Atomic Physics with the Goddard High Resolution Spectrograph on the Hubble Space Telescope.

合集下载

科学历程

科学历程

1925 年春,一个新的物理 并非用于牛奶行业,而是源于 意味着,王赣骏成了第一位进 学原理—不相容原理诞生了。 法国微生物学家巴斯德对酿酒 入太空的华人。
这一消息震动了整个物理学界, 业的一次技术革新。当时,法
王 赣 骏 1940 年 出 生 在 江
但是更让人吃惊的是,它的提 国酿酒业面临着一个令人头疼 西赣县,后移居美国。王赣骏
科学历程
Science/ 科技
为他的敏锐和挑剔,使他具有 一眼就能发现错误的能力。
酒 里 的 乳 酸 杆 菌 和 芽 孢, 而 不 必 煮 沸。 这 一 方 法 挽 救 了 法 国 的酿酒业。
1862 年 4 月 20 日—法国
微生物学家巴斯德首次完成 1985 年 4 月 29 日—华裔
巴氏消毒法测试
1900 年 4 月 25 日, 泡 利 煮 沸 的 方 法 是 可 以 杀 死 乳 酸 进行的科学实验项目,结果在
出生于奥地利维也纳一个知识 杆菌的,但是,这样一来啤酒 全美共 500 多个应征计划中,
分子家庭。泡利非常喜欢物理 学,上中学时,他曾埋首研读 当时鲜为人知的爱因斯坦的广
也就被煮坏了。巴斯德尝试使 用不同的温度来消灭乳一个原子中,任何两个轨 经过长时间的观察,他发现啤 宇宙飞船上做“滴液动力实验”
道上电子的 4 个量子数不能完全 酒变酸的罪魁祸首是乳酸杆菌。 的建议,这在世界上是史无前
相同。发现不相容原理让泡利的 营养丰富的啤酒简直就是乳酸 例的。1976 年,美国国家航空 才华得到了物理学界的认可。 杆菌生长的天堂。采取简单的 航天局公开征求在宇宙飞船上
科学家王赣骏成为第一位进
提到巴氏消毒法,我们最
入太空的华人
1900 年 4 月 25 日—不相 容原理发现者物理学家沃尔

中微子探索简史

中微子探索简史

中微子探索简史
1930年沃尔夫冈·泡利为解释核衰变中能量似乎不守恒的现象,预言了这样一种“永远找不到”的粒子。

1956年,这项实验由美国物理学家费雷德里克·莱茵斯和克莱德·科万完成。

他们选用氢核(质子)作为靶,通过探测中微子与质子的反应,直接证实了中微子的存在。

1962年莱德曼、施瓦茨、斯坦伯格、发现缪中微子,图片为梅尔文·施瓦茨与10吨重的火花室,上面显示了多个宇宙线缪子的径迹。

1968年戴维斯探测到太阳中微子,发现太阳中微子丢失,2002年与小柴昌俊一起分享了2002年诺贝尔奖。

1987年小柴昌俊等观测到超新星中微子,小柴昌俊因“观测到来自宇宙的中微子”,与戴维斯一起分享了2002年诺贝尔奖。

1998年梶田隆章代表超级神冈在“国际中微子大会”上报告,以确凿的证据发现了大气中微子振荡,测到了足够的大气中微子,显示了它的丢失比例随飞行距离的变化,而这是中微子振荡的关键特征。

2001年在发现大气中微子振荡3年后,阿瑟•麦克唐纳领导的加拿大萨德伯里实验宣布找到了失踪的太阳中微子,证实了太阳中微子振荡。

2002年KamLAND用反应堆证实太阳中微子振荡(θ12),K2K用加速器证实大气中微子振荡(θ23)
2012年,中国的大亚湾中微子实验发现了除大气中微子模式和太阳中微子模式外的第三种振荡模式,为测量中微子质量顺序和“CP破坏”打开了大门。

2013年T2K发现缪中微子到电子中微子的转化
本作品为“科普中国-科技创新里程碑”原创转载时务请注明出处。

约翰 阿奇博尔德 惠勒

约翰 阿奇博尔德 惠勒
惠勒的主要研究领域为量子理论,相对论研究。
人物生平
1911年7月9日,约翰·阿奇博尔德·惠勒出生在美国佛州的杰克逊维尔一个图书馆员家庭里,他是家中的老 大,下面有3个弟妹。
1915年,4岁时,惠勒就对宇宙产生了浓厚的兴趣,一天他问母亲,“宇宙的尽头在哪里?在宇宙上我们能 走多远?”母亲的回答当然不能满足他的好奇心。于是惠勒向书本请教,英国著名生物学家兼科普作家约翰·阿 瑟·汤姆生的《科学大纲》曾让他爱不释手。好奇心常常让他忘乎所以,有一次为了弄清1.1万伏高压电是什么 感觉,他还特意用手去碰高压电线。早年就读于巴尔的摩学院(Baltimore City College )
惠勒认为,麦克斯韦时代的物理学是物质的物理学,这时物理学的目的是寻找构成物质世界的基本单元,把 物理学的基础建立在更基本的粒子之上。而此后的物理学则是定律的物理学,具体的物理粒子成为理论本身的建 构结果,不再基本。惠勒力图把更多的物质转化成定律,前述“没有物质的物质”和“没有电荷的电荷”都是这 种思想的表现。当然,这也可以用奥卡姆剃刀来解释。
约翰 阿奇博尔德 惠勒
美国物理学家、物理学思想家、物理学教育家
01 人物生平
03 学术领域
目录
02 学者生涯 04 物理贡献
05 人物著作
07 人物评价
目录
06 社会任职 08 惠勒学生
约翰·阿奇博尔德·惠勒(英语:John Archibald Wheeler,1911年7月9日-2008年4月13日),美国物 理学家。出生于美国佛罗里达州;1933年获得约翰斯·霍普金斯大学博士学位后来到丹麦哥本哈根,在尼尔 斯·波尔指导下从事核物理研究;1937年惠勒提出了粒子相互作用的散射矩阵概念;1939年与尼尔斯·波尔、前 苏联的弗朗克尔一起提出了重原子核裂变的液滴模型理论;1957年与米斯纳开始发展“几何动力学”;1965年获 得爱因斯坦科学奖;1969年惠勒在纽约的一次会议上首次使用“黑洞”一词;1968年获得原子能委员会恩利 克·费米奖;1982年获得玻尔国际金质奖;1983年他提出了参与宇宙观点;1993年,获Matteucci Medal;1997 年获得沃尔夫奖;2008年4月13日,因患肺炎医治无效,在位于其新泽西的家中逝世,享年97岁。

原初核合成

原初核合成

弱电模型 E ~ 200 GeV Baryon number violation: quantum tunnelling C, CP violation departure from thermal equilibrium may not be able to generate the asymmetry needed non-thermal process
影响原初丰度的因素:
* 中子半衰期 n
* 早期宇宙膨胀:相对论粒子种类, 如 N
* 重子含量
* D, 3He, 7Li : 对η 敏感:用来测量 ΩB * 4He 对η 不敏感, 但对早期宇宙膨胀规律敏感

丰度测量
* D 的测量 D 的结合能很低 恒星形成过程燃烧 D --〉3He 及其它元素 测量到的 D 为原初 丰度下限
2. Open problems in cosmology P.J.E.Peebles
/PS_cache/astro-ph/pdf/0311/0311435.pdf
则有
3 (A 1 )/2
n A g A A 3 /2 2 A m 2 N T
n Z p n n A Ze x B T A p
定义 丰度 XA(mass fraction contributed by element A)
X An n A N A , n N n n n pi (AA )in
0 0
24 19
* 3He
3He 的Post-BBN 演化过程远比 D 复杂
hotter interiors: 3He is destroyed cooler outer layers: 3He is preserved low mass star : new 3He from hydrogen burning

从爱因斯坦到霍金的宇宙2019尔雅答案100分

从爱因斯坦到霍金的宇宙2019尔雅答案100分

物理学的起源1【单选题】Physics这个词最先是谁想出的?(B)A、柏拉图B、亚里士多德C、欧几里得D、阿基米德2【判断题】颐和园宝云阁的“物含妙理总堪寻”是由康熙题词。

(X)“物理”一词在中国1【单选题】谁认为“格物致知”中的“格”意思是“变革”?(D)A、朱熹B、王阳明C、王艮D、毛泽东2【判断题】王阳明强调人心,良知,冉伟革去外物,良知自存。

(对)物理学的诞生1【单选题】谁首先指出物理学是一门“实验的科学”、“测量的科学”?(B)A、阿基米德B、伽利略C、牛顿D、亚里士多德2【多选题】阿基米德的重要发现是(BC)。

A、自由落体定律B、浮力定律C、杠杆原理D、相对性原理3【多选题】下列哪些定律是伽利略首先确认的?(ACD)A、相对性原理B、杠杆原理C、自由落体定律D、惯性定律“1642年”在物理学上的意义1【多选题】牛顿的主要成就是(AB)。

