小学奥数之立体几何问题

合集下载

六年级奥数-第六讲立体几何教案

六年级奥数-第六讲立体几何教案

、长方体和正方体如右图,长方体共有六个面 (每个面都是长方形),八个顶点,十二条棱. ① 在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形. )② 长方体的表面积和体积的计算公式是: 长方体的表面积:S 长方体 2(ab be ca ); 长方体的体积:V 长方体abc .③ 正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:S 正方体 6a 2 , V正方体a 3 4 .、圆柱与圆锥立体图形表面积体积 h圆柱二二込S 圆柱 侧面积 2个底面积 2 n h 2 n 2V 柱n hA十\圆锥S 圆锥 侧面积 底面积 —n 2 n 2360注:1是母线,即从顶点到底面圆上的线段长1 2 V 圆锥体_ nh 3例题精讲【例1】下图是一个棱长为 2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为-厘米的正2 方形小洞,第三个正方形小洞的挖法和前两个相同为5厘米,4那么最后得到的立体图形的表面积是多少平方厘米?【解析】 我们仍然从3个方向考虑•平行于上下表面的各面面积之和:2 2 2 8(平方厘米);左右方向、前后方向:2 2 4 16(平 1 1方厘米),1 1 4 4(平方厘米),1 141(平方厘米),4 441 18 16 4 1 - 29-(平方厘米)•4 45 14 1 (平方厘米),这个立体图形的表面积为:第六讲立体几何部分C2 2【例2】一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?【解析】锯一次增加两个面,锯的总次数转化为增加的面数的公式为:锯的总次数2增加的面数.原正方体表面积:1 1 6 6(平方米),一共锯了(2 1)(3 1)(4 1)6次,6 112 6 18(平方米).【例3】如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?【解析】当小积木互相重合的面最多时表面积最小•设想27块边长为1的正方形积木,当拼成一个2块小积木,只有在两个角上各去掉一块小积木,或在同一个角去掉两块相邻的积木时,表面积不会增加,该几何体表面积为54.【例4】(2008年“希望杯”五年级第2试)如图,棱长分别为1厘米、2厘米、3厘米、5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是_________________ 平方厘米.【解析】(法1)四个正方体的表面积之和为:(12 22 32 52) 6 39 6 234 (平方厘米),重叠部分的面积为:12 3 (22 2 12)(322212)(322212) 3 9 1 4 1 4 40 (平方厘米),所以,所得到的多面体的表面积为:234 40 194(平方厘米).(法2)三视图法.从前后面观察到的面积为52 32 22 38平方厘米,从左右两个面观察到的面2 2 2积为5 3 34平方厘米,从上下能观察到的面积为 5 25平方厘米.表面积为38 34 25 2 194(平方厘米).【例5】把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个立体图形3 3 3的正方体时,表面积最小,现在要去掉.,求这个立体。

五年级奥数——立体图形问题

五年级奥数——立体图形问题

年 级 五年级授课日期授课主题第6讲——立体图形问题教学内容i.检测定位通过解决立体图形问题可以培养我们的空间想象能力.许多时候拿出或自己做一个实物,亲自观察或动手操作一下,问题的解决会变得相当容易.【例1】如图6-1,棱长分别为1厘米、2厘米、3厘米、5厘米的四个正方体紧贴在一起,则所得的多面体的表面积是___________平方厘米.分析与解 先求棱长分别是1厘米、2厘米、3厘米、5厘米这四个正方体的表面积之和,然后减去图中粘贴在一起部分的面积之和.)()(611422233-611223355⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯+⨯+⨯.19440-234(平方厘米)== 说明 解答本题的关键是要能正确分析出粘贴部分有哪几个面,以及这几个面的面积分别是多少. 随堂练习1如图6-2,将一个长方形木条平均截成6段,每段长2米,表面积增加了120平方厘米.问这根木条原来体积是多少立方厘米?【例2】在一个长24分米,宽9分米,高8分米的水槽中注入高4分米的水,然后放入一个棱长为6分米的正方体铁块,问水位上升了多少分米?分析与解 首先应判断放入铁块后,水位是否能将铁块淹没.1. 假设上升水位能将铁块淹没,那么水位至少上升了6分米.由于放入的棱长为6分米的正方形铁块体积为(立方分米),216666=⨯⨯它放入水槽后水位将上升.1924216(分米)=÷÷加上原来已注入的水位高4分米.因此放入铁块后水槽中的水位高为(分米),514=+小于铁块的高6分米,因此上升的水位不能将整个铁块淹没.2. 假设水位上升了x 分米,列方程得 )4(66924+⨯⨯=⨯⨯x x , 46+=x x ,).(8.0分米=x 答:水位上升了0.8分米. 随堂练习2一个长方体的水箱,从里面量长8分米、宽6分米.先倒入102升水,再放入一块棱长2分米的正方形铁块,这时水面离箱口2分米.问这个水箱的容积是多少立方分米(升)?【例3】正方体木块被砍掉一个角(这里的角,指三条线相交处),剩余部分最多有_____个角,最少有_____个角.分析与解 画图考虑几种情况,分别数出剩余部分有多少个角,再进行比较.截面如图6-3①,剩余部分最多有10个角;截面如图6-3②,剩余部分最少有7个角. 随堂练习3如图6-4由一个正五边形、五个长方形、五个等边三角形组成,它是一个立体图形的平面展开图,那么这个立体图形有______条棱.【例4】如图6-5,把2、4、6、8、10、12这6个数依次写在一个立方体的正面、背面、两个侧面以及两个底面上,然后把立方体展开,最左边的正方形上的数时12,问最右边有“?”的正方形上的数是什么?分析与解我们将展开图重新组合成立方体,令写2的面为正面得到下图6-6,可见到2与“?”相对,因此.4?随堂练习4沿图6-7的虚线折叠可以围成一个长方体.它的体积是多少?【例5】把正方体的6个面涂上六种不同的颜色,并画上朵数不同的花,各面的颜色和对应的花朵数目的情况如下表所示:现将上述大小相同,颜色、花朵分布完全一样的四个立方体拼成一个如图6-8所示的长方体,那么这个长方体的下底面共有多少朵花?分析与解如图6-8所示,黄与蓝、紫、红、绿相邻,所以黄与白相对;又紫与黄、蓝、白(它是黄的对面)、红相邻,所以紫与绿相对;从而红与蓝相对.据此可知4个下底面的颜色依次为紫、蓝、白、红色,它们对应的花朵数分别为5、3、4、1,其和为13.随堂练习5如例5,小立方体中各面的颜色与所对应的花朵数不变,四个立方体拼成的长方体如图6-9.那么这个长方体下底面共有多少朵花?颜色红黄蓝白紫绿花朵数目 1 2 3 4 5 6【例6】在一个正方形纸板的四角剪去一个大小相同的小正方形,便可以做成一个没有盖的纸盒,按图6-10中)(A 、)(B 、)(C 、)(D 四种方法做出来的纸盒中,容积最小的是_________,容积最大的是_________.分析与解)(A 的容积为(立方厘米)64444=⨯⨯ )(B 的容积为(立方厘米)108663=⨯⨯ )(C 的容积为(立方厘米)128882=⨯⨯ )(D 的容积为(立方厘米)10010101=⨯⨯ 比较后可知,容积最小的是)(A ;容积最大的是)(C . 随堂练习6下面)(A 、)(B 、)(C 是三块形状不同的铁片,将每块铁片沿虚线弯折后焊接成一个无盖的开口为正方形的长方形铁箱,装水最多的水箱是由_______铁皮焊接的.想一想如图1,将1、2、3、4、5、6、7、8分别放置于正方体的8个顶点a 、b 、c 、d 、e 、f 、g 、h 处,使每一个面上的4个数的和相等.答案如图②,每个面上的4个数的和为18.ii.针对培养1.如图是用棱长1厘米的立方体搭成的一个空间图形.问其体积是多少?表面积是多少?2.从一个长方体上截下一个体积是32立方厘米的长方体后,剩下的部分正好是棱长为4厘米的正方体.问原来这个长方体的表面积是多少平方厘米?3.一下图中可以拼成正方体的是()4.一根铁丝围成的长方体,长15分米,宽8分米,高7分米.如果还用这根铁丝改围成一个正方体,那么这个正方体的棱长是多少分米?5.有三个完全一样的长方体,用三种不同的方法,分别切成了两个完全一样的长方体,结果它们的表面积分别增加了40、48、60平方厘米.想一想,原来的长方体的表面积是多少平方厘米,体积是多少立方厘米?6.一个长方体水箱,长5分米、宽4分米、深3分米,水面离箱口3厘米,如果把一块棱长2分米的正方体水泥块放入水中,这时箱内会溢出多少升水?7.有一个空的长方体容器A(如图①)和一个水深24厘米的长方体容器B(如图②).现将容器B中的水倒一部分到容器A中,使两容器水的高度相同,这时两容器的水深为几厘米?8.如图,有一个“空心”大长方体,空心部分相对的两个面是通的,问这个“空心”大长方体是由多少个小木块组成的?(这些小木块是完全相同的正方体)9.从一个长方体上截下一个体积是100立方厘米的小长方体后,剩下部分正好是一个棱长为5厘米的正方体.原来长方体的表面积是多少平方厘米?10.用三个同样的长、宽、高分别是4厘米、3厘米和2厘米的小长方体,拼成一个表面积最大的长方体.这个大长方体的表面积是多少平方厘米?11.一个长方体木块,长5分米,宽3分米,高4分米,在它六个面上都涂满油漆,然后锯成棱长都是1分米的正方体木块.问锯成的木块中几个三面有油漆?两个面、一个面有油漆的各有多少个?有没有各个面都没有油漆的?12.一个长方体,如果长增加5厘米,则体积增加150立方厘米;如果宽增加4厘米,则体积增加160平方厘米;如果高增加3厘米,则体积增加144立方厘米.问长方体的表面积是多少平方厘米?。

六年级奥数专题训练-第五讲.几何-立体部分

六年级奥数专题训练-第五讲.几何-立体部分

【例 13】三个完全一样的长方体,棱长总和是288厘米,每个长方体相交于一个顶点的三条棱长恰是三个连 续的自然数,给这三个长方体涂色,一个涂一面,一个涂两面,一个涂三面.涂色后把三个长方 体都切成棱长为1厘米的小正方体,只有一个面涂色的小正方体最少有多少个?
【解析】每个长方体的棱长和是 288 3 96 厘米,所以,每个长方体长、宽、高的和是 96 4 24 厘米.因 为,每个长方体相交于一个顶点的三条棱长恰是三个连续的自然数,所以,每个长方体的长、宽、 高分别是9厘米、8厘米、7厘米. 要求切割后只有一个面涂色的小正方体最少有多少个,则需每一个长方体按题意涂色时,应让切割 后只有一个面涂色的小正方体最少.所以,涂一面的长方体应涂一个 8 7 面,有 8 7 56 个; 涂两面的长方体,若两面不相邻,应涂两个 8 7 面,有 8 7 2 112 个;若两面相邻,应涂一
a
h b
图1
图2
图3
【巩固】要把6件同样的长17、宽7、高3的长方体物品拼装成一件大的长方体,表面积最小是多少? 【解析】考虑所有的包装方法,因为6 1 2 3,所以一共有两种拼接方式:
第一种按长宽高1 1 6拼接,重叠面有三种选择,共3种包装方法. 第二种按长宽高1 2 3拼接,有3个长方体并列方向的重叠面有三种选择,有2个长方体并列方向的 重叠面剩下2种选择,一共有6种包装方法. 其中表面积最小的包装方法如图所示,表面积为1034.
【例 5】 如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?
25块积木
【解析】当小积木互相重合的面最多时表面积最小. 设想27块边长为1的正方形积木,当拼成一个 3 3 3 的正方体时,表面积最小,现在要去掉2块小 积木,只有在两个角上各去掉一块小积木,或在同一个角去掉两块相邻的积木时,表面积不会增 加,该几何体表面积为54.

