有机波谱-核磁共振之2005级

合集下载

核磁共振谱

核磁共振谱

在使用氘代试剂时,由于氘代度不会是100%,在谱图中常会出现残 留质子的吸收。在13C NMR谱中也会出现相应的吸收峰。在配制样品溶液 时,除考虑溶解度以外,还要考虑可能的溶剂峰干扰。必要时可以更换 溶剂,以检查某些峰是否被溶剂峰掩盖。 表3-3列出常用溶剂产生的溶剂峰的化学位移和裂分情况。
12
13
在60MHz仪器上,某一基团相对于TMS在60Hz处共振,则 其化学位移表示为: δ 所表示的是该吸收峰距原点的距离。其单位是ppm(百 万分之一),是核磁共振波谱技术中使用的无量纲单位。
16
核磁共振波谱和常用术语表示为:
大多数有机化合物的1H NMR信号出现在TMS的左侧,规定为正值; 少数化合物的信号出现在TMS右侧的高场区,用负号表示。 选用四甲基硅烷TMS作化学位移参比物质的原因是它的12个质子受 到硅原子的强屏蔽作用,在高场区出现一个尖锐的强峰,它在大多数 有机溶剂中易溶,呈现化学惰性;沸点低(26.5℃)因而样品易回收。 在氢和碳谱中都设为δ TMS=0。
11
在NMR谱测定时,多使用氘代试剂。在使用不同的氘代试剂和观测 谱宽时,需设置不同的观测偏置(如表3-2所列)。以使所有吸收峰出现在 谱图合适的位置上,并避免谱带的折叠。所谓谱带折叠是指观测谱宽设 置不够时,超过高场区域的峰会折叠到低场区域或超过低场区域的峰会 折叠到高场区域,干扰谱图的解析。
表3-2不同氘代试剂和谱宽时的观测偏置(KHz)(90MHz仪器)
3.2 饱和和弛豫
3.2.1 饱和
式(3-2) 表明,处于低能态和高能态核 的数目与能级差和温度有关。一般Δ E很小,约为10-6kJ.mol-1, 在1.41特斯拉磁场中,在室温下每一百万个原子核中处于低 能态的核仅比高能态的核多约6个(在较高的H0和低温下,这个 差值会增大)。 当受到适当频率的射频场照射时,原子核吸收能量,由 +1/2态跃迁到-1/2态,使n+减少而n-增加。当n+=n-时,吸收和 辐射能量相等。就不再有净吸收,核磁共振信号消失,这个 体系就处于饱和状态。 处于高能态的核可以通过某些途径把其多余的能量传递 给周围介质而重新回到低能态,这个过程叫做弛豫。 弛豫主要有自旋-晶格弛豫和自旋-自旋弛豫两种机制。

核磁共振波谱分析法

核磁共振波谱分析法

11:21:53
2.氢键效应
形成氢键后1H核屏蔽作用减少,氢键属于去屏蔽效应。 使共振吸收移向低场。
H H3CH2C O H O CH2CH3 CCl4 5.72ppm 3.7ppm O H O H H O O CH3 CCl4 7.45ppm 4.37ppm
11:21:53
例: 醇羟基 酚 胺 0.5~5 4~7 0.5~5
氢原子核的外面有电子,它们对磁场的磁力线有排斥 作用。对原子核来讲,周围的电子起了屏蔽(Shielding) 效应。核周围的电子云密度越大,屏蔽效应就越大,要相 应增加磁场强度才能使之发生共振。核周围的电子云密度 是受所连基团的影响,故不同化学环境的核,它们所受的
屏蔽作用各不相同,它们的核磁共振信号亦就出现在不同


在强磁场中,原子核发生能级分裂(能级极小:在1.41T磁场中, 磁能级差约为2510-3J),当吸收外来电磁辐射(10-9-10-10nm,4900MHz)时,将发生核能级的跃迁----产生所谓NMR现象。
射频辐射─原子核(强磁场下,能级分裂)-----吸收──能级跃迁 ──NMR 与UV-vis和红外光谱法类似,NMR也属于吸收光谱,只是研究 的对象是处于强磁场中的原子核对射频辐射的吸收。
11:21:53
核磁共振在仪器、实验方法、理论和应用等方面有着飞
跃的进步。谱仪频率已从30MHz发展到900MHz。1000MHz 谱仪亦在加紧试制之中。仪器工作方式从连续波谱仪发展到
脉冲-傅里叶变换谱仪。随着多种脉冲序列的采用,所得谱
图已从一维谱到二维谱、三维谱甚至更高维谱。所应用的学 科已从化学、物理扩展到生物、医学等多个学科。核磁共振
11:21:53
常见结构单元化学位移范围