A、力学三定律B、万有引力定律C、光的波动说D、能量守恒定律2【判断题】库伦从介质的弹性振动导出了电磁学的基本方程组。

(对)3【判断题】麦克斯韦从介质的弹性振动导出了电磁学的基本方程组。

(对) 热学的发展1【单选题】热力学的哪一条定律说"不能从单一热源吸热做功,而对外界不产生影响"?(B)A、第一定律B、第二定律C、第三定律D、第零定律2【判断题】开尔文提出不能从单一热源吸热做工而不产生其他影响。

对明朗天空的两朵乌云1【单选题】爱因斯坦提出下列理论中的哪一个,用以解释光电效应?(D)A、量子论B、光子说C、波动说D、光量子论2【判断题】瑞利—金斯曲线在短波波段与实验曲线完全符合,在长波波段变得无穷大。

X并非神童的爱因斯坦1【单选题】爱因斯坦在苏黎世工业大学上学期间,其物理教授是(A)。

A、韦伯B、卢瑟福C、玻尔D、狄拉克求职不顺的爱因斯坦1【判断题】爱因斯坦从苏黎世工业大学毕业后曾向著名的物理学家奥斯特瓦尔德求职。

对爱因斯坦的丰收年1【多选题】27岁那年,是爱因斯坦的丰收年,他做出了如下的创新工作(ABD)。

Passion for precision

Passion for precision

Nobel Lecture:Passion for precision*Theodor W.Hänsch†Max-Planck Institute of Quantum Optics,Garching,Germanyand Department of Physics,Ludwig-Maximilians University,Munich,Germany͑Published17November2006͒DOI:10.1103/RevModPhys.78.1297INTRODUCTIONIn our highly complex and ever changing world it is reassuring to know that certain physical quantities can be measured and predicted with very high precision. Precision measurements have always appealed to me as one of the most beautiful aspects of physics.With better measuring tools,one can look where no one has looked before.More than once,seemingly minute differences between measurement and theory have led to major ad-vances in fundamental knowledge.The birth of modern science itself is intimately linked to the art of accurate measurements.Since Galileo Galilei and Christiaan Huygens in-vented the pendulum clock,time and frequency have been the quantities that we can measure with the highest precision.Today,it is often a good strategy to transform other quantities such as length or voltage into a fre-quency in order to make accurate measurement.This is what my friend and mentor Arthur Schawlow at Stan-ford University had in mind when he advised his stu-dents:“Never measure anything but frequency!”Mea-suring a frequency,that is,counting the number of cycles during a given time interval,is intrinsically a digital pro-cedure that is immune to many sources of noise.Elec-tronic counters that work up to microwave frequencies have long been available.In1967,the Conference Gen-erale des Poids et Mesures͑CGPM͒has defined the sec-ond,our unit of time,as the period during which a cesium-133atom oscillates9192631770times on a hy-perfine clock transition in the atomic ground state.To-day,after50years of continuous refinement,microwave cesium atomic clocks reach a precision of15decimal digits͑Audoin and Bernard,2001͒.Even much higher precision is expected from future optical atomic clocks which use atoms or ions oscillating at the frequency of light as the“pendulum.”By slicing time into a hundred thousand timesfiner intervals,such clocks will greatly extend the frontiers of time and fre-quency metrology.The long missing clockwork mecha-nism can now be realized with a femtosecond laser fre-quency comb,an ultraprecise measuring tool that can link and compare optical frequencies and microwavefrequencies phase coherently in a single ser fre-quency combs provide powerful tools for new tests offundamental physics laws.Precise comparisons of opti-cal resonance frequencies of atomic hydrogen and otheratoms with the microwave frequency of a cesium atomicclock are already establishing sensitive limits for pos-sible slow variations of fundamental constants.Opticalhigh harmonic generation is extending frequency combtechniques into the extreme ultraviolet,opening a newspectral territory to precision laser spectroscopy.Fre-quency comb techniques are also providing a key to at-tosecond science by offering control of the electricfieldof ultrafast laser pulses.Femtosecond laser frequency combs have been high-lighted in the citation for the2005Nobel Prize in Phys-ics.Although perfected only about seven years ago,theyhave already become standard tools for precision spec-troscopy and optical frequency metrology in laborato-ries around the mercial instruments havequickly moved to the market,and extensive review ar-ticles and books have been written on frequency combtechniques͑Udem et al.,2002;Hannaford,2005;Ye andCundiff,2005͒.In this lecture I will try to give my per-sonal perspective on the evolution of these intriguingmeasuring tools for time and frequency.Far from at-tempting a comprehensive review,I have selected refer-ences that helped guide my own insights along a windingpath.THE DAWN OF DOPPLER-FREE LASER SPECTROSCOPY High-resolution laser spectroscopy and precise spec-troscopic measurements have appealed to me since Iwas a graduate student at the University of Heidelberg.For my diploma and thesis research I worked withhelium-neon gas lasers in the group of Peter Toschek atthe Institute of Applied Physics,headed by ChristophSchmelzer.I was intrigued by the central narrow Lambdip that Abraham Szöke and Ali Javan hadfirst ob-served while scanning the frequency of a single-modegas laser across the Doppler-broadened gain profile ͑Szöke and Javan,1963͒.Such a dip had been predicted by Willis Lamb in his semiclassical laser theory͑Lamb,1964͒.Bill Bennett was thefirst to give a simple expla-nation in terms of saturation and spectral hole burningthe two counterpropagating waves inside the standingwave laser cavity͑Bennett,1962͒.Other researchers*The2005Nobel Prize for Physics was shared by Roy J.Glauber,John L.Hall,and Theodor W.Hänsch.This lecture isthe text of Dr.Hänsch’s address on the occasion of the award.†Electronic address:t.w.haensch@physik.uni-muenchen.deREVIEWS OF MODERN PHYSICS,VOLUME78,OCTOBER–DECEMBER20060034-6861/2006/78͑4͒/1297͑13͒©The Nobel Foundation,20051297such as John Hall,Veniamin Chebotaev,or Christian Bordésoon explored“inverted Lamb dips”by placing some absorbing molecular gas inside the laser cavity ͑Letokhov and Chebotaev,1977͒.With resonances ofunprecedented spectral resolution,one could almost smell the revolution in laser spectroscopy that would un-fold within the next few years.At that time,however, such Doppler-free spectroscopy remained limited to the study of gas laser transitions or of a few molecular ab-sorption lines in accidental coincidence.In my own work with Peter Toschek,I studied quantum interference ef-fects in coupled atomic three-level systems͑Hänsch et al.,1969;Hänsch and Toschek,1970͒,demonstrating phenomena that have recently been recognized as im-portant,such as lasing without inversion or electromag-netically induced transparency.They are also essential to understand slow light.In1970,I joined Arthur L.Schawlow at Stanford Uni-versity as a post-doc.Collaborating in separate experi-ments with Peter Smith,then at Berkeley͑Smith and Hänsch,1971͒,and with Marc Levenson at Stanford ͑Hänsch,Levenson,et al.,1971͒,I perfected a new method of Doppler-free saturation spectroscopy that did not require the sample to be placed inside a laser cavity. Soon afterwards,I succeeded in making a nitrogen-laser-pumped widely tunable pulsed dye laser so highly mono-chromatic that we could apply Doppler-free saturation spectroscopy to arbitrarily chosen atomic resonance lines͑Hänsch,Shahin,et al.,1971;Hänsch,1972͒. Broadly tunable laser action in liquid solutions of or-ganic dyes had been discovered in1966independently by Fritz Schäfer͑Schäfer et al.1966͒and Peter Sorokin ͑Sorokin and Lankard,1966͒.LASER SPECTROSCOPY OF ATOMIC HYDROGEN Arthur Schawlow at Stanford suggested to apply our technique to the red Balmer-␣line of atomic hydrogen that had been at the center of attention of atomic spec-troscopists in the1930s because of suspected discrepan-cies between the observed line profile and the predic-tions of Dirac’s relativistic quantum theory͑Series,1957͒In those days,spectroscopists could only observe a blend of unresolvedfine-structure components because Dop-pler broadening is particularly large for the light hydro-gen atoms.Spectroscopy of the simple hydrogen atom has long played a central role in the history of atomic physics.The visible Balmer spectrum was the Rosetta stone that allowed us to decipher the laws of quantum physics.It has inspired the groundbreaking discoveries of Niels Bohr,Arnold Sommerfeld,Louis De Broglie, Erwin Schrödinger,Paul Dirac,and even Willis Lamb at the origin of modern quantum electrodynamics.In1972,graduate student Issa Shahin and I were proud to present to Arthur Schawlow a Doppler-free saturation spectrum of the red hydrogen Balmer-␣line, recorded with our pulsed tunable dye laser͑Hänsch et al.,1972͒.The2S Lamb shift,that is,the splitting be-tween the2S1/2and2P1/2states that should be degener-ate according to the Dirac theory,appeared clearly re-solved in the optical spectrum.This was the beginning ofa long adventure in precision spectroscopy of the simplehydrogen atom,which permits unique confrontationsbetween experiment and theory.This quest continues to-day.It has inspired many advances in spectroscopic tech-niques,including thefirst proposal for laser cooling ofatomic gases͑Hänsch and Schawlow,1975͒,and,mostrecently,the femtosecond laser frequency comb.Figure1illustrates how the accuracy of optical spec-troscopy of atomic hydrogen has advanced over time ͑Karshenboim et al.,2001͒.Classical spectroscopists re-mained limited to about six or seven digits of s precisionby the large Doppler broadening of hydrogen spectrallines.In1971,our group at Stanford overcame this bar-rier by nonlinear spectroscopy with a tunable dye laser.Other groups,notably in New Haven,Oxford,and Paris,soon joined in to improve the accuracy by three ordersof magnitude over the next two decades.Around1990,anew barrier appeared:the limits of optical wavelengthmetrology due to unavoidable geometric wave front er-rors.Progress beyond a few parts in1010has been achieved only because we have learned increasingly well how to measure the frequency of light rather than its wavelength.In2003,the accuracy has reached1.4parts in1014͑Fischer et al.,2004͒.Further progress is becom-ing difficult,because we are again approaching a barrier: the limits of how well we know our unit of time,the FIG.1.