一年级基本立体几何通用版(奥数拓展+测试)

一年级基本立体几何通用版(奥数拓展+测试)

基本立体几何(一)基本立体图形的概括所有点不在同一平面上的图形叫立体图形。

对现实物体认识上的一种抽象,即把现实的物体在只考虑其形状和大小,而忽略其它因素的基础上在平面上的表示。

(二)基本立体图形的表示例1、在括号中写出下面立体图形的名称【练习1.1】下面立体图形名称是________。

知识本源典型例题【练习1.2】下面立体图形名称是______体。

例2、数一数,图中分别有几个,将数字填入()中。

【练习2.1】下面立体图形名称是______体。

【练习2.2】数一数有_______个正方体。

例3、如图所示的三角形旋转形成什么图形?【练习3.1】绕着正方形的一条边旋转得到体。

【练习3.2】绕着长方形的一条边旋转得到体。

例4、把立体与其展开图用线连接起来【练习4.1】下面的图形可以形成体。

【练习4.2】下面的图形可以折叠成的立体图形的名称是。

例5、如图,正方体展开图中数字1对面上是数字_________。

【练习5.1】正方体展开得到个面。

【练习5.2】圆柱体展开,其中有个圆。

例6、由正方体和四棱锥组成的立体,沿着红色虚线展开,画出展开图。

【练习6.1】对一个球体横着切一刀,切得的截面是形【练习6.2】立体图形展开变成图形。

基本立体几何-测试卷A姓名:分数:时间:分钟1、(单选题)下面立体图形名称是_______。

A、长方体B、正方体C、圆柱D、圆锥2、(单选题)下面立体图形的名称是_______。

A、长方体B、正方体C、圆柱D、圆锥3、(单选题)下面立体图形的名称是_______。

A、长方体B、正方体C、圆柱D、圆锥4、数一数,下图中有_______个正方体。

5、(单选题)绕着正方形的一条边旋转得到_________。

A、长方体B、正方体C、圆柱D、圆锥6、(单选题)绕着长方形的一条边旋转得到_________。

A、长方体B、正方体C、圆柱D、圆锥7、(单选题)下面的图形可以形成_________立体图形。

五年级立体几何拓展----三视图专属奥数讲义

五年级立体几何拓展----三视图专属奥数讲义

学科教师教导课本之五兆芳芳创作班级:年 级: 五年级 教导科目:小学思维学科教师:上课时间授课主题立体几何拓展----三视图一.三视图在不雅察物体的时候,我们往往可以从不合的角度进行不雅察.角度不合,看到的风光就会不合.比方:我们可以从正面看,上面看,左面看,看到的图形辨别称为正视图,仰望图和左视图.并且容易发明:正面看和前面看,上面看和下面看,左面看和右面看得到的图形是相同的.对于较庞杂的立体图形,通过三视图法往往可以很便利地计较出概略积.知识图谱错题回首三视图知识精讲二.正方体的展开图我们采取不合的剪开办法,共可以得到下面11种展开图.三.长方体的展开图不雅察上图可以发明,长方体的展开图由6个长方形组成,相对面的面积相等,即上面=下面=长×宽,左面=右面=宽×高,前面=前面=长×高.四.判断图形折叠后能否围成长方体或正方体的办法.判断一个图形折叠后能否围成正方体或长方体,首先,要依据它们各自展开图的特点判断;其次,可以运用空间想象或实际操纵进一步判断.高宽长右面左面 前面下面 前面 上面上 后 前右左下 展开后由上、下、左、右、前、后六个正方形面组成,这六个正方形面的面积都相等.重难点:展开图、三视图及三视图求个数和概略积.题模一:展开图与对立面例 1.1.1一个正方体的六个面上辨别写着A ,B ,C ,D ,E ,F 六个字母.请你按照图中的三种摆放情况,判断每个字母的对面是______________,______________,______________【答案】B 与D 相对,E 与A 相对,C 与F 相对【解析】由于正方体的6个面上写了6个不合的字母,那么每个字母在正方体的面上只能出现1次,如果2个字母在相邻的面上出现,那么它们一定不克不及相对.第一步,先看前2种摆放情况:在这2种摆放情况中,只有字母B 出现了2次,那么由第一种摆放可知,B 不与A 相对,也不与F 相对;由第二种摆放可知,B 不与C 相对,也不与E 相对.那么在所有的字母中,B 只能与D 相对.BFA EBC FED 三点剖析题模精选第二步,再看后2种摆放情况:在这2种摆放情况中,只有字母E 出现了2次,那么由第二种摆放可知,E 不与B 相对,也不与C 相对;由第三种摆放可知,E 不与D 相对,也不与F 相对.那么在所有的字母中,E 只能与A 相对. 正方体有三个对面,因B 与D 相对,E 与A 相对,那么第三组对面上一定是C 与F 相对.例 1.1.2图中的四个正方体标字母的方法是完全相同的,请你利用图中已知的信息,判断A 、B 、C 的对面辨别标的是哪个字母?【答案】A 的对面标有D ,B 的对面标有F ,C 的对面标有E【解析】由已知条件,标有C ,D 的两个面不克不及相对,那么或A 的对面标有D ,或B 的对面标有D .如果标有D ,A 的两个面相对,那么“标有C ,D 的两个面不克不及相对”,“标有E ,A 的两个面也不克不及相对”这两个条件都可以满足.注意到当D 在朝右的面,E 在朝上的面时,F 在朝前的面上,那么只能是标有E ,C 的两个面A BC相对,而标有F,B的两个面相对.经查验,这种情况满足题目要求.如果标有D,B的两个面相对,那么由于标有E,A的两个面也不克不及相对,于是标有A的对面就是标有F的面,而标有C的对面就是标有E的面.此时D在朝后的面上,E在朝左的面上,F在朝下的面上.我们把六面体旋转,把D转到朝右的面,并把E转到朝上的面,此时朝前的面上标的是A,而朝后的面上标的是F,与题意不符.综上所述,满足题意的答案只有一个:A的对面标有D,B 的对面标有F,C的对面标有E.例1.1.3如图,第1个方格内放着一个正方体木块,木块六个面上辨别写着ABCDEF六个字母.其中A与D相对,B 与E相对,C与F相对.现在将木块标有字母A的那个面朝上,标有字母D的那个面朝下放在第1个方格内,然后让木块依照箭头指向,沿着图中方格转动,当木块滚到21格时,木块向上的面上写的是哪个字母?【答案】字母A【解析】发明木块向左滚4格后,各个面上标的字母与初始时的情况完全一致.那么木块朝其它标的目的滚时也有类似的情况,即木块向任意标的目的连滚4格,它的各个面上标的字母不变.所以木块向左滚4格到第5格时,各个面上标的字母与在第1格时的情况完全一致.再向下滚4格到第9格,再向右滚4格到第13格,再向下滚4格到第17格,最后向左滚4格到第21格,每次都是朝同一标的目的滚4格,因此在第5格,第9格,第13格,第17格,第21格木块向上的面上总是写的字母A .例1.1.4如图,在一个正方体的概略上写着1~6这6个自然数,并且1对着4,2对着5,3对着6.现在将正方体的一些棱剪开,使它的概略展开图如图所示.如果只知道1和2所在的面,那么6应该在哪个面上(写出字母代号)?【答案】A【解析】对于立方体展开图,我们可以把任一个面当作底面,把它复原成立方体的概略.如图1,不雅察虚线圈住的部分,可以发明写有1,A ,B图1 1 AB C 2D图21 AB C 2D1与C 相对, C 面上写的是41 AB C 2D 3 12的三个面两两相邻;再不雅察图2的虚线圈住的部分,发明写有A ,B ,C 的三个面也两两相邻.此时,写有1的面与A 面,B 面都相邻,C 面也与A 面,B 面都相邻,因此写有1的面与C 面相对,即C 面上写的是4.不雅察图3中的虚线圈住的部分,容易看出写有2的面与B 面相对,因此B 面上写的是5.则立方体展开图就如图4所示.还剩下A 面与D 面上的数字没有确定,这两个面上辨别写有3和6.由于写有1的面,写有5的面与A 面两两相邻,把这三个面复原到立方体中.在图2所示的立方体中,5与2相对,在立方体朝左的正面上;1在朝前的正面上.在展开图中以写有1的面为朝前的正面,A 面为下底面,则写有5的面恰好在朝左的正面上.此时写有1的面,写有5的面都对齐了,而原立方体中下底面写有数字6,因此A 面上就是6.例1.1.5下图是正方体,四边形APQC 是暗示用平面截正方体的截面,截面的线表示在展开图的哪里呢?把大致的图形在右面展开图里画出来.图3 1 AB 4 2D2与B 相对, B 面上写的是5图41 A5 4 2D【答案】见地析【解析】截线在展开图中如图所示:例 1.1.6右图是一个立体图形的平面展开图,图中的每个小方格都是边长为1的正方形.现在将其沿实线折叠,复原成原来的立体图形,那么立体图形的体积等于_________.A .3B .4C .5D .6【答案】B【解析】按照实线复原,体积为4. 题模二:三视图求概略积例1.2.1下图是由5个相同的正方体木块搭成的,从上面看到的图形是( ).PA.A图B.B图C.C图D.D图【答案】C 【解析】5个在原图均已看到,易知C合适要求.的小正方形拼成的立体图形,它的概略积是()平方厘米.A.44 B.46 C.48 D.50【答案】C 【解析】从正面、左面、上面辨别可看见8、7、9块,故概略积为.的正方体堆成的,它的概略积是________.【答案】200【解析】从前到后的3面依次有2块、5块、7块,因此还剩块,为可看见的1块与其下方的1块.