有机化合物波谱分析

有机化合物波谱分析

有机化合物波谱分析有机化合物波谱分析是一种重要的手段,可用于确定有机物的分子结构和功能基团。

其中,核磁共振波谱(NMR)和红外光谱(IR)是两种常用的波谱技术。

本文将重点介绍这两种波谱分析技术的基本原理、应用和解读方法。

核磁共振波谱(NMR)是一种基于核自旋的波谱分析方法。

它通过测量核自旋与外加磁场相互作用导致的能量变化来获得信息。

核磁共振波谱图通常由若干个特征峰组成,每个峰对应于一种不同类型的核。

峰的位置称为化学位移,可以通过参考物质(如四氯化硅)来标定。

峰的形状和强度可以提供有关分子结构和相互作用的信息。

核磁共振波谱提供了关于有机分子的碳氢骨架以及官能团、取代基等信息,因此在有机化学和药物化学领域有广泛应用。

红外光谱(IR)是一种基于分子振动的波谱分析方法。

它通过测量物质吸收红外辐射的能量来获得信息。

由于不同分子具有不同的振动模式和结构,它们吸收红外辐射的方式也不同。

红外光谱图通常由一系列特征峰组成,峰的位置称为波数,可以用来标识不同的官能团和化学键。

峰的强度和形状可以提供关于分子的结构和取向的信息。

红外光谱在有机化学、聚合物化学和无机化学等领域都有广泛的应用。

在进行有机化合物波谱分析时,需要先对样品进行样品制备。

核磁共振波谱通常需要溶解样品,然后将溶液转移到核磁共振管中进行测量。

红外光谱则可以对固体、液体和气体样品进行测量,通常需要将样品制备成固体片或涂在透明载体上。

波谱仪器通常会提供相应的样品制备方法和参数设置。

在分析核磁共振波谱和红外光谱时,需要注意以下几个方面。

首先,对于核磁共振波谱,要正确解读峰的化学位移。

化学位移受到许多因素的影响,如官能团、电子效应、取代基等。

因此,需要结合文献和经验来确定不同类型核的化学位移范围。

其次,对于红外光谱,要正确解读峰的波数。

不同的官能团和化学键都有特定的波数范围,可以用来确定它们的存在。

最后,对于波谱图的解读,需要综合考虑各种信息,如位置、形状、强度和相对强度等。

有机波谱知识点总结

有机波谱知识点总结

有机波谱知识点总结波谱是化学分析中常用的一种手段,通过测定分子在电磁波中的吸收、散射或发射,可以了解分子的结构和性质。

有机波谱是指在有机化合物中应用的波谱分析方法,主要包括红外光谱、紫外-可见光谱、质谱和核磁共振谱等。

本文将针对有机波谱的各种知识点进行总结,包括波谱的基本原理、各种波谱的特点和应用、波谱分析中需要注意的问题等内容。

一、红外光谱1.基本原理红外光谱是利用物质对红外辐射的吸收和散射的规律来研究物质结构和性质的一种分析方法。

红外光谱的基本原理是在物质中分子或原子的振动和转动会产生特定的频率的红外光吸收,这样可以用红外光谱来检验物质的结构和成分。

2.特点和应用红外光谱对于分析有机化合物的结构和功能团具有非常重要的作用。

红外光谱具有分辨率高、灵敏度强、操作简便等特点,广泛应用于聚合物材料、药物分析、食品检测等领域。

3.需要注意的问题在进行红外光谱分析时,需要注意样品的处理、仪器的校准和数据的解释等问题。

此外,还需要对不同功能团的吸收峰进行了解,进行光谱图谱的解读。

二、紫外-可见光谱1.基本原理紫外-可见光谱是利用物质对紫外光和可见光的吸收的规律来研究物质结构和特性的一种分析方法。

紫外-可见光谱的基本原理是分子在吸收紫外-可见光时,电子跃迁至较高的能级,产生吸收峰,可以由此推测分子的结构和键合的性质。

2.特点和应用紫外-可见光谱对于分析有机化合物的共轭结构和电子转移能力有很大的作用。

紫外-可见光谱具有快速、敏感、定量等特点,广泛应用于有机合成、药物分析、环境监测等领域。