͑Color͒The relative accuracy in optical spectroscopy of atomic hydrogen is charted over eight decades.Major bar-riers have been overcome in the early1970s with the advent of Doppler-free laser spectroscopy and in the early1990s with the introduction of optical frequency measurements.The accuracy of such measurement will soon be limited by the performance of cesium atomic clocks.Dramatic future advances are ex-pected from the development of optical atomic clocks.1298Theodor W.Hänsch:Nobel lecture:passion for precision Rev.Mod.Phys.,V ol.78,No.4,October–December2006second.Cesium atomic clocks have been continually re-fined over the past50years͑Audoin and Bernard,2001͒, as shown by the dashed line in Fig.1,but the potential for further improvements seems almost exhausted. However,our optical frequency-counting techniques make it now feasible to develop optical atomic clocks, based on sharp optical resonances in laser-cooled trapped ions,neutral atoms,or molecules.With such clocks future spectroscopic measurements may reach ac-curacies of parts in1018and beyond.In atomic hydrogen,the highest resolution can be achieved on the ultraviolet1S-2S two-photon resonance with a natural linewidth of only1Hz.First-order Dop-pler shifts cancel if this transition is excited with two counterpropagating laser waves,as wasfirst pointed out by Veniamin Chebotaev͑Baklanov and Chebotaev, 1974͒.Thefirst Doppler-free spectra were recorded in, our laboratory at Stanford in1975͑Hänsch et al.,1975͒. At Garching,we observed this resonance by collinear excitation of a cold hydrogen atomic beam͑Fischer et al.,2004͒.Starting in1986,many generations of graduate students and post-docs have made important contribu-tions to advance the state of the art.Today,the hydrogen atoms are produced by micro-wave dissociation of molecules and cooled to a tempera-ture of about6K by collisions with the walls of a nozzle mounted to a helium cryostat.A collinear standing wave field at243nm for Doppler-free two-photon excitation is produced by coupling the frequency-doubled output of a dye laser into a buildup cavity inside the vacuum chamber.Atoms excited to the2S metastable state,after traveling along a path of about10cm,are detected by applying a quenching electricfield and counting the emitted vacuum ultraviolet Lyman-␣photons.The laser light is periodically blocked by a chopper,and the pho-ton counts are sorted into bins corresponding to differ-ent delay times.With slow atoms selected by a delay time of1.3ms,the linewidth is now reduced to about 530Hz at243nm corresponding to a resolution of4.3 parts in1013.We would have to reach an accuracy of5 parts in1015in order to measure the line position to1% of this width.MEASURING OPTICAL FREQUENCIESThe observation of sharp optical resonances by non-linear laser spectroscopy with a resolution much beyond the measurement limits of wavelength interferometry had long created a strong need for methods to measure the frequency rather than the wavelength of light.The quest for an optical frequency counter is almost as old as the laser itself.Ali Javan,the coinventor of the helium-neon laser,was thefirst to superimpose the beams from two different lasers with a beam splitter on a photode-tector to observe a beat note,similar to the interference of the sound waves from two tuning forks͑Javan et al., 1962͒.This was an extraordinary result,because it proved that laser waves can behave like classical radio waves.A coherent laser wave can have a well-defined phase and amplitude,so that it must be possible to count the ripples of such a light wave.However,at a frequency near500000billion oscillations per second,there are no electronic detectors and circuits fast enough to build an optical frequency counter.At MIT in the early1960s,Ali Javan started a re-search project,aimed at extending microwave frequency-counting techniques into the optical spectral region.He experimented with whiskerlike metal-insulator-metal point contacts as antennas,detectors, and mixers for infrared laser waves.Such elements were later used by John Hall and Ken Evenson at NBS͑now NIST͒in Boulder to realize thefirst harmonic laser fre-quency chain,which was used to determine the speed of light by measuring both the wavelength and the fre-quency of a methane-stabilized3.39m helium-neon gas laser͑Evenson et al.,1972͒.Harmonic laser frequency chains were highly complex systems,engineered to mea-sure just one particular optical frequency,and only a handful of these chains have ever been constructed at a number of well-equipped national metrology laborato-ries.In the early1980s,a chain at NBS in Boulder was perfected so that it could measure the frequencies of some iodine-stabilized visible helium-neon lasers to10 decimal digits.This demonstration led the Conference Generate des Poids et Mesures in1983to redefine the meter by defining the speed of light in vacuum c as ex-actly299792458meters per second.One meter is then the distance traveled by light during the time of 1/299792458seconds.From now on,one could deter-mine the precise wavelength of a laser in vacuum,l,by simply measuring the frequency f,since f␭=c. Unfortunately,the complex NBS frequency chain had to be abandoned soon after this definition was in the books,and for the next decade there was not a single laboratory in the U.S.that could have followed this pre-scription.A number of European laboratories did bet-ter,notably the Observatoire in Paris͑now BNM SYRTE͒and the Physikalisch-Technische Bundesan-stalt͑PTB͒in Braunschweig.In an article published in early1996͑Schnatz et al.,1996͒,a team from the PTB laid claim to thefirst phase-coherent frequency mea-surement of visible radiation.An elaborate frequency chain,filling three large laboratories spread over two separate buildings,was assembled to compare the fre-quency of the red intercombination line of atomic cal-cium with the microwave frequency of a cesium atomic clock.To reach sufficient phase stability,the clock fre-quency wasfirst reduced to the100MHz of a stable quartz oscillator.From here,the chain traversed the en-tire electromagnetic spectrum in discrete steps,always generating some harmonic frequency in a suitable non-linear element and producing enough power for the next step with a phase-locked transfer oscillator.A tricky puzzle had to be solved to reach the desiredfinal fre-quency with the help of several auxiliary oscillators.It was obvious that we could not afford to assemble such a harmonic laser frequency chain for our hydrogen experiments at Garching.As a simpler alternative,I pro-posed a frequency interval divider chain in1988that1299Theodor W.Hänsch:Nobel lecture:passion for precision Rev.Mod.Phys.,V ol.78,No.4,October–December2006worked with frequency differences rather than the fre-quencies themselves so that one could stay in a conve-nient region of the electromagnetic spectrum such as the near-infrared where compact diode laser sources are available͑Hänsch,1989͒.The basic building block is an interval divider stage with a laser that is servo-controlled to oscillate at the precise midpoint of two input frequen-cies.To this end,the second harmonic frequency of the central laser is compared to the sum of the two input frequencies,as generated in a nonlinear optical crystal. With a cascaded chain of n such interval dividers,a large frequency interval can be divided by2n.To measure an absolute laser frequency f,one could start with the in-terval between f and its second harmonic2f,which is just equal to the frequency f.After repeatedly cutting this interval in half with perhaps15stages,the remain-ing frequency gap is small enough that it can be ob-served as a beat note with a fast photodetector and mea-sured with a microwave frequency counter.With HaraldTelle,who had joined us from the PTB,and Dieter Me-schede,we demonstrated thefirst working interval di-vider in1990͑Telle et al.,1990͒.We never assembled a complete optical frequency counter,but we constructed a chain of four interval di-viders to measure a frequency interval of1THz that we encountered when comparing our hydrogen1S-2S fre-quency with the infrared frequency of a methane-stabilized infrared helium-neon laser at3.39mm as the starting point of our own short harmonic laser frequency chain͑Udem et al.,1997͒.This intermediate frequency reference had to be repeatedly shuttled to Braunschweig to be calibrated with the PTB frequency chain against a cesium clock.In1997,we established a new record in optical frequency metrology͑Udem et al.,1997͒by de-termining the ultraviolet1S-2S frequency to within3.7 parts in1013.From this and other spectroscopic mea-surement in hydrogen,we were able to derive a new value of the Rydberg constant,the scaling factor for any spectroscopic transition,and the most precisely known of the fundamental constants.We could also