高分子材料改性课程论文

高分子材料改性课程论文
高分子材料改性课程论文

高分子材料改性课程论文

专业:材料科学与工程

学生姓名:徐敏

学号:1205101032

导师:张腾

聚丙烯的亲水性改善研究

摘要:聚丙烯(PP)作为通用塑料,以产量大、应用面广以及物美价廉而著称,但聚丙烯具有非极性

和结晶性,其与极性聚合物、无机填料及增强材料等相容性差,其染色性、粘接性、抗静电性、亲水性也较差,这些缺点制约了聚丙烯的进一步推广应用。本文利用聚丙烯固相接枝丙烯酸(AA)、聚丙烯与乙烯-丙烯酸共聚物(EAA)共混和聚丙烯中空纤维膜的表面活性剂浸渍处理,三个途径分别对聚丙烯进行亲水改性研究。

关键词:聚丙烯;亲水性;接触角;共混改性;

因为PP不含任何极性基团而难以和金属"玻璃粘结,难以和其他许多高聚物"无机填料相容; 也难于进行印刷染色等!这些缺点限制了聚丙烯在某些领域中的应用!表面接枝法可以将强极性的亲水基团引入薄膜的表面,并且由于接枝链与基体薄膜以化学键相联! 改性后的表面具有极性和亲水性,从根本上改变现有的塑料薄膜印刷技术!PP接枝改性产物还可经压膜" 磺化"碱洗等工艺制得亲水性较好的离子交换膜,与亲水性差的膜相比具有容量大"高洗脱率"高再生率的特征!

聚丙烯(PP) 材料作为第三大通用塑料,具有机械性能、耐腐蚀性及电绝缘性优良,无毒性、易加工及价格低廉等优点,受到广大学者及工业领域的极大青睐。其薄膜、纤维、非织造布、片材及各种制品在日常生活中被大量应用。其中,聚丙烯微孔膜主要用于锂离子电池隔离膜[1]、废水处理、气体分离等领域。但是由于聚丙烯表面没有极性基团,其表面能很小,临界表面张力只有( 31 ~34) ×10–5 N/ cm,所以它的表面润湿性和亲水性很差,这不仅导致聚丙烯微孔膜的水通量小,而且导致其表面和溶质:之间存在憎水性相互作用,进一步导致膜污染现象。膜污染将导致在水处理过程中膜清洗的次数和维护费用增加,甚至会产生不可逆的破坏,降低膜的使用寿命,从而限制了其在工业中的应用。聚丙烯纤维( 丙纶) ,具有质地轻、强力高、弹性好、耐腐蚀、不起球等优点,其原料丙烯来源丰富,生产成本较低。但由于聚丙烯分子结构中没有亲水性基团,且结晶度很高,这些特性使印墨、胶黏剂、涂饰剂在其表面因接触角大而不能充分润湿,从而难以染色等,所以在纺

织领域的应用受到限制。聚丙烯的低表面能也使其与极性聚合物、无机填料及增强材料等相容性差,这些缺点大大制约了聚丙烯的进一步推广应用。另外,聚丙烯非织造布是非织造布行业中发展最快的品种之一,其具有良好的透气性,极低的回潮率,且抗张强度、抗弯曲强度、耐磨损等性能好等优点。目前广泛应用于医疗卫生材料、土工布、工业过滤材料等领域,这些都对材料的亲水性能有相应的要求。通过对聚丙烯进行亲水改性,可以得到抗污染、抗静电以及易染色的薄膜、纤维或者相容性较好的复合材料等。因而设法提高聚丙烯的亲水性,在实际工业应用中有着重要意义,也就自然成为现在的研究重点。本文综述了目前对聚丙烯亲水改性的主要方法。

1 聚丙烯亲水性测试方法

1. 1 接触角:表征亲水性最常用的方法就是测定其表面的液体( 可以是水或有机溶剂) 的接触角,接触角包括静态接触角和动态接触角。在静止液体的前沿形成的角称为静态接触角,在移动着的液体的前沿形成的角称为动态接触角。静态接触角可由界面能量的平衡测得,而动态接触角则由界面推动力和黏滞力之间的平衡测得。

1. 2 表面张力:由于可逆地生成固体高聚物的表面很困难,所以固体高聚物的表面张力不能直接测定。其中非直接方法主要包括液体同系物法(与摩尔质量有关) ,高聚物熔融法(与温度有关) ,状态方程法,调和平均法,临界表面张力以及其他方法。

1. 3 X 射线光电子能谱:( XPS) XPS 是以软性X射线作激发源的光电子光谱分析法,能够进行最外层表面区域(数埃)的分析,能够进行除H 和He 以外的全体元素分析,还能得到与化学键状态有关的信息,并且具有灵敏度高,分析快的优点,是一种高分子表面的重要分析方法。利用这种方法可以根据改性后材料表面的极性亲水基团数量的变化来表征材料的亲水性能变化。

1. 4 吸水率:在一定温度和湿度条件下,测定改性后材料吸水量与时间的关系。可以测定其吸水速率和其基线吸水能力用以表征其亲水性。

1. 5 其他方法:以上几种是表征亲水性的主要方法,还有一些文献报道了一些其他的表征方法,如对于与乙烯丙烯酸( EAA) 共混的共混体系,由于EAA 常用作黏合剂,也有文献测定其黏结强度,以表征其极性,也可作为表征亲水性的一个辅助手段。

2 聚丙烯亲水改性方法

2. 1 本体改性:本体改性是通过在本体聚合过程中加入亲水性极性单体达到改性的目的。国外Targo 公司和BASF、Amoco 等公司都已经生产出茂金属聚丙烯用于纤维和非织造领域,制得的产品线密度更小、微孔更小,因此有很好的吸湿透气性[2]。

2. 2 表面处理法:表面处理法主要包括表面化学氧化处理和等离子体表面处理方法。化学氧化处理法指用具有氧化性的化学试剂或气体对聚丙烯进行处理,增加聚丙烯表面的粗糙程度,从而提高表面极性,达到改善其表面亲水性能的目的。秦卫龙等[3]采用氯酸钾、氯酸钠、高锰酸钾、重铬酸钾、重铬酸钠和次氯酸钠等氧化剂对PP进行了表面处理,结果表明亲水化处理可使接触角降低约30%。用光学显微镜观察,发现处理后的表面粗糙度增大。此种方法简单,成本较低,但是改性以改变表面粗糙度为主,极性基团被引入较少,改性效果一般。低温等离子体改性是一种“干式化学”技术,在保持其本体性能的同时,能显著改善材料的表面性质。等离子体的性质直接影响材料的改性效果。它不仅与等离子体产生的功率、气体类型、工作压强等工艺参数有关,也与所用的设备结构、频率、电极的排布方式等设备参数有关。当用等离子体处理聚丙烯材料时,将聚丙烯材料暴露于非聚合性气体等离子体中,利用等离子体中的活性离子轰击聚丙烯材料表面,使聚丙烯材料表面分子结构发生变化,在材料表面形成—COOH、—NH2等极性基团的作用机理来提高聚丙烯的亲水性。利用低温等离子体技术改善聚丙烯的亲水性已取得了一些重要的研究成果。唐丽华等[4]利用常压介质阻挡放电( APDBD) 和低压辉光放电( LPGD) 等离子体分别对聚丙烯非织造布进行亲水改性。研究分析了气体种类、压强、放电频率、电压、处理时间以及非织造布物理结构等因素对亲水改性的影响

规律。结果表明: 氧气等离子体能够比氩气等离子体更有效地提高非织造布的吸水率和吸水速率; 增大放电频率和电压以及适当延长处理时间,均可显著提高材料的亲水改性效果; 样品的比表面积越大,体积密度越小,材料的吸水能力越高。在低温下聚丙烯用NH3等离子体处理进行表面改性,测试结果显示水接触角有明显降低,且纯水通量在处理时间为1 min 时达到最大值,BSA 吸附测试也表明处理1 min 后的膜经水洗和酸洗后,纯水通量分别恢复了51. 1%和60. 7%。

