2013年普通高等学校招生全国统一考试(上海卷)

合集下载

普通高等学校招生全国统一考试地理试题(上海卷,解析版)

普通高等学校招生全国统一考试地理试题(上海卷,解析版)

普通高等学校招生全国统一考试地理试题(上海卷,解析版)【试卷总评】该套试题总体难度适宜,整体而言,命题的基本要求仍然与保持不变。

第一,以高中系统地理为主的内容格局不变。

高考加强考查考生的高中地理原理,要求考生能够在理解的基础上灵活运用地理知识与技能,展示地理思维能力,引导考生摒弃死记硬背的传统应试方式,改进学习策略,引导教师进一步理解课程精神,切实改善地理教学。

第二,追求鲜活的命题风格不变。

贴近生活、联系“热点”是保持试题鲜活的重要方面。

今年试卷中将新近的“黄岩岛”、“我国首座深水钻井平台在南海首钻成功”等新闻素材编入了试题,充分凸显了地理学科爱国主义教育与海洋权益意识教育的功能,充分体现了新课程强调的教育目标的基本精神。

第三,强调地理思维考查的“主旋律”不变。

统计表明,试卷中体现地理思维考查目标的试题比重超过60%。

上海高考地理卷与去年相比,出现了一些变化。

首先,选择题图、表的阅读信息量明显增加,对考生的信息获取和处理的要求有所提高;其次,试卷结构略有变化,综合分析题共同部分的大题由过去的6题减少为5题,且简答题成为“主角”;其三,论述要求略有提高,第一次出现了单题12分的论述题,加强了对考生地理思维能力的考查力度;其四,难度结构有所调整,在试卷总体难度保持大致不变的前提下,选择题难度略有提高,综合分析题难度有所降低。

本试卷共10页,满分150分,考试时间120分钟。

全卷包括两大题,第一大题为选择题:第二大题为综合分析题,包括共同部分和选择部分。

一、选择题(共50分,每小题2分。

每小题只有一个正确答案)(一)“祖国的宝岛,我可爱的家乡......辽阔的海域无尽的宝藏......”1. 黄岩岛是我国的固有领土。

右图中,表示黄岩岛的是A. 甲岛B. 乙岛C. 丙岛D. 丁岛2. 5月,我国首座深水钻井平台在南海首钻成功,其重要意义在于①宣示我国对南海的主权②行使对钻井平台周边我国海域的管辖权③解决我国目前石油对外依存度过高的问题④标志我国能够进行深海油气资源开发A. ①②③B. ①②④C. ①③④D. ②③④(二)上海宝钢为实施“走出去”,将在韩国京畿道新建钢材加工配送中心,提供汽车板材仓储、剪切、配送等服务。

上海市教育委员会关于做好2013年上海市普通高校招生考试工作的通知-沪教委学[2013]13号

上海市教育委员会关于做好2013年上海市普通高校招生考试工作的通知-沪教委学[2013]13号

上海市教育委员会关于做好2013年上海市普通高校招生考试工作的通知正文:---------------------------------------------------------------------------------------------------------------------------------------------------- 上海市教育委员会关于做好2013年上海市普通高校招生考试工作的通知(沪教委学〔2013〕13号)各高等学校,各区县教育局,后方基地教育处,上海市教育考试院:为做好2013年本市普通高校的招生工作,我委制定了《2013年上海市普通高校招生考试工作办法》(见附件),现印发给你们,请认真按照执行,切实做好2013年本市普通高校招生考试工作。

附件:2013年上海市普通高校招生考试工作办法上海市教育委员会2013年3月7日附件:2013年上海市普通高校招生考试工作办法根据国家有关法规和教育部《关于进一步深化普通高校招生考试制度改革的意见》(教学〔1999〕3号)、教育部关于2013年度普通高等学校招生工作规定等精神,结合本市实际,制定本办法。

一、指导思想2013年上海市普通高校招生考试工作以科学发展观为指导,结合《国家中长期教育改革和发展规划纲要》和《上海市中长期教育改革和发展规划纲要》的要求,继续做好平行志愿、高校自主招生和应用普通高中学业水平考试成绩等高招改革工作,贯彻公平竞争、公正选拔、公开透明的原则,坚持德智体美全面考核、综合评价、择优录取,促进高校招生考试工作平稳开展,促进高校依法行使办学自主权并探索试行招生考试改革,促进高校教育教学改革,促进基础教育全面实施素质教育。

二、招生计划与专业2013年度本市市属普通高校安排在沪招生规模约4.65万人。

各普通高校的招生专业必须是经教育部或上海市教育委员会批准、备案的专业。

三、普通高等学校招生全国统一考试(以下简称“全国统考”)报名和志愿填报(一)报名(沪教委学〔2012〕凡符合《上海市教育委员会关于做好2013年上海市普通高等学校招生报名工作的通知》67号)中报名条件的考生均可报名。

2013年全国高考文综(新课标II卷)试题及答案

2013年全国高考文综(新课标II卷)试题及答案

2013年普通高等学校招生全国统一考试(新课标2)文科综合能力第Ⅰ卷一、本卷共35个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一个选项是符合题目要求的。

图1表示我国部分省级行政区城2005-2010年间迁移人口比重。

迁移人口以青壮年为主.读图1并结合相关知识,完成1-2题.1.2005-2010年A.迁出人口数盘贵州多于四川B.迁入人口数最上海多于广东C.人口增长率浙江高于江苏D.人口自然增长率安徽低于天津2.2005-2010年,省级行政区城间的人口迁移A.延缓了皖、翰、黔的老龄化进程B.延缓了沪、京、津的老龄化进程C.降低了皖、帐、黔的城市化水平D.降低了沪、京、津的城市化水平地膜覆盖具有保温、保湿、保土等作用,可有效提高农作物产量和从产品质量。