derive the Lamb shift of the1S ground state accurately enough to provide a stringent new test of bound-state quantum electrodynamics.Assuming that QED is correct we could also determine new values for the root-mean-square charge radius of the proton and the structure ra-dius of the deuteron͑Udem et al.,1997;Huber et al., 1998͒.We were rather proud that the accuracy achieved with our table-top experiments exceeded that of elec-tron scattering experiments with large accelerators by an order of magnitude.Soon,a number of metrology laboratories set out to build optical frequency counters based on optical inter-val division.At Garching,we were also experimenting with electro-optic frequency comb generators kindly provided by Motonobu Kourogi,which could produce an evenly spaced comb of modulation sidebands extend-ing over several THz͑Kourogi et al.,1993͒.A frequency counter could have been realized with only six or seven interval divider stages,if thefinal frequency gap was bridged with such an electro-optic comb generator.Dur-ing an extended visit to Garching,Motonobu Kourogi showed us how to observe even feeble comb lines by heterodyne detection,improving the signal-to-noise ra-tio with optical balanced receivers and variable beam splitters.We soon verified the accuracy of this frequency comb generator and our frequency interval divider chain in a direct comparison͑Udem et al.,1998͒.Many other alternatives have been explored in the long quest for precise optical frequency measurements, including interferometry with modulated laser waves ͑Bay et al.,1972;DeVoe et al.,1988͒or frequency divi-sion with phase-locked optical parametric oscillators ͑Wong,1992͒.David Wineland has proposed to synchro-nize the cyclotron motion of a single electron to a laser wave͑Wineland,1979͒.ln the meantime all these ap-proaches have become obsolete.Since1998,optical fre-quency measurements have been enormously simplified with the advent of femtosecond laser optical frequency comb synthesizers͑Fig.2͒͑Udem et al.,2002;Ye and Cundiff,2005͒.FEMTOSECOND LASER OPTICAL FREQUENCY COMBS The scheme of a frequency comb synthesizer is rather simple,as illustrated in Fig.2.At the heart is a single mode-locked femtosecond laser that maintains a soliton-like short pulse circulating inside the optical cavity.This laser can be compared to Einstein’s gedanken light clock.With each round trip,an attenuated copy of the light pulse escapes so that the laser emits a regular train of ultrashort pulses.To measure the unknown frequency of a laser wave,the beam and the pulse train are super-imposed with a beam splitter,and a photodetector reg-isters an interference signal.In the idealized case of a perfectly periodic pulse train,we would expect a low-frequency beat note whenever the laser frequency comes close to a value where an integer number of os-cillationsfits in the time interval between two pulses.To give an example,if we know that the laser emitspre-FIG.2.͑Color͒Scheme of femtosecond laser frequency comb synthesizer.1300Theodor W.Hänsch:Nobel lecture:passion for precision Rev.Mod.Phys.,V ol.78,No.4,October–December2006cisely one billion pulses per second and if we can be sure that the laser wave oscillates precisely500000times dur-ing the pulse repetition period,then we know that the optical frequency must be500000billion cycles per sec-ond.In the frequency domain,we can argue that the coupled longitudinal modes of the pulsed laser form an evenly spaced comb of spectral lines.A low-frequency beat note is expected whenever the unknown laser fre-quency approaches one of these comb lines.The origin of the comb spectrum is well explained by Antony E. Siegman in his classic textbook͑Siegmann,1986͒.Con-sider an arbitrary optical waveform circulating inside an optical cavity.During each round trip,an attenuated copy escapes through a partly transmitting mirror.A single copy will have a broad and more or less compli-cated spectrum.However,two identical copies end to end will produce interference fringes in the spectrum, somewhat reminiscent of Young’s double-slit experi-ment.Three copies produce a spectrum that resembles the interference pattern of a triple slit,and an infinite series of copies produces sharp lines that can be identi-fied with the modes of the cavity.Mathematically,an ideal periodic pulse train can be described in terms of a Fourier series,and the comb lines correspond to the el-ements of this series.The separation between two modes or comb lines is just equal to the repetition frequency f r.This remains true even if the pulses are not identical replicas but if we allow for a͑reproducible͒slip of the phase of the elec-tromagnetic“carrier”wave relative to the pulse enve-lope from pulse to pulse͑Eckstein,1978;Udem et al., 2002;Ye and Cundiff,2005͒.Such phase slips are un-avoidable in a real laser because of dispersion in the cavity.The entire comb will then be shifted relative to the integer harmonics of the repetition frequency f r by a carrier-envelope offset frequency f CE,which equals the net phase slip modulo2␲per pulse interval.The fre-quency of a comb line with integer mode number m is then given byf m=mf r+f CE.Such a comb acts like a ruler in frequency space that can be used to measure a large separation between two different optical frequencies in terms of the pulse repeti-tion rate f r.If these two frequencies are known multiples or fractions of the same laser frequency f,such a mea-surement reveals the optical frequency f r itself.With a known repetition frequency f r,the beat signal between a known optical frequency f and the nearest comb line reveals the previously unknown offset frequency f CE. The frequency of any comb line can be calculated from the two radio frequencies f r,and f CE together with the integer mode number.It has been surprising to most experts how far this frequency comb approach can be pushed.The frequency spectrum of a femtosecond laser oscillator can be broad-ened in a nonlinear optical medium to span more than an optical octave without destroying the integrity of the comb lines.In a now common implementation,the pulse train from a Kerr-lens mode-locked Ti:sapphire laser is sent through a microstructured silicafiber,with a small solidfiber core surrounded by air-filled holes͑Birks et al.,1995;Ranka et al.,2000͒.The large change in refrac-tive index at the silica-air interface permits guiding by total internal reflection even if the incoming beam is tightly focused to a high intensity.Since part of the light travels as an evanescent wave in air,an additional engi-neering parameter is available in such afiber to reduce the spreading of an injected pulse due to group velocity dispersion.Inside thefiber,the pulse spectrum is broad-ened by self-phase modulation due to the intensity-dependent refractive index,soliton splitting,shock wave formation,and other nonlinear optical processes.The emerging white light can be dispersed with a grating to form a rainbow of colors.However,this is not ordinary white light.Remarkably,the processes generating the white light can be so highly reproducible that successive pulses are still correlated in their phases and can inter-fere in the spectrum to form a comb of several hundred thousand sharp spectral lines.By now,it has been confirmed in many experiments that the line spacing is very precisely equal to the rep-etition frequency f r.With a comb spanning more than an octave,it is particularly simple to measure the carrier-envelope offset frequency f CE.One can simply select a few thousand comb lines from the red end of the spec-trum and send the light pulses through a frequency-doubling crystal,so that new comb lines are generated that are now displaced by twice the offset frequency f CE.A collective beat note with the corresponding original comb lines near the blue end of the spectrum directly reveals the shift f CE.Once this frequency can be mea-sured,it can be controlled,for instance,by adjusting the dispersion in the laser cavity or simply by changing the pump power.One can even set f CE to zero so that the frequencies of the comb lines become precise integer multiples of the laser repetition frequency f r.So far,we have treated all light waves as classical elec-tromagnetic waves.The quantum optical aspects of fre-quency combs,that is,expected correlations in the noise due to photons and their entanglement,have not yet been explored.Such studies may lead to a rich newfield of research.A laser frequency comb provides a direct link be-tween optical frequencies and microwave frequencies. This link can be used in either direction.We can mea-sure or control the repetition frequency f r,with a cesium atomic clock to synthesize several hundred thousand sharp optical reference frequencies which are precisely known in terms of the primary standard of time.Any unknown frequency can then be determined byfirst making a wavelength measurement with a conventional wave meter that is sufficiently accurate to determine the integer order number m of the nearest comb line.The precise distance from this reference line is then mea-sured by feeding a beat signal to a microwave counter. In the reverse direction,we can start with a sharp optical reference line in some cold trapped ion,cold atoms,or1301Theodor W.Hänsch:Nobel lecture:passion for precision Rev.Mod.Phys.,V ol.78,No.4,October–December2006。