2. 3 接枝改性:接枝改性的方法是在非极性聚合物分子链上引入极性官能团,使聚合物表面上生长出一层新的有特殊性能的接枝层,从而达到显著的表面改性效果,对聚丙烯的表面接枝改性方法主要包括光引发法、等离子体辐射法及化学试剂引发法等。常用的接枝单有: 马来酸酐、丙烯酸、丙烯酰胺、甲基丙烯酸甲酯以及氮氮亚甲基双丙烯酰胺等。光引发接枝改性通常需要两步,先经光还原把引发基团引入材料表面,然后再将材料放入单体溶液中,在光或热活化下进行接枝聚合。Yu等[5]通过光引发将丙烯酰胺接枝到聚丙烯中空纤维膜表面进行亲水改性,测试结果表明,当接枝率为278. 4%时,水接触角仅为34. 9°,比未经接枝的膜的水接触角几乎要低94°,且水通量也有提高。Yang [6]]等通过在光引发下在聚丙烯微孔膜表面接枝2-胺乙基甲基丙烯酸来固定右旋糖苷,测试结果也表明水接触角有明显降低。Yang[7]等采用紫外线辐射引发在聚丙烯表面接枝两性聚合物聚磺基甜菜碱丙烯酸甲酯来改善聚丙烯膜的亲水性,从而提高膜的抗生物污染性能。实验发现改性后的膜亲水性有很大的提高,接触角从145°降低到15°,并且水通量也提高了4 倍。采用等离子体技术处理聚丙烯表面,然后进行接枝改性的方法已得到大量研究。周爱军等[8]采用离子体技术对聚丙烯材料进行表面处理,并利用熔融挤出接枝马来酸酐的方法对其进行亲水改性。结果表明: 通过等离子体处理后接枝马来酸酐的方法,聚丙烯接触角可以降至58. 9°,进一步用等离子体表面处理,可以使材料接触角降至45. 6°,但时效性仍然存在。Kou等[9]在氮气等离子体处理下,在聚丙烯微孔膜表面进行了α-烯丙基葡糖苷接枝亲水改性,测试表明随着接枝量从0到

3. 46%,水接触角从120°

降低到36°。并且膜的纯水通量先增加后降低,当接枝量为2. 50%时,纯水通量达到最大值3. 82×103kg/ ( m2·h) 。Yang 等在常压下对聚丙烯微孔膜表面进行介质阻挡放电等离子体处理进行界面交联,选择聚N,N-甲基丙烯酸二甲胺乙酯( PDMAEMA) 和聚二氯亚二甲苯两种季胺化交联试剂来形成正电荷表层,测试结果表明水接触角从145°下降到20°,在最佳条件下水通量也提高了3 倍。

化学试剂引发是常规表面接枝方法。李承斌等[10]运用表面吸附法使聚丙烯微孔膜表面覆盖上引发剂,然后浸入氮氮亚甲基双丙烯酰胺( MBA) 水溶液在一定温度下进行接枝反应。研究发现接枝后的聚丙烯膜亲水性能有了极大的提高,其中接枝改性后接触角与未接枝的相比降低90°以上,吸水率最多提高了12%,但是水通量有所下降。Xu等[11]采用过氧化二苯甲酰为引发剂,甲苯为溶剂,在熔融挤出-拉伸法制备的聚丙烯中空纤维表面接枝丙烯酸,当接枝度大于20%,接触角接近0°。Grag[12]将聚丙烯微孔膜用硝酸铈铵引发剂引发,50 ℃下与丙烯酰胺发生接枝聚合反应,得到聚丙烯接枝丙烯酰胺微孔膜。FTIR 和ESCA 测试证明膜的表面和孔的内壁上都接枝上了丙烯酰胺,接触角由100°降为51°,水解后变为38°。魏玉坤等[13]研究了以1,1-二叔丁基过氧化-3,3,5 -三甲基环己烷( LQ-CH335) 为引发剂,马来酸酐( MAH) 、丙烯酸( AA) 、α-甲基丙烯酸( MAA) 、丙烯酰胺( AM) 和甲基丙烯酸水甘油酯( GMA) 为接枝单体,苯乙烯( St) 为接枝共聚单体,通过在双螺杆挤出机中熔融接枝改性PP 后亲水性能的变化。研究结果表明,添加极性单体可以有效降低水接触角,当GMA、St 和LQ-CH335 的质量分数分别为PP 的1. 0%、1. 0% 和0. 3% 时,水接触角从108. 6°降低到71. 2°。

2. 4 臭氧处理:臭氧直接处理聚合物,能够在表面形成羰基、羧基等含氧基团,也可以在表面引发接枝聚合反应,从而增加膜的亲水性能。李维红等[14]采用臭氧处理聚丙烯微孔膜,在其表面引入过氧化物,然后通过过氧化物的分解引发丙烯酸单体在微孔膜表面接枝。研究结果表明丙烯酸接枝微孔膜表现出良好的亲水性与溶胀性。Wang[15]等利用臭氧在PP 膜表面引入过氧基团,然后浸入甲

基丙烯酸羟乙基( HEMA) 溶液,在FeCl2·2H2O 的催化作用下引发接枝反应。实验表明臭氧处理5 min,聚丙烯微孔膜的机械强度保持不变,又被水完全润湿,对pH=7. 0,浓度为2 000 mg/L 的牛血清蛋白( BSA) 的通量恢复为95%,具有良好的抗污染能力。

2. 5 共混法:共混是PP 改性工业中普遍采用的有效手段之一。共混法是以不同聚合物间性质的互补性与协同效应来改善材料的性质,采用聚丙烯和亲水性或极性聚合物共混改性是提高聚丙烯亲水性的方法之一,共混后可以使聚丙烯的亲水性能得到有效地改善。在共混过程中,助剂的选择及共混工艺条件等都会对聚丙烯的亲水改性效果产生极大的影响。共混工艺条件如共混方法、共混温度及共混时间等的变化,会引起共混体系的形态变化,使得共混物的性能也发生相应的变化。该法成本较低,工艺简单,技术灵活性大,在国内外都有很好的发展前景。Chung[16]将聚丙烯( PP) 与改性过的羟基化的聚丙烯( PP—OH) 共混。结果表明,改性过的PP/PP—OH 微孔膜对水的接触角为80°,压力为0. 2 MPa 时,水通量达到25 L/( m2·h) ,对75 000 g/mol的葡萄糖的截留率为98%,程春祖等[17]提高了抗污染能力。程春祖等将亲水助剂( 十二烷基苯磺酸钠和聚乙二醇辛基苯基醚)与聚丙烯共混挤出造粒制得改性聚丙烯,研究结果表明,改性后聚丙烯的结晶、流变等性能都基本不受所加入助剂的影响,但具有更好的亲水性。

2. 6 表面吸附法:亲水性小分子或亲水性高分子及表面活性剂等都可以通过物理吸附附着在聚丙烯微孔膜的表面上,达到亲水改性的效果。Xie等[18]将聚丙烯中空纤维膜用丙酮清洗,真空干燥后,浸没在吐温20的溶液中,一段时间后真空干燥,测试结果表明随着吸附吐温20量的增加,聚丙烯膜的亲水性能增强。

2. 7 磺化反应:磺化反应是磺酸基( —SO3 H) 取代聚烯烃分子中的氢原子生成烃基磺酸的反应。聚合物分子中引入磺酸基后,可提高聚合物表面的极性,增加聚合物表面的亲水性。与接枝、等离子体改性相比,磺化反应对于聚烯烃膜亲水性的改善效果要明显,具有可以在室温下进行、操作

方便、适于间歇工艺生产、反应不可逆等优点但是。对一般聚合物磺化后的产物耐热性及耐化学性都比较差,机械强度降低,使用的条件受限。冯杰等[19]通过磺化反应向PP 大分子引入磺酸基来改善其亲水性,实验以氯磺酸为磺化剂,对聚丙烯膜进行磺化反应处理。实验结果表明: 通过磺化反应,能够在聚丙烯表面引入极性基团,并且能够增加表面粗糙度,亲水性增强明显,接触角最低为60°。

2.8表面包扭处理法:以甲基乙基纤维素的乙醇溶液浸润微孔聚丙烯中空纤维, 亲水性得以改善, 水流过速率可提高34%。以乙烯一乙烯醇一乙烯醋酸酷的乙醇溶液浸泡处理过的微孔聚丙烯膜, 具有稳定的亲水性能。将聚丙烯睛或聚氨醋包覆在微孔聚丙烯中空纤维表面, 因消除了表面的空气, 亲水性能得到改善。

结语

由此可见,上述聚丙烯材料的亲水处理方法各具特点,处理后的聚丙烯材料的接触角降低,都在一定程度上可以达到亲水化的效果。但是这些方法在某些方面也存在以下不足,聚丙烯材料的亲水改性方法有待进一步探索:

1.利用等离子体、光引发等将亲水性单体接枝聚合到材料表面上,这些方法突出的缺点是需要的

设备较复杂,费用较高,不能大规模运用。因而探索一种简单易行、容易实现工业化的改性技术就尤为重要。

2.对于聚丙烯膜来说,利用引发剂引发接枝聚合物容易堵塞膜的微孔,使膜的孔隙率下降,虽然

亲水性提高,但水通量下降。因而最有前景的改性技术就是在提高膜的亲水性的同时又不降低膜的水通量。

3.采用共混或表面吸附的方法能够提高聚丙烯材料的亲水性,但是由此所得材料的稳定性较差,

且由于亲水剂和聚丙烯之间是物理作用,随着时间的延长,亲水效果逐渐减弱,直至消失。等

离子体具有较高的能量密度,快速高效产生活性成分,初期效果十分明显,但随着材料放置时间的增长,材料表面的极性和亲水性会有所减弱甚至丧失。因此材料表面亲水基团更有效持久的固定是亲水化处理的关键。

4.目前大多只是集中对材料的表面进行改性,表面改性对材料亲水化改性的效果较差。相比较

而言,对聚丙烯材料本身改性则可避免这些不利因素,亲水改性效果也较为持久,因而从材料本身进行改性,将是最有应用前景的方法。

参考文献

[ 1 ] GINESTE J L,POURCELLY G.Polypropylene separator grafted with hydrophilic monomers for lithium batteries[J].J Membr Sci,1995,107 ( 1-2) : 155-164.