我国目前使用的地膜多是超薄型地膜,易破,难回收,难以自然降解,造成严重的‚白色污染‛据此完成3—5题。

3.我国大部分地区使用地膜覆盖主要在于A.春季B.夏季C.秋季D.冬季4.下列地区相比较,地膜覆盖的保湿、保温、保土作用最显著地是A.东南沿海地区B.西南地区C.东北地区D.西北地区5.残留在土壤中的地膜会①危害作文根系发育②阻碍土壤温度提升③阻碍土壤水费运移④加快表土流失速度A.①③B.①④C.②③D.②④图2示意某地区年均温的分布,读图2,完成6—8题。

6.影响该地区年均温分布特征的主要因素是A.台风B.海陆分布C.地形D.大气环流7.图示①②③④四地中,年降水量最低的是A.①地B.②地C.③地D.④地8.樟树市亚热带常绿阔叶林的优势树种。

图示①②③④四地中,可能有樟树集中分布的是A.①地B.②地C.③地D.④地雾是近地面大气层中出现大量微小水滴而形成的一种天气现象。

当暖湿空气经过寒冷的下垫而时,就易形成雾。

图3中,S市附近海域夏季多雾,并影响S市。

据此完成9—11题。

9.S市附近海域夏季多雾的主要原因是A.沿岸暖流提供了充足的暖湿空气B.半岛东侧海湾海水温度较低C.海陆间气温差异较大D.沿岸寒流的降温作用较强10.S市夏季常被雾笼罩,是因为A.降水较少B.气温较高C.风力较弱D.光照较强11.夏季,S市主要受A.季风影响B.西风带影响C.低压控制D.高压控制12.财政政策是我国重要的宏观调控手段。

2013年全国高考文综(新课标II卷)试题及答案

2013年全国高考文综(新课标II卷)试题及答案

2013年普通高等学校招生全国统一考试(新课标2)文科综合能力第Ⅰ卷一、本卷共35个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一个选项是符合题目要求的。

图1表示我国部分省级行政区城2005-2010年间迁移人口比重。

迁移人口以青壮年为主.读图1并结合相关知识,完成1-2题.1.2005-2010年A.迁出人口数盘贵州多于四川B.迁入人口数最上海多于广东C.人口增长率浙江高于江苏D.人口自然增长率安徽低于天津2.2005-2010年,省级行政区城间的人口迁移A.延缓了皖、翰、黔的老龄化进程B.延缓了沪、京、津的老龄化进程C.降低了皖、帐、黔的城市化水平D.降低了沪、京、津的城市化水平地膜覆盖具有保温、保湿、保土等作用,可有效提高农作物产量和从产品质量。

我国目前使用的地膜多是超薄型地膜,易破,难回收,难以自然降解,造成严重的‚白色污染‛据此完成3—5题。

3.我国大部分地区使用地膜覆盖主要在于A.春季B.夏季C.秋季D.冬季4.下列地区相比较,地膜覆盖的保湿、保温、保土作用最显著地是A.东南沿海地区B.西南地区C.东北地区D.西北地区5.残留在土壤中的地膜会①危害作文根系发育②阻碍土壤温度提升③阻碍土壤水费运移④加快表土流失速度A.①③B.①④C.②③D.②④图2示意某地区年均温的分布,读图2,完成6—8题。

6.影响该地区年均温分布特征的主要因素是A.台风B.海陆分布C.地形D.大气环流7.图示①②③④四地中,年降水量最低的是A.①地B.②地C.③地D.④地8.樟树市亚热带常绿阔叶林的优势树种。

图示①②③④四地中,可能有樟树集中分布的是A.①地B.②地C.③地D.④地雾是近地面大气层中出现大量微小水滴而形成的一种天气现象。

当暖湿空气经过寒冷的下垫而时,就易形成雾。

图3中,S市附近海域夏季多雾,并影响S市。

据此完成9—11题。

9.S市附近海域夏季多雾的主要原因是A.沿岸暖流提供了充足的暖湿空气B.半岛东侧海湾海水温度较低C.海陆间气温差异较大D.沿岸寒流的降温作用较强10.S市夏季常被雾笼罩,是因为A.降水较少B.气温较高C.风力较弱D.光照较强11.夏季,S市主要受A.季风影响B.西风带影响C.低压控制D.高压控制12.财政政策是我国重要的宏观调控手段。

