负整数的共有()①﹣x=;②x=﹣14;③3x+4=4x+4;④4x-5=﹣5x-8.A.1个B.2个C.3个D.4个2.[2019四川雅安中学课时作业]若﹣2x2m+1y6与x3m-1y10+4n是同类项,则m,n的值分别为()A.2,﹣1B.﹣2,1C.﹣1,2D.﹣2,﹣13.[2019吉林五中课时作业]某同学在解方程5x-1=□x+3时,把□处的数字看错了,解得x=﹣2,则该同学把□看成了()A.4B.7C.﹣7D.﹣144.[2019安徽合肥四十八中课时作业]已知关于x的方程4x-m=3m+12的解是x=2m,则m的值是________.5.[2019江苏南京市中华中学课时作业]解下列方程:(1)x-8x=3-x;(2)0.5x-0.7=6.5-1.3x.6.[2019河北衡水六中课时作业]若关于x的方程2x-a=0的解比方程4x+5=3x +6的解大1,求a的值.7.[2019河北省实验中学课时作业]已知+m=my-m,(1)当m=4时,求y的值;(2)当y=4时,求m的值.8.[2019陕西师大附中课时作业]一个两位数,个位上的数字是十位上的数字的3倍,如果把个位上的数字与十位上的数字对调,那么得到的新数比原数大54,求原来的两位数.参考答案1.A【解析】①系数化为1,得x=﹣;②系数化为1,得x=-4;③移项,得3x-4x=4-4,合并同类项,得-x=0,系数化为1,得x=0;④移项,得4x+5x=-8+5,合并同类项,得9x=-3,系数化为1,得x=-.所以解为负整数的只有②.故选A.2.A【解析】因为-2x2m+1y6与x3m-1y10+4n同类项,所以2m+1=3m-l,6=10+4n,解得m=2,n=﹣1.故选A.3.B【解析】□用a表示,把x=-2代入方程5x-1=ax+3中,得-10-1=-2a +3,解得a=7,所以该同学把□看成了7.故选B.归纳总结方程的解就是使方程中等号左右两边相等的未知数的值,若题目给出方程的解,则将这个数代入到原方程中就可以得到一个含所求字母的方程.4.3【解析】把x=2m代人方程4x-m=3m+12,得8m—m=3m+12,所以7m=3m+12,移项,得7m-3m=12.合并同类项,得4m=12,系数化为1,得m=3.5.【解析】(1)移项,得x+x-8x=3,合并同类项,得﹣3x=3,系数化为1,得x=-1.(2)移项,得0.5x+1.3x=6.5+0.7,合并同类项,得 1.8x=7.2,系数化为1,得x=4.6.【解析】方程2x-a=0的解是x=,方程4x+5=3x+6的解是x=1.由题意,得=1+1,解得a=4.7.【解析】(1)把m=4代人+m=my-m,得+4=4y-4,该方程是关于y的一元一次方程,移项,得-4y=-4-4,合并同类项,得-y=﹣8,系数化为1,得y=.(2)把y=4代入+m=my-m,得2+m=4m-m,该方程是关于m的一元一次方程移项,得2=4m-m-m,合并同类项,得2=2m,系数化为1,得m=l.8.【解析】设这个两位数的十位上的数字是x,则个位上的数字是3x. 根据题意,得10×3x+x=10x+3x+54,移项、合并同类项,得18x=54,系数化为1,得x=3,10×3+3×3=39.答:原来的两位数是39.。
移项(4)一元一次方程解法

(1)3x 7 32 2 x
3 (2) x 3 x 1 2
(3)、2.4y +2 = -2y (4)、8 – 5x = x + 2
一个两位数的个位上的数字,这个两位数是多 少?
例4 某制药厂制造一批药品,如用旧 工艺,则废水排量要比环保限制的最大 量还多200t,如用新工艺,则废水的排 量比环保限制的最大量少100t, 新旧工 艺的废水排量比为2:5,两种工艺的废 水排量是多少?
有关比的知识,你知道 哪些?