[ 2 ] 刘松涛,晏雄.改善丙纶吸湿性能的方法[J].产业用纺织品,2004 ( 6) : 35-38.

[ 3 ] 秦卫龙,王军,赵毅,等.液相化学处理法提高聚丙烯材料的表面亲水性[J].中国塑料,2005,19 (7): 64-67.

[ 4 ] 唐丽华,任婉婷,李鑫,等.低温等离子体亲水改性聚丙烯熔喷非织造布[J].纺织学报,2010 ( 4) : 30-35.

[ 5 ] YU H Y,XU Z K,LEI H,et al.Photoinduced graft polymerization of acrylamide on polypropylene microporous membranes for the improvement of antifouling characteristics in a submerged membrane-bioreactor[J].Sep Purifi Technol,2007,53 ( 1) : 119-125.

[ 6 ] YANG Q,XU Z K,UIBRICHT M.Surface modification of polypropylene microporous membrane by the immobilization of dextran[J].Chem J Chinese U,2005,26 ( 1) : 189-191.

[ 7 ] YANG Y F,LI Y,LI Q L,et al.Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for anti-biofouling [J].J Membr Sci,2010,362 ( 1-2) : 255-264.

[ 8 ] 周爱军,刘端,朱仕惠,等.等离子体技术用于回收聚丙烯亲水改性的研究[J].塑料,2009,

38 ( 1) : 65 -67.

[ 9 ] KOU R Q,XU Z K,Tao H D.et al.Surface modification of microporous polypropylene membranes by plasma-induced graft polymerization ofα-allyl glucoside [J].Langmuir,2003,19 ( 17) : 6869 –6875.

[10] 李承斌,尹艳红,王辉,等.MBA接枝聚丙烯微孔膜的亲水改性研究[J].化学研究与应用,

2010,22 ( 11) : 1371-1375.

[11] XU Z K,WANG J L,SHEN L Q,et al.Microporous polypropylene hollow fiber membrane-Part

I.Surface modification by the graft polymerization of acrylic acid [J].J Membr Sci,2002,196 ( 2) : 221-229.

[12] GARG D H,LENK W,BERWALD S,et al.Hydrophilization of microporous polypropylene celgard

( R ) membranes by the chemical modification technique [J].J Appl Polym Sci,1996,60 ( 12) :

高分子材料毕业设计

ChuZhou Vocational Technology College 高分子材料应用技术专业 毕业论文 课题名称:多层共挤高阻隔薄膜的工艺流程 学号:QQ:359973519 班级:09级高分子材料应用技术 姓名: DChris 指导教师:老师好 2011年10月30日

目录 摘要 前言 第一章多层共挤高阻隔薄膜的概述 第一节高阻隔薄膜的概念及特点 1.1.1 概念 1.1.2 产品特点 1.1.3 应用方向 第二节高阻隔薄膜产品的成分 1.2.1 阻隔树脂 1.2.2 肉类包装膜(七层高阻隔薄膜)结构分析 1.2.3 EVOH的性能与特点 第三节肉类包装膜 1.3.1 肉品包装的必要性 1.3.2 肉类包装膜产品特点 第二章多层共挤高阻隔薄膜的生产工艺 第一节多层共挤高阻隔薄膜的工艺介绍 2.1.1 生产工艺 2.1.2 工艺特点 第二节多层共挤高阻隔薄膜的生产原理及设备 2.2.1 原材料的选择和质量控制 2.2.2 生产设备(七层共挤吹塑薄膜的机组设备及型号)第三节肉类包装膜的生产工艺流程 2.3.1 多层共挤包装薄膜(肉类包装膜)成型原理 2.3.2 生产工艺 2.3.3 生产工艺流程示意图及设备 第四节影响阻隔性的主要因素 第三章多层共挤高阻隔薄膜的展望 第一节肉类高阻隔薄膜的发展趋势 3.1.1 肉类高阻隔薄膜的发展及展望 3.1.2 七层以上高阻隔共挤吹塑薄膜生产技术的发展趋势第四章多层共挤高阻隔薄膜的总结 指导老师评语 致谢 参考文献

多层共挤高阻隔薄膜的生产工艺流程设计 摘要 本次的论文主要是讨论和研究多层共挤高阻隔薄膜的生产工艺及应用方向,并特别举例介绍目前市场上所销售的肉类包装膜(火腿肠),其外包装即为七层共挤薄膜,具有很强的阻气阻油性能,市场需求量也很大。在叙述生产过程的同时,也对高阻隔薄膜的前景进行了分析讨论,目前在我国,阻隔性包装薄膜处于推广使用的增长期,国内生产的阻隔性薄膜大多应用在低端产品的包装,性能优良的阻隔性薄膜还需要大量进口,因此市场发展空间很大。 关键词:多层高阻隔薄膜工艺 前言 改革开放几十年来,我国塑料包装行业得到稳步的高速发展,已经从一个初期分散性的行业发展成为独立的、产品门类齐全的现代化产业体系,对塑料制品的年均需求增长率在不断攀升。塑料制品行业成为了增长速度最快,是具有广阔发展前景的朝阳产业。其中,薄膜是用量最大的塑料包装材料,由于其无毒、质轻、包装美观、成本低的特点,因而应用领域在不断拓展,几乎渗透到工农产品和日常生活用品的各个方面,塑料包装薄膜行业的投资正在快速增长。因此,把握国际、国内塑料包装薄膜的技术和市场发展的总体趋势,对于审时度势地进行前瞻性正确决策具有重要现实意义。 随着社会的发展和人们生活水平的提高,产品的分类越来越细,对于产品的包装并不仅仅局限在视觉效果上,而是要根据产品的特点和市场的需求,朝功能化、多样化方向纵深开发。近年来,技术的进步使得塑料包装薄膜的功能化发展趋势日渐明显,高要求、高技术含量的塑料包装薄膜正成为许多企业的支柱产业和研发目标,其包装功能是多样的,除对一般薄膜的抗静电、抗粘连要求外,主要通过原材料、助剂或工艺的调整赋予包装薄膜某些特殊的功能,如适应香烟和饮料包装挺括性与紧贴性需要的热收缩性、适应蔬菜和水果包装需要的透气性、适应电子元件包装需要的导电性、适应可透视包装需要的高光学性能、适应金属设备和仪器包装需要的防锈性以及日益在食品、化妆品、医药方面广泛需要的阻隔性和抗菌性等,薄膜的功能化提高了产品的附加值。 其中阻隔性塑料包装薄膜是目前发展最快的功能薄膜之一。在我国,阻隔性包装薄膜处于推广使用的增长期,国内生产的阻隔性薄膜大多应用在低端产品的包装,性能优良的阻隔性薄膜还需要大量进口,因此市场发展空间很大。 近年来,在日本、欧洲阻隔性薄膜的消费量每年以10%左右的速度增长;而美国阻隔性树脂的消费年均增长13.6%,尽管在我国阻隔性薄膜只是近几年才引起薄膜生产企业的重视,但早已在食品、医药等行业得到广泛的应用,消费市场巨大,有很大的发展空间,发展速度也很快,国内许多相关企业都在根据人们的生活习惯和各类阻隔性包装的实际要求,认真研究相关的包装市场,找准切入点,以期有所收获。综观阻隔性材料的开发及其包装薄膜生产工艺技术的发展状况,笔者认为有一点应该引起我国相关部门的重视,无论是阻隔性原料树脂,还是阻隔性薄膜的生产设备和相关工艺技术,国内科研院所和企业的自主开发能力缺乏,严重依赖进口,国内绝大多数企业实际上还停留在来料加工的初级阶段,包装行业技术整体落后的局面依然