由此易知正视图、仰望图、左视图辨别能看到7块、9块、8块,此外离我们最近的2块有两个面从6个标的目的均无法看到,综上共可看到个面,概略积为.例 1.2.4图中的立体是由大小相同的若干单位正方体积木搭成的.这样的积木一共有多少块?画出它的三视图,概略积是多少?【答案】37;三视图如下图所示;102正视图仰望图左视图【解析】将此图分为从左到右的5层,辨别有16、9、5、6、1块,故共有块.三视图见答案,辨别可看见17、15、16块,其中左视图有3块“被遮挡”,因此概略积为.例1.2.5图中的立体图形由11个棱长为1的立方块搭成,这个立体图形的概略积为_______.【答案】34【解析】按一定的顺序,从不合的角度来看这个立体图形的概略的面积.题模三:已知三视图反推个数例 1.3.1这个图形最少是由()个正方体整齐堆放而成的.A.12 B.13 C.14 D.15【答案】B 【解析】从上面看下去,最少需要:.例 1.3.2此图是某几何体从正面和左面看到的图形.若该几何体是由若干个棱长为1的正方体垒成的,则这个几何体的体积最小是________.【答案】6【解析】按照正视图,理论上最少需要6块.而6块可以机关出来,例如,其仰望图如下图所示.因此,体积最小为.例 1.3.3一个立体图形,从前面,上面,右边三个标的目的看到的图形都如图所示,是一个样的,那么该立体图形最多由__________块小立方体组成. 【答案】23【解析】按由上到下逐层阐发,各层的小立方体数目辨别不超出1个、4个、8个、10个,所以该立体图形最多由23个小立方体组成.例 1.3.4有一些大小相同的正方形木块堆成一堆,从上往下从正面看从左面看1 4 12 2 12看是图3-1,从前往后看是图3-2,从左往右看是图3-3,那么这堆木块最多有多少块?最少有多少块?【答案】16,13【解析】块,块.这堆木块最多有16块,最少有13块.例1.3.5地上有一堆小立方体,从上面看时如图1所示,从前面看时如图2所示,从左边看时如图3所示.这一堆立方体一共有几个?如果每个小立方体的棱长为1厘米,那么这堆立方体所堆成的立体图形概略积为多少平方厘米?图1 图2 图3【答案】10个;42平方厘米【解析】采取在仰望图上标数的办法来求解,只要知道仰望图上的每格有几块小立方体,就可以很轻松的得到这堆立方体所形成的立体图形的样子.首先从仰望图很容易看出,有3个格子里是没有小立方体的,而其他6个格子里至少有一个小立方体.如下图,将所得信息填入仰望图中.结合仰望图和主视图,不难看出,有两格只有1块小立方体.将所得信息填入仰望图中.同样的,结合仰望图和左视图,又可以知道有一格只有1块小立方体.将所得信息填入仰望图中.我们来持续考虑,左视图中最左边一排有2块小立方体,所以仰望图左上角处有2块小立方体.将所得信息填入仰望图中.同理,主视图最右边一排有2块小立方体,所以仰望图最右从左边看从前面看边中间处有2块小立方体.将所得信息填入仰望图中.2 1 00 20 1 1不难看出,仰望图中最后剩下的那块有3个小立方体,所以仰望图中每格的小立方体数如下:2 1 03 0 20 1 1 于是这一堆立方体一共有个.接着很容易得到这个立体图形的样子,如下图.上下各能看到6个面,前后各能看到6个面,左右各能看到6个面,同时注意到立体图形的中间共有6个会相互遮挡的面,所以概略积是平方厘米.随堂练习随练1.1将一正方体纸盒沿右图所示的粗实线剪开,展开成平面图,其展开图的形状为().A.A图B.B图C.C图D.D图【答案】B【解析】竖向只剪了1刀,故前、后、左、右四个面应在一条线上,排除A、D.易知上、下两面不在一条线上,排除C,故选B.随练 1.2水平放置的正方体的六个面辨别用“前面、前面、上面、下面、左面、右面”暗示.如下图,是一个正方体的平面展开图,若图中的“似”暗示正方体的前面,“锦”暗示右面,“程”暗示下面.则“祝”、“你”、“前”辨别暗示正方体的________________________.【答案】前面、上面、左面【解析】易知你、程相对,前、锦相对,祝、似相对,因此“祝”、“你”、“前”辨别暗示正方体的前面、上面、左面.随练1.3小明把五颗完全相同的骰子拼摆成一排(如图),那么这五颗骰子底面上的点数之和是__________.【答案】16【解析】按照已知推出互为对立面,所以这五颗骰子底面上的点数之和是.随练1.4右图是由八个相同的小正方体组成而成的几何体,则从正面不雅察,得到的平面图形是__________.序号)①②③④【答案】②【解析】从正面看到图②,从上面看到图①,从右面看到图③.所以正确答案是图②.随练 1.5由棱长为1的正方体搭成如图所示的图形,共有__________个正方体,它的概略积是__________.【答案】10;34【解析】第一层有8个,第二层有2个,共10个.其三视图辨别能看到4、5、8个,故概略积为.随练1.6如图,有9个边长为1米的正方体,如图所示堆成一个立体图形.该立体图形的概略积等于__________平方米.【答案】38【解析】利用三视图.从前面、右面、上面看依次如图所示.所以该立体图形的概略积是平方米.随练1.7如图6,用若干个棱长为1的小正方体堆成一个大的几何体,这个几何体的概略积(含底面积)是__________.图6【答案】90【解析】按照三视图,大的几何体的概略积等于正视图面积+仰望图面积+右视图面积的2倍,所以是.随练1.8用棱长是1厘米的小立方体拼成如图所示的立体图形,这个图形的概略积是__________平方厘米.【答案】46平方厘米【解析】如图1,从立体图形上方和下方看去,看到的都是9块小正方形.面积是9平方厘米.图1 图2从四个正面看去,看到的是图2形式的7块小正方形,面积是7平方厘米.所以立体图形的概略积为平方厘米.随练1.9把若干个棱长为1厘米的小正方体木块搭成一个图形,从上面和前面看到的都是如图所示的情形,这个图形最多需要__________个这样的小正方体,最少需要__________个这样的小正方体.【答案】9;7【解析】由从上方看到的结果可知第一层必有5个,且第二层至多5个;由从前面看到的结果可知共有2层,且第二层至少2个.再结合两个视图可知第二层至多4个.综上,最多9个,最少7个.自我总结课后作业作业1一个数学玩具的包装盒是正方体,其概略展开图如下.现在每方格内都填上相应的数字.已知将这个概略展开图沿虚线折成正方体后,相对面的两数之和为“3”,则填在A、B、C内的三个数字依次是_____________.【答案】3,1,2【解析】正方体的平面展开图中,相对面之间一定隔着一个正方形,所以在此正方体上与“A”相对的面上的数是“0”.与“B” 相对的面上的数是“2”.与“C”相对的面上的数是“1”.所以A、B、C内的三个数字依次是3,1,2.作业2把1至6各一个辨别写在正方形的六个面上,每个面只写一个数字,且1与4相对,2与5相对,3与6相对,从某个角度看到的三个面上的数字如图(a)所示,从另一个角度看到的三个面如图(b)所示,那么图(b)中的“?”代表的数字是___________.A.2 B.3 C.4 D.5【答案】A 【解析】如图,4对面是1,所以在图a中把4翻到底面,顶部酿成了1,如图b,而5对面是2,所以当6转到正面时,5在左侧,右侧自然是2了,故答案是2..作业3下图由一个正五边形,五个长方形,五个等边三角形组成,它是一个立体图形的平面展开图,那么这个立体图形有__________条棱.【答案】20【解析】此立体图形,示意图如上:共20条棱.作业4用若干个棱长为1cm的小正方体码放成如图所示的立体,则这个立体的概略积(含下底面面积)等于___________.【答案】60【解析】按照三视图,我们可知,此立体图形的前面与前面,左面与右面,上面与下面的概略积辨别相等.所以我们只要知道前面有11个正方形,右面有8个正方形,上面有11个面,就可求出它露在外面的面合计个正方形,所以它的概略积是.作业5如图,把19个边长为1厘米正方体重叠起来堆成如图所示的立方体,这个立方体的概略积是______平方厘米.【答案】54【解析】从上下左右前后六个标的目的看,辨别可以看到9、9、8、8、10、10个小正方形面,所以总的概略积为54平方厘米.作业6图中的立体是由大小相同的若干单位正方体积木搭成的.这样的积木一共有多少块?画出它的三视图,概略积是多少?【答案】30;三视图如下图所示;76正视图仰望图左视图【解析】将此图分为从左到右的4层,辨别有11、7、5、7块,故共有块.三视图见答案,辨别可看见13、12、11块,其中左视图有2块“被遮挡”,因此概略积为.作业7由若干个相同的正方体木块搭成的立体,从正面和左面看到的图形都是右图,搭这样的立体,最少用()个这样的木块.A.4 B.5 C.6 D.8【答案】A【解析】按如图方法摆放便可.作业8由若干个棱长为1的正方体堆成的立体图形,其正视图、仰望图和左视图如下所示,请问这个立体图形体积是________.【答案】5【解析】由正视图和左视图可知共两层,且顶层只有1块,由仰望图可知底层有4块,故共有5块,体积为5.作业9一仓库里堆放着若干个完全相同的正方体货箱,这堆货箱的三视图如图所示,这堆真方体货箱共有______________个.【答案】9【解析】仰望图确定基座,阐发每块上的高度.。