已知某校共有1200名学生,男生人数与 女生人数的比为7:8,,请问女生有多 少人?
已知某校全体学生中男生人数与女生人 数的比为7:8,且男生比女生多80人, 请问全校共有多少名学生,其中女生有 多少人?
某校在暑假举办一次夏令营活动,安排 学生住宿时每间房住7人还余9人,于是 有一部分房间安排住8人,这样住7人房 间与住8人房间数的比为5:3,求这次参 加夏令营的学生人数。
人教版七年级数学上册第3章2 第2课时 用移项的方法解一元一次方程 同步练习题及答案

第2课时 用移项的方法解一元一次方程 教材知能精练知识点:移项1. 方程3x+6=2x -8移项后,正确的是( )A .3x+2x=6-8B .3x -2x=-8+6C .3x -2x=-6-8D .3x -2x=8-62. 下列解方程中,移项正确的是( )A .由5+x =18得x =18+5B .由5x +31=3x 得5x -3x =31 C .由21x +3=-23x -4得21x +23x =-4-3 D .由3x -4=6x 得3x +6x =43. 在解方程2314-=+x x 时,下列移项正确的是( )A .2134-=+x xB .1234--=-x xC .1234-=-x xD .1234--=+x x4. 已知当b =1,c =-2时,代数式ab +bc =10-ca ,则a 的值是( )A .12B .6C .-6D .-125.某人有连续4天的休假,这4天各天的日期之和是86,则休假第一天的日期是( ).A.20日B.21日C.22日D.23日6. 4-23x =25x +2变形为-23x -25x =2-4,这种变形叫__________,其根据是__________. 7. 方程2x-0.3=1.2+3x 移项得 .8.当=x _____时,代数式24+x 与93-x 的值互为相反数.9.已知y 1=2x+3,y 2=215-x ,如果y 1=2y 2,则x=_______.10.若2(1)0x y y -++=,则22x y +=___.11. 解方程:4227-=+-x x12. 张老师给学生分练习本,若每人分4本,则余8本,若每人分5本,则缺2本, 求有多少名学生和多少本练习本.学科能力迁移13.【易错题】解下面的方程时,既要移含未知数的项,又要移常数项的是( ).A.372x x =-B.3521x x -=+C.3321x x --=D.1511x +=14.【新情境题】小明在做解方程作业时,不小心将方程中一个常数污染了看不清楚,被污染的方程是:11222y y -=+■.怎么办呢?小明想了想,便翻看了书后的答案,此方程的解是53y =,于是很快补上了这个常数,并迅速完成了作业.同学们,你能补出这个常数吗?它应是( ).A1 B.2 C.3 D.415.【变式题】若132x y =-,224x y =+,当y =_______时,12x x =.16.【多解法题】若32x -=,则x 的值为_____.课标能力提升17. 【探究题】设“●■▲”分别表示三种不同的物体(如图3-2-5),前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应放“■”的个数为( )A.5B.4C.3D.218. 【开放题】已知2)53(1--m 有最大值,则方程2345+=-x m 的解是( )A.79B.97C.79-D.97- 19.【综合题】若2x n+1与3x 2n-1是同类项,则n=______.20.【解决问题型题目】2004年4月我国铁路第5次大提速.假设K120次空调快速列车的平均速度提速后比提速前提高了44千米/时,提速前的列车时刻表如下表所示:请你根据题目提供的信息填写提速后的列车时刻表,并写出计算过程.品味中考典题21.有一个两位数,它的十位数字比个位数字大2,并且这个两位数大于40且小于52,则这个两位数是( )A .41B .42C .43D .44 B22.某商店一套西服的进价为300元,按标价的80%销售可获利100元,若设该服装的标价为x 元,则可列出的方程为 .