“捕获”中微子

中微子热席卷全球。

即便你不知道它是什么,可能也听说过沸沸扬扬的“中微子超光速”事件。

中微子真的跑得比光快?爱因斯坦错了吗?“极客”们借此创造了很多关于中微子的笑话,比如,中微子说:“我回头看见上帝说:‘要有光。

’”中微子在中国也火了一把。

3月15日,中国科学院高能物理研究所研究员邢志忠打算做一场名为“大亚湾实验结果的唯象学后果”的理论报告。

结果让他惊讶,慕名而至的科研人员和科学爱好者将教室挤得水泄不通,报告主持人、大亚湾中微子实验项目副经理曹俊研究员不得不将地点换到最大的一间阶梯会议室。

这在曹俊刚从美国费米实验室回国的2003年是难以想象的。

“高能物理研究基本以10年作为一个周期,从实验设想到建造设备到实验出结果。

2002年诺贝尔物理学奖颁给发现宇宙中微子的科学家之后,越来越多的人意识到这个领域很有意思。

10年过去了,该出结果了。

”“过去粒子物理研究主要集中在加速器上,如今加速器研究除了大型强子对撞机(lhc)之外已经告一段落,而中微子探测的技术进步了,成为一个热门领域。

”中科院理论物理研究所研究员李淼说。

不过,物理学家眼中的重大成就,对普通人而言不啻为天书。

邢志忠说一个精彩的报告,应该让1/3的内容能被公众听懂,1/3专家能听懂,1/3谁也听不懂。

“高能物理就是这样,有太多谁也不懂的东西。

一旦你能理解,就会觉得非常有意思。

”他在报告会上打出一张自己绘制的“粒子物理学28个基本参数参考图”,这图就像是一个靶标,参数有的靠内环,有的靠外环,而他们发现的θ13处于靠近靶心的内环。

“这就是大亚湾结果的重要性,我们在高能物理的历史上留下了足迹。

”至于介绍θ13数值究竟是多少时,他打趣道:“大亚湾实验测得的θ13的中心值和误差,恰好是8.8度加减0.8度,就是‘三八’啊!在‘三八节’公布这个消息,刚好祝广大女性节日快乐!”寻找“幽灵粒子”要想理解这项轰动国内外物理学界的事情,还要从中微子是什么说起。