高分子改性材料的应用

天 然 高 分 子 改 性 材 料 的 发 展 以 及 运 用 景 姓名:李毅 学号:5404310016 专业班级:工业工程101

天然高分子改性材料的发展以及运用 姓名:李毅学号:5404310016 班级:工业工程101 摘要:本文介绍了淀粉、木质素、甲壳素、壳聚糖及瓜尔胶等几种天然高分子材料的研究进展以及改性方法,同时通过几种不同的化学反应详细介绍了壳聚糖的应用,同时介绍了其他几种在当代生活不同领域的应用。 关键词:天然高分子,改性,羧甲基化反应,酯化反应,酰化反应,接枝反应,运用,阻燃和耐热。 正文部分: 1.引言 近年来基于石油产品的合成高聚物材料也已广泛应用于包装、日用品、医用、建材、宇航、工业和农业各个领域,。然而,基于石油资源的合成高分子材料大量使用不仅造成环境污染,而且以后将面临石油资源逐渐枯竭的威胁。而天然高分子来源于自然界中动物、植物和微生物,它们是取之不尽,用之不竭的可再生资源。所以在石油资源日益匮乏和价格持续高涨之际,天然高分子的研究和利用出现新的发展机遇。天然高分子中含量最丰富的资源包括纤维素、木质素、甲壳素、淀粉、各种动植物蛋白质以及多糖等,它们具有多种功能基团,可通过化学、物理方法改性成为新材料,也可通过化学、物理及生物技术降解成单体或低聚物用作能源以及化工原料。因此,近年在该领域的基础和应用研究的优秀成果以及日益增强的全球环境法则的压力共同作用下已孵化出这一新兴行业。 2.天然高分子材料的研究进展以及运用 2.1 淀粉 天然淀粉资源十分丰富,如土豆、玉米、木薯、菱角、小麦等均有高含量的淀粉,据统

计,自然界中含淀粉的天然碳水化合物年产量达5000亿t,是人类可以取用的最丰富的有机资源。淀粉及其衍生物是一种多功能的天然高分子化合物,具有无毒、可生活降解等优点。它是一种六元环状天然高分子,含有许多羟基,通过这些羟基的化学反应生产改性淀粉,另外,淀粉还能与乙烯类单体如丙烯腈、丙烯酸、丙烯酰胺等通过接枝共聚反应生成共聚物。这些共聚物可用作絮凝剂、增稠剂、黏合剂、造纸助留剂等。近年来淀粉的接枝共聚研制新型絮凝剂在国内也取得长足进展,有人用淀粉与二甲基二烯丙基氯化铵接枝共聚制得阳离子淀粉,实验对炼油废水、生活废水有较好的处理效果,COD去除率可达70%以上,色度残留率低于20%,是一种较好的絮凝剂。淀粉-聚丙烯酰胺接枝共聚物作为有机高分子絮凝剂的研究早巳受到人们的重视,并有不少成果问世。我国尹华等以淀粉为基本原料,加入丙烯酰胺、三乙胺、甲醛和适量的盐酸进行接枝共聚反应,合成出一种阳离子型高分子絮凝剂FNQE,该药剂具有独特的分子结构和较高的相对分子质量分布。FNQE对高岭土悬浊液有良好的絮凝除浊效果,对城市污水在投药量为10mg/L时即能达到理想的净化效果,浊度、色度的去除率均在90%以上。 2.2 ,木质素 木质素与纤维素、半纤维素粘结在一起形成植物的主要结构,是植物界中非常丰富的天然高分子。相对于其它天然高分子,木质素具有更为复杂的组成及多级结构,是最难认识和应用的天然高分子之一。但是,木质素分子具有众多不同种类的活性官能基,兼具可再生、可降解、无毒等优点,而且工业木质素来源于造纸黑液,成本低廉,因而被视为优良的绿色化工原料,其综合利用备受关注。在应用和研究较为活跃的木质素高分子材料领域,可通过化学反应和物理共混将木质素与酚醛树脂、聚氨酯、聚烯烃、橡胶、聚酯、聚醚、淀粉、大豆蛋白等复合,提高材料的性能并降低成本。木质素是一种与工程塑料极为相似的,具有高

高分子材料本科毕业论文选题

高分子材料本科毕业论文选题 (1) 高分子材料在印花涂料中的应用 (2) 体现区域经济特色的高分子材料方向工学硕士的培养 (3) 高分子材料与工程:接地气的材料学 (4) 新型高分子材料在采空区漏风治理的应用 (5) 高分子材料功能助剂的应用现状和发展趋势 (6) 天然高分子材料在阻燃技术中的研究进展 (7) 高分子材料成型加工技术及应用 (8) 地方应用型本科院校高分子材料与工程专业认证体系的构建与实践 (9) 《药用高分子材料学》创新型实验教学的探索 (10) 浅析高分子材料成型加工技术 (11) 高分子材料成型及其控制 (12) 高分子材料耐候性试验中的紫外辐射测定方法研究 (13) 对高分子材料成型加工技术关键点的分析 (14) 《药用高分子材料》课程教学中若干问题探讨 (15) 农业院校《药用高分子材料》教学探讨 (16) 高分子材料与工程专业生产实习问题调查及对策 (17) 高分子材料三防技术研究 (18) 高分子材料的老化及防老化研究 (19) 浅谈高分子材料成型及其控制技术 (20) 高分子材料的发展及应用 (21) 混凝土节水保湿高分子材料养护膜在渠道衬砌工程中的应用

(22) 高分子材料合成与应用中的绿色战略 (23) 新型高分子材料与应用探析 (24) 高分子材料,“罢工”脏器的好替身 (25) 试析高分子材料成型加工技术 (26) 热致型形状记忆高分子材料研究 (27) 生物可降解高分子材料的研究 (28) 改善高分子材料课程教学效果的几点措施 (29) 高分子材料的金属化 (30) “理实一体化”在高分子材料加工原理课程教学中的应用研究 (31) 高分子材料与工程专业人才培养模式的探究 (32) 导热高分子材料的研究与应用分析 (33) 聚乳酸高分子材料的生物安全性评价 (34) 浅谈高分子材料抗静电剂ASA (35) 高分子材料加工技术专业“理实一体化”实训室建设的探索 (36) 功能高分子材料课程的教学实践与探索 (37) 《高分子材料性能测试》课程教学探析 (38) 浅析Pro/E软件在高分子材料中的应用 (39) 形状记忆高分子材料的研究进展 (40) 探讨功能高分子材料的应用 (41) 石墨炉原子吸收法快速测定聚醚酮酮特种高分子材料中铝离子 残留形状记忆高分子材料在自拆卸构件中的应用进展 (42) 浅谈高分子材料与工程专业创新性实验能力的培养

高分子化学知识点总结

第一章绪论 1.1 高分子的基本概念 高分子化学:研究高分子化合物合成与化学反应的一门科学。 单体:能通过相互反应生成高分子的化合物。 高分子或聚合物(聚合物、大分子):由许多结构和组成相同的单元相互键连而成的相对分子质量在10000以上的化合物。相对分子质量低于1000的称为低分子。相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。相对分子质量大于1 000 000的称为超高相对分子质量聚合物。 主链:构成高分子骨架结构,以化学键结合的原子集合。 侧链或侧基:连接在主链原子上的原子或原子集合,又称支链。支链可以较小,称为侧基;也可以较大,称为侧链。 端基:连接在主链末端原子上的原子或原子集合。 重复单元:大分子链上化学组成和结构均可重复出现的最小基本单元,可简称重复单元,又可称链节。 结构单元:单体分子通过聚合反应进入大分子链的基本单元。(构成高分子链并决定高分子性质的最小结构单位称为~)。 单体单元:聚合物中具有与单体的化学组成相同而键合的电子状态不同的单元称为~。 聚合反应:由低分子单体合成聚合物的反应。 连锁聚合:活性中心引发单体,迅速连锁增长的聚合。烯类单体的加聚反应大部分属于连锁聚合。连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。 逐步聚合:无活性中心,单体官能团之间相互反应而逐步增长。绝大多数缩聚反应都属于逐步聚合。 加聚反应:即加成聚合反应,烯类单体经加成而聚合起来的反应。加聚反应无副产物。 缩聚反应:缩合聚合反应,单体经多次缩合而聚合成大分子的反应。该反应常伴随着小分子的生成。 1.2 高分子化合物的分类 1) 按高分子主链结构分类:可分为:①碳链聚合物:大分子主链完全由碳原子组成的聚合物。②杂链聚合物:聚合物的大分子主链中除了碳原子外,还有氧、氮,硫等杂原子。③元素有机聚合物:聚合物的大分子主链中没有碳原子孙,主要由硅、硼、铝和氧、氮、硫、磷等原子组成。④无机高分子:主链与侧链均无碳原子的高分子。 2)按用途分可分为:塑料、橡胶、纤维三大类,如果再加上涂料、粘合剂和功能高分子则为六大类。塑料:具有塑性行为的材料,所谓塑性是指受外力作用时,发生形变,外力取消后,仍能保持受力时的状态。塑料的弹性模量介于橡胶和纤维之间,受力能发生一定形变。软塑料接近橡胶,硬塑料接近纤维。橡胶:具有可逆形变的高弹性聚合物材料。在室温下富有弹性,在很小的外力作用下能产生较大形变,除去外力后能恢复原状。橡胶属于完全无定型聚合物,它的玻璃化转变温度(T g)低,分子量往往很大,大于几十万。纤维:聚合物经一定的机械加工(牵引、拉伸、定型等)后形成细而柔软的细丝,形成纤维。纤维具有弹性模量大,受力时形变小,强度高等特点,有很高的结晶能力,分子量小,一般为几万。 3)按来源分可分为:天然高分子、合成高分子、半天然高分子(改性的天然高分子) 4)按分子的形状分:线形高分子、支化高分子、交联(或称网状)高分子 5)按单体分:均聚物、共聚物、高分子共混物(又称高分子合金) 6)按聚合反应类型分:缩聚物、加聚物 7)按热行为分:热塑性聚合物:聚合物大分子之间以物理力聚集而成,加热时可熔融,并能溶于适当溶剂中。热塑性聚合物受热时可塑化,冷却时则固化成型,并且可以如此反复进行。热固性聚合物:许多线性或支链形大分子由化学键连接而成的交联体形聚合物,许多大分子键合在一起,已无单个大分