圆锥曲线2013

圆锥曲线2013

2013年全国高考理科数学试题分类汇编9:圆锥曲线一、选择题1 .(2013年高考江西卷(理))过点引直线l与曲线y=A,B 两点,O 为坐标原点,当∆AOB 的面积取最大值时,直线l 的斜率等于 ( )A .y EB BC CD=++B.C. D.【答案】B2 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))双曲线2214x y -=的顶点到其渐近线的距离等于 ( )A .25B .45 CD【答案】C3 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是( )A.214x =B .22145x y -= C .22125x y -=D.212x -=【答案】B4 .(2013年高考新课标1(理))已知双曲线C :22221x y a b -=(0,0a b >>)则C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =±D .y x =±【答案】C5 .(2013年高考湖北卷(理))已知04πθ<<,则双曲线22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的 ( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等【答案】D6 .(2013年高考四川卷(理))抛物线24y x =的焦点到双曲线2213yx -=的渐近线的距离是( )A .12BC .1 D【答案】B7 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是( )A .2B .3C .23 D .26 【答案】D8 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB则p =( )A .1B .32C .2D .3【答案】C9 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))椭圆22:143x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是( )A .1324⎡⎤⎢⎥⎣⎦, B .3384⎡⎤⎢⎥⎣⎦,C .112⎡⎤⎢⎥⎣⎦,D .314⎡⎤⎢⎥⎣⎦,【答案】B10.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若0MA MB =,则k =( )A .12BCD .2【答案】D11.(2013年高考北京卷(理))若双曲线22221x y a b-=则其渐近线方程为( )A .y =±2xB .y= C .12y x =±D.y x =±【答案】B12.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))已知抛物线1C :212y x p =(0)p >的焦点与双曲线2C :2213x y -=的右焦点的连线交1C 于第一象限的点M .若1C 在点M 处的切线平行于2C 的一条渐近线,则p =( )ABCD【答案】D13.(2013年高考新课标1(理))已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为( )A .2214536x y +=B .2213627x y +=C .2212718x y +=D .221189x y +=【答案】D14.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))设抛物线2:2(0)C y px p =>的焦点为F ,点M 在C 上,5MF =,若以MF 为直径的圆过点)2,0(,则C 的方程为( )A .24y x =或28y x = B .22y x =或28y x = C .24y x =或216y x =D .22y x =或216y x =【答案】C15.(2013年上海市春季高考数学试卷(含答案))已知 A B 、为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若2MN AN NB λ=⋅,其中λ为常数,则动点M 的轨迹不可能是 ( )A .圆B .椭圆C .抛物线D .双曲线【答案】C16.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知圆()()221:231C x y -+-=,圆()()222:349C x y -+-=,,M N 分别是圆12,C C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为 ( )A .4B 1C .6-D【答案】A 二、填空题17.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))双曲线191622=-y x 的两条渐近线的方程为_____________.【答案】x y 43±= 18.(2013年高考江西卷(理))抛物线22(0)x py p =>的焦点为F,其准线与双曲线22133x y -=相交于,A B 两点,若ABF ∆为等边三角形,则P =_____________【答案】619.(2013年高考湖南卷(理))设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P是C 上一点,若216,PF PF a +=且12PF F ∆的最小内角为30 ,则C 的离心率为___.【答案】320.(2013年高考上海卷(理))设AB 是椭圆Γ的长轴,点C 在Γ上,且4CBA π∠=,若AB=4,BC =,则Γ的两个焦点之间的距离为________【答案】. 21.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))已知直线y a =交抛物线2y x =于,A B 两点.若该抛物线上存在点C ,使得ABC ∠为直角,则a 的取值范围为___ _____.【答案】),1[+∞22.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部与边界).若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是__________.【答案】⎥⎦⎤⎢⎣⎡-21,223.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆C 的离心率为_______.【答案】24.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))椭圆2222:1(0)x y a b a bΓ+=>>的左.右焦点分别为12,F F ,焦距为2c,若直线)y x c =+与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于__________【答案】1-25.(2013年高考陕西卷(理))双曲线22116x y m -=的离心率为54, 则m 等于___9_____. 【答案】9 26.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为,F C 与过原点的直线相交于,A B 两点,连接,AF BF ,若410,6,cos ABF 5AB AF ==∠=,则C 的离心率e =______. 【答案】5727.(2013年上海市春季高考数学试卷(含答案))抛物线28yx =的准线方程是_______________【答案】2x =-28.