六年级奥数-第六讲立体几何 教案

六年级奥数-第六讲立体几何  教案

c baHGFED CBA长方体和正方体如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱. ①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是:长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.二、圆柱与圆锥 立体图形表面积体积 圆柱hr222π2πS rh r =+=+圆柱侧面积个底面积2πV r h =圆柱圆锥h r22ππ360nS l r =+=+圆锥侧面积底面积 注:l 是母线,即从顶点到底面圆上的线段长 21π3V r h =圆锥体例题精讲下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为12厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为14厘米,那么最后得到的立体图形的表面积是多少平方厘米?我们仍然从3个方向考虑.平行于上下表面的各面面积之和:2⨯2⨯2=8(平方厘米);左右方向、前后方向:2⨯2⨯4=16(平方厘米),1⨯1⨯4=4(平方厘米),12⨯12⨯4=1(平方厘米),14⨯14⨯4=14(平方厘米),这个立体图形的表面积为:816++4+1+14=1294(平方厘米).【解析】 一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?第六讲立体几何部分【解析】 锯一次增加两个面,锯的总次数转化为增加的面数的公式为:锯的总次数⨯2=增加的面数.原正方体表面积:1⨯1⨯6=6(平方米),一共锯了(2-1)+(3-1)+(4-1)=6次,6+1⨯1⨯2⨯6=18(平方米).【解析】 如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?【解析】 25块积木当小积木互相重合的面最多时表面积最小.设想27块边长为1的正方形积木,当拼成一个333⨯⨯的正方体时,表面积最小,现在要去掉2块小积木,只有在两个角上各去掉一块小积木,或在同一个角去掉两块相邻的积木时,表面积不会增加,该几何体表面积为54.【解析】 (2008年“希望杯”五年级第2试)如图,棱长分别为1厘米、2厘米、3厘米、5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是_______平方厘米.【解析】 (法1)四个正方体的表面积之和为:2222(1235)6396234+++⨯=⨯=(平方厘米),重叠部分的面积为:22222222213(221)(321)(321)39141440⨯+⨯+++++++=+++=(平方厘米), 所以,所得到的多面体的表面积为:23440194-=(平方厘米).(法2)三视图法.从前后面观察到的面积为22253238++=平方厘米,从左右两个面观察到的面积为225334+=平方厘米,从上下能观察到的面积为2525=平方厘米.表面积为()3834252194++⨯=(平方厘米).把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个立体图形.,求这个立体图形的表面积.从上下、左右、前后观察到的的平面图形如下面三图表示.因此,这个立体图形的表面积为:2个上面2+个左面2+个前面.上表面的面积为:9平方厘米,左表面的面积为:8平方厘米,前表面的面积为:10平方厘米.因此,这个立体图形的总表面积为:(9810)254++⨯=(平方厘米).上下面左右面前后面【例 1】 棱长是m 厘米(m 为整数)的正方体的若干面涂上红色,然后将其切割成棱长是1厘米的小正方体.至少有一面红色的小正方体个数和表面没有红色的小正方体个数的比为13:12,此时m 的最小值是多少?【解析】 切割成棱长是1厘米的小正方体共有3m 个,由于其中至少有一面是红色的小正方体与没有红色面的个数之比为13:12,而131225+=,所以小正方体的总数是25的倍数,即3m 是25的倍数,那么m 是5的倍数.当5m =时,要使得至少有一面的小正方体有65个,可以将原正方体的正面、上面和下面涂色,此时至少一面涂红色的小正方体有5554265⨯+⨯⨯=个,表面没有红色的小正方体有1256560-=个,个数比恰好是13:12,符合题意.因此,m 的最小值是5.【例 2】 有64个边长为1厘米的同样大小的小正方体,其中34个为白色的,30个为黑色的.现将它们拼成一个444⨯⨯的大正方体,在大正方体的表面上白色部分最多可以是多少平方厘米?【解析】 要使大正方体的表面上白色部分最多,相当于要使大正方体表面上黑色部分最少,那么就要使得黑色小正方体尽量不露出来.在整个大正方体中,没有露在表面的小正方体有3(42)8-=(个),用黑色的;在面上但不在边上的小正方体有2(42)624-⨯=(个),其中30822-=个用黑色.这样,在表面的44696⨯⨯=个11⨯的正方形中,有22个是黑色,962274-=(个)是白色,所以在大正方体的表面上白色部分最多可以是74平方厘米.【例 3】 三个完全一样的长方体,棱长总和是288厘米,每个长方体相交于一个顶点的三条棱长恰是三个连续的自然数,给这三个长方体涂色,一个涂一面,一个涂两面,一个涂三面.涂色后把三个长方体都切成棱长为1厘米的小正方体,只有一个面涂色的小正方体最少有多少个?【解析】 每个长方体的棱长和是288396÷=厘米,所以,每个长方体长、宽、高的和是96424÷=厘米.因为,每个长方体相交于一个顶点的三条棱长恰是三个连续的自然数,所以,每个长方体的长、宽、高分别是9厘米、8厘米、7厘米.要求切割后只有一个面涂色的小正方体最少有多少个,则需每一个长方体按题意涂色时,应让切割后只有一个面涂色的小正方体最少.所以,涂一面的长方体应涂一个87⨯面,有8756⨯=个;涂两面的长方体,若两面不相邻,应涂两个87⨯面,有872112⨯⨯=个;若两面相邻,应涂一个87⨯面和一个97⨯面,此时有()7892105⨯+-=个,所以涂两面的最少有105个;涂三面的长方体,若三面不两两相邻,应涂两个87⨯面、一个97⨯面,有()78894147⨯++-=个;若三面两两相邻,有()()()()()()718171918191146-⨯-+-⨯-+-⨯-=个,所以涂三面的最少有146个.【例 4】 那么切割后只有一个面涂色的小正方体最少有56105146307++=个.【例 5】 【例 6】 【例 7】 【例 8】【例 9】 把一个大长方体木块表面上涂满红色后,分割成若干个同样大小的小正方体,其中恰好有两个面涂上红色的小正方体恰好是100块,那么至少要把这个大长方体分割成多少个小正方体?【解析】 设小正方体的棱长为1,考虑两种不同的情况,一种是长方体的长、宽、高中有一个是1的情况,另一种是长方体的长、宽、高都大于1的情况.当长方体的长、宽、高中有一个是1时,分割后只有一层小正方体,其中有两个面涂上红色的小正方体是去掉最外层一圈的小正方体后剩下的那些.因为有两个面涂上红色的小正方体恰好是100块,设100a b =⨯,那么分成的小正方体个数为()()()()221242104a b ab a b a b +⨯+⨯=+++=++,为了使小正方体的个数尽量少,应使()a b +最小,而两数之积一定,差越小积越小,所以当10a b ==时它们的和最小,此时共有 ()()102102144+⨯+=个小正方体.当长方体的长、宽、高都大于1时,有两个面涂上红色的小正方体是去掉8个顶点所在的小正方体后12条棱上剩余的小正方体,因为有两个面涂上红色的小正方体恰好是100块,所以长方体的长、宽、高之和是10042331÷+⨯=.由于三个数的和一定,差越大积越小,为了使小正方体的个数尽量少,应该令312227=++,此时共有2227108⨯⨯=个小正方体.因为108144<,所以至少要把这个大长方体分割成108个小正方体.把正方体的六个表面都划分成9个相等的正方形.用红、黄、蓝三种颜色去染这些小正方形,要求有公共边的正方形染不同的颜色,那么,用红色染的正方形最多有多少个?一个面最多有5个方格可染成红色(见左下图).因为染有5个红色方格的面不能相邻,可以相对,所以至多有两个面可以染成5个红色方格.红红红红红红红红红红红其余四个面中,每个面的四个角上的方格不能再染成红色,至多能染4个红色方格(见上中图).因为染有4个红色方格的面也不能相邻,可以相对,所以至多有两个面可以染成4个红色方格.最后剩下两个相对的面,每个面最多可以染2个红色方格(见右上图).所以,红色方格最多有52422222⨯+⨯+⨯=(个).(另解)事实上上述的解法并不严密,“如果最初的假设并没有两个相对的有5个红色方格的面,是否其他的四个面上可以出现更多的红色方格呢?”这种解法回避了这个问题,如果我们从约束染色方格数的本质原因入手,可严格说明22是红色方格数的最大值. 对于同一个平面上的格网,如果按照国际象棋棋盘的方式染色,那么至少有一半的格子可以染成红色.但是现在需要染色的是一个正方体的表面,因此在分析问题时应该兼顾棱、角等面与面相交的地方:⑴⑵⑶⑴如图,每个角上三个方向的3个方格必须染成不同的三种颜色,所以8个角上最多只能有8个方格染成红色.⑵如图,阴影部分是首尾相接由9个方格组成的环,这9个方格中只能有4个方格能染成同一种颜色(如果有5个方格染同一种颜色,必然出现相邻,可以用抽屉原理反证之:先去掉一个白格,剩下的然后两两相邻的分成四个抽屉,必然有一个抽屉中有两个红色方格),像这样的环,在正方体表面最多能找到不重叠的两道(关于正方体中心对称的两道),涉及的18个方格中最多能有8个可染成红色.⑶剩下633839212⨯⨯-⨯-⨯=个方格,分布在6条棱上,这12个格子中只能有6个能染成红色.【例 10】 综上所述,能被染成红色的方格最多能有88622++=个格子能染成红色,第一种解法中已经给出22个红方格的染色方法,所以22个格子染成红色是最多的情况【例 11】【例 12】 【例 13】 【例 14】 【例 15】 一个长、宽、高分别为21厘米、15厘米、12厘米的长方形.现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少立方厘米?【解析】 本题的关键是确定三次切下的正方体的棱长.由于21:15:127:5:4=,为了方便起见.我们先考虑长、宽、高分别为7厘米、5厘米、4厘米的长方体.因为754>>,容易知道第一次切下的正方体棱长应该是4厘米,第二次切时,切下棱长为3厘米的正方体符合要求.第三次切时,切下棱长为2厘米的正方体符合要求.那么对于原长方体来说,三次切下的正方体的棱长分别是12厘米、9厘米和6厘米,所以剩下的体积应是:()33321151212961107⨯⨯-++=(立方厘米).12129996663121263912有黑白两种颜色的正方体积木,把它摆成右图所示的形状,已知相邻(有公共面)的积木颜色不同,标A 的为黑色,图中共有黑色积木多少块? 分层来看,如下图(切面平行于纸面)共有黑色积木17块【解析】 (05年武汉明心杯数学挑战赛)如图所示,一个555⨯⨯的立方体,在一个方向上开有115⨯⨯的孔,在另一个方向上开有215⨯⨯的孔,在第三个方向上开有315⨯⨯的孔,剩余部分的体积是多少?表面积为多少?【解析】 求体积:开了315⨯⨯的孔,挖去31515⨯⨯=,开了115⨯⨯的孔, 挖去11514⨯⨯-=;开了215⨯⨯的孔, 挖去215(22)6⨯⨯-+=,剩余部分的体积是:555(1546)100⨯⨯-++=.(另解)将整个图形切片,如果切面平行于纸面,那么五个切片分别如图:得到总体积为:22412100⨯+=. 求表面积:表面积可以看成外部和内部两部分.外部的表面积为55612138⨯⨯-=,内部的面积可以分为前 后、左右、上下三个方向,面积分别为()22515121320⨯⨯+⨯-⨯-⨯=、 ()2153513132⨯⨯+⨯-⨯-=、()2151511214⨯⨯+⨯-⨯-=,所以总的表面积为138203214204+++=.(另解)运用类似于三视图的方法,记录每一方向上的不同位置上的裸露正方形个数: 前后方向:32上下方向:30 左右方向:40A总表面积为()2323040204⨯++=.【总结】“切片法”:全面打洞(例如本题,五层一样),挖块成线(例如本题,在前一层的基础上,一条线一条线地挖),这里体现的思想方法是:化整为零,有序思考!(2009年迎春杯高年级组复赛)右图中的⑴⑵⑶⑷是同样的小等边三角形,⑸⑹也是等边三角形且边长为⑴的2倍,⑺⑻⑼⑽是同样的等腰直角三角形,⑾是正方形.那么,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的倍.⑷⑶⑵⑴⑾⑽⑼⑻⑺⑹⑸本题中的两个图都是立体图形的平面展开图,将它们还原成立体图形,可得到如下两图:其中左图是以⑴⑵⑶⑷为平面展开图的立体图形,是一个四个面都是正三角形的正四面体,右图以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形,是一个不规则图形,底面是⑾,四个侧面是⑺⑻⑼⑽,两个斜面是⑸⑹.对于这两个立体图形的体积,可以采用套模法来求,也就是对于这种我们不熟悉的立体图形,用一些我们熟悉的基本立体图形来套,看看它们与基本立体图形相比,缺少了哪些部分.