迷途知返___________________________________________________________________________________________________________________________________________________________________________课外精彩空间数学冤案人类很早就掌握了一元二次方程的解法,但是对一元三次方程的研究,则是进展缓慢.古代中国、希腊和印度等地的数学家,都曾努力研究过一元三次方程,但是他们所发明的几种解法,都仅仅能够解决特殊形式的三次方程,对一般形式的三次方程就不适用了.在十六世纪的欧洲,随着数学的发展,一元三次方程也有了固定的求解方法.在很多数学文献上,把三次方程的求根公式称为“卡尔丹诺公式”,这显然是为了纪念世界上第一位发表一元三次方程求根公式的意大利数学家卡尔丹诺.那么,一元三次方程的通式解,是不是卡尔丹诺首先发现的呢?历史事实并不是这样.数学史上最早发现一元三次方程通式解的人,是十六世纪意大利的另一位数学家尼柯洛·冯塔纳(Niccolo Fontana). 冯塔纳出身贫寒,少年丧父,家中也没有条件供他念书,但是他通过艰苦的努力,终于自学成才,成为十六世纪意大利最有成就的学者之一.由于冯塔纳患有“口吃”症,所以当时的人们昵称他为“塔尔塔里亚”(Tartaglia),也就是意大利语中“结巴”的意思.后来的很多数学书中,都直接用“塔尔塔里亚”来称呼冯塔纳.经过多年的探索和研究,冯塔纳利用十分巧妙的方法,找到了一元三次方程一般形式的求根方法.这个成就,使他在几次公开的数学较量中大获全胜,从此名扬欧洲.但是冯塔纳不愿意将他的这个重要发现公之于世.当时的另一位意大利数学家兼医生卡尔丹诺,对冯塔纳的发现非常感兴趣.他几次诚恳地登门请教,希望获得冯塔纳的求根公式.可是冯塔纳始终守口如瓶,滴水不漏.虽然卡尔丹诺屡次受挫,但他极为执着,软磨硬泡地向冯塔纳“挖秘诀”.后来,冯塔纳终于用一种隐晦得如同咒语般的语言,把三次方程的解法“透露”给了卡尔丹诺.冯塔纳认为卡尔丹诺很难破解他的“咒语”,可是卡尔丹诺的悟性太棒了,他通过解三次方程的对比实践,很快就彻底破译了冯塔纳的秘密.卡尔丹诺把冯塔纳的三次方程求根公式,写进了自己的学术著作《大法》中,但并未提到冯塔纳的名字.随着《大法》在欧洲的出版发行,人们才了解到三次方程的一般求解方法.由于第一个发表三次方程求根公式的人确实是卡尔丹诺,因此后人就把这种求解方法称为“卡尔丹诺公式”.卡尔丹诺剽窃他人的学术成果,并且据为已有,这一行为在人类数学史上留下了不甚光彩的一页.这个结果,对于付出艰辛劳动的冯塔纳当然是不公平的.但是,冯塔纳坚持不公开他的研究成果,也不能算是正确的做法,起码对于人类科学发展而言,是一种不负责任的态度.3.2解一元一次方程(二)1. C ;2. C ;3. B ;4. A ;5. A ;6. 移项,等式基本性质(1);7. 2x-3x=1.2+0.3;8. 1;9. 21;10. 2;11. 32=x ; 12.有学生10人,有练习本48本.13. B ;14. B ;15. 6;16. 5或1;17. A ;18. A ;19. 2;20. 解:设列车提速后行驶时间为x 小时,根据题意,得264442644x x +=,解得 2.4x =.故到站时刻为4︰24,历时2.4小时.21. B ;22. 80%300100x -=.。
一元一次方程专题训练