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))在平面直角坐标系xOy 中,设定点),(a a A ,P 是函数xy 1=(0>x )图象上一动点,若点A P ,之间的最短距离为22,则满足条件的实数a 的所有值为_______.【答案】1-或1029.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设F 为抛物线x y C 4:2=的焦点,过点)0,1(-P 的直线l 交抛物线C 于两点B A ,,点Q 为线段AB 的中点,若2||=FQ ,则直线的斜率等于________.【答案】1± 三、解答题30.(2013年上海市春季高考数学试卷(含答案))本题共有2个小题,第1小题满分4分,第2小题满分9分.已知椭圆C 的两个焦点分别为1(1 0)F -,、2(1 0)F ,,短轴的两个端点分别为12 B B 、 (1)若112F B B ∆为等边三角形,求椭圆C 的方程;(2)若椭圆C 的短轴长为2,过点2F 的直线l 与椭圆C 相交于 P Q 、两点,且11F P FQ ⊥,求直线l 的方程. [解](1) (2)【答案】[解](1)设椭圆C 的方程为22221(0)x y a b a b+=>>.根据题意知2221a b a b =⎧⎨-=⎩, 解得243a =,213b = 故椭圆C 的方程为2214133x y +=.(2)容易求得椭圆C 的方程为2212x y +=. 当直线l 的斜率不存在时,其方程为1x =,不符合题意; 当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-.由22(1)12y k x x y =-⎧⎪⎨+=⎪⎩ 得2222(21)42(1)0k x k x k +-+-=. 设1122( ) ( )P x y Q x y ,,,,则2212121111222242(1) (1 ) (1 )2121k k x x x x F P x y FQ x y k k -+===+=+++ ,,,,, 因为11F P FQ ⊥ ,所以110F P FQ ⋅=,即 21212121212(1)(1)()1(1)(1)x x y y x x x x k x x +++=++++-- 2221212(1)(1)()1k x x k x x k =+--+++2271021k k -==+, 解得217k =,即k =故直线l的方程为10x +-=或10x -=.31.(2013年高考四川卷(理))已知椭圆C :22221,(0)x y a b a b +=>>的两个焦点分别为12(1,0),(1,0)F F -,且椭圆C 经过点41(,)33P .(Ⅰ)求椭圆C 的离心率;(Ⅱ)设过点(0,2)A 的直线l 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程.【答案】解:2+=所以,a =又由已知,1c =, 所以椭圆C的离心率c e a ===()II 由()I 知椭圆C 的方程为2212x y +=.设点Q 的坐标为(x,y).(1)当直线l 与x 轴垂直时,直线l 与椭圆C 交于()()0,1,0,1-两点,此时Q点坐标为0,2⎛ ⎝ (2) 当直线l 与x 轴不垂直时,设直线l 的方程为2y kx =+.因为,M N 在直线l 上,可设点,M N 的坐标分别为1122(,2),(,2)x kx x kx ++,则22222212(1),(1)AM k x AN k x =+=+. 又()222222(1).AQ x y k x =+-=+由222211AQAMAN=+,得()()()22222212211111k x k x k x =++++,即 ()212122222212122211x x x x x x x x x +-=+= ① 将2y kx =+代入2212x y +=中,得()2221860kx kx +++= ②由()()22842160,k k ∆=-⨯+⨯>得232k >. 由②可知12122286,,2121k x x x x k k +=-=++ 代入①中并化简,得2218103x k =- ③因为点Q 在直线2y kx =+上,所以2y k x-=,代入③中并化简,得()22102318y x --=.由③及232k >,可知2302x <<,即x ⎛⎫⎛∈ ⎪ ⎪ ⎝⎭⎝ .又0,2⎛-⎝满足()22102318y x --=,故x ⎛∈ ⎝. 由题意,(),Q x y 在椭圆C 内部,所以11y -≤≤, 又由()22102183y x -=+有()2992,54y ⎡⎫-∈⎪⎢⎣⎭且11y -≤≤,则1,22y ⎛∈ ⎝. 所以点Q 的轨迹方程是()22102318y x --=,其中,x ⎛∈ ⎝,1,22y ⎛∈ ⎝32.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))椭圆2222:1x y C a b +=(0)a b >>的左、右焦点分别是12,F F ,,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1. (Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF ,设12F PF ∠的角平分线PM 交C 的长轴于点(,0)M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过P 点作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值.【答案】解:(Ⅰ)由于222c a b =-,将x c =-代入椭圆方程22221x y a b +=得2b y a =±由题意知221b a =,即22a b = 又ce a == 所以2a =,1b = 所以椭圆方程为2214x y +=204x ≠,将向量坐标代入并化简得:m(23000416)312x x x -=-,因为204x ≠,12118kk kk +=-=-为定值.33.(2013年高考上海卷(理))(3分+5分+8分)如图,已知曲线221:12x C y -=,曲线2:||||1C y x =+,P 是平面上一点,若存在过点P 的直线与12,C C 都有公共点,则称P 为“C 1—C 2型点”.(1)在正确证明1C 的左焦点是“C 1—C 2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y kx =与2C 有公共点,求证||1k >,进而证明原点不是“C 1—C 2型点”; (3)求证:圆2212x y +=内的点都不是“C 1—C 2型点”.【答案】:(1)C 1的左焦点为(F ,过F 的直线x =与C 1交于(,与C 2交于(1))±+,故C 1的左焦点为“C 1-C 2型点”,且直线可以为x =;(2)直线y kx =与C 2有交点,则(||1)||1||||1y kxk x y x =⎧⇒-=⎨=+⎩,若方程组有解,则必须||1k >; 直线y kx =与C 2有交点,则2222(12)222y kx k x x y =⎧⇒-=⎨-=⎩,若方程组有解,则必须212k < 故直线y kx =至多与曲线C 1和C 2中的一条有交点,即原点不是“C 1-C 2型点”. (3)显然过圆2212x y +=内一点的直线l 若与曲线C 1有交点,则斜率必存在; 根据对称性,不妨设直线l 斜率存在且与曲线C 2交于点(,1)(0)t t t +≥,则:(1)()(1)0l y t k x t kx y t kt =+=-⇒-++-=直线l 与圆2212x y +=内部有交点,<化简得,221(1)(1)2t tk k +-<+............