3.需要注意的问题在进行紫外-可见光谱分析时,需要注意样品的准备、仪器的校准和光谱图谱的解释。

此外,还需要了解分子在吸收紫外-可见光时的机理和特性,进行光谱图谱的解读。

三、质谱1.基本原理质谱是利用物质在电子轰击下的离子化和质子转移等规律来研究物质结构和成分的一种分析方法。

质谱的基本原理是将物质离子化后,通过质子转移和碎裂等反应产生一系列离子,再根据其质荷比来推测物质的结构和成分。

核磁共振波谱的作用

核磁共振波谱的作用

核磁共振波谱(Nuclear Magnetic Resonance Spectroscopy,简称NMR)在化学和生物化学领域有着广泛的应用和重要作用。

下面是一些核磁共振波谱的主要作用:
结构确定:核磁共振波谱可以提供化合物的结构信息。

通过测量样品中原子核的共振频率和相对强度,可以确定分子中原子的类型、数量和它们在分子中的排列方式。

这对于分子的结构确定非常重要,尤其是对于复杂有机分子和生物大分子的结构解析。

定量分析:核磁共振波谱可以用于定量分析,即测定样品中特定物质的含量。

通过测量峰的积分强度或峰面积,可以计算出样品中目标物质的浓度或相对含量。

这对于药物研发、环境监测和生物分析等领域非常重要。

动态过程研究:核磁共振波谱可以用于研究化学反应、分子间相互作用以及生物分子的动态过程。

通过监测核磁共振峰的强度、位置和形状随时间的变化,可以揭示分子的构象变化、反应速率、化学平衡和相互作用强度等信息。

药物研发:核磁共振波谱在药物研发过程中发挥着重要作用。

它可以用于分析药物的纯度、鉴定结构、研究药物代谢和药物-受体相互作用等,为药物设计和优化提供重要的信息。

生物分子研究:核磁共振波谱在生物化学和结构生物学中广泛应用。

它可以用于研究蛋白质、核酸和其他生物大分子的结构、构象变化、相互作用和动态过程,为理解生物分子的功能和机制提供重要线索。

有机化合物波谱分析-核磁汇总.

有机化合物波谱分析-核磁汇总.
对于氢核I=1/2,即有m=2个取向,m=+1/2、m= -1/2 当自旋取向与外加磁场一致时, m=+1/2,氢核处于一种低能级状态.(E1=-μH0 ), 当自旋取向与外加磁场相反时, m= -1/2时,则处于一种高能级状态(E2=+μH0 ), 两种取向的能级差△E=E2-E1=2μH0
20
10
1991年诺贝尔化学奖授予R.R. Ernst教授,以表彰他对二维 核磁共振理论及傅里叶变换核磁共振的贡献
谱仪频率已从30MHz发展到900MHz。仪器工作方式从连续 波谱仪发展到脉冲-傅里叶变换谱仪。随着多种脉冲序列的采用, 所得谱图已从一维谱到二维谱、三维谱甚至更高维谱。
2
2015/4/29
矩产生,是核磁共振研究的主要对象,C,H也是有机化合物 的主要组成元素。
12
6
磁性核
具有磁矩的原子核,是核磁共振的研究对象
产生核磁共振的首要条件是核自旋时要有磁矩产生,I≠0
2015/4/29 7
2015/4/29
第三章 核磁共振( NMR spectroscopy ) 二、磁性原子核在外加磁场中的行为特征
10
5
2015/4/29
第三章 核磁共振( NMR spectroscopy )
自旋量子数(I)不为零的核都具有磁矩,原子的自旋 情况可以用(I)表征:
质量数 原子序数 偶数 偶数 偶数 奇数 奇数 奇数或偶数
自旋量子数I 0
1,2,3…. 1/2;3/2;5/2….
11
第三章 核磁共振( NMR spectroscopy )
讨论:
1) I=0 的原子核 O(16);C(12);S(22)等 , 无自旋,没有磁矩,不产生共振吸收。