专题一:一元一次方程的解法1.解方程:(1)5x+5=9-3x;解:移项、合并同类项得8x=4,解得x=1 2 .(2)5x=3(2+x);解:去括号得5x=6+3x.移项、合并同类项得2x=6,解得x=3.(3)7-2x=3-4(x-2);解:去括号得7-2x=3-4x+8,移项、合并同类项得2x=4,解得x=2.(4)3(2x+1)=9-2(x-1);解:去括号得6x+3=9-2x+2,移项、合并同类项得8x=8,解得x=1.(5)753 48x-=;解:去分母得14x-10=3,移项、合并同类项得14x=13,解得x=13 14.(6)2154 36x x-+=;解:去分母得2(2x-1)=5x+4,去括号得4x-2=5x+4,移项、合并同类项得-x=6,解得x=-6.(7)4353146x x-+-=;解:去分母得12-3(4-3x)=2(5x+3),去括号得12-12+9x=10x+6,移项、合并同类项得-x=6,解得x=-6.(8)34=1.6 0.50.2x x-+-;解:方程整理得10305x--10402x+=1.6,去分母得2(10x-30)-5(10x+40)=16,去括号得20x-60-50x-200=16,移项、合并同类项得-30x=276,解得x=-9.2.(9)1+2=224x xx---;解:去分母得4x-2(x-1)=8-(x+2),去括号得4x-2x+2=8-x-2,移项、合并同类项得3x=4,解得x=4 3 .(10)(x-4)-(4)12x--=3-(4)23x-+.解:方法一:令x-4=y,则原方程可变形为y-12y-=3-23y+.去分母得6y-3(y-1)=18-2(y+2),去括号得6y-3y+3=18-2y-4,移项、合并同类项得5y=11,解得y=115,则x-4=115,解得x=315.方法二:方程整理得x-52x-=7-23x-,去分母得6x-3(x-5)=42-2(x-2),去括号得6x-3x+15=42-2x+4,移项、合并同类项得5x =31,解得x =315. 2.方程2(x -1)-3(x +1)=0的解与关于x 的方程2k x +-3k -2=2x 的解互为相反数,求k 的值.解:方程2(x -1)-3(x +1)=0,去括号得2x -2-3x -3=0,移项、合并同类项得-x =5,解得x =-5. 由题意得2k x +-3k -2=2x 的解为x =5. 把x =5代入得52k +-3k -2=10, 去分母得k +5-6k -4=20,移项、合并同类项得-5k =19,解得k =-195. 3.已知关于x 的一元一次方程4x +2m =3x -1.(1)求这个方程的解;解:(1)移项,得4x -3x =-1-2m .所以x =-1-2m .(2)若这个方程的解与关于x 的方程3(x +m )=-(x -1)的解相同,求m 的值.(2)去括号,得3x +3m =-x +1.移项、合并同类项,得4x =1-3m .解得x =134m -. 由于两个方程的解相同, 所以-1-2m =134m -. 去分母、去括号得-4-8m =1-3m ,移项、合并同类项,得-5m =5.解得m =-1.4.已知m 为整数,且满足关于x 的方程(2m +1)x =3mx -1.(1)当m =2时,求方程的解;解:(1)当m =2时,原方程为5x =6x -1,解得x =1.(2)该方程的解能否为3,请说明理由;(2)方程的解不能为3.理由如下:将x=3代入原方程,得3(2m+1)=9m-1,解得m=4 3 .∵m为整数,∵方程的解不可能为3.(3)当x为正整数时,请求出m的值.(3)(2m+1)x=3mx-1,移项、合并同类项,得(m-1)x=1.∵x为正整数,∵m-1为正数且为1的约数.∵m为整数,∵m-1=1.∵m=2.5.小王在解关于x的方程2-243x-=3a-2x时,误将-2x看作+2x,得方程的解为x=1. (1)求a的值;解:(1)把x=1代入2-243x-=3a+2x,得2+23=3a+2,解得a=29.(2)求此方程正确的解.(2)把a=29代入原方程得2-243x-=23-2x.去分母得6-(2x-4)=2-6x.去括号得6-2x+4=2-6x.移项得-2x+6x=-10+2.合并同类项得4x=-8.解得x=-2.6.定义:若关于x的一元一次方程ax=b的解为x=b+a,则称该方程为“和解方程”.例如:2x=-4的解为x=-2,且-2=-4+2,则方程2x=-4是“和解方程”.(1)判断-3x=94是否是“和解方程”,说明理由;解:(1)∵-3x=94,∵x=-3 4 .