① 若直线l 与曲线C 1有交点,则2222211()2(1)(1)10212y kx kt t k x k t kt x t kt x y =-++⎧⎪⇒-++-++-+=⎨-=⎪⎩ 22222214(1)4()[(1)1]0(1)2(1)2k t kt k t kt t kt k ∆=+---+-+≥⇒+-≥-化简得,22(1)2(1)t kt k +-≥-.....②由①②得,222212(1)(1)(1)12k t tk k k -≤+-<+⇒< 但此时,因为2210,[1(1)]1,(1)12t t k k ≥+-≥+<,即①式不成立;当212k =时,①式也不成立综上,直线l 若与圆2212x y +=内有交点,则不可能同时与曲线C 1和C 2有交点,即圆2212x y +=内的点都不是“C 1-C 2型点” .34.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))如图,在正方形OABC中,O 为坐标原点,点A 的坐标为(10,0),点C 的坐标为(0,10).分别将线段OA 和AB 十等分,分点分别记为129,,....A A A 和129,,....B B B ,连结i OB ,过i A 做x 轴的垂线与i OB 交于点*(,19)iP i N i ∈≤≤. (1)求证:点*(,19)i P i N i ∈≤≤都在同一条抛物线上,并求该抛物线E 的方程;(2)过点C 做直线与抛物线E 交于不同的两点,M N ,若OCM ∆与OCN ∆的面积比为4:1,求直线的方程.【答案】解:(Ⅰ)依题意,过*(,19)∈≤≤i A i Ni 且与x 轴垂直的直线方程为=x i (10,) i B i ,∴直线i OB 的方程为10=iy x 设i P 坐标为(,)x y ,由10=⎧⎪⎨=⎪⎩x iiy x 得:2110=y x ,即210=x y , ∴*(,19)∈≤≤i P i N i 都在同一条抛物线上,且抛物线E 方程为210=x y(Ⅱ)依题意:直线的斜率存在,设直线的方程为10=+y kx由21010=+⎧⎨=⎩y kx x y得2101000--=x kx 此时2100+4000∆=>k ,直线与抛物线E 恒有两个不同的交点,M N 设:1122(,)(,)M x y N x y ,则121210100+=⎧⎨⋅=-⎩x x kx x4∆∆= OCM OCN S S ∴124=x x又120⋅< x x ,∴124=-x x 分别带入21010=+⎧⎨=⎩y kx x y,解得32=±k 直线的方程为3+102=±y x ,即32200-+=x y 或3+2200-=x y 35.(2013年高考湖南卷(理))过抛物线2:2(0)E xpy p =>的焦点F 作斜率分别为12,k k 的两条不同的直线12,l l ,且122k k +=,1l E 与相交于点A,B,2l E 与相交于点C,D.以AB,CD为直径的圆M,圆N(M,N 为圆心)的公共弦所在的直线记为l .(I)若120,0k k >>,证明;22FM FN P < ;(II)若点M 到直线l,求抛物线E 的方程. 【答案】解: (Ⅰ),设),(),,(),,(),,(),,(),,().2,0(3434121244332211y x N y x M y x D y x C y x B y x A pF 02,221211=++-+=p x pk x E px k y l :方程联立,化简整理得与抛物线方程:直线),(2,20,2211211212112221121p k p k FM p p k y p k x x x p x x p k x x -=⇒+==+=⇒=-=⋅=+⇒),(2,2,222223422134p k p k FN p p k y p k x x x -=⇒+==+=⇒同理. )1(2121222221221+=+=⋅⇒k k k k p p k k p k k FN FM222121221212121212)11(1)1(,122,,0,0p p k k k k p FN FM k k k k k k k k k k =+⋅⋅<+=⋅∴≤⇒≥+=≠>> 所以,22p FN FM <⋅成立. (证毕) (Ⅱ),)]2(2[21)]2()2[(21,212121121p p k p p k p y p y p r r r N M +=++=+++=⇒的半径分别为、设圆,2同理,221211p p k r p p k r +=+=⇒.,21r r N M 的半径分别为、设圆则21212212)()(r y y x x N M =-+-的方程分别为、, 的方程为:,直线l r y y x x 22234234)()(=-+-0-)(2)(2222123421223421212341234=+-+-+-+-r r y y x x y y y x x x .))(-())(())(()(2)(212123412341234123412212212=++--+--+-+-⇒r r r r y y y y x x x x y k k p x k k p2))((1))(()(2)(2)(2222121222222122212212212212++-+++-+-+-+-⇒k k k k p k k k k p k k p y k k p x k k p 0202)(1)(222212221=+⇒=+++++--+⇒y x k k p k k p p y x55758751)41()41(2|512||52|),(212112121212==+-+-⋅≥++⋅=+=p p k k p y x d l y x M 的距离到直线点y x p 1682=⇒=⇒抛物线的方程为.36.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,点)1,0(-P 是椭圆)0(1:22221>>=+b a by a x C 的一个顶点,1C 的长轴是圆4:222=+y x C 的直径.21,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于两点,2l 交椭圆1C 于另一点D (1)求椭圆1C 的方程; (2)求ABD ∆面积取最大值时直线1l 的方程.【答案】解:(Ⅰ)由已知得到1b =,且242a a =∴=,所以椭圆的方程是2214x y +=;(Ⅱ)因为直线12l l ⊥,且都过点(0,1)P -,所以设直线1:110l y kx kx y =-⇒--=,直线21:10l y x x ky k k=--⇒++=,所以圆心(0,0)到直线1:110l y kx kx y =-⇒--=的距离为d =,所以直线1l 被圆224x y +=所截的弦AB ==;由22222048014x ky k k x x kx x y ++=⎧⎪⇒++=⎨+=⎪⎩,所以28||4D P k x x DP k +=-∴==+所以(第21题图)11||||22ABDS AB DP ∆==⨯====≤=当252k k =⇒=⇒=时等号成立,此时直线1:1l y x =- 37.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如题(21)图,椭圆的中心为原点O ,长轴在x 轴上,离心率e =,过左焦点1F 作x 轴的垂线交椭圆于,A A '两点,4AA '=.(1)求该椭圆的标准方程;(2)取垂直于x 轴的直线与椭圆相交于不同的两点,P P ',过,P P '作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.若PQ P Q '⊥,求圆Q 的标准方程.【答案】38.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设椭圆2222:11x y E a a+=-的焦点在x 轴上 (Ⅰ)若椭圆E 的焦距为1,求椭圆E 的方程;(Ⅱ)设12,F F 分别是椭圆的左、右焦点,P 为椭圆E 上的第一象限内的点,直线2F P 交y轴与点Q ,并且11F P FQ ⊥,证明:当a 变化时,点p 在某定直线上. 