由于左图四个面都是正三角形,右图底面是正方形,侧面是等腰直角三角形,想到都用正方体来套.对于左图来说,相当于由一个正方体切去4个角后得到(如下左图,切去1ABDA、1CBDC、111D AC D、111B AC B);而对于右图来说,相当于由一个正方体切去2个角后得到(如下右图,切去1BACB、1DACD).D1C1B1A1DCBA AB CDA1B1C1D1假设左图中的立方体的棱长为a,右图中的立方体的棱长为b,则以⑴⑵⑶⑷为平面展开图的立体图形的体积为:3231114233a a a a-⨯⨯⨯=,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积为3231122233b b b b-⨯⨯⨯=.由于右图中的立方体的棱长即是题中正方形⑾的边长,而左图中的立方体的每一个面的对角线恰好是正三角形⑴的边长,通过将等腰直角三角形⑺分成4个相同的小等腰直角三角形可以得到右图中的立方体的棱长是左图中的立方体的棱长的2倍,即2b a=.【解析】那么以⑴⑵⑶⑷为平面展开图的立体图形的体积与以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积的比为:()33331212::21:163333a b a a=⨯=,也就是说以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的16倍.【解析】如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的3个圆柱组成一个物体.问这个物体的表面积是多少平方米?(π取3.14)【解析】1110.511.5从上面看到图形是右上图,所以上下底面积和为22 3.14 1.514.13⨯⨯=(立方米),侧面积为2 3.14(0.51 1.5)118.84⨯⨯++⨯=(立方米),所以该物体的表面积是14.1318.8432.97+=(立方米).【解析】一个圆柱体的体积是50.24立方厘米,底面半径是2厘米.将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米?(π 3.14=)【解析】从图中可以看出,拼成的长方体的底面积与原来圆柱体的底面积相同,长方体的前后两个侧面面积与原来圆柱体的侧面面积相等,所以增加的表面积就是长方体左右两个侧面的面积.(法1)这两个侧面都是长方形,且长等于原来圆柱体的高,宽等于圆柱体底面半径.可知,圆柱体的高为()250.24 3.1424÷⨯=(厘米),所以增加的表面积为24216⨯⨯=(平方厘米);【例 16】(法2)根据长方体的体积公式推导.增加的两个面是长方体的侧面,侧面面积与长方体的长的乘积就是长方体的体积.由于长方体的体积与圆柱体的体积相等,为50.24立方厘米,而拼成的长方体的长等于圆柱体底面周长的一半,为3.142 6.28⨯=厘米,所以侧面长方形的面积为50.24 6.288÷=平方厘米,所以增加的表面积为8216⨯=平方厘米【例 17】(2008年”希望杯”五年级第2试)一个拧紧瓶盖的瓶子里面装着一些水(如图),由图中的数据可推知瓶子的容积是_______立方厘米.(π取3.14)【例 18】(单位:厘米)由于瓶子倒立过来后其中水的体积不变,所以空气部分的体积也不变,从图中可以看出,瓶中的水构成高为6厘米的圆柱,空气部分构成高为1082-=厘米的圆柱,瓶子的容积为这两部分之和,所以瓶子的容积为:24π()(62) 3.1432100.482⨯⨯+=⨯=(立方厘米).【例 19】【例 20】一个盛有水的圆柱形容器,底面内半径为5厘米,深20厘米,水深15厘米.今将一个底面半径为2厘米,高为17厘米的铁圆柱垂直放入容器中.求这时容器的水深是多少厘米?【解析】若圆柱体能完全浸入水中,则水深与容器底面面积的乘积应等于原有水的体积与圆柱体在水中体积之和,因而水深为:222515217517.72πππ⨯⨯+⨯⨯⨯=(厘米).它比圆柱体的高度要大,可见圆柱体可以完全浸入水中.【例 21】于是所求的水深便是17.72厘米.【例 22】有甲、乙两只圆柱形玻璃杯,其内直径依次是10厘米、20厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了2厘米;然后将铁块沉没于乙杯,且乙杯中的水未外溢.问:这时乙杯中的水位上升了多少厘米?【解析】两个圆柱直径的比是1:2,所以底面面积的比是1:4.铁块在两个杯中排开的水的体积相同,所以乙杯中水升高的高度应当是甲杯中下降的高度的14,即120.54⨯=(厘米).【解析】如图,甲、乙两容器相同,甲容器中水的高度是锥高的13,乙容器中水的高度是锥高的23,比较甲、乙两容器,哪一只容器中盛的水多?多的是少的的几倍?【解析】甲乙设圆锥容器的底面半径为r,高为h,则甲、乙容器中水面半径均为23r,则有21π3V r h=容器,221228ππ33381V r h r h=⨯=乙水(),222112219πππ333381V r h r h r h=-⨯=甲水(),2219π198188π81r hVV r h==甲水乙水,即甲容器中的水多,甲容器中的水是乙容器中水的198倍.【解析】(2008年仁华考题)如图,有一卷紧紧缠绕在一起的塑料薄膜,薄膜的直径为20厘米,中间有一直径为8厘米的卷轴,已知薄膜的厚度为0.04厘米,则薄膜展开后的面积是平方米.【解析】缠绕在一起时塑料薄膜的体积为:22208ππ1008400π22⎡⎤⎛⎫⎛⎫⨯-⨯⨯=⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦(立方厘米),薄膜展开后为一个长方体,体积保持不变,而厚度为0.04厘米,所以薄膜展开后的面积为8400π0.04659400÷=平方厘米65.94=平方米.另解:也可以先求出展开后薄膜的长度,再求其面积.【解析】由于展开前后薄膜的侧面的面积不变,展开前为22208ππ84π22⎛⎫⎛⎫⨯-⨯=⎪ ⎪⎝⎭⎝⎭(平方厘米),展开后为一个长方形,宽为0.04厘米,所以长为84π0.046594÷=厘米,所以展开后薄膜的面积为6594100659400⨯=平方厘米65.94=平方米.【解析】如图,ABCD是矩形,6cmBC=,10cmAB=,对角线AC、BD相交O.E、F分别是AD与BC的中点,图中的阴影部分以EF为轴旋转一周,则白色部分扫出的立体图形的体积是多少立方厘米?(π取3)【解析】ABAB扫出的图形如右上图所示,白色部分实际上是一个圆柱减去两个圆锥后所形成的图形.两个圆锥的体积之和为212π3530π903⨯⨯⨯⨯==(立方厘米);圆柱的体积为2π310270⨯⨯=(立方厘米),所以白色部分扫出的体积为27090180-=(立方厘米).【解析】 (人大附中分班考试题目)如图,在一个正方体的两对侧面的中心各打通一个长方体的洞,在上下底面的中心打通一个圆柱形的洞.已知正方体边长为10厘米,侧面上的洞口是边长为4厘米的正方形,上下底面的洞口是直径为4厘米的圆,求此立体图形的表面积和体积.【解析】 ⑴先求表面积.表面积可分为外侧表面积和内侧表面积.外侧为6个边长10厘米的正方形挖去4个边长4厘米的正方形及2个直径4厘米的圆,所以,外侧表面积为:210106444π225368π⨯⨯-⨯⨯-⨯⨯=-(平方厘米); 内侧表面积则为右上图所示的立体图形的表面积,需要注意的是这个图形的上下两个圆形底面和前后左右4个正方形面不能计算在内,所以内侧表面积为:()24316244π22π232192328π24π22416π⨯⨯+⨯⨯-⨯+⨯⨯⨯=+-+=+(平方厘米),所以,总表面积为:22416π5368π7608π785.12++-=+=(平方厘米).⑵再求体积.计算体积时将挖空部分的立体图形取出,如右上图,只要求出这个几何体的体积,用原立方体的体积减去这个体积即可.挖出的几何体体积为:24434444π2321926424π25624π⨯⨯⨯+⨯⨯+⨯⨯⨯=++=+(立方厘米); 所求几何体体积为:()10101025624π668.64⨯⨯-+=(立方厘米).练习1、(《小学生数学报》邀请赛)从一个棱长为10厘米的正方形木块中挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?(写出符合要求的全部答案) 【解析】 按图1所示沿一条棱挖,为592平方厘米;按图2所示在某一面上挖,为632平方厘米; 按图3所示在某面上斜着挖,为648平方厘米;按图4所示挖通两个对面,为672平方厘米.图1图2图3图4【解析】 2、(2008年香港保良局第12届小学数学世界邀请赛)如图,原来的大正方体是由125个小正方体所构成的.其中有些小正方体已经被挖除,图中涂黑色的部分就是贯穿整个大正方体的挖除部分.请问剩下的部分共有多少个小正方体?【解析】 第8题对于这一类从立体图形中间挖掉一部分后再求体积(或小正方体数目)的题目一般可以采用“切片法”来做,所谓“切片法”,就是把整个立体图形切成一片一片的(或一层一层的),然后分别计算每一片或每一层的体积或小正方体数目,最后再把它们相加.采用切片法,俯视第一层到第五层的图形依次如下,其中黑色部分表示挖除掉的部分.第1层第2层第3层第4层第5层从图中可以看出,第1、2、3、4、5层剩下的小正方体分别有22个、11个、11个、6个、22个,所以总共还剩下22111162272++++=(个)小正方体.3、有许多相同的立方体,每个立方体的六个面上都写着同一个数字(不同的立方体可以写相同的数字)先将写着2的立方体与写着1的立方体的三个面相邻,再将写着3的立方体写着2的立方体相邻(见左下图).依这样构成右下图所示的立方体,它的六个面上的所有数字之和是多少?第一层如下图,第二层、第三层依次比上面一层每格都多1(见下图).765434565第三层654323454第二层第一层343212345上面的9个数之和是27,由对称性知,上面、前面、右面的所有数之和都是27.同理,下面的9个数之和是45,下面、左面、后面的所有数之和都是45.所以六个面上所有数之和是(2745)3216+⨯=.【解析】 4、一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图.已知它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米;瓶子倒放时,空余部分的高为2厘米.问:瓶内酒精的体积是多少立方厘米?合多少升?【解析】26由题意,液体的体积是不变的,瓶内空余部分的体积也是不变的,因此可知液体体积是空余部分体积的623÷=倍.所以酒精的体积为326.4π62.17231⨯=+立方厘米,而62.172立方厘米62.172=毫升0.062172=升.【解析】 【解析】 5、图为一卷紧绕成的牛皮纸,纸卷直径为20厘米,中间有一直径为6厘米的卷轴.已知纸的厚度为0.4毫米,问:这卷纸展开后大约有多长?【解析】 将这卷纸展开后,它的侧面可以近似的看成一个长方形,它的长度就等于面积除以宽.这里的宽就是纸的厚度,而面积就是一个圆环的面积. 因此,纸的长度:33223323322323111111()22 3.1410093.1410 3.1437143.50.040.04⨯-⨯-⨯≈≈==纸卷侧面积纸的厚度(厘米) 所以,这卷纸展开后大约71.4米.6、如右图,一个正方体形状的木块,棱长l 米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大大小小的长方体60块.那么,这60块长方体表面积的和是多少平方米?我们知道每切一刀,多出的表面积恰好是原正方体的2个面的面积.现在一共切了(3-1)+(4-1)+(5-1)=9刀,而原正方体一个面的面积1⨯l =1(平方米),所以表面积增加了9⨯2⨯1=18(平方米).原来正方体的表面积为6⨯1=6(平方米),所以现在的这些小长方体的表积之和为6+18=24(平方米).【解析】 7、一个透明的封闭盛水容器,由一个圆柱体和一个圆锥体组成,圆柱体的底面直径和高都是12厘米.其内有一些水,正放时水面离容器顶11厘米,倒放时水面离顶部5厘米,那么这个容器的容积是多少立方厘米?(π3=)【解析】5cm设圆锥的高为x 厘米.由于两次放置瓶中空气部分的体积不变,有: ()22215π611π6π63x x ⨯⨯=-⨯⨯+⨯⨯⨯,解得9x =, 所以容器的容积为:221π612π69540π16203V =⨯⨯+⨯⨯⨯==(立方厘米). 8、如图,有一个边长为20厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小立方体后,表面积变为2454平方厘米,那么挖掉的小立方体的边长是多少厘米?大立方体的表面积是20⨯20⨯6=2400平方厘米.在角上挖掉一个小正方体后,外面少了3个面,但里面又多出3个面;在棱上挖掉一个小正方体后,外面少了2个面,但里面多出4个面;在面上挖掉一个小正方体后,外面少了1个面,但里面多出5个面.所以,最后的情况是挖掉了三个小正方体,反而多出了6个面,可以计算出每个面的面积:(2454-2400)÷6=9平方厘米,说明小正方体的棱长是3厘米.9、一个圆柱体底面周长和高相等.如果高缩短4厘米,表面积就减少50.24平方厘米.求这个圆柱体的表面积是多少?。