∵94-3=-34,∵-3x=94是“和解方程”.(2)若关于x的一元一次方程5x=m-2是“和解方程”,求m的值.(2)∵关于x的一元一次方程5x=m-2是“和解方程”,∵m-2+5=25m. 解得m=-174.故m的值为-174.专题二:方程中与的字母问题1.已知关于x的方程(m+2)x|m+1|-3=0是一元一次方程,则m的值是( B)A.-2B.0C.1D.0或-22.若(|m|-1)x2-(m-1)x-8=0是关于x的一元一次方程,则m的值为( A)A.-1B.1C.±1D.不能确定3.已知关于x的方程ax-1=x为一元一次方程,则|a-1|的值一定为( A)A.正数B.非负数C.零D.不能确定4.若(m-4)x2|m|-7-4m=0是关于x的一元一次方程,求m2-2m+1996的值.解:∵(m -4)x 2|m |-7-4m =0是关于x 的一元一次方程,∵m -4≠0且2|m |-7=1.解得m =-4.∵原式=16+8+1996=2020.5.已知关于x 的方程2x -93a -=0的解是x =-2,则a 的值为( C ) A.-21 B.21 C.-3 D.38.已知关于x 的方程x -46ax -=43x +-1的解是正整数,则符合条件的所有整数a 的积是 . 9.在做解方程练习时,学习卷中有一个方程“2y -13=13y +W ”中的W 没印清晰,小聪问老师,老师只是说:“W 是个有理数,该方程的解与方程3(x -1)-2(x -2)=3的解相同.”小聪很快补上了这个常数,聪明的你能补上这个常数吗? 解:解方程3(x -1)-2(x -2)=3得x =2.由题意知y =x =2.将y =2代入2y -13=13y +W 中, 得2×2-13=13×2+W , 解得W =3.10.如果a ,b 为常数,且不论k 取何值时,关于x 的方程2kx a --1=24x bk -的解总是x =-1,求a b 的值. 解:把x =-1代入2kx a --1=24x bk -, 得2k a ---1=24bk --. 整理,得(b -2)k -2a -2=0.∵无论k 取何值时,关于x 的方程的解总是x =-1,∵b -2=0,-2a -2=0.解得b =2,a =-1.∵a b =(-1)2=1.11.若a ,b 互为相反数(a ≠0),则关于x 的方程ax +b =0的解是( A )A.x=1B.x=-1C.x=1,或x=-1D.不能确定12.已知|n+2|+(5m-3)2=0,求关于x的方程10mx+4=3x+n的解.解:因为|n+2|+(5m-3)2=0,所以n+2=0,5m-3=0.解得m=35,n=-2.将m=35,n=-2代入方程10mx+4=3x+n,得6x+4=3x-2.移项、合并同类项得3x=-6.解得x=-2.专题三:一元一次方程的应用1.我国一航空母舰始终以60千米/时的速度由西向东航行,飞机以500千米/时的速度从舰上起飞,向西航行执行任务,如果飞机在空中最多能连续飞行3个小时,那么它在起飞几小时后就必须返航,才能安全停在舰上?解:设飞机在起飞x小时后就必须返航,才能安全停在舰上.根据题意得500(3-x)-500x=60×3,解得x=1.32.答:飞机在起飞1.32小时后就必须返航,才能安全停在舰上.2.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”解:设有x 位客人,则2x +3x +4x =65, 解得x =60.答:有60位客人.3.如图,一块长4厘米、宽1厘米的长方形纸板∵,一块长5厘米、宽2厘米的长方形纸板∵与一块正方形纸板∵以及另两块长方形纸板∵和∵,恰好拼成一个大正方形,求大正方形的面积.解:设小正方形∵的边长为x 厘米.依题意得1+x +2=4+5-x ,解得x =3.则1+x +2=6.∵大正方形的边长为6厘米.∵大正方形的面积是6×6=36(平方厘米).4.一鞋店老板以每件60元的价格购进了一种品牌的布鞋360双,并以每双100元的价格销售了240双.