【答案】解:(Ⅰ)13858851,12,122222222=+=⇒+-==->x x a c a a c a a ,椭圆方程为: .(Ⅱ) ),(),,),,0(),,(),0,(),0,(2221m c QF y c x P F m Q y x P c F c F -=-=-(则设. 由)1,0(),1,0()1,0(012∈∈⇒∈⇒>-y x a a .⎩⎨⎧=++=-⊥=+=0)()(,//).,(),,(112211my c x c ycx c m Q F P F QF P F m c Q F y c x P F 得:由 解得联立⎪⎪⎪⎩⎪⎪⎪⎨⎧+-==-=-+=-⇒=+-⇒22222222222222111.))((c a a c y x a y a x c y x y c x c xy x y x y x yx y y x x -=∴∈∈±=⇒=+-++-⇒1)1,0(),1,0(.)1(1121222222222 所以动点P 过定直线01=-+y x .39.(2013年高考新课标1(理))已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P与M 外切并且与圆N 内切,圆心P 的轨迹为曲线 C.(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A,B 两点,当圆P 的半径最长时,求|AB|.【答案】由已知得圆M 的圆心为M (-1,0),半径1r =1,圆N 的圆心为N (1,0),半径2r =3.设动圆P 的圆心为P (x ,y ),半径为R.(Ⅰ)∵圆P 与圆M 外切且与圆N 内切,∴|PM|+|PN|=12()()R r r R ++-=12r r +=4, 由椭圆的定义可知,曲线C 是以M,N 为左右焦点,场半轴长为2,的椭圆(左顶点除外),其方程为221(2)43x y x +=≠-.(Ⅱ)对于曲线C 上任意一点P (x ,y ),由于|PM|-|PN|=22R -≤2,∴R≤2, 当且仅当圆P 的圆心为(2,0)时,R=2.∴当圆P 的半径最长时,其方程为22(2)4x y -+=, 当l 的倾斜角为090时,则l 与y 轴重合,可得|AB|=当l 的倾斜角不为090时,由1r ≠R 知l 不平行x 轴,设l 与x 轴的交点为Q,则||||QP QM =1Rr ,可求得Q(-4,0),∴设l :(4)y k x =+,由l 于圆M1=,解得k =±当k时,将y x =+代入221(2)43x y x +=≠-并整理得27880x x +-=,解得1,2x12||x x -=187.当k时,由图形的对称性可知|AB|=187, 综上,|AB|=187或|AB|= 40.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))设椭圆22221(0)x y a b a b+=>>的左焦点为F ,, 过点F 且与x(Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB += , 求k 的值.【答案】41.(2013年高考江西卷(理))如图,椭圆2222+=1(>>0)x y C a b a b :经过点3(1,),2P 离心率1=2e ,直线l 的方程为=4x .(1) 求椭圆C 的方程;(2) AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记,,PA PB PM 的斜率分别为123,,.k k k 问:是否存在常数λ,使得123+=.k k k λ?若存在求λ的值;若不存在,说明理由.【答案】解:(1)由3(1,)2P 在椭圆上得,221914a b+= ① 依题设知2a c =,则223b c = ② ②代入①解得2221,4,3c a b ===.故椭圆C 的方程为22143x y +=.(2)方法一:由题意可设AB 的斜率为k , 则直线AB 的方程为(1)y k x =- ③代入椭圆方程223412x y +=并整理,得2222(43)84(3)0k x k x k +-+-=, 设1122(,),(,)A x y B x y ,则有2212122284(3),4343k k x x x x k k -+==++ ④ 在方程③中令4x =得,M 的坐标为(4,3)k .从而121231233331222,,11412y y k k k k k x x ---====----. 注意到,,A F B 共线,则有AF BF k k k ==,即有121211y yk x x ==--. 所以1212121212123331122()1111212y y y y k k x x x x x x --+=+=+-+------ 1212122322()1x x k x x x x +-=-⋅-++ ⑤④代入⑤得22122222823432214(3)8214343k k k k k k k k k k -++=-⋅=---+++, 又312k k =-,所以1232k k k +=.故存在常数2λ=符合题意.方法二:设000(,)(1)B x y x ≠,则直线FB 的方程为:00(1)1y y x x =--, 令4x =,求得003(4,)1y M x -, 从而直线PM 的斜率为0030212(1)y x k x -+=-,联立0022(1)1143y y x x x y ⎧=-⎪-⎪⎨⎪+=⎪⎩ ,得0000583(,)2525x y A x x ---,则直线PA 的斜率为:00102252(1)y x k x -+=-,直线PB 的斜率为:020232(1)y k x -=-,所以00000123000225232122(1)2(1)1y x y y x k k k x x x -+--++=+==---,故存在常数2λ=符合题意.42.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线l :20x y --=.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点. (Ⅰ) 求抛物线C 的方程;(Ⅱ) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程; (Ⅲ) 当点P 在直线l 上移动时,求AF BF ⋅的最小值.【答案】(Ⅰ) 依题意,设抛物线C 的方程为24xcy =,0c >,解得1c =.所以抛物线C 的方程为24x y =. (Ⅱ) 抛物线C 的方程为24x y =,即214y x =,求导得12y x '=设()11,A x y ,()22,B x y (其中221212,44x x y y ==),则切线,PA PB 的斜率分别为112x ,212x , 所以切线PA 的方程为()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --=同理可得切线PB 的方程为22220x x y y --=因为切线,PA PB 均过点()00,P x y ,所以1001220x x y y --=,2002220x x y y --= 所以()()1122,,,x y x y 为方程00220x x y y --=的两组解. 所以直线AB 的方程为00220x x y y --=.(Ⅲ) 由抛物线定义可知11AF y =+,21BF y =+, 所以()()()121212111AF BF y y y y y y ⋅=++=+++ 联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y y x y y +-+=由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y = 所以()221212000121AF BF y y y y y x y ⋅=+++=+-+又点()00,P x y 在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭所以当012y =-时, AF BF ⋅取得最小值,且最小值为92. 