20世纪30年代早期,英国物理学家艾里斯(c.d.ellis)仔细测量了放射性核衰变放射出的电子的速度。

新教材鲁科版高中物理选择性必修第三册第4章原子结构知识点考点重点难点提炼汇总

第4章原子结构第1节电子的发现与汤姆孙原子模型...................................................................... - 1 -第2节原子的核式结构模型...................................................................................... - 5 -第3节光谱与氢原子光谱.......................................................................................... - 9 -第4节玻尔原子模型................................................................................................ - 13 - 第1节电子的发现与汤姆孙原子模型一、物质结构的早期探究1.古人对物质的认识(1)我国西周的“五行说”认为万物是由金、木、水、火、土五种基本“元素”组成的.(2)古希腊的亚里士多德认为万物的本质是土、水、火、空气四种“元素”,天体则由第五种“元素”——“以太”构成.(3)古希腊哲学家德谟克利特等人建立了早期的原子论,认为宇宙间存在一种或多种微小的实体,叫作“原子”.2.通过实验了解物质的结构(1)1661年,玻意耳以化学实验为基础建立了科学的元素论.(2)19世纪初,道尔顿提出了原子论,认为原子是元素的最小单位.(3)1811年,意大利化学家阿伏伽德罗提出了分子假说,指出分子可以由多个相同的原子组成.3.19世纪初期形成的分子—原子论认为,在物质的结构中存在着分子、原子这样的层次,宏观物质的化学性质决定于分子,而分子则由原子组成.原子是构成物质的不可再分割的最小颗粒,它既不能创生,也不能消灭.二、电子的发现及汤姆孙模型1.阴极射线:科学家在研究稀薄气体放电时发现,当玻璃管内的气体足够稀薄时,阴极发出一种射线,这种射线能使玻璃管壁发出荧光,这种射线称为阴极射线.2.汤姆孙对阴极射线本质的探究(1)通过实验:巧妙利用静电偏转力和磁场偏转力相抵消等方法,确定了阴极射线粒子的速度,并测量出了粒子的比荷.(2)换用不同材料的阴极和不同的气体,所得粒子的比荷相同,这说明不同物质都能发射这种带电粒子,它是各种物质中共有的成分.3.结论(2)不同物质都能发射这种带电粒子,它是各种物质中共有的成分,比最轻的氢原子的质量还要小得多,汤姆孙将这种带电粒子称为电子.(3)电子的发现说明原子具有一定的结构,即原子是由电子和其他物质组成的.4.电子发现的意义:电子的发现揭开了认识原子结构的序幕.5.19世纪末微观世界三大发现(1)1895年伦琴发现了X射线.(2)X射线发现后不久,贝可勒尔发现了放射性.(3)1897年汤姆孙发现了电子.6.汤姆孙的原子模型原子带正电的部分充斥整个原子,很小很轻的电子镶嵌在球体的某些固定位置,正像葡萄干嵌在面包中那样.阴极射线的研究如图所示,在阴极和阳极之间加上高电压,可看到阴极射线从阴极射线管中的阴极发出,射向阳极.(1)怎样判定阴极射线是不是电磁辐射?(2)根据带电粒子在电、磁场中的运动规律,哪些方法可以判断运动的带电粒子所带电荷的正负?提示:(1)电磁辐射是电磁波的辐射,若使阴极射线通过电场或磁场,看传播方向是否受其影响则可判定是不是电磁辐射.(2)带电粒子垂直进入匀强电场时,正负电荷的偏转方向不同,偏转方向与场强方向相同(相反)的粒子带正(负)电,不带电者不偏转.带电粒子垂直进入匀强磁场时,做匀速圆周运动,所受的洛伦兹力提供向心力,根据左手定则可知其电性.(1)现象:真空玻璃管两极加上高电压,可看到玻璃管壁上发出荧光及管中物体在玻璃壁上的影.(2)命名:德国物理学家戈德斯坦将阴极发出的射线命名为阴极射线.(3)猜想②阴极射线是带电微粒.(4)验证:英国物理学家汤姆孙让阴极射线在电场和磁场中偏转,发现阴极射线带负电并测出了粒子的比荷,进而发现电子.(5)实验:密立根通过“油滴实验”精确测定了电子的电荷量和电子的质量. 2.电子比荷的测定方法(1)让带电粒子通过相互垂直的电场和磁场(如图甲),让其做匀速直线运动,根据二力平衡,即F 洛=F 电(Bqv =qE ),得到粒子的运动速度v =E B.甲 乙(2)撤去电场(如图乙),保留磁场,让粒子单纯地在磁场中运动,由洛伦兹力提供向心力,即Bqv =m v 2r,根据轨迹偏转情况,由几何知识求出其半径r .(3)由以上两式确定粒子的比荷表达式:q m =EB 2r. 【例1】 汤姆孙用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图所示.真空管内的阴极K 发出的电子(不计初速度、重力和电子间的相互作用)经加速电压加速后,穿过小孔C 沿中心轴O 1O 的方向进入到两块水平正对放置的平行极板P 和P ′间的区域内.当极板间不加偏转电压时,电子束打在荧光屏的中心O 点处,形成了一个亮点;加上偏转电压U 后,亮点偏离到O ′点(O ′点与O 点的竖直间距为d ,水平间距可忽略不计).此时,在P 和P ′间的区域内,再加上一个方向垂直于纸面向里的匀强磁场.调节磁场的强弱,当磁感应强度的大小为B 时,亮点重新回到O 点.已知极板水平方向的长度为l 1,极板间距为b ,极板右端到荧光屏的距离为l 2.(1)求打在荧光屏O 点的电子速度的大小. (2)推导出电子的比荷的表达式.(3)上述实验中,未记录阴极K 与阳极A 之间的加速电压U 0,根据上述实验数据能否推导出U 0的表达式?说明理由.思路点拨:解此题两个关键:(1)电子在电场中做类平抛运动,在电磁场中做匀速直线运动,受到的电场力和洛伦兹力平衡.(2)仔细分析其物理过程写出比荷表达式.[解析] (1)当电子受到的电场力与洛伦兹力平衡时,电子做匀速直线运动,亮点重新回到中心O 点,设电子的速度为v ,则evB =eE ,得v =E B ,又E =U b ,得v =U Bb.(2)当极板间仅有偏转电场时,电子以速度v 进入后,在竖直方向做匀加速运动,加速度a =eU mb, 电子在水平方向做匀速运动,在电场内的运动时间t 1=l 1v, 电子在电场中运动,竖直向上偏转的距离d 1=12at 21=el 21U2mv 2b ,离开电场时竖直向上的分速度v ⊥=at 1=el 1Umvb, 电子离开电场后做匀速直线运动,经t 2时间到达荧光屏,则t 2=l 2v,t 2时间内向上运动的距离d 2=v ⊥t 2=eUl 1l 2mv 2b,电子向上的总偏转距离d =d 1+d 2=eU mv 2b (l 1l 2+l 12) 可解得e m =2UdB 2bl 1l 1+2l 2. (3)能.由动能定理可得eU 0=12mv 2-0,已知v 和em 的表达式,可推导出U 0的表达式.[答案] (1)UBb(2)2Ud B 2bl 1l 1+2l 2(3)见解析分析阴极射线的两点注意(1)阴极射线的本质是高速电子流,在电磁场中运动时,所受电场力与洛伦兹力远大于所受重力,故研究电磁力对电子运动的影响时,一般不考虑重力的影响.(2)应用左手定则时,要注意负电荷运动的方向与它形成的电流方向相反,即应用左手定则时负电荷运动的方向应与四指所指的方向相反.汤姆孙原子结构模型电子是原子的一个组成部分,电子带负电,且质量很小,远小于原子的质量.但原子呈电中性,原子内还有带正电的具有大部分原子质量的部分,这部分物质是什么?与电子是怎么分布在原子中的?提示:原子核;原子核在原子中心,电子绕核旋转.带负电的电子,而原子通常是电中性的,那么原子中一定含有带正电的部分.电子的质量很小,因此,原子的质量主要集中在带正电的部分,原子中带正电的部分和带负电的电子是怎样分布的呢?2.汤姆孙原子模型的特点:汤姆孙认为原子是一个直径约为10-10 m的球体,正电荷均匀分布在整个球体中,带负电的电子镶嵌在其中,就好像面包中嵌着一粒粒葡萄干一样.如图所示为汤姆孙原子模型的示意图.【例2】人们对原子结构的认识有一个不断深化的过程,下列先后顺序中符合史实的是( )①道尔顿提出的原子论②德谟克利特的古典原子论③汤姆孙提出的“葡萄干面包”原子模型A.①②③B.②①③C.③②①D.③①②B[对于探索构成物质的最小微粒,古希腊哲学家德谟克利特建立了早期的原子论,19世纪初,道尔顿提出了原子论,汤姆孙发现电子后,提出了“葡萄干面包”模型,故选项B 正确.]第2节原子的核式结构模型一、α粒子散射实验1.实验目的α粒子通过金箔时,用这些已知的粒子与金属内的原子相互作用,根据粒子的偏转情况来获得原子内部的信息.2.实验方法用由放射源发射的α粒子束轰击金箔,利用荧光屏接收,探测通过金箔后的α粒子偏转情况.3.实验结果绝大多数α粒子穿过金箔后仍沿原来的方向前进,但是有少数α粒子发生了较大的偏转,有极少数α粒子偏转角超过了90°,有的甚至被原路弹回,α粒子被反射回来的概率竟然有18 000.二、卢瑟福原子结构模型1.核式结构模型(1)原子的内部有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核内,带负电的电子在核外绕核运动.(2)原子的核式结构模型又被称为行星模型.2.原子的大小(1)原子直径数量级:10-10 m.(2)原子核直径数量级:10-15 m.α粒子散射实验分析(1)如图所示为α粒子散射的实验装置.实验过程中,α粒子为什么会发生大角度散射?(2)由α粒子散射实验的结果为何可以说明原子核尺度很小,但几乎占有全部质量?提示:(1)α粒子受到原子核的库仑力.(2)绝大多数α粒子穿过金箔后仍沿原来方向前进,说明带正电荷部分很小,少数α粒子被“撞了回来”说明遇到了质量很大的部分.的目的是想验证汤姆孙原子模型的正确性,实验结果却成了否定汤姆孙原子模型的有力证据.在此基础上,卢瑟福提出了原子核式结构模型.2.否定汤姆孙的原子结构模型(1)质量远小于原子的电子,对α粒子的运动影响完全可以忽略,不应该发生大角度偏转.(2)α粒子在穿过原子时,受到各方向正电荷的斥力基本上会相互平衡,对α粒子运动方向的影响不会很大,也不应该发生大角度偏转.(3)α粒子的大角度偏转,否定汤姆孙的原子结构模型.3.大角度偏转的实验现象分析(1)由于电子质量远小于α粒子质量,所以电子不可能使α粒子发生大角度偏转.(2)使α粒子发生大角度偏转的只能是原子中带正电的部分.按照汤姆孙原子模型,正电荷在原子内是均匀分布的,α粒子穿过原子时,它受到的两侧斥力大部分抵消,因而也不可能使α粒子发生大角度偏转,更不能使α粒子反向弹回,这与α粒子散射实验相矛盾.(3)实验现象表明原子绝大部分是空的,原子的几乎全部质量和所有正电荷都集中在原子中心的一个很小的核上,否则,α粒子大角度散射是不可能的.【例1】如图所示为卢瑟福α粒子散射实验装置的示意图,图中的显微镜可在圆周轨道上转动,通过显微镜前相连的荧光屏可观察α粒子在各个角度的散射情况.下列说法中正确的是( )A.在图中的A、B两位置分别进行观察,相同时间内观察到屏上的闪光次数一样多B.在图中的B位置进行观察,屏上观察不到任何闪光C.卢瑟福选用不同金属箔片作为α粒子散射的靶,观察到的实验结果基本相似D.α粒子发生散射的主要原因是α粒子撞击到金原子核后产生反弹C[α粒子散射实验现象:绝大多数α粒子沿原方向前进,少数α粒子有大角度散射.所以A处观察到的α粒子多,B处观察到的α粒子少,所以选项A、B错误;α粒子发生散射的主要原因是受到金原子核库仑斥力的作用,所以选项D错误,C正确.]