冬季来临,老板为了清库存,决定促销.请你帮老板算一下,每双鞋降价多少元时,销售完这批鞋正好能达到盈利50%的目标.解:设每双鞋降价x 元.依题意有(100-60)×240+(100-x -60)×(360-240)=360×60×50%,解得x =30.答:每双鞋降价30元时,销售完这批鞋正好能达到盈利50%的目标.5.在国庆节社会实践活动中,盐城某校甲、乙、丙三位同学一起调查了高峰时段盐靖高速、盐洛高速和沈海高速的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“盐靖高速车流量为每小时2000辆.”乙同学说:“沈海高速的车流量比盐洛高速的车流量每小时多400辆.”丙同学说:“盐洛高速车流量的5倍与沈海高速车流量的差是盐靖高速车流量的2倍.”请你根据他们所提供的信息,求出高峰时段盐洛高速和沈海高速的车流量分别是多少?解:设盐洛高速车流量为每小时x辆.由题意得5x-(x+400)=2000×2,解得x=1100.则x+400=1500.答:高峰时段盐洛高速和沈海高速的车流量分别是每小时1100辆、1500辆. 6.某商店购进A、B两种商品共100件,花费3100元,其进价和售价如下表:(1)A、B两种商品分别购进多少件?解:(1)设购进A种商品a件,则购进B种商品(100-a)件.由题意得25a+35(100-a)=3100,解得a=40.则100-a=60.答:A、B两种商品分别购进40件、60件.(2)两种商品售完后共获取利润多少元?(2)(30-25)×40+(45-35)×60=800(元).答:两种商品售完后共获取利润800元.7.为了鼓励节约用电,某地用电标准规定:如果每户每月用电不超过a度,那么每度按0.55元缴纳;超过部分则按每度0.85元缴纳.(1)某户5月份用电200度,共交电费125元,求a的值;解:(1)因为200×0.55=110<125,所以该用户用电量超过a度.由题意可知0.55a+0.85(200-a)=125,解得a=150.(2)在(1)的条件下,若该户6月份的电费平均每度0.6元,则6月份共用电多少度?应交电费多少元?(2)设6月份共用电x度.由题意得150×0.55+0.85×(x-150)=0.6x,解得x=180.∵应交电费0.6x=108(元).答:6月份共用电180度,应交电费108元.8.完成一项工作,如果由两个人合做,要16天才能完成.开始先安排一些人做2天后,又增加1人和他们一起做4天,结果完成了这项工作的一半,假设这些人的工作效率相同.(1)开始安排了多少名工人?解:(1)设开始安排了x名工人.根据题意,得24(1)11621622x x++=⨯⨯,解得x=2.答:开始安排了2名工人.(2)如果要求再用4天做完剩余的全部工作,还需要再增加几人一起做?(2)设还需再增加y名工人.根据题意,得314322y+⨯=. 解得y=1.答:还需再增加1名工人.9.请根据图中提供的暖瓶和水杯的售价信息,回答下列问题:(1)一个暖瓶与一个水杯的售价分别是多少元?解:(1)设一个暖瓶x元,则一个水杯(38-x)元.根据题意得2x+3(38-x)=84,解得x=30,则38-x=8.答:一个暖瓶的售价是30元,一个水杯的售价是8元.(2)甲、乙两家商场同时出售同样的暖瓶和水杯,在新年期间,两家商场都在搞促销活动.甲商场规定:这两种商品都打8.5折;乙商场规定:两种商品都不打折,但买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和16个水杯,请问这个单位选择哪家商场购买更合算,并说明理由.(2)这个单位在甲商场购买更合算.理由:在甲商场购买所需费用为(4×30+16×8)×85%=210.8(元);在乙商场购买所需费用为4×30+(16-4)×8=216(元).因为210.8<216,所以这个单位在甲商场购买更合算.综合训练四:一元一次方程的解法一、选择题(每小题3分,共24分)1.