六年级奥数-第五讲.几何-立体部分.教师版

六年级奥数-第五讲.几何-立体部分.教师版

六年级奥数-第五讲.几何-立体部分.教师版work Information Technology Company.2020YEAR第五讲 几何——立体部分教学目标:对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.知识点拨:一、长方体和正方体如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.c b aHGFED CBA①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形.如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.二、圆柱与圆锥例题精讲:【例 1】如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【例 2】【解析】我们从三个方向(前后、左右、上下)考虑,新几何体的表面积仍为原立方体的表面积:10⨯10⨯6=600.【例 3】右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)【解析】原正方体的表面积是4⨯4⨯6=96(平方厘米).每一个面被挖去一个边长是1厘米的正方形,同时又增加了5个边长是1厘米的正方体作为玩具的表面积的组成部分.总的来看,每一个面都增加了4个边长是1厘米的正方形.从而,它的表面积是:96+4⨯6=120平方厘米.【巩固】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【解析】对于和长方体相关的立体图形表面积,一般从上下、左右、前后3个方向考虑.变化前后的表面积不变:50⨯50⨯6=15000(平方厘米).【例 4】下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为12厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为14厘米,那么最后得到的立体图形的表面积是多少平方厘米?【例 5】【解析】我们仍然从3个方向考虑.平行于上下表面的各面面积之和:2⨯2⨯2=8(平方厘米);左右方向、前后方向:2⨯2⨯4=16(平方厘米),1⨯1⨯4=4(平方厘米),12⨯12⨯4=1(平方厘米),1 4⨯14⨯4=14(平方厘米),这个立体图形的表面积为:816++4+1+14=1294(平方厘米).【例 6】一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?【解析】锯一次增加两个面,锯的总次数转化为增加的面数的公式为:锯的总次数⨯2=增加的面数.原正方体表面积:1⨯1⨯6=6(平方米),一共锯了(2-1)+(3-1)+(4-1)=6次,6+1⨯1⨯2⨯6=18(平方米).【巩固】(2008年走美六年级初赛)一个表面积为256cm的长方体如图切成27个小长方体,这27个小长方体表面积的和是2cm.【解析】每一刀增加两个切面,增加的表面积等于与切面平行的两个表面积,所以每个方向切两刀后,表面积增加到原来的3倍,即表面积的和为2563168(cm)⨯=.【例 7】如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少【例 8】【例 9】25块积木【解析】当小积木互相重合的面最多时表面积最小.设想27块边长为1的正方形积木,当拼成一个333⨯⨯的正方体时,表面积最小,现在要去掉2块小积木,只有在两个角上各去掉一块小积木,或在同一个角去掉两块相邻的积木时,表面积不会增加,该几何体表面积为54.【例 10】要把12件同样的长a、宽b、高h的长方体物品拼装成一件大的长方体,使打包后表面积最小,该如何打包?【例 11】⑴当b=2h时,如何打包?⑵当b<2h时,如何打包?⑶当b>2h时,如何打包?【解析】图2和图3正面的面积相同,侧面面积=正面周长⨯长方体长,所以正面的周长愈大表面积越大,图2的正面周长是8h+6b,图3的周长是12h+4b.两者的周长之差为2(b-2h).当b=2h时,图2和图3周长相等,可随意打包;当b<2h时,按图2打包;当b>2h 时,按图3打包.图3图2图1hba【巩固】要把6件同样的长17、宽7、高3的长方体物品拼装成一件大的长方体,表面积最小是多少?【解析】考虑所有的包装方法,因为6=1⨯2⨯3,所以一共有两种拼接方式:第一种按长宽高1⨯1⨯6拼接,重叠面有三种选择,共3种包装方法.第二种按长宽高1⨯2⨯3拼接,有3个长方体并列方向的重叠面有三种选择,有2个长方体并列方向的重叠面剩下2种选择,一共有6种包装方法.其中表面积最小的包装方法如图所示,表面积为1034.【例 12】如图,在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体,求这个立体图形的表面积.【解析】我们把上面的小正方体想象成是可以向下“压缩”的,“压缩”后我们发现:小正方体的上面与大正方体上面中的阴影部分合在一起,正好是大正方体的上面.这样这个立体图形的表面积就可以分成这样两部分:上下方向:大正方体的两个底面;四周方向(左右、前后方向):小正方体的四个侧面,大正方体的四个侧面.上下方向:⨯⨯=(平方分米),44464⨯⨯=(平方分米).这个⨯⨯=(平方分米);侧面:55410055250立体图形的表面积为:5010064214++=(平方分米).【例 13】(2008年“希望杯”五年级第2试)如图,棱长分别为1厘米、2厘米、3厘米、5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是_______平方厘米.【解析】(法1)四个正方体的表面积之和为:2222+++⨯=⨯=(平方厘米),(1235)6396234重叠部分的面积为:22222222213(221)(321)(321)39141440⨯+⨯+++++++=+++=(平方厘米),所以,所得到的多面体的表面积为:23440194-=(平方厘米).(法2)三视图法.从前后面观察到的面积为222++=平方厘米,从左右两个面观察53238到的面积为225334=平方厘米.+=平方厘米,从上下能观察到的面积为2525表面积为()++⨯=(平方厘米).3834252194【例 14】把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个立体图形.,求这个立体图形的表面积.【解析】从上下、左右、前后观察到的的平面图形如下面三图表示.因此,这个立体图形的表面积为:2个上面2+个左面2+个前面.上表面的面积为:9平方厘米,左表面的面积为:8平方厘米,前表面的面积为:10平方厘米.因此,这个立体图形的总表面积为:(9810)254++⨯=(平方厘米).上下面左右面前后面【巩固】用棱长是1厘米的立方块拼成如右图所示的立体图形,问该图形的表面积是多少平方厘米【解析】该图形的上、左、前三个方向的表面分别由9、7、7块正方形组成.该图形的表面积等于(977)246++⨯=个小正方形的面积,所以该图形表面积为46平方厘米.【例 15】有30个边长为1米的正方体,在地面上摆成右上图的形式,然后把露出的表面涂成红色.求被涂成红色的表面积.【解析】44(1234)456⨯++++⨯=(平方米).【例 16】棱长是m厘米(m为整数)的正方体的若干面涂上红色,然后将其切割成棱长是1厘米的小正方体.至少有一面红色的小正方体个数和表面没有红色的小正方体个数的比为13:12,此时m的最小值是多少?【例 17】【解析】 切割成棱长是1厘米的小正方体共有3m 个,由于其中至少有一面是红色的小正方体与没有红色面的个数之比为13:12,而131225+=,所以小正方体的总数是25的倍数,即3m 是25的倍数,那么m 是5的倍数.当5m =时,要使得至少有一面的小正方体有65个,可以将原正方体的正面、上面和下面涂色,此时至少一面涂红色的小正方体有5554265⨯+⨯⨯=个,表面没有红色的小正方体有1256560-=个,个数比恰好是13:12,符合题意.因此,m 的最小值是5.【例 18】 有64个边长为1厘米的同样大小的小正方体,其中34个为白色的,30个为黑色的.现将它们拼成一个444⨯⨯的大正方体,在大正方体的表面上白色部分最多可以是多少平方厘米?【例 19】【解析】 要使大正方体的表面上白色部分最多,相当于要使大正方体表面上黑色部分最少,那么就要使得黑色小正方体尽量不露出来.在整个大正方体中,没有露在表面的小正方体有3(42)8-=(个),用黑色的;在面上但不在边上的小正方体有2(42)624-⨯=(个),其中30822-=个用黑色.这样,在表面的44696⨯⨯=个11⨯的正方形中,有22个是黑色,962274-=(个)是白色,所以在大正方体的表面上白色部分最多可以是74平方厘米.【例 20】 三个完全一样的长方体,棱长总和是288厘米,每个长方体相交于一个顶点的三条棱长恰是三个连续的自然数,给这三个长方体涂色,一个涂一面,一个涂两面,一个涂三面.涂色后把三个长方体都切成棱长为1厘米的小正方体,只有一个面涂色的小正方体最少有多少个?【例 21】【解析】 每个长方体的棱长和是288396÷=厘米,所以,每个长方体长、宽、高的和是96424÷=厘米.因为,每个长方体相交于一个顶点的三条棱长恰是三个连续的自然数,所以,每个长方体的长、宽、高分别是9厘米、8厘米、7厘米.要求切割后只有一个面涂色的小正方体最少有多少个,则需每一个长方体按题意涂色时,应让切割后只有一个面涂色的小正方体最少.所以,涂一面的长方体应涂一个87⨯面,有8756⨯=个;涂两面的长方体,若两面不相邻,应涂两个87⨯面,有872112⨯⨯=个;若两面相邻,应涂一个87⨯面和一个97⨯面,此时有()7892105⨯+-=个,所以涂两面的最少有105个;涂三面的长方体,若三面不两两相邻,应涂两个87⨯面、一个97⨯面,有()78894147⨯++-=个;若三面两两相邻,有()()()()()()718171918191146-⨯-+-⨯-+-⨯-=个,所以涂三面的最少有146个.那么切割后只有一个面涂色的小正方体最少有56105146307++=个.【例 22】 把一个大长方体木块表面上涂满红色后,分割成若干个同样大小的小正方体,其中恰好有两个面涂上红色的小正方体恰好是100块,那么至少要把这个大长方体分割成多少个小正方体?【例 23】【解析】 设小正方体的棱长为1,考虑两种不同的情况,一种是长方体的长、宽、高中有一个是1的情况,另一种是长方体的长、宽、高都大于1的情况.当长方体的长、宽、高中有一个是1时,分割后只有一层小正方体,其中有两个面涂上红色的小正方体是去掉最外层一圈的小正方体后剩下的那些.因为有两个面涂上红色的小正方体恰好是100块,设100a b =⨯,那么分成的小正方体个数为()()()()221242104a b ab a b a b +⨯+⨯=+++=++,为了使小正方体的个数尽量少,应使()a b +最小,而两数之积一定,差越小积越小,所以当10a b ==时它们的和最小,此时共有()()102102144+⨯+=个小正方体.当长方体的长、宽、高都大于1时,有两个面涂上红色的小正方体是去掉8个顶点所在的小正方体后12条棱上剩余的小正方体,因为有两个面涂上红色的小正方体恰好是100块,所以长方体的长、宽、高之和是10042331÷+⨯=.由于三个数的和一定,差越大积越小,为了使小正方体的个数尽量少,应该令312227=++,此时共有2227108⨯⨯=个小正方体.因为108144<,所以至少要把这个大长方体分割成108个小正方体.【例 24】 把正方体的六个表面都划分成9个相等的正方形.用红、黄、蓝三种颜色去染这些小正方形,要求有公共边的正方形染不同的颜色,那么,用红色染的正方形最多有多少个?【例 25】【解析】 一个面最多有5个方格可染成红色(见左下图).因为染有5个红色方格的面不能相邻,可以相对,所以至多有两个面可以染成5个红色方格.红红红红红红红红红红红其余四个面中,每个面的四个角上的方格不能再染成红色,至多能染4个红色方格(见上中图).