43.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))平面直角坐标系xOy 中,过椭圆2222:1(0)x y M a b a b+=>>的右焦点F 作直0x y +=交M 于,A B两点,P 为AB 的中点,且OP 的斜率为12. (Ⅰ)求M 的方程;(Ⅱ),C D 为M 上的两点,若四边形ABCD 的对角线CD AB ⊥,求四边形ABCD 面积的最大值.【答案】44.(2013年高考湖北卷(理))如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别为2m ,2n ()m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,BDM ∆和ABN ∆的面积分别为1S 和2S .(I)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(II)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.【答案】解:(I)12S S λ=()m n m n λ⇒+=-,1111m n m n λλλ++∴==--解得:1λ=+(舍去小于1的根)(II)设椭圆()22122:1x y C a m a m +=>,22222:1x y C a n+=,直线l :ky x =22221ky x x y a m =⎧⎪⎨+=⎪⎩2222221a m k y a m +⇒=A y ⇒= 同理可得,B y =又 BDM ∆和ABN ∆的的高相等12B D B A A B A BS BD y y y y S AB y y y y -+∴===-- 如果存在非零实数k 使得12S S λ=,则有()()11A B y y λλ-=+,第21题图即:()()222222222211a n k a n k λλλλ-+=++,解得()()2222232114a k n λλλλ--+=∴当1λ>+时,20k >,存在这样的直线l ;当11λ<≤+时,20k ≤,不存在这样的直线l .45.(2013年高考北京卷(理))已知A 、B 、C 是椭圆W :2214x y +=上的三个点,O 是坐标原点.(I)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积;(II)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.【答案】解:(I)椭圆W :2214x y +=的右顶点B 的坐标为(2,0).因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分. 所以可设A(1,m ),代入椭圆方程得2114m +=,即m =. 所以菱形OABC 的面积是11||||22||22OB AC m ⋅=⨯⨯=. (II)假设四边形OABC 为菱形. 因为点B 不是W 的顶点,且直线AC 不过原点,所以可设AC 的方程为(0,0)y kx m k m =+≠≠.由2244x y y kx m⎧+=⎨=+⎩消去y 并整理得222(14)8440k x kmx m +++-=. 设A 1,1()x y ,C 2,2()x y ,则1224214x x km k +=-+,121222214y y x x mk m k ++=⋅+=+. 所以AC 的中点为M(2414km k -+,214mk+). 因为M 为AC 和OB 的交点,所以直线OB 的斜率为14k-.因为1()14k k⋅-≠-,所以AC 与OB 不垂直. 所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形. 46.(2013年高考陕西卷(理))已知动圆过定点A (4,0), 且在y 轴上截得的弦MN 的长为8.(Ⅰ) 求动圆圆心的轨迹C 的方程;(Ⅱ) 已知点B (-1,0), 设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P , Q , 若x 轴是PBQ ∠的角平分线, 证明直线l 过定点.【答案】解:(Ⅰ) A (4,0),设圆心C2222,2),,(EC ME CM CA MNME E MN y x +===,由几何图像知线段的中点为x y x y x 84)422222=⇒+=+-⇒((Ⅱ)点B (-1,0),222121212122118,8,00),,(),,(x y x y y y y y y x Q y x P ==<≠+,由题知设.080)()(88811211221212222112211=+⇒=+++⇒+-=+⇒+-=+⇒y y y y y y y y y yy y x y x y 直线PQ 方程为:)8(1)(21121112121y x y y y y x x x x y y y y -+=-⇒---=-1,088)(8)()(122112112==⇒=++⇒-=+-+⇒x y x y y y y x y y y y y y所以,直线PQ 过定点(1,0)47.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))如图,抛物线()2212:4,:20C x y C x py p ==->,点()00,M x y 在抛物线2C 上,过M 作1C 的切线,切点为,A B (M 为原点O 时,,A B 重合于O )01x =,切线.MA 的斜率为12-. (I)求p 的值;(II)当M 在2C 上运动时,求线段AB 中点N 的轨迹方程.(),,.A B O O 重合于时中点为【答案】48.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为12F F ,,离心率为3,直线2y =与C 的. (I)求,;a b ;(II)设过2F 的直线l 与C 的左、右两支分别相交于,A B 两点,且11AF BF ,证明:22AF AB BF 、、成等比数列.【答案】49.(2013年上海市春季高考数学试卷(含答案))本题共有2个小题,第1小题满分6分,第2小题满分6分.已知抛物线24C y x =: 的焦点为F .(1)点 A P 、满足2AP FA =-.当点A 在抛物线C 上运动时,求动点P 的轨迹方程;(2)在x 轴上是否存在点Q ,使得点Q 关于直线2y x =的对称点在抛物线C 上?如果存在,求所有满足条件的点Q 的坐标;如果不存在,请说明理由.【答案】(1)设动点P 的坐标为( )x y ,,点A 的坐标为( )A A x y ,,则( )A A AP x x y y =--,, 因为F 的坐标为(1 0),,所以(1 )A A FA x y =-,, 由2AP FA =-得( )2(1 )A A A A x x y y x y --=--,,.即2(1)2A A A A x x x y y y -=--⎧⎨-=-⎩ 解得2A Ax x y y =-⎧⎨=-⎩代入24y x =,得到动点P 的轨迹方程为284y x =-.(2)设点Q 的坐标为( 0)t ,.点Q 关于直线2y x =的对称点为( )Q x y ',,则122yx t y x t ⎧=-⎪⎪-⎨⎪=+⎪⎩ 解得3545x t y t⎧=-⎪⎪⎨⎪=⎪⎩若Q '在C 上,将Q '的坐标代入24y x =,得24150t t +=,即0t =或154t =-. 所以存在满足题意的点Q ,其坐标为(0 0),和15( 0)4-,.。