高分子材料毕业论文

高分子材料毕业论文 第 1 页共 9 页 计算题 1. PA-66原纤维支数为4500支,在不断增加负荷的作用下,当负荷为8克时,纤维 被拉断。试求:a))特数旦数D)绝对强Tex力)相对强度PPDPT)断裂长 度)LPbcdef 强度极限σ(ρ=1.14) 2. 某腈纶厂生产的产品经测量其含湿率为2.5%。 a)试折合为回潮率为多少, b)若知回潮率为2%,那么该纤维的每1000公斤的标准重量是多少, 3. 已知某纤维厂生产PET长丝,规格为128支/3L根,试求a)该长丝的旦数,50米卷重 (1)单根纤维的旦数 (2) 单根纤维的断面直径是多少,(PE T:ρ=1.38) 4. PET的纺丝温度为286?,计量泵规格为0.6cm3/r,转速为15r/min,喷丝板孔径

为0.3mm,孔数为20孔,孔长为0.5mm,已知η0,210Pa.s,试求流经每孔的yw 0.78,η,140 Pa.s时,其yw和和压力降Δp。若为非牛顿流体,非牛顿指数n, Δp又为多少, 5. 聚丙烯腈的硫氰酸钠浓水溶液,已知其20?时的零切粘度为40Pa.S,非牛顿指 数为0.43,临界剪切速率为150S,1,粘流活化能为38KJ/mol,问: (1)20?时,把剪切速率提高到3×104S-1,其表观粘度为多少, (2)把该溶液提高到60?时其零切粘度为多少, 6. 涤纶纺丝工艺中所用工艺参数为:纺丝温度280?,吹风温度30?,纺丝线上固 -33化点温度80?,熔体密度ρ=1.20×10g/ ,熔体比热容cm容1.88kJ/kg?,卷绕丝密3-4度1.38 g/,空气cm导热系数J/cm.s.2.6×10?,泵供量365g/min,空气运动粘度 -521.6×1m/0s,卷绕速度1000m/min,喷丝板规格?0.25mm×400孔,L/D=2,求: (1)纺丝线固化点前的平均直径;(2)纺丝线固化点前的平均速度;(3)纺 丝线固化点前的平均给热系数;(4)固化时间。 337. PA6熔体纺丝条件为:熔体密度,卷绕高度1.0 4.5mg/cm,泵供量 /min2.,4 cm-6-33喷丝板孔径d0=0.076cm,空气粘度和密度分别 为:19.2×10Pa.s,和1.g/2×10,cm -42Cf=0.37Re-0.01,表面张力N/cm,在两种λ为5.0纺丝速度 (×10100m/min,

高分子化学的认识与感悟

高分子化学的认识与感悟 摘要:高分子化学是研究高分子化合物的合成、化学反应的一门学科,同时还涉及聚合物的结构和性能。本文是讲述我在学习了高分子化学这门课程之后对这门课程的掌握、理解,以及我感兴趣的高分子化学课程中的聚合方法的理解。 关键字:高分子化学高分子聚合物聚合方法 一.我对高分子化学的掌握 1.什么是高分子化学 高分子化学是研究高分子化合物(简称高分子)合成(聚合)和化学反应的一门科学;同时还会涉及聚合物的结构和性能。同时也涉及高分子化合物的加工成型和应用等方面。 高分子也成聚合物(或高聚物),有时高分子可指一个大分子,而聚合物则指许多大分子的聚集体。高分子的相对分子质量非常的大,小到几千,大到几百万、上千万的都有。我们有时将相对分子质量较低的高分子化合物叫低聚物。 2.高分子的分类和命名 2.1高分子分类 从不同的专业角度,对高分子进行多种分类,例如按来源、合成方法、用途、热行为、结构等来分类。 在高分子课程学习中,我们对高分子的分类是按有机化学和高分子化学角度来考虑,是按照主链结构将高分子分成三大类: ①碳链聚合物:主链完全有碳原子组成,比如绝大部分的烯类和二烯类的加 成聚合物。 ②杂链聚合物:主链除了碳原子外,还有氧、氮、硫等杂原子,比如聚醚、 聚酯、聚酰胺等缩聚物和杂环开环聚合物以及大多数天然高分子。 ③元素有机聚合物:主链中没有碳原子,主要由硅、硼、铝和氧、氮、硫、 磷等原子组成,但多半是有机基团,比如甲基、乙基、乙烯基、苯基等。 如果主链和侧基均无碳原子,则称物价高分子,像硅酸盐之类。 2.2高分子命名 在有机化学中我们就学过聚合物的命名,在高分子化学中聚合物的命名跟我们以往的命名没有什么区别,在这里命名方法主要分两类: ①单体来源命名法:就是聚合物名称以单体名为基础。比如乙烯的聚合物我 们称为聚乙烯。 ②结构单元命名法:就像有机化学里一样,先确定重复单元结构,排好单元 次序,命名。最后在名字前加一个聚就可以了。 3.聚合反应与聚合方法 3.1聚合反应 在我们学习高分子化学过程中,聚合反应贯穿了我们整个课本,从缩聚和逐步聚合到自由基聚合、自由基共聚合、离子聚合、配位聚合、开环聚合等,聚合反应中有涉及到聚合物的分子量和分布还有聚合物的大分子的结构、它们的链状和聚合物的聚集态、热转变之类的。我们知道聚合反应有很多种类型,同样我们可以将聚合反应分类。

高分子材料与工程专业

高分子材料与工程专业 高分子材料科学与工程是研究高分子材料的设计、合成、制备以及结构、性能和加工应用的材料类学科。本专业面向传统和新兴的诸如塑料、橡胶、纤维、涂料、石油化工、纺织、新能源、海洋、国防等各类行业,培养具有高分子材料与工程专业的基础知识和专业知识,了解材料科学与工程领域的相关专业知识,能在高分子材料的设计、合成、表征、改性、加工成型及应用等领域从事科学研究、技术开发、工艺设计、生产及经营管理等方面工作的高级科学和工程技术人才。高分子材料正在向高性能化、高功能化、智能化、低污染、低成本方向发展,逐渐渗透到航天航空、现代通讯、电子工程、生物工程、医疗卫生和环境保护等各个新兴高技术领域,在未来发展中具有广阔的应用前景。 高分子材料科学与工程专业基础课程有高等数学、外语、普通物理、计算机文化基础、化工机械基础、基础化学、有机化学、物理化学、基础课实验、化工原理,专业核心课程包括高分子化学、高分子物理、高分子科学实验、聚合物加工工程、聚合物制备工程、聚合物表征,专业方向分为塑料加工工程、弹性体加工工程、高分子材料制备工程、复合材料四个模块课程群,学生可在四年级选择其中一个方向学习。专业开设有二十余门研究性前沿课程和多门国际化课程,学生在校内就能接受到国内外学术大师的培养和熏陶。本专业非常注重实践能力和工程能力的培养,开设的实践课程有金工实习、社会实践、电工电子实习、认识实习、高分子专业实验、毕业环节、素质拓展与创新、应用软件实践、生产实习、军事训练,开设的工程设计类课程有工程制图、机械设计基础、材料力学、自动化仪表、化工原理以及四个专业方向的工艺课、设计课以及实践课。此外,专业课程学习还涵盖了英语、计算机、通识教育、素质拓展、技术经济与企业管理等,使学生在语言能力、计算机能力、个人素养、管理能力等方面均衡发展,培养具有良好专业素质和创新精神的综合型高级科学和工程技术人才。 材料科学与工程专业 材料是人类用于制造物品、器件、构件、机器或其他产品的那些物质,是人类赖以生存和发展的物质基础。按物理化学属性,材料可分为金属材料、无机非金属材料、有机高分子材料和不同类型材料所组成的复合材料。本专业旨在培养能够在金属材料、无机非金属材料和复合材料等领域从事科学研究、技术开发、工程设计、技术和经济管理等方面的工作的高级专业人才。 信息、材料和能源被誉为当代文明的三大支柱。以高技术群为代表的新技术革命,又把新材料、信息技术和生物技术并列为新技术革命的重要标志。这主要是因为材料与国民经济建设、国防建设和人民生活密切相关。材料又是信息、能源的重要物质基础,例如磁记录、芯片等信息技术的硬件要有材料作为物质保证;太阳能、燃料电池等能源技术要依靠材料提供的催化等功能。 未来人们对材料的结构可以进行更为精细的分析,从原子层次深入到电子层次,从而对材料性能有更深入的理解,进而根据性能需求制备出特殊结构的材料,如纳米复合结构,满足不同场合对材料性能的特殊需要,如智能材料、催化材料、能源材料、信息记录材料、生态环境材料等。 这个专业的专业基础课程和专业方向课程包括: 基础化学、大学化学实验、有机化学、物理化学、工程制图、计算机绘图、机械设计基础、应用电工学、化工原理、材料导论、C语言程序设计、VB语言程序设计、微机原理、文献查阅与科技写作、技术经济与企业管理、计算机在材料科学中的应用、科技报告与演讲、材料概论、材料物理、材料化学、材料合成制备