因为染有4个红色方格的面也不能相邻,可以相对,所以至多有两个面可以染成4个红色方格.最后剩下两个相对的面,每个面最多可以染2个红色方格(见右上图).所以,红色方格最多有52422222⨯+⨯+⨯=(个).(另解)事实上上述的解法并不严密,“如果最初的假设并没有两个相对的有5个红色方格的面,是否其他的四个面上可以出现更多的红色方格呢?”这种解法回避了这个问题,如果我们从约束染色方格数的本质原因入手,可严格说明22是红色方格数的最大值.对于同一个平面上的格网,如果按照国际象棋棋盘的方式染色,那么至少有一半的格子可以染成红色.但是现在需要染色的是一个正方体的表面,因此在分析问题时应该兼顾棱、角等面与面相交的地方:⑴⑵⑶⑴如图,每个角上三个方向的3个方格必须染成不同的三种颜色,所以8个角上最多只能有8个方格染成红色.⑵如图,阴影部分是首尾相接由9个方格组成的环,这9个方格中只能有4个方格能染成同一种颜色(如果有5个方格染同一种颜色,必然出现相邻,可以用抽屉原理反证之:先去掉一个白格,剩下的然后两两相邻的分成四个抽屉,必然有一个抽屉中有两个红色方格),像这样的环,在正方体表面最多能找到不重叠的两道(关于正方体中心对称的两道),涉及的18个方格中最多能有8个可染成红色.⑶剩下633839212⨯⨯-⨯-⨯=个方格,分布在6条棱上,这12个格子中只能有6个能染成红色.综上所述,能被染成红色的方格最多能有88622++=个格子能染成红色,第一种解法中已经给出22个红方格的染色方法,所以22个格子染成红色是最多的情况.【例 26】一个长、宽、高分别为21厘米、15厘米、12厘米的长方形.现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少立方厘米?【例 27】【解析】本题的关键是确定三次切下的正方体的棱长.由于21:15:127:5:4=,为了方便起见.我们先考虑长、宽、高分别为7厘米、5厘米、4厘米的长方体.因为754>>,容易知道第一次切下的正方体棱长应该是4厘米,第二次切时,切下棱长为3厘米的正方体符合要求.第三次切时,切下棱长为2厘米的正方体符合要求.那么对于原长方体来说,三次切下的正方体的棱长分别是12厘米、9厘米和6厘米,所以剩下的体积应是:()333⨯⨯-++=(立方厘米).2115121296110712129996663121263912【例 28】 有黑白两种颜色的正方体积木,把它摆成右图所示的形状,已知相邻(有公共面)的积木颜色不同,标A 的为黑色,图中共有黑色积木多少块? 【例 29】A【解析】 分层来看,如下图(切面平行于纸面)共有黑色积木17块.【巩固】这个图形,是否能够由112⨯⨯的长方体搭构而成?【解析】 每一个112⨯⨯的长方体无论怎么放,都包含了一个黑色正方体和一个白色正方体,而黑色积木有17块,白色积木有15块,所以该图形不能够由112⨯⨯的长方体搭构而成.【巩固】有许多相同的立方体,每个立方体的六个面上都写着同一个数字(不同的立方体可以写相同的数字)先将写着2的立方体与写着1的立方体的三个面相邻,再将写着3的立方体写着2的立方体相邻(见左下图).依这样构成右下图所示的立方体,它的六个面上的所有数字之和是多少33223323322323111111【解析】 第一层如下图,第二层、第三层依次比上面一层每格都多1(见下图).765434565第三层654323454第二层第一层343212345上面的9个数之和是27,由对称性知,上面、前面、右面的所有数之和都是27.同理,下面的9个数之和是45,下面、左面、后面的所有数之和都是45.所以六个面上所有数之和是(2745)3216+⨯=.【例 30】 (05年武汉明心杯数学挑战赛)如图所示,一个555⨯⨯的立方体,在一个方向上开有115⨯⨯的孔,在另一个方向上开有215⨯⨯的孔,在第三个方向上开有315⨯⨯的孔,剩余部分的体积是多少?表面积为多少?【解析】 求体积:开了315⨯⨯的孔,挖去31515⨯⨯=,开了115⨯⨯的孔, 挖去11514⨯⨯-=;开了215⨯⨯的孔, 挖去215(22)6⨯⨯-+=,剩余部分的体积是:555(1546)100⨯⨯-++=.(另解)将整个图形切片,如果切面平行于纸面,那么五个切片分别如图:得到总体积为:22412100⨯+=. 求表面积:表面积可以看成外部和内部两部分.外部的表面积为55612138⨯⨯-=,内部的面积可以分为前后、左右、上下三个方向,面积分别为()22515121320⨯⨯+⨯-⨯-⨯=、()2153513132⨯⨯+⨯-⨯-=、()2151511214⨯⨯+⨯-⨯-=,所以总的表面积为138203214204+++=.(另解)运用类似于三视图的方法,记录每一方向上的不同位置上的裸露正方形个数:前后方向:32上下方向:30左右方向:40总表面积为()2323040204⨯++=.【总结】“切片法”:全面打洞(例如本题,五层一样),挖块成线(例如本题,在前一层的基础上,一条线一条线地挖),这里体现的思想方法是:化整为零,有序思考!【巩固】(2008年香港保良局第12届小学数学世界邀请赛)如图,原来的大正方体是由125个小正方体所构成的.其中有些小正方体已经被挖除,图中涂黑色的部分就是贯穿整个大正方体的挖除部分.请问剩下的部分共有多少个小正方体?第8题【解析】对于这一类从立体图形中间挖掉一部分后再求体积(或小正方体数目)的题目一般可以采用“切片法”来做,所谓“切片法”,就是把整个立体图形切成一片一片的(或一层一层的),然后分别计算每一片或每一层的体积或小正方体数目,最后再把它们相加.采用切片法,俯视第一层到第五层的图形依次如下,其中黑色部分表示挖除掉的部分.第1层第2层第3层第4层第5层从图中可以看出,第1、2、3、4、5层剩下的小正方体分别有22个、11个、11个、6个、22个,所以总共还剩下22111162272++++=(个)小正方体.【巩固】一个由125个同样的小正方体组成的大正方体,从这个大正方体中抽出若干个小正方体,把大正方体中相对的两面打通,右图就是抽空的状态.右图中剩下的小正方体有多少个【解析】解法一:(用“容斥原理”来解)由正面图形抽出的小正方体有5525⨯=个,由侧面图形抽出的小正方体有5525⨯=个,正面图形和⨯=个,由底面图形抽出的小正方体有4520侧面图形重合抽出的小正方体有1221228⨯+⨯+⨯=个,正面图形和底面图形重合抽出的小正方体有13227⨯+⨯=个,底面图形和侧面图形重合抽出的小正方体有⨯+⨯+⨯=个,三个面的图形共同重合抽出的小正方体有4个.根据容斥原理,1211227-=,所以右图中剩++---+=,所以共抽出了52个小正方体.1255273252520877452下的小正方体有73个.注意这里的三者共同抽出的小正方体是4个,必须知道是哪4块,这是最让人头疼的事.但你可以先构造空的两个方向上共同部分的模型,再由第三个方向来穿过“花墙”.这里,化虚为实的思想方法很重要.解法二:(用“切片法”来解)可以从上到下切五层,得:⑴从上到下五层,如图:⑵或者,从右到左五片,如图:请注意这里的挖空的技巧是:先认一种方向.比如:从上到下的每一层,首先都应该有第一层的空四块的情况,即——如果挖第二层:第(1)步,把中间这些位置的四块挖走如图:第(2)步,把从右向左的两块成线地挖走.(请注意挖通的效果就是成线挖去),如图:第(3)步,把从前向后的一块(请注意跟第二层有关的只是一块!)挖成线!如图:【例 31】(2009年迎春杯高年级组复赛)右图中的⑴⑵⑶⑷是同样的小等边三角形,⑸⑹也是等边三角形且边长为⑴的2倍,⑺⑻⑼⑽是同样的等腰直角三角形,⑾是正方形.那么,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的倍.⑷⑶⑵⑴⑾⑽⑼⑻⑺⑹⑸【解析】本题中的两个图都是立体图形的平面展开图,将它们还原成立体图形,可得到如下两图:其中左图是以⑴⑵⑶⑷为平面展开图的立体图形,是一个四个面都是正三角形的正四面体,右图以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形,是一个不规则图形,底面是⑾,四个侧面是⑺⑻⑼⑽,两个斜面是⑸⑹.对于这两个立体图形的体积,可以采用套模法来求,也就是对于这种我们不熟悉的立体图形,用一些我们熟悉的基本立体图形来套,看看它们与基本立体图形相比,缺少了哪些部分.由于左图四个面都是正三角形,右图底面是正方形,侧面是等腰直角三角形,想到都用正方体来套.对于左图来说,相当于由一个正方体切去4个角后得到(如下左图,切去1ABDA 、1CBDC 、111D AC D 、111B AC B );而对于右图来说,相当于由一个正方体切去2个角后得到(如下右图,切去1BACB 、1DACD ).D 1C 1B 1A 1D CBAABCDA 1B 1C 1D 1假设左图中的立方体的棱长为a ,右图中的立方体的棱长为b ,则以⑴⑵⑶⑷为平面展开图的立体图形的体积为:3231114233a a a a -⨯⨯⨯=,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积为3231122233b b b b -⨯⨯⨯=. 由于右图中的立方体的棱长即是题中正方形⑾的边长,而左图中的立方体的每一个面的对角线恰好是正三角形⑴的边长,通过将等腰直角三角形⑺分成4个相同的小等腰直角三角形可以得到右图中的立方体的棱长是左图中的立方体的棱长的2倍,即2b a =.那么以⑴⑵⑶⑷为平面展开图的立体图形的体积与以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积的比为:()33331212::21:163333a b a a =⨯=,也就是说以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的16倍.【例 32】 图⑴和图⑵是以正方形和等边三角形为面的立体图形的展开图,图中所有的边长都相同.请问:图⑴能围起来的立体图形的体积是图⑵能围起来的立体图形的体积的几倍?【例 33】图⑴图⑵【解析】首先,我们把展开图折成立体图形,见下列示意图:图⑴图⑵对于这类题目,一般采用“套模法”,即用一个我们熟悉的基本立体图形来套,这样做基于两点考虑,一是如果有类似的模型,可以直接应用其计算公式;二是如果可以补上一块或者放到某个模型里面,那么可以从这个模型入手.我们把图⑴中的立体图形切成两半,再转一转,正好放进去!我们看到图⑴与图⑶的图形位置的微妙关系:1和图3一致!60°图⑶图⑷由图⑷可见,图⑴这个立体的体积与图⑶这个被切去了8个角后的立体图形的体积相等.假设立方体的1条边的长度是1,那么一个角的体积是1111112222348⨯⨯⨯⨯=,所以切掉8个角后的体积是1518486-⨯=.再看图⑵中的正四面体,这个正四面体的棱长与图⑶中的每一条实线线段相等,所以应该用边长为12的立方体来套.如果把图⑵的立体图形放入边长为12的立方体里的话是可以放进去的.12这是切去了四个角后的图形,从上面的分析可知一个角的体积为148,所以图⑵的体积是:1111142224824⨯⨯-⨯=,那么前者的体积是后者的5120624÷=倍.【例 34】 如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的3个圆柱组成一个物体.问这个物体的表面积是多少平方米?(π取3.14)1110.511.5【解析】 从上面看到图形是右上图,所以上下底面积和为22 3.14 1.514.13⨯⨯=(立方米),侧面积为2 3.14(0.51 1.5)118.84⨯⨯++⨯=(立方米),所以该物体的表面积是14.1318.8432.97+=(立方米).【例 35】 有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?【例 36】【解析】 涂漆的面积等于大圆柱表面积与小圆柱侧面积之和,为266π10π()24π560π18π20π98π307.722⨯+⨯⨯+⨯=++==(平方厘米).【例 37】 (第四届希望杯2试试题)圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米.(结果用π表示)【解析】 当圆柱的高是12厘米时体积为210300π()122ππ⨯⨯=(立方厘米)。