解决α粒子散射实验问题的技巧(1)熟记实验装置及原理.(2)核外电子不会使α粒子的速度发生明显改变.(3)汤姆孙的原子模型不能解释α粒子的大角度散射.(4)少数α粒子发生了大角度偏转,甚至反弹回来,表明这些α粒子在原子中的某个地方受到了质量、电荷量均比它本身大得多的物体的作用.(5)绝大多数α粒子在穿过厚厚的金原子层时运动方向没有明显变化,说明原子中绝大部分是空的,原子的质量、电荷量都集中在体积很小的核内.卢瑟福原子结构模型汤姆孙发现电子后建立了“葡萄干面包”模型,卢瑟福根据α粒子散射实验推翻了“葡萄干面包”模型,建立了核式结构模型.(1)卢瑟福的核式结构模型是最科学的吗?(2)如何理解原子内绝大部分是空的?提示:(1)卢瑟福的核式结构模型是比汤姆孙的“葡萄干面包”模型更科学的模型,但不是最科学的模型,随着人们认识水平的不断提高,原子结构模型也在不断更新.(2)原子核的半径数量级为10-15 m,原子的半径数量级为10-10 m,原子核的体积只相当于原子体积的10-5,故原子内部绝大部分是空的.汤姆孙原子模型卢瑟福原子模型卢瑟福的原子模型有些像太阳系,电子绕核运动就像太阳系的行星绕太阳运动一样,因此,卢瑟福的核式结构模型又被称为行星模型.2.两种原子模型的对比汤姆孙的葡萄干面包模型卢瑟福的原子核式模型分布情况正电荷和质量均匀分布,负电荷镶嵌在其中正电荷以及几乎全部质量集中在原子中心的一个极小核内,电子质量很小,分布在很大空间内受力情况α粒子在原子内部时,受到的库仑斥力相互抵消,几乎为零少数靠近原子核的α粒子受到的库仑力大,而大多数离核较远的α粒子受到的库仑力较小偏转情况不会发生大角度偏转,更不会弹回绝大多数α粒子运动方向不变,少数α粒子发生大角度偏转,极少数α粒子偏转角度超过90°,有的甚至被弹回分析结论不符合α粒子散射现象符合α粒子散射现象(1)原子内的电荷关系:原子核的电荷数与核外的电子数相等,非常接近它们的原子序数.(2)原子核的组成:原子核由质子和中子组成,原子核的电荷数等于原子核的质子数.(3)原子半径的数量级是10-10m ,原子核半径的数量级是10-15m ,两者相差十万倍之多.【例2】 (多选)根据α粒子散射实验,卢瑟福提出了原子的核式结构模型.如图所示为原子核式结构模型的α粒子散射图景,图中实线表示α粒子运动轨迹.其中一个α粒子在从a 运动到b ,再运动到c 的过程中,α粒子在b 点时距原子核最近.下列说法正确的是( )A .卢瑟福在α粒子散射实验中发现了电子B .α粒子出现较大角度偏转的原因是α粒子运动到b 时受到的库仑斥力较大C .α粒子从a 到c 的运动过程中电势能先减小后变大D .α粒子从a 到c 的运动过程中加速度先变大后变小BD [汤姆孙对阴极射线的探究使他发现了电子,A 错;α粒子出现较大角度偏转的原因是靠近原子核时受到较大的库仑斥力作用,B 对;α粒子从a 到c 受到的库仑力先增大后减小,加速度先变大后变小,电势能先增大后减小,C 错,D 对.]分析α粒子散射实验中的力电问题常用的规律(1)库仑定律:F =kq 1q 2r 2,用来分析α粒子和原子核间的相互作用力. (2)牛顿第二定律:该实验中α粒子只受库仑力,可根据库仑力的变化分析加速度的变化.(3)功能关系:根据库仑力做功,可分析动能的变化,也能分析电势能的变化. (4)原子核带正电,其周围的电场相当于正点电荷的电场,注意应用其电场线和等势面的特点.第3节 光谱与氢原子光谱一、光谱 1.定义用光栅或棱镜可以把各种颜色的光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱.2.分类(1)线状谱:由一条条的亮线组成的光谱. (2)连续谱:由连在一起的光带组成的光谱. 3.特征谱线各种原子的发射光谱都是线状谱,且不同原子的亮线位置不同,故这些亮线称为原子的特征谱线.4.光谱分析(1)定义:利用原子的特征谱线来鉴别物质和确定物质的组成成分. (2)优点:灵敏度高. 二、氢原子光谱 1.气体发光原理(1)气体放电:玻璃管中稀薄气体在强电场的作用下会电离,形成自由移动的正负电荷,于是气体变成导体,导电时会发光.(2)氢光谱:从氢气放电管可以获得氢原子光谱. 2.巴耳末公式(1)公式:1λ=R ⎝ ⎛⎭⎪⎫122-1n 2(n =3,4,5…).(2)意义:巴耳末公式以简洁的形式反映了氢原子的线状光谱,即辐射波长的分立特征.光谱和光谱分析早在17世纪,牛顿就发现了白光通过三棱镜后的色散现象,并把实验中得到的彩色光带叫作光谱,如图所示.研究光谱有哪方面的意义?提示:光是由原子内部电子的运动产生的,因此光谱研究是探索原子结构的重要途径.2.太阳光谱(1)太阳光谱的特点:在连续谱的背景上出现一些不连续的暗线,是一种吸收光谱.(2)对太阳光谱的解释:阳光中含有各种颜色的光,但当阳光透过太阳的高层大气射向地球时,太阳高层大气中含有的元素会吸收它自己特征谱线的光,然后再向四面八方发射出去,到达地球的这些谱线看起来就暗了,这就形成了连续谱背景下的暗线.3.光谱分析这种方法的优点是非常灵敏而且迅速.某种元素在物质中的含量达10-10克,就可以从光谱中发现它的特征谱线将其检查出来.光谱分析在科学技术中有广泛的应用:(1)检查物质的纯度.(2)鉴别和发现元素.(3)天文学上光谱的红移表明恒星的远离等.【例1】(多选)下列关于光谱和光谱分析的说法中,正确的是( )A.太阳光谱和白炽灯光谱都是线状谱B.煤气灯火焰中燃烧的钠蒸气或霓虹灯产生的光谱都是线状谱C.进行光谱分析时,可以用线状谱,不能用连续光谱D.我们能通过光谱分析鉴别月球的物质成分BC[太阳光谱中的暗线是太阳发出的连续光谱经过太阳大气层时产生的吸收光谱,正是太阳发出的光谱被太阳大气层中存在的对应元素吸收所致,白炽灯发出的是连续光谱,A错误;月球本身不会发光,靠反射太阳光才能使我们看到它,所以不能通过光谱分析鉴别月球的物质成分,D错误;光谱分析只能是线状谱和吸收光谱,连续光谱是不能用来做光谱分析的,C 正确;煤气灯火焰中燃烧的钠蒸气或霓虹灯都是稀薄气体发出的光,产生的光谱都是线状谱,B 正确.]光谱分析可以使用发射光谱中的线状谱,也可以使用吸收光谱,因它们都有原子自身的特征谱线,但不能使用连续光谱.氢原子光谱(1)巴耳末是依据核式结构理论总结出巴耳末公式的吗?(2)根据巴耳末公式可知氢原子发光的波长是分立值,它是人为规定的吗?提示:(1)不是.巴耳末公式是由当时已知的可见光中的部分谱线总结出来的,不是依据核式结构理论总结出来的.(2)不是.巴耳末公式准确反映了氢原子发光的实际波长,其波长的分立值并不是人为规定的.1.氢原子的光谱从氢气放电管可以获得氢原子光谱,如图所示.2.氢原子光谱的特点在氢原子光谱图中的可见光区内,由右向左,相邻谱线间的距离越来越小,表现出明显的规律性.3.巴耳末公式(1)巴耳末对氢原子光谱的谱线进行研究得到了下面的公式:1λ=R ⎝ ⎛⎭⎪⎫122-1n 2,n =3,4,5…该公式称为巴耳末公式.(2)公式中只能取n ≥3的整数,不能连续取值,波长是分立的值. 4.其他谱线除了巴耳末系,氢原子光谱在红外和紫外光区的其他谱线,也都满足与巴耳末公式类似的关系式.【例2】 根据巴耳末公式,指出氢原子光谱巴耳末线系的最长波长和最短波长所对应的n ,并计算其波长.[解析] 对应的n 越小,波长越长,故当n =3时,氢原子发光所对应的波长最长. 当n =3时,1λ1=1.10×107×⎝ ⎛⎭⎪⎫122-132m -1 解得λ1=6.55×10-7m .当n =∞时,波长最短,1λ=R ⎝ ⎛⎭⎪⎫122-1n 2=R ×14,λ=4R =41.1×107 m =3.64×10-7m .[答案] 当n =3时,波长最长为6.55×10-7m 当n =∞时,波长最短为3.64×10-7m巴耳末公式的应用方法及注意问题(1)巴耳末公式反映氢原子发光的规律特征,不能描述其他原子. (2)公式中n 只能取整数,不能连续取值,因此波长也是分立的值.(3)公式是在对可见光区的四条谱线分析时总结出的,在紫外区的谱线也适用. (4)应用时熟记公式,当n 取不同值时求出一一对应的波长λ.第4节 玻尔原子模型一、玻尔原子模型 1.玻尔原子模型(1)原子中的电子在库仑力的作用下,绕原子核做圆周运动. (2)电子绕核运动的轨道是量子化的.(3)电子在这些轨道上绕核的转动是稳定的,且不产生电磁辐射. 2.定态当电子在不同轨道上运动时,原子处于不同的状态,原子在不同的状态中具有不同的能量,即原子的能量是量子化的,这些量子化的能量值叫作能级,原子具有确定能量的稳定状态,称为定态.能量最低的状态叫作基态,其他的能量状态叫作激发态.3.跃迁当电子从能量较高的定态轨道(其能量记为E m )跃迁到能量较低的定态轨道(其能量记为E n ,m >n )时,会辐射能量为hν的光子,该光子的能量hν=E m -E n ,这个式子被称为频率条件,又称辐射条件.二、氢原子的能级结构1.能级:按照玻尔的原子理论,原子只能处于一系列不连续的能量状态.在每个状态中,原子的能量值都是确定的,各个确定的能量值叫作能级.2.氢原子在不同能级上的能量和相应的电子轨道半径为E n =E 1n2(n =1,2,3…);r n =n 2r 1(n =1,2,3…),式中E 1≈-13.6 eV ,r 1=0.53×10-10m .3.氢原子的能级结构图三、玻尔理论对氢光谱的解释、玻尔理论的局限性 1.玻尔理论对氢光谱的解释 (1)解释巴耳末公式①按照玻尔理论,从高能级跃迁到低能级时辐射的光子的能量为hν=E m -E n . ②巴耳末公式中的正整数n 和2正好代表能级跃迁之前和之后所处的定态轨道的量子数n 和2.并且理论上的计算和实验测量的里德伯常量符合得很好.(2)解释氢原子光谱的不连续性原子从较高能级向低能级跃迁时,辐射光子的能量等于前后两个能级差,由于原子的能级是分立的,所以放出的光子的能量也是分立的,因此原子的发射光谱只有一些分立的亮线.2.玻尔理论的局限性 (1)成功之处玻尔理论第一次将量子观念引入原子领域,提出了定态和跃迁的概念,成功解释了氢原子光谱的实验规律.(2)局限性保留了经典粒子的观念,把电子的运动仍然看作经典力学描述下的轨道运动. (3)电子云原子中的电子没有确定的坐标值,我们只能描述电子在某个位置出现概率的多少,把电子这种概率分布用疏密不同的点表示时,这种图像就像云雾一样分布在原子核周围,故称电子云.对玻尔原子模型的理解如图所示为分立轨道示意图.分立轨道示意图(1)电子的轨道有什么特点?(2)氢原子只有一个电子,电子在这些轨道间跃迁时伴随什么现象发生?提示:(1)电子的轨道是不连续的,是量子化的.(2)电子在轨道间跃迁时会吸收光子或放出光子.(1)轨道半径只能是一些不连续的、某些分立的数值.(2)轨道半径公式:r n =n 2r 1,式中n 称为量子数,对应不同的轨道,只能取正整数.氢原子的最小轨道半径r 1=0.53×10-10m .2.能量量子化(1)与轨道量子化对应的能量不连续的现象.(2)其能级公式:E n =E 1n2,式中n 称为量子数,对应不同的轨道,n 取值不同,基态取n =1,激发态n =2,3,4…;量子数n 越大,表示能级越高.对氢原子,以无穷远处为势能零点时,基态能量E 1=-13.6 eV .3.跃迁原子从一种定态(设能量为E m )跃迁到另一种定态(设能量为E n )时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定:所以,电子如果从一个轨道到另一个轨道,不是以螺旋线的形状改变其半径大小的,而是从一个轨道上“跳跃”到另一个轨道上,玻尔将这种现象称为跃迁.【例1】 氢原子辐射出一个光子后,根据玻尔理论,下述说法正确的是( )。