有机化学基础知识点整理核磁共振波谱在结构鉴定中的应用

有机化学基础知识点整理核磁共振波谱在结构鉴定中的应用核磁共振波谱(Nuclear Magnetic Resonance Spectroscopy,简称NMR)是一种重要的结构鉴定技术,广泛应用于有机化学领域。

通过分析样品分子各个原子核的运动状态,利用NMR可以获得关于化合物结构的丰富信息。

本文将对有机化学基础知识点进行整理,并重点探讨核磁共振波谱在结构鉴定中的应用。

一、有机化学基础知识点1. 基本概念有机化学是研究碳元素化合物及其它元素与碳元素之间的化学性质和反应机理的学科。

有机物由碳和氢元素组成,同时也可含有氧、氮、硫等其他元素。

有机物的化学性质与它们的结构密切相关。

2. 化学键和分子结构有机物中的化学键主要有共价键、极性键和离子键。

共价键由共用电子对连接,是有机化合物稳定的键类型。

分子结构包括直线链状、分支链状、环状和立体中心等多种形式。

3. 功能团有机化合物中的功能团决定了其化学性质。

常见的功能团包括羧基、醇基、醛基、酮基、酯基、胺基等。

不同的功能团会导致有机物的不同性质和反应活性。

4. 碳谱和氢谱碳谱是通过测定有机物中碳原子的化学位移和峰面积来分析化合物的结构。

氢谱则是通过测定有机物中氢原子的化学位移和峰面积来分析化合物的结构。

碳谱和氢谱常用的单位是ppm(部分百万),可以提供关于化合物的信息。

二、核磁共振波谱在结构鉴定中的应用1. 化学位移化学位移是核磁共振波谱中的重要参数,用于确定不同核的环境和结合状态。

通过与特定参考物质相比较,可以推断出样品中各核的化学位移,并进一步确定化合物的结构。

2. 峰强度与个数关系核磁共振波谱中的峰代表了不同核的存在,其强度与该核在分子中的个数成正比。

通过分析峰的数量和相对强度,可以推断出化合物的分子式,进一步辅助结构的鉴定。

3. 耦合常数耦合是指不同核之间的相互作用,通过耦合常数可以确定化合物的骨架和连接方式。

常见的耦合常数有J值,该值可用于确定相邻核之间的化学键数目和键的种类。

核磁共振波谱

与所代表的质子数成正比。

得到信息:
1)吸收峰的组数说明化学环境不同。
2)化学位移σ 说明分子中基团情况。
3)峰的裂分情况及耦合常数,说明基团间的连接关
系。
4)阶梯式积分曲线高度,说明各基团的质子比。
影响化学位移的因素
化学位移可提供重要结构信息,是受氢核外电子云对核的屏蔽
作用引起。
凡是使核外电子云密度改变的因素都影响化学位移。
3. 位移试剂:镧系元素与β -二酮络合物
稀土元素的离子与孤对电子配位后,相邻元素上质子的 化学位移受位移试剂磁各各向异性影响,发生显著移动。 常用:Eu(DPM)3 [三—(2,2,6,6—四甲基)庚二酮—3,5]铕
H2 H2 H2 H2 H2 HO C C C C C CH3
OH OH
一级谱图的解析
⑵ 固定在环上CH2的两个氢化学不等价。 ⑶ 单键不能快速旋转,连于同一原子上的两个相同基化学不 等价。
O CH3 H 3C C N CH3
O H H 3C C N H
⑷ 与手性碳相连的CH2的两个氢化学不等价。
H2 R1 R C C R2 R3
H2 CH3 R1 C C C R2 CH3 R3
2. 磁等同
1.检查谱图,区别出杂质峰、溶剂峰
2.根据分子式计算化合物的不饱和度:环加双键数,当大于 时应考虑苯环结构U=1+n4+(n3-n1)/2 3.由积分曲线给出各峰组所对应的原子数目 曲线误差;分子对称使峰组数减少;结构合理:高场不会 出现无重叠的有5或7个氢的峰组 4. 由谱图信息推测结构单元,估计相邻基团 由σ 归属种类;宽位移信号对应活泼氢;裂分情况得到邻 碳的氢原子数;注意仪器工作频率从Δ σ 计算Δ ν (Hz) 5.计算剩余的结构单元和不饱和度 6.根据位移和耦合关系,组合各结构单元得到合理的结构式 7.对推出的结构进行指认:标准谱图。