小学奥数第605讲 立体几何综合

小学奥数第605讲 立体几何综合

学科培优 数学 立体几何综合 学生姓名授课日期 教师姓名授课时长 知识定位本讲复习已经学过的立体图形的相关知识和解题技巧,主要有:长方体、立方体、圆柱、圆锥的体积及表面积求解,立体几何计数及多面体顶点与棱以及表面的关系。

重难点在于:1.不规则立体图形的表面积或体积求解2.多面体的顶点与棱数计数3.体积的等量代换主要的考点:1.规则立体图形的表面积(侧面积)与体积计算2.不规则立体图形的表面积与体积计算3.染色问题4.立体图形的三视图与展开图知识梳理主要知识点 立体几何⑴规则立体图形的表面积和体积公式长方体:体积:长宽高 表面积:(长宽+宽高+长高)立方体:体积:棱长的立方 表面积:棱长的平方6圆柱: 体积:2r h π 侧面积:2rh π圆锥: 体积:213r h π⑵不规则立体图形的表面积整体观照法⑶体积的等积变形①水中浸放物体:V 升水=V 物②测啤酒瓶容积:V=V 空气+V 水⑷三视图与展开图最短线路与展开图形状问题⑸染色问题几面染色的块数与“芯”、棱长、顶点、面数的关系。

例题精讲【试题来源】【题目】一个长方体的表面积是33.66平方分米,其中一个面的长是2.3分米,宽是2.1分米,它的体积是_____立方分米.【答案】1101913 【解析】长方体的高是(33.66-2.1×2.3×2)÷2÷(2.1+2.3)=1130(分米). 长方体的体积是2.1×2.3 × 1130=1101913(立方分米). 【知识点】立体几何综合【适用场合】当堂例题【难度系数】1【试题来源】【题目】右图是一个棱长为2厘米的正方体,在正方体上面的正中向下挖一个棱长为1厘米的正方形小洞;接着在小洞的底面正中再挖一个棱长为21厘米的小洞;第三个小洞的挖法与前两个相同,棱长为41厘米.那么最后得到的立体图形的表面积是 平方厘米【答案】29.25(平方厘米)【解析】2×2×6+1×1×4+21×21×4+41×41×4=29.25(平方厘米) 【知识点】立体几何综合【适用场合】当堂例题【难度系数】2【试题来源】【题目】把一个长25厘米,宽10厘米,高4厘米的长方体木块锯成若干个大小相等的正方体,然后拼成一个大的正方体.这个大正方体的表面积是_____平方厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体图形
⑴ 立体图形的表面积和体积公式
长方体和正方体
如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.
c b a
H
G
F
E
D B
A
①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.
③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.
二、圆柱与圆锥
【例 1】 如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,
那么新的几何体的表面积是多少?
改。

又是多少?
【例 2】右图是一个边长为4厘米的正方体,分别在前后、左右、上
下各面的中心位置挖去一个边长l厘米的正方体,做成一种
玩具.它的表面积是多少平方厘米?(图中只画出了前面、右
面、上面挖去的正方体)
练习:在一个棱长为50厘米的正方体木块,在它的八个角上各挖去
一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多
少?
【例 3】下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为
1
2
厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同
为1
4
厘米,那么最后得到的立体图形的表面积是多少平方厘米?
【例 4】一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之
和是多少?
(锯一次增加两个面)
练习.一个表面积为2
56cm的长方体如图切成27个小长方体,这27个小长方体表面积的和是2
cm.
表面积最小:互相重合的面最多时表面积最小
【例 5】如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?
体积:
例1. 如图11—6,从长为13厘米,宽为9厘米的长方形硬纸板的四角去掉边长2米的正方形,然后,沿虚线折叠成长方体容器.这个容器的体积是多少立方厘米?
例2. 某工人用薄木板钉成一个长方体的邮件包装箱,并用尼龙编织条如图11—9所示在三个方向上加固.所用尼龙编织条的长分别为365厘米、405厘米、485厘米.
若每个尼龙条加固时接头处都重叠5厘米,则这个长方体包装箱的体积是多少立方米?
⑵不规则立体图形的表面积整体观照法
例1. 如图,在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体,求这个立体图形的表面积.
例2. 如图,棱长分别为1厘米、2厘米、3厘米、5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是_______平方厘米.
例3.把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个立体图形.,求这个立体图形的表面积.
例4.用棱长是1厘米的立方块拼成如右图所示的立体图形,问该
图形的表面积是多少平方厘米?
例5。

下图是由18个边长为1厘米的小正方体拼成的,求它的表面积.
⑶体积的等积变形①水中浸放物体:V升水=V物②测啤酒瓶容积:V=V空气+
V水
例1. 有大、中、小3个正方形水池,它们的内边长分别是6米、3米、2米.把两堆碎石分别沉没在中、小水池的水里,两个水池的水面分别升高了6厘米和4米.如
果将这两堆碎石都沉没在大水池的水里,大水池的水面升高了多少厘米
例2.在一只底面半径是10厘米的圆柱形瓶中,水深是8厘米,要在瓶中放入长和宽都是8厘米,高是15厘米的一块铁块。

把铁块竖放在水中,水面上升几厘米?
在一个圆柱形储水桶里,放进一段半径是5厘米的圆钢,如果把它全部放入水里,
桶里的水面就上升9厘米,如果把水中圆钢露出8厘米长,那么这时桶里的水面就
下降4厘米。

问这段圆钢的体积是多少?
⑷视图与展开图最短线路与展开图形状问题
例1在下面的三个图中,有一个不是右面正四面体的展开图,请将它找出来。

例2在下面的四个展开图中,哪一个是右图所示立方体的展开图?
例3右图是一个立方体纸盒的展开图,当折叠成纸盒时,1 点与哪些
点重合?
例4。

在下列各图中,哪些是正方体的展开图?
例5。

左下图是图(1)(2)(3)中哪个正方体的展开图?
例6。

一个拧紧瓶盖的瓶子里面装着一些水(如图),由图中的数据可推知瓶子的容积是_______ 立方厘米.(π取3.14)
8
(单位:厘米)
4
10
6
例7.一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈
),如图.已知它的容积为26.4π立方厘
米.当瓶子正放时,瓶内的酒精的液面高为6厘米;瓶子倒放时,空余部分的高为2厘米.问:瓶内酒精的体积是多少立方厘米?合多少升?
2
6
例8。

一个酒瓶里面深30cm ,底面内直径是10cm ,瓶里酒深15cm .把酒瓶塞紧后使其瓶口向下倒立这时酒深25cm .酒瓶的容积是多少?(π取3)
25
30
15
⑸ 染色问题 几面染色的块数与“芯”、棱长、顶点、面数的关系。

例1。

右图是由120块小立方体构成的4×5×6的立方体,如果将其表面涂成红色,那么其中一面、二面三面被涂成红色的小立方体各有多少块?
一般地,当a,b ,c都不小于2时,对于a ×b ×c 的立方体:三面涂有红色的小立方体有8块;两面涂有红色的小立方体的块数是: [(a-2)+(b —2)+(c-2)]×4;一面涂有红色的小立方体的块数是:[(a—2)×(b —2)+(a -2)×(c —2)+(b —2)×(c -2)]×2;没有被涂上红色的小立方体的块数是:(a —2)×(b —2)×(c-2)。

例2. 将一个表面涂有红色的长方体分割成若干个体积为1厘米3 的小正方体,其中一点红
色都没有的小立方体只有3块。

求原来长方体的体积。

例3.棱长是m 厘米(m 为整数)的正方体的若干面涂上红色,然后将其切割成棱长是1厘米的小正方体.至少有一面红色的小正方体个数和表面没有红色的小正方体个数的比为13:12,此时m 的最小值是多少?
例4. 把一个大长方体木块表面上涂满红色后,分割成若干个同样大小的小正方体,其中恰好有两个面涂上红色的小正方体恰好是100块,那么至少要把这个大长方体分割成多少个小正方体?
例3.有30个边长为1米的正方体,在地面上摆成右上图的形式,然后把露出的表面涂成红色.求被涂成红色的表面积.
【例 6】 把正方体的六个表面都划分成9个相等的正方形.用红、黄、蓝三种颜色去染这
些小正方形,要求有公共边的正方形染不同的颜色,那么,用红色染的正方形最多有多少个?
【解析】 一个面最多有5个方格可染成红色(见左下图).因为染有5个红色方格的面不能相
邻,可以相对,所以至多有两个面可以染成5个红色方格.



红红
红红




其余四个面中,每个面的四个角上的方格不能再染成红色,至多能染4个红色方格(见上中图).因为染有4个红色方格的面也不能相邻,可以相对,所以至多有两个面可以染成4个红色方格.最后剩下两个相对的面,每个面最多可以染2个红色方格(见右上图).所以,红色方格最多有52422222
⨯+⨯+⨯=(个).。

相关文档
最新文档