高分子材料改性(郭静主编)课后习题标准答案剖析

第一章绪论 第二章高分子材料共混改性 1.什么是相容性,以什么作为判断依据? 是指共混无各组分彼此相互容纳,形成宏观均匀材料的能力,其一般以是否能够产生热力学相互溶解为判据。 2.反应性共混体系的概念以及反应机理是什么? 是指在不相容或相容性较差的共混体系中加入(或就地形成)反应性高分子材料,在混合过程中(例如挤出过程)与共混高分子材料的官能团之间在相界面上发生反应,使体系相容性得到改善,起到增容剂的作用。 3.高分子材料体系其相态行为有哪几种形式,各自有什么特点,并举例加以说明。 (1)具有上临界混溶温度UCST,超过此温度,体系完全相容,为热力学稳定的均相体系;低于此温度为部分相容,在一定的组成范围内产生相分离。如:天然橡胶-丁苯橡胶。 (2)具有下临界混溶温度LCST,低于此温度,体系完全相容,高于此温度为部分相容。如:聚苯乙烯-聚甲基乙烯基醚、聚己内酯-苯乙烯/丙烯腈共聚物。 (3)同时出现上临界混溶温度UCST和下临界混溶温度LCST,如苯乙烯/丙烯腈共聚物-丁腈橡胶等共混体系。 (4)UCST和LCST相互交叠,形成封闭的两相区 (5)多重UCST和LCST 4.什么是相逆转,它与旋节分离的区别表现在哪些方面? 相逆转(高分子材料A或高分子材料B从分散相到连续相的转变称为相逆转)也可产生两相并连续的形态结构。 (1)SD起始于均相的、混溶的体系,经过冷却而进入旋节区而产生相分离,相逆转主要是在不混溶共混物体系中形态结构的变化。 (2)SD可发生于任意浓度,而相逆转仅限于较高的浓度范围 (3)SD产生的相畴尺寸微细,而相逆转导致较粗大的相畴, 5.相容性的表征方法有哪些,试举例加以说明。 玻璃化转变法、红外光谱法、差热分析(DTA)、差示扫描量热法(DSC) 膨胀计法、介电松弛法、热重分析、热裂解气相色谱等。 玻璃化转变法:若两种高分子材料组分相容,共混物为均相体系就只有一个玻璃化温度,

高分子化工

高分子化工 高分子化学工业的简称,为高分子化合物(简称高分子)及以其为基础的复合或共混材料的制备和成品制造工业。按材料和产品的用途分类,高分子化工包括的行业有塑料工业、合成橡胶工业、橡胶工业、化学纤维工业,也包括涂料工业和胶粘剂工业。由于原料来源丰富、制造方便、加工简易、品种多并具有为天然产物所无或较天然产物更为卓越的性能,高分子化工已成为发展速度最快的化学工业部门之一。 沿革:高分子化工经历了对天然高分子的利用和加工;对天然高分子的改性;以煤化工为基础生产基本有机原料(通过煤焦油和电石乙炔)和以大规模的石油化工为基础生产烯烃和双烯烃为原料来合成高分子等四个阶段。远在公元前已经开始应用木材、棉麻、羊毛、蚕丝、淀粉等天然高分子化合物。天然橡胶的硫化、赛璐珞(改性的天然纤维素,增塑的硝酸纤维素)的生产迄今已有 100余年之久,但有关高分子的涵义、链式结构、分子量和形成高分子化合物的缩合聚合和加成聚合反应等方面的基本概念,则迟至20世纪30年代才被明确。1907年,美国人L.H.贝克兰研制成功最早的合成树脂──酚醛树脂;20世纪初期,出现了甲基橡胶(聚2,3-二甲基丁二烯)、聚异戊二烯和丁钠橡胶;30年代末,实现了第一个合成纤维──尼龙66的工业化。从此,高分子合成和工业蓬勃发展,为工农业生产、尖端技术以及人们的衣食住行等,不断地提供许多不可缺少的、日新月异的新产品和材料。 成型加工:多数聚合物(或称树脂)需要经过成型加工的过程才能成为制品,有些在加工时尚需加入各种助剂或填料。根据材料的性质和制品的要求,选择适宜的加工方法和助剂或填料。热塑性树脂的加工成型方法有挤出、注射成型、压延、吹塑和热成型等;热固性树脂加工的方法一般采用模压或传递模塑,也用注射成型。将橡胶制成橡胶制品需要经过塑炼、混炼、压延或挤出成型和硫化等基本工序。化学纤维的纺丝包括纺丝熔体或溶液的制备、纤维成形和卷绕、后处理、初生纤维的拉伸和热定型等。与高分子合成工业相比,高分子加工工业的生产比较分散,但制品种类繁多,花色品种不胜枚举。目前,高分子加工已逐渐形成为一个独立的工业体系。 产品分类:按主链元素结构分类,产品可分为碳链(主链全由碳原子构成)、杂链(主链除碳原子外尚有氧、氮、硫等)和元素高分子(主链主要由硅、氮、氧、硼、铝、硫、磷等元素构成)。按形

高分子毕业设计基本要求

湖南科技职业学院 高分子材料加工技术专业学生毕业设计(论文)的基本要求 一、毕业设计(论文)的选题 由教研室负责安排每位学生的毕业设计(论文)校内指导教师,由校内指导老师结合学生顶岗实习企业生产技术情况,与企业兼职指导老师商定毕业设计(论文)选题,并由学生填写毕业设计(论文)选题申请表,报教研室主任批准后确定,报系教务办公室备案。 二、毕业设计(论文)指导要求 毕业论文(设计)的指导由校内专职教师与企业兼职教师共同指导,专职指导教师应认真及时地下达毕业论文(设计)任务书,做好毕业设计(论文)指导计划,及时联系企业兼职教师共同完成指导学生撰写毕业论文(设计),现场或采用电话、QQ及邮件及时答疑与质疑,对学生的毕业论文(设计)进行批阅和评阅,并指导学生参加毕业论文(设计)的答辩。 三、毕业设计(论文)基本要求 1、毕业(设计)论文格式严格按湖南科技职业学院《毕业设计(论文)规范》要求执行; 2、毕业设计内容主要有:塑料产品市场调研,产品生产的必要性与可行能,生产工艺设计(含生产流程图,设备车间布置图),主要设备配套选型,物为衡算、能量衡算、成本核算,生产对环境的影响及处理措施,影响产品产量、质量的主要因素分析,设计存在问题分析等; 3、毕业论文内容主要有:研究背景,仪器与设备,实验研究过程,数据分析处理,结论。 4、综述论文内容主要有:主题背景,国内研究进展,国外研究进展,当前主要研究人员最新成果及存在不足,指明研究重点及可能突破的方向。 四、毕业论文(设计)的答辩

1、教研室成立答辩小组,每组3—5人(每组至少有1名企业专家),设组长1名,秘书1名,答辩小组名单应在答辩前一周报系教务办备案。 2、答辩小组完成毕业设计(论文)答辩,秘书做好记录,并作为评定其毕业论文(设计)成绩的依据之一。 五、毕业论文(设计)的成绩评定及上报 1、答辩小组依据学生毕业论文(设计)质量及答辩情况,对每个学生写出评语,并按优、良、及格、不及格四个等级定等。 85分及以上为优,70-85分为良,60-70分为及格,60分以下为不及格。 2、毕业设计(论文)答辩结束后一周内公布成绩,并上报教务办公室。 3、凡是毕业设计(论文)不及格的学生须在规定的时间内重做。。 六、资料上交与管理 1、答辩结束后,学生应根据答辩教师的意见,及时修改毕业论文(设计)并在规定的时间内将定稿的毕业论文(设计)及电子稿交校内指导老师,学生毕业设计(论文)经指导老师批准后上传职教新干线世界大学城学生个人空间,其它毕业环节教学材料由指导老师扫描后上传指定空间,接受系、学校及教育厅的抽查。 2、学生毕业论文(设计)及毕业论文(设计)审阅表等应装订成册,以教学班为单位存档。 3、所有资料上传世界大学城空间或上交存档材料于当年6月30日前完成。