方程x-14x-=-1去分母正确的是( C)A.x-1-x=-1B.4x-1-x=-4C.4x-1+x=-4D.4x-1+x=-12.方程2-3x=4-2x的解是( B)A.x=1B.x=-2C.x=2D.x=-13.如果3ab2m-1与9ab m+1是同类项,那么m等于( A)A.2B.1C.-1D.04.若关于x的方程mx m-2-m+3=0是一元一次方程,则这个方程的解是( A)A.x=0B.x=3C.x=-3D.x=25.将一根长为12 cm的铁丝围成一个长与宽之比为2∵1的长方形,则此长方形的面积为( C)A.2 cm2B.4.5 cm2C.8 cm2D.32 cm26.若关于x的一元一次方程23x k--32x k-=1的解是x=-1,则k的值是( B)A.27B.1C.-37D.07.若a、b表示非零常数,整式ax+b的值随x的取值而发生变化,如下表:则关于x的一元一次方程-ax-b=-3的解为( C)A.x=-3B.x=-1C.x=0D.x=38.已知关于x的方程52x-a=3x-14,若a为正整数,方程的解也为正整数,则a的最大值是( B)A.12B.13C.14D.15二、填空题(每小题4分,共24分)9.方程3x=5x-14的解是x=.10.当x=时,式子x-1与式子214x的值相等.11.若关于x的方程x+k=1与2x-3=1的解相同,则k的值为.12.某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为件.13.在有理数范围内定义一种新运算“∵”,其运算规则为:a∵b=-2a+3b,如1∵5=-2×1+3×5=13,则方程2x∵4=0的解为.14.若关于x的方程12019x+2019=2x+m的解是x=2019,则关于y的方程12019y+2019+12019=2y+m+2的解是y=.解析:12019y+2019+12019=2y+m+2可整理为12019(y+1)+2019=2(y+1)+m,则由题可得y+1=2019,∵y=2018.三、解答题(共52分)15.(16分)解下列方程:(1)9x+6=6x-2;解:x=-83.(4分)(2)13x-14=23x+34;解:x=-3.(8分)(3)6(2x-5)+15=4(1-2x)-5;解:x=710.(12分)(4)1241 262x x x+---=-.解:x=15.(16分)16.(8分)当x为何值时,整式(2x-1)的值比(x+3)的值的3倍少5?解:由题意得2x-1=3(x+3)-5,(2分)解得x=-5,(6分)即当x=-5时,整式(2x-1)的值比(x+3)的值的3倍少5.(8分)17.(8分)聪聪在对方程315362x mx x+---=∵去分母时,错误地得到了方程2(x+3)-mx-1=3(5-x)∵,因而求得的解是x=52,试求m的值,并求方程的正确解.解:把x=52代入方程∵得25+32⎛⎫⎪⎝⎭-52m-1=3552⎛⎫-⎪⎝⎭,解得m=1.(4分)把m=1代入方程∵得315362x x x+---=,解得x=2,则方程的正确解为x=2.(8分)18.(10分)(1)解关于x的方程:2(-2x+a)=3x;解:(1)去括号得-4x+2a=3x,移项、合并同类项得7x=2a,解得x=27a.(4分)(2)若(1)中方程的解与关于x的方程x-13x-=6x a+的解互为相反数,求a的值.(2)由题意知方程x-13x-=6x a+的解为x=-27a.解方程x-13x-=6x a+得x=27a+.(7分)则27a+=-27a,解得a=-23.(10分)19.(10分)阅读以下例题.解方程:|3x|=1.解:∵当3x>0时,原方程可化为3x=1,它的解为x=13;∵当3x<0时,原方程可化为-3x=1,它的解为x=-1 3 .所以原方程的解为x1=13,x2=-13.仿照例题解方程:|2x+1|=5.解:当2x+1>0时,原方程可化为2x+1=5,(3分)解得x=2.(5分)当2x+1<0时,原方程可化为-(2x+1)=5,解得x=-3.(9分)∵原方程的解为x1=2,x2=-3.(10分)。