高中物理原子物理学史

高中物理原子物理学史
1.1897年,汤姆生利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型。

2.1909年——1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。

由实验结果估计原子核直径数量级为10 -15 m 。

3.1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核也有复杂的内部结构。

天然放射现象有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。

衰变的快慢(半衰期)与原子所处的物理和化学状态无关。

4.1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子。

预言原子核内还有另一种粒子,被其学生查德威克于1932年在α粒子轰击铍核时发现,由此人们认识到原子核由质子和中子组成。

5.1939年12月德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。

1942年在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。

6.1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。

人工控制核聚变的一个可能途径是利用强激光产生的高压照射小颗粒核燃料。

7.现代粒子物理:
1932年发现了正电子,1964年提出夸克模型;
粒子分为三大类:
媒介子,传递各种相互作用的粒子如光子;
轻子,不参与强相互作用的粒子如电子、中微子;
强子,参与强相互作用的粒子如质子、中子;强子由更基本的粒子夸克组成,夸克带电量可能为元电荷的1/3 或 2/3。

卢瑟福阿尔法粒子

卢瑟福阿尔法粒子波特兰大学的物理学家爱德华卢瑟福博士是费米定理的发现者,他于1955年在他的演讲中提出了一种新的粒子假说卢瑟福阿尔法粒子(简称LEP)。

这种假设很快受到了物理学家的广泛认可,并被运用到了宇宙学和粒子物理方面的研究中。

根据卢瑟福阿尔法粒子假说,宇宙中有两种基本粒子:电子和光子。

电子是带负电荷的粒子,保留在原子核周围,是形成化学反应的主要组成部分;而光子是电磁场中的粒子,在宇宙中传播,是宇宙中能量传输的重要物质。

卢瑟福阿尔法粒子假说认为,电子和光子在宇宙中都有重要作用。

电子是宇宙中组成原子的基本组成部分,所形成的原子有不同的性质,能够反映物质的各种属性;而光子则是宇宙中的能量载体,在宇宙的各个角落中传播着能量,是宇宙生命的重要来源。

当电子结合到原子核中或光子穿越宇宙时,都会发生有趣的现象。

由于卢瑟福阿尔法粒子假说的发现,宇宙物理学的发展受到了巨大的推动。

研究人员发现,由卢瑟福阿尔法粒子形成的原子可以组成元素,它们在宇宙中分布,形成了多样的物质,包括水、气体、岩石等。

另外,卢瑟福阿尔法粒子还可以组成宇宙中的多种大小的能量载体,如高能粒子流和空间射线。

卢瑟福阿尔法粒子假说不仅推动了物理学的发展,也影响了宇宙学。

宇宙学家根据卢瑟福阿尔法粒子假说进行了更为深入的研究,给出了宇宙的结构、演化及其形成过程的实质性解释。

另外,通过这种假说,宇宙物理学家们发现,宇宙中存在一种神秘的能量“暗能量”,它可能与宇宙的始源有关,目前仍在研究之中。

卢瑟福阿尔法粒子假说可以说是一项重要的发现,它的出现改变了人们对宇宙的理解,使宇宙学发展起来。

实际上,它还有助于理解这个宇宙中究竟发生了什么,以及它的特殊性,这一切都靠它来推动。

如今,在物理学和宇宙学的研究中,卢瑟福阿尔法粒子假说仍然是一个重要的主题,未来也会继续学习和开发这项理论。

综上,卢瑟福阿尔法粒子假说是一项重要的发现,它的出现改变了人们对宇宙的理解,为宇宙学的发展和研究起到了重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

arXiv:astro-ph/0103220v1 14 Mar 2001AtomicPhysicswiththeGoddardHighResolutionSpectrographontheHubbleSpaceTelescope.V.OscillatorStrengthsforNeutralCarbonLinesbelow1200˚A1

S.R.FedermanandJ.Zsarg´oDepartmentofPhysicsandAstronomy,UniversityofToledo,Toledo,OH43606

ABSTRACTWeanalyzedhighresolutionspectraofinterstellarCIabsorptiontowardλOri,1Sco,andδScothatwereobtainedwiththeGoddardHighResolutionSpectrographontheHubbleSpaceTelescope.Severalmultipletsweredetectedwithinthewavelengthinterval1150to1200˚A,wheremostCIlineshaveill-definedoscillatorstrength;multipletsatlongerwavelengthswithwell-definedatomicparameterswerealsoseen.WeextractedaccuratecolumndensitiesandDopplerparametersfromlineswithpreciselaboratory-basedf-values.Thesecolumndensitiesandb-valueswereusedtoobtainaself-consistentsetoff-valuesforalltheobservedCIlines.Formanyofthelineswithwavelengthbelow1200˚A,thederivedf-valuesdifferappreciablyfromthevaluesquotedinthecompilationbyMorton(1991).Thepresentsetoff-valuesextendsandinsomecasessupersedesthosegiveninZsarg´oetal.(1997),whichwerebasedonlowerresolutiondata.

Subjectheadings:atomicdata-ISM:abundances-ultraviolet:ISM1.IntroductionAccurateoscillatorstrengths(f-values)areneededforspectroscopicstudiesinastronomy.Forinstance,theyarerequiredwhenextractingreliableabundancesfrominterstellarabsorptionlines,whenmodelingopacitiesinstellaratmospheres,orwhenutilizingtemperatureanddensitydiagnostics.Whileanalyzingsuchspectrafromspace-borne,high-resolutionUVspectrographs,onecanencountertheproblemthatuncertaintiesassociatedwithobservationalsourcesarelessthanthosefromatomicphysics.Thisisespeciallytruewhentheastronomicaldatahavesignal-to-noiseratiosgreaterthan100to200.Onecantakeadvantageofthesituationbyrefiningf-valuesforlinesgivingdiscordantresults.ThebasicpremiseinvolvesobtainingcolumndensitiesandDopplerparametersfromlineswherethereisconsensusonf-valuesandthenusingthisinformationinrefiningotherf-values.–2–SeveralrecentstudiesbasedoninterstellarspectraacquiredwiththeGoddardHighResolutionSpectrograph(GHRS)ontheHubbleSpaceTelescope(HST)haveadoptedthismethodology.Federman&Cardelli(1995)providednewf-valuesforlinesofSI;manyoftheirdeterminationswereconfirmedbysubsequenttheoretical(Tayal1998)andexperimentalwork(e.g.,Biemontetal.1998).Cardelli&Savage(1995)analyzedFeIIlines,andZsarg´o,Federman,&Cardelli(1997)refinedf-valuesforCIlineswithcentralwavelengthbelow1200˚Aaswellasforsomeforbiddenlinesabovethislimit.Relativef-valueswerederivedforsingly-ionizednickel(Zsarg´o&Federman1998)andsingly-ionizedcobalt(Mullmanetal.1998).Thelatteranalysiswasperformedinparallelwithlaboratorymeasurementsthatplacedastronomicaloscillatorstrengthsonanabsolutescale.LaboratorymeasurementsonNiIIbyFedchak,Wiese,&Lawler(2000)validatedtherelativef-valuesinourearlierworkonsingly-ionizednickel.

Inthepresentpaper,followingthemethodoutlinedinZsarg´oetal.(1997),weimprovedupontheirf-valuesforCIlineswithwavelengthbelow1200˚Aandexpandthenumberoflinesintheirlist.InSection2webrieflydescribetheastronomicalmeasurementsavailableforouranalysis,andinSection3wediscusshowweobtainedcolumndensitiesandDopplerparametersforeachabsorbingcomponent(3.1)andhowweadjustedf-values(3.2).Finally,wediscussourresultsinSection4.

2.MeasurementsWeretrievedobservationsforλOri,1Sco,andδScofromtheHSTarchive.Mostofthemeasurementswereacquiredatmediumresolution(MR)andahandfulofthemweretakenathighresolution(HR).ThesespectracoveredseveralCImultipletsandforbiddenlinesbetween1150˚Aand1700˚A.

Thereductionwasfairlystraightforward,andonlyminortechnicalproblemsarose.Themostseriousconcernwasanerrorinthebackgroundcorrectiononsomeofourpreprocesseddata.WedetectedthiserroronallofourHRspectracontainingtheλ1261(UV9)multipletofCI.Thefluxlevelofstronglysaturatedlines,suchasthoseofSIIandSiII,shouldbezeroatlinecenter;however,insomecaseswemeasurednegativeorsmallpositivevalues,clearlyindicatinganerroneousbackgroundcorrection.Wecouldthenapplyanadditionalcorrectiontocompensatefortheeffect.Thecontinuumplacementturnedouttobedifficultforsomemultiplets,duetoblendingofseverallinesorsimplybecausethelinesweresaturated.Forexample,inthevicinityofmultipletλ1261inMRspectra,SiIIandFeIIlinesseriouslyaffectedthecontinuumplacement.Followinglineidentificationandcontinuumplacement,theDopplershift(relativetothelaboratorywavelength)andequivalentwidth(Wλ)ofneutralcarbonlinesweremeasured.Insomecases,onlyupperlimitscouldbecalculatedbasedontheaveragefullwidthathalfmaximum(FWHM)oftheinstrumentalfunctionandtherootmeansquare(rms)averageofthenoiseinthestellarcontinuum.

相关文档
最新文档