高分子材料

高分子材料在生活中的重要性 1定义 高分子材料:以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。所有的生命体都可以看作是高分子的集合。 2来源 高分子材料按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料。天然高分子是生命起源和进化的基础。人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。如利用蚕丝、棉、毛织成织物,用木材、棉、麻造纸等。19世纪30年代末期,进入天然高分子化学改性阶段,出现半合成高分子材料。1907年出现合成高分子酚醛树脂,标志着人类应用合成高分子材料的开始。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。 3高分子材料的现状 4分类 高分子材料按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料。 天然高分子是生命起源和进化的基础。人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。如利用蚕丝、棉、毛织成织物,用木材、棉、麻造纸等。19世纪30年代末期,进入天然高分子化学改性阶段,出现半合成高分子材料。1870年,美国人Hyatt用硝化纤维素和樟脑制得的赛璐珞塑料,是有划时代意义的一种人造高分子材料。1907年出现合成高分子酚醛树脂,真正标志着人类应用化学合成方法有目的的合成高分子材料的开始。1953年,德国科学家Zieglar和意大利科学家Natta,发明了配位聚合催化剂,大幅度地扩大了合成高分子材料的原料来源,得到了一大批新的合成高分子材料,使聚乙烯和聚丙烯这类通用合成高分子材料走人了千家万户,确立了合成高分子材料作为当代人类社会文明发展阶段的标志。 高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。 ①橡胶是一类线型柔性高分子聚合物。其分子链间次价力小,分子链柔性好,在外力作

高分子化学知识点总结

高分子化学知识点总结文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

第一章绪论 高分子的基本概念 高分子化学:研究高分子化合物合成与化学反应的一门科学。 单体:能通过相互反应生成高分子的化合物。 高分子或聚合物(聚合物、大分子):由许多结构和组成相同的单元相互键连而成的相对分子质量在10000以上的化合物。相对分子质量低于1000的称为低分子。相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。相对分子质量大于1 000 000的称为超高相对分子质量聚合物。 主链:构成高分子骨架结构,以化学键结合的原子集合。 侧链或侧基:连接在主链原子上的原子或原子集合,又称支链。支链可以较小,称为侧基;也可以较大,称为侧链。 端基:连接在主链末端原子上的原子或原子集合。 重复单元:大分子链上化学组成和结构均可重复出现的最小基本单元,可简称重复单元,又可称链节。 结构单元:单体分子通过聚合反应进入大分子链的基本单元。(构成高分子链并决定高分子性质的最小结构单位称为~)。 单体单元:聚合物中具有与单体的化学组成相同而键合的电子状态不同的单元称为~。 聚合反应:由低分子单体合成聚合物的反应。 连锁聚合:活性中心引发单体,迅速连锁增长的聚合。烯类单体的加聚反应大部分属于连锁聚合。连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。 逐步聚合:无活性中心,单体官能团之间相互反应而逐步增长。绝大多数缩聚反应都属于逐步聚合。 加聚反应:即加成聚合反应,烯类单体经加成而聚合起来的反应。加聚反应无副产物。 缩聚反应:缩合聚合反应,单体经多次缩合而聚合成大分子的反应。该反应常伴随着小分子的生成。 高分子化合物的分类 1) 按高分子主链结构分类:可分为:①碳链聚合物:大分子主链完全由碳原子组成的聚合物。②杂链聚合物:聚合物的大分子主链中除了碳原子外,还有氧、氮,硫等杂原子。③元素有机聚合物:聚合物的大分子主链中没有碳原子孙,主要

实验讲义材料化学

实验 1 功能无机材料的合成 第一部分以高岭石合成4A分子筛及性能分析 1.实验目的 (1)掌握4A分子筛的制备方法。 (2)掌握4A分子筛的基本表征方法。 (3)掌握4A分子筛的性能测试方法。 (4)了解制备反应条件对分子筛性能的影响。 2.实验原理 分子筛又称沸石,是具有均匀的微孔、其直径与一般分子大小相当的一类吸附剂或薄膜类物质。这类材料具有如下特点:①具有均匀的孔径,根据其有效孔径,可用来筛分大小不同的流体分子,这种作用叫做分子筛作用;②具有很大的内表面积和孔体积;③具有离子交换性(如K+、NH4+等交换);④由SiO 和AlO4四面体共享氧原子为基本骨架结构单元,组成短程有序和长程有序的晶体结构。这种结构形成了可为阳离子和水分子 4 所占据的大晶穴,这些阳离子和水分子有较大的移动性,可以进行阳离子交换和可逆的脱水,其化学组成通式为: [M2(Ⅰ),M(Ⅱ)O]·Al2O3·nSiO2·mH2O 式中M(Ⅰ),M(Ⅱ)分别为一价和二价金属(通常为钠、钾、钙、钡等),n为沸石的硅铝比,一般n等于2~10,m=0~9。 4A分子筛是A型分子筛的一种。A型分子筛的结构类似于氯化钠的晶体结构,其理想晶胞组成为:Na96(Al96Si96O384)·216H2O,由于A型分子筛中硅与铝的原子比为1,所以经常使用:Na12(Al12Si12O48)·27H2O作为其晶胞组成式。 4A分子筛具有独特的吸附性、离子交换性、催化性和良好的化学可修饰性。目前绝大部分用作洗涤剂助剂,它正逐步取代当前普遍使用的三聚磷酸钠,有效减少了对环境的污染。洗涤剂用4A分子筛的的生产方法有两种,一种是化学合成法,该法用水玻璃(硅酸钠)、氢氧化铝和氢氧化钠水热合成。另一种为半合成法,该法用天然粘土或天然沸石转化制取。 由于高岭石的Si/Al与4A沸石的Si/Al相同,反应不需要添加铝源和硅源,而且矿物原料来源丰富,所以其在矿物合成4A沸石中,占有重要的地位。一般认为,以高岭石为原料合成分子筛的机理是:偏高岭石在碱溶液中缓慢溶解,形成含有SiO32-、SiOH基团和Al(OH)4-的溶液,逐步缩合为硅铝酸钠凝胶,在进一步晶化为4A分子筛晶粒并通过结构重排而转变成4A分子筛。也有人提出高岭土在NaOH溶液中部分溶解,且迅速转化为偏高岭土,并伴有硅铝酸钠凝胶产生,同时偏高岭土也不断在碱液作用下凝胶化,生成的凝胶再进一步转变成4A分子筛。由上述可见,以天然矿石合成分子筛,反应时矿石先变成无定形硅铝盐。这种盐在水中溶解性不好,所以在晶化时先在其表面形成晶种,再结晶成分子筛。 用高岭土类粘土合成4A分子筛,产品成本低,吨成本为1700元,市售价为每吨2500元左右,因此经济效益很显著。 3.实验仪器和试剂 球磨机,300目筛子,马弗炉,机械搅拌器,加热套,铁架台,铁夹,烧杯1000mL,250mL锥形瓶,500mL容量瓶,抽滤瓶,砂心漏斗,烘箱,干燥器。 高岭石,氢氧化钠,氯化铵,去离子水,pH试纸,钙指示剂,EDTA。 X-射线衍射仪,热分析仪。 4.实验步骤 (1)高岭石的粉碎

浅谈高分子橡胶(论文)