有机波谱分析总结

有机波谱分析总结有机波谱分析是有机化学中一项重要的分析技术,通过对有机化合物的波谱进行分析,可以确定其结构和功能基团,对于有机合成、药物研发等领域有着广泛的应用。

本文将对有机波谱分析的原理、常见波谱技术和分析方法以及应用进行总结。

一、有机波谱分析原理有机波谱分析主要基于分子中所包含的原子核和电子的转动、振动和电子能级跃迁引起的辐射吸收或发射现象。

通过测量分子在不同频率范围内所吸收或发射的辐射能量,可以得到不同类型的波谱。

有机波谱分析常用的波谱包括红外光谱、质谱、核磁共振谱和紫外可见光谱。

二、常见的有机波谱技术1.红外光谱(IR):红外光谱是根据有机化合物中的官能团和化学键所具有的振动频率的不同来进行分析的。

通过红外光谱可以确定有机化合物中的官能团,如羧酸、醇、醛等。

红外光谱具有非破坏性、操作简便的特点,广泛应用于有机合成、药物研发等领域。

2.质谱(MS):质谱是通过对有机化合物中分子离子和碎片离子质量进行测量来分析有机化合物的分子结构。

质谱具有高灵敏度、高分辨率的特点,可以确定分子的组成和相对分子质量,对于有机化合物的鉴定具有重要意义。

3.核磁共振谱(NMR):核磁共振谱是根据核磁共振现象进行分析的。

通过测量有机化合物中原子核受到外加磁场影响的吸收或发射的辐射能量,可以得到有机化合物中原子核的位置、种类和环境。

核磁共振谱具有高分辨率、非破坏性和无辐射的特点,广泛应用于有机合成、物质鉴定和生物医学研究等领域。

4.紫外可见光谱(UV-Vis):紫外可见光谱是通过测量有机化合物在紫外可见光区域吸收或发射的辐射能量,以确定有机化合物的电子能级和共轭体系的存在与否。

紫外可见光谱具有高灵敏度和快速测量的特点,常用于有机合成、化学动力学和药物研发等领域。

三、有机波谱分析方法1.结构鉴定法:通过与已知化合物的波谱进行对比,确定未知化合物的结构。

结构鉴定法常用于核磁共振谱和质谱。

2.定量分析法:通过测定化合物在特定波长或波数处的吸光度或吸收峰面积,来确定有机化合物的含量。

核磁共振波谱法


( 1 )对自旋量子数 I=1/2 的同一核来说 , , 因磁矩为一定值, —为常数,所以发生 共振时,照射频率的大小取决于外磁场 强度的大小。外磁场强度增加时,为使 核发生共振,照射频率也相应增加;反 之,则减小。
16

(2)对自旋量子数I=1/2的不同核来说,若
同时放入一固定磁场中,共振频率取决
核磁共振波谱法
(nuclear magnetic resonance spectroscopy, NMR)
核磁共振波谱法:研究处于强磁场中的具有磁性质
的原子核对射频辐射的选择性吸收,发生核能级跃 迁。——吸收光谱法 射频辐射: 109-1010nm; 红外光:0.78~40m;紫外:200~800nm
18
有机化合物结构与质子核磁共振波谱
理论上:当一个自旋量子数不为零的核置于外磁场中,它只 有一个共振频率,图谱上只有一个吸收峰。
如:在1.4092T磁场存在下,1H的共振频率为60MHz
2.675108 1.4092 0 60.0MHz 2 π 2 3.14
Bo
实际上:质子所处化学环境不同,其共振频率也不同。
1
将磁性原子核放入强磁场后,用适宜频率的 电磁波照射,它们会吸收能量,发生原子核能级 跃迁,同时产生核磁共振信号,得到核磁共振

利用核磁共振光谱进行结构测定,定性与定 量分析的方法称为核磁共振波谱法。简称 NMR
在有机化合物中,经常研究的是1H和13C的共
振吸收谱。
2

共同点都是吸收光谱
紫外-可见 红外 核磁共振
19
有两类化学环境的影响: (1) 质子周围基团的性质不同,使它的共振频率不同,这种 现象称为化学位移。
在1.4092T磁场存在下,1H的共振频率为60MHz
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档