浅论高分子橡胶 橡胶的定义: 橡胶(Rubber):具有可逆形变的高弹性聚合物材料。在室温下富有弹性,在很小的外力作用下能产生较大形变,除去外力后能恢复原状。橡胶属于完全无定型聚合物,它的玻璃化转变温度(T g)低,分子量往往很大,大于几十万。 橡胶是一类具有高弹性的高分子材料,亦被称为弹性体。橡胶在外力的作用下具有很大的变形能力(伸长率可达500~1000%),外力除去后又能很快恢复到原始尺寸。 橡胶的分子链可以交联,交联后的橡胶受外力作用发生变形时,具有迅速复原的能力,并具有良好的物理力学性能和化学稳定性。橡胶是橡胶工业的基本原料,广泛用于制造轮胎、胶管、胶带、电缆及其他各种橡胶制品。 橡胶的分类: 橡胶按其来源分类可分为:天然橡胶(Natrul rubber简称NR)、合成橡胶(Synthtic rubber 简称SR)。天然橡胶是指直接从植物(主要是三叶橡胶树)中获取的橡胶。合成橡胶是相对于天然橡胶而言,泛指用化学合成方法制得的橡胶。 按使用范围分类可分为:通用橡胶和特种橡胶;通用橡胶是指天然橡胶及性能和用途都与天然橡胶相似的丁苯橡胶、顺丁橡胶、聚异戊二烯橡胶、氯丁橡胶、乙丙橡胶、丁腈橡胶、丁基橡胶;特种橡胶是指具有某些特殊性能的橡胶,包括氟橡胶、硅橡胶、聚硫橡胶、聚丙烯酸脂橡胶、氯醚橡胶和卤化聚乙烯橡胶等; 按照分子的极性强弱可分为:极性,他说:想发财就去万通商联找优质餐具供货商!性橡胶和非极性橡胶; 按照拉伸时的结晶程度的大小可分为:结晶橡胶和非结晶橡胶; 按照分子链上有无不饱和双键可分为:饱和橡胶和不饱和橡胶; 按照主链的化学结构可分为:碳链橡胶和杂链橡胶。 橡胶的举例: 通用橡胶 是指部分或全部代替天然橡胶使用的胶种,如丁苯橡胶、顺丁橡胶、异戊橡胶等,主要用于制造轮胎和一般工业橡胶制品。通用橡胶的需求量大,是合成橡胶的主要品种。 丁苯橡胶 丁苯橡胶是由丁二烯和苯乙烯共聚制得的,是产量最大的通用合成橡胶,有乳聚丁苯橡胶、溶聚丁苯橡胶和热塑性橡胶(SBS )。 顺丁橡胶 是丁二烯经溶液聚合制得的,顺丁橡胶具有特别优异的耐寒性、耐磨性和弹橡胶轮胎性,还具有较好的耐老化性能。顺丁橡胶绝大部分用于生产轮胎,少部分用于制造耐寒制

天然高分子改性材料及其应用-考场重点资料

变性淀粉在造纸上的应用:1.湿部应用机理技术:提高纸张物理强度,提高细小纤维和填料的留着率,提高滤 层间喷雾机理及技术:提高纸和纸板的挺度,表面强度,环压强度等;3.表面施胶 中的应用技术:增加纸业抗水性、表面强度,提高耐破、耐折等物理强度指示;4.在涂布粘合中的应用技术: 变性淀粉作涂布的优点①具有良好的溶性②具有良好的保水性③能提供刮刀涂布的流变性④有较宽的粘度范 围⑤与合成胶乳具有良好的相容性;5.在涂布白板纸中的协同应用技术;6.纸制品淀粉粘合剂:瓦楞纸、纸袋 纸、瓶标签淀粉、胶粘带淀粉、信封邮票用淀粉。阳离子淀粉在造纸上的应用:1.能改善纸的耐破性,抗张力, 耐折度、抗掉毛性等许多物理性能;2. 4.能提高 各种染料的填料的保留率,从而降低造纸成本;5.作为胶乳,合成树脂,AKD等的固定剂和乳化剂,效果良好; 6.减少废水污染的程度。甲壳素、壳聚糖在造纸上的应用:1.施胶:溶解性差2.增强:氢键3.助流助滤:天然 7.其他助剂。 高分子材料分类:1.来源:天然高分子材料(淀粉、纤维)半合成高分子材料(消化纤维)合成高分子材料(有 2.用途:塑料、橡胶、纤维、涂料、粘合剂、高分子基复合材料 3.组成和功能:有机高 分子(聚乙烯)无机高分子(SiO2)复合高分子(橡胶)生物高分子(蛋白质)4.受热后变化:热固性(聚乙 烯、聚丙烯)、热塑性(酚醛树脂、环氧树脂)。天然高分子材质来源:1.植物:纤维素、半纤维素、木素、树 胶类、果胶、淀粉、蛋白质、天然橡胶、生漆 3. 微生物:①由微生物直接得到,黄原胶、真菌多糖②发酵得到,聚乳酸、聚乙内酯。天然高分子种类:多聚糖 类(淀粉),多聚肽类(蛋白质)遗传信息物质(DNA、RNA。天然高分子材料优 点:价格低,来源广、绿色清洁、可降解可再生。缺点:加工性很差,难以通过常用的塑料加工方法成型,力 学性能、耐环境性存在缺陷,应用范围窄。改性途径:①天然高分子的溶解和熔融②衍生化改性③接枝共聚④ 物理共混⑤互穿聚合物网络 三大热分析差别:1. TGA热重分析影响曲线因素①仪器因素:浮力、试样盘、挥发物的冷凝等②实验条件: 应用:聚合物热稳定性的评价、聚合物组成的剖析、研 热差分析3.DSC示差扫描量热法应用:聚合 物玻璃化转变的研究、聚合物熔融\结晶转变的研究、两相聚合材料结构特征的研究、 用DSC曲线确定加工条件。 布拉格方程(2dsinθ=nλ,θ半衍射角、d晶面距离、λ波长)应用:1.结构分析:用已知λ的X-ray照射晶体, :用已知d的晶体来反射从 样品发射出来的X-ray通过θ测量求得未知X-ray的波长λ。X射线衍射:光遇到障碍物或小孔后,偏离直线传 播,且强度随物质变化,在屏幕上出现明暗条纹。应用:1 积酚比,是体系聚集态结构的清晰表征3测定晶粒尺寸:大量晶粒个别尺寸的一种平均统计。产生X射线方法: 平板照射法、衍射仪法。红外光谱定义:样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐 -转能级从基态跃迁到激发态,而形成的分子吸收光谱,称为红 外光谱。红外光谱仪分类:1色散型红外光谱仪:光源、样品室、单色器、检测器、记录显示装置(利用单色涉作用进行测定,无色散元件) 纤维素改性材料:1纤维素的接枝共聚改性材料(接枝共聚反应的类型:自由基聚合、离子型共聚及缩聚与开 常用的引发方法:辐射引发、光引发、化学引发。应用:高吸水性材料、吸附重金属材料、吸油材料); 2纤维素的交联改性材料(应用:进一步提高纤维及其衍生物的吸水性改变和织物的性质,提高纤维的抗皱性,并可用作色谱柱的填充材料)3纤维素共混改性材料(熔融共混、溶液共混。应用:由于强的氢键作用,可以 得到性能优异的共混材料,不仅有良好的力学性能,还能保持共混组分的功能)4纤维素复合材料(麻纤维和 竹纤维复合有较高的比强度和比刚度。1共混:两种聚合进行混合2复合:采用颗粒,纤维或织物对聚合物进 行增强)纤维材料改性途径:酯化、醚化、交联改性、接枝共聚物、复合改性、共混改性 纤维素的溶解:1.衍生化溶剂:溶解过程中与纤维反应生成部分取代的反应中间体①NaOH/CS2:18%左右的强碱 N-N-二甲配胺2 /N2O4体系:N2O4与纤维素反应生成亚硝酸酯中间衍生物,溶于DMF中③二甲亚砜DMSO/多聚甲醛(PF)体系:PF受热分解产生的甲醛与纤维素的-OH反应生成羟甲基纤维素,羟甲基纤维素溶解在DMSO中。 2.非水相非衍生化溶剂:不与纤维发生反应①N-N-二甲基乙酰化胺(DMAC)体系②N-甲基氧化吗啉(NMMO) N→O上氧原子的两对弧对电子和水分子或纤维素大分子的羟基形成强的 氢键,生成纤维素-NMMO络合物 3.水相非衍生化溶剂①金属络合物:铜氨中的Cu2+可以优先与纤维素的吡喃环C2、C3位的-OH形成五元螯合环,间的相互作用,破坏纤维素分子内和分子间存在的大量氢键。 甲壳素、壳聚糖、纤维素的结构式:(淀粉单体为纤维素右半部分) 物理性能:外观、溶解性、结晶度、黏度(以1%壳聚糖乙酸溶液)>1000x10^-3Pa?S 高黏度100~100中粘度<100 低粘度。脱乙酰度和黏度是壳聚糖的主要性质指标,甲克素的基本单位是乙酰氨基葡萄糖,壳聚糖的基本单位 是氨基葡萄糖。脱乙酰度:乙酰化与脱乙酰化之间的平衡程度,其大小影响甲壳素和壳聚糖的溶解性,影响壳聚 糖溶解度(乙酰度>50%溶解性好)等级55~70%低脱乙酰度壳聚糖70~85%中??80~95%高??95~100%超高??。 造纸工业中的界面作用1氢键:羟基、氨基官能团中的氢与纤维素中的羟基形成氢键2离子键:纸浆纤维-有羧 二者有NH3—OOC结合3共价键:纤维素有醛基和氨基,作用较弱4范德华力: 分子间作用力。造纸中的应用:施胶剂(浆内施胶,表面施蜡),增强剂,主流助滤剂(增加纸浆在纤维上的 留着率),废水处理,特种纸(以壳聚糖为主要材料或配料所制成的食品包装纸、绝缘纸、复印纸、无碳复写 纸)纸张具有吸水性原因:1氢键2纤维间的孔隙造成毛细管现象。

相关文档
最新文档