2010-2023历年普通高等学校招生全国统一考试上海卷英语试题

2010-2023历年普通高等学校招生全国统一考试上海卷英语试题

2010-2023历年普通高等学校招生全国统一考试上海卷英语试题第1卷一.参考题库(共20题)1.It_____ have been Tom that parked the car here, as he is the only one with a car.A.mayB.canC.mustD.should2.Mozart’s birthplace and the house ______ he composed ‘The Magic Flute’ are both museums nowA.whereB.whenC.thereD.which3.A small plane crashed into a hillside five miles east of the city, _____all four people on board.A.killedB.killingC.killsD.to kill4.David threatened_____ his neighbour to the police if the damages were not paid.A.to be reportedB.reportingC.to reportD.having reported5.Directions: Write an English composition in 120-150 words according to the instructions given below in Chinese.某海外学校举办英语夏令营,开设了如下课程:园艺(gardening),烹饪(coo king),防身术(self-defence),护理(nursing)。

假如你是王跃华(不可以用自己的真实姓名),写一封申请信,报名参加其中一门课程的学习。

信的内容必须包括:1.你感兴趣的课程2.你期望从这门课程中学到什么3.为什么想学这些内容6.With the government’s aid, those _____ by the earthquake have moved to the new settlements.A.affectB.affectingC.affectedD.were affected7.As a new diplomat, he often thinks of_____- he can react more appropriately on such occasions.A.whatB.whichC.thatD.how8.Translate the following sentences into English, using the words given in the brakes. 【小题1】网球运动在上海越来越流行了。

人教版高二必修四数学第二章平面向量试题

以下是为⼤家整理的关于《⼈教版⾼⼆必修四数学第⼆章平⾯向量试题》的⽂章,供⼤家学习参考!第四部分练习与试卷2.1 平⾯向量的概念及其线性运算(练习)【练习⽬标】1、理解平⾯向量和向量相等的含义,理解向量的⼏何表⽰;2、掌握向量加、减法的运算,并理解其⼏何意义;3、掌握向量数乘的运算,并理解其⼏何意义,以及两个向量共线的含义;4、了解向量线性运算的性质及其⼏何意义。

【⾃我测试】1、下列命题中(1)与⽅向相同(2)与⽅向相反(3)与有相等的模(4)若与垂直其中真命题的个数是 ( )A、0B、1C、2D、32、已知AD、BE是 ABC的边BC、AC上的中线,且,,则为 ( )A、 B、 C、 D、3、O是平⾯上⼀定点,A、B、C是平⾯上不共线的三个点,动点P满⾜,则P的轨迹⼀定经过 ABC的( )A、外⼼B、内⼼C、垂⼼D、重⼼4、若⾮零向量、满⾜| + |=| — |,则与所成⾓的⼤⼩为_________________。

5、已知点M是 ABC的重⼼,若,求的值。

6、 ABC的外接圆的圆⼼为O,两条边上的⾼的交点为H,,求实数的值。

2.2 平⾯向量的坐标运算【练习⽬标】1、知识与技能:了解平⾯向量的基本定理及其意义、掌握平⾯向量的正交分解及其坐标表⽰;理解⽤坐标表⽰的平⾯向量共线的条件。

2、能⼒⽬标:会⽤坐标表⽰平⾯向量的加、减与数乘运算;3、情感⽬标:通过对平⾯向量的基本定理来理解坐标,实现从图形到坐标的转换过程,锻炼学⽣的转化能⼒。

【⾃我测试】1、下列命题正确的是()A、 B、C、 D、2、已知正⽅形ABCD的边长为1,,则 = ()A、0B、3C、D、3、已知,则共线的条件是()A、 B、 C、 D、或4、如图,在中D、E、F分别是AB、BC、CA的中点,则()A、 B、 C、 D、5、若,则实数p、q的值为()A、 B、 C、 D、6、已知A、B、C是坐标平⾯上的三点,其坐标分别为A(1,2),B(4,1),C(0,-1),则是()A、等腰三⾓形B、等腰直⾓三⾓形C、直⾓三⾓形D、以上都不对2.3 平⾯向量的数量积及其运算【学习⽬标】1.知识与技能:(1)理解向量数量积的定义与性质;(2)理解⼀个向量在另⼀个向量上的投影的定义;(3)掌握向量数量积的运算律;(4)理解两个向量的夹⾓定义;【⾃我测试】1、已知,,和的夹⾓为,则为()A. B. C. D.2、已知向量,,若,则()A. B. C. D.3、在△ABC中,a,b,c分别为三个内⾓A,B,C所对的边,设向量,若 ,则⾓A的⼤⼩为()A. B. C. D.4、设是任意的⾮零平⾯向量,且它们相互不共线,下列命题:①②③不与垂直④其中正确的是()A.①②B.②③C.③④D.②④5、若向量与的夹⾓为,,则向量的模为()A. B. C. D.6、为锐⾓三⾓形的充要条件是()A. B.C. D.7、设是两个⾮零向量,是在的⽅向上的投影,⽽是在的⽅向上的投影,若与的夹⾓为钝⾓,则()A. B. C. D.8、在中,若且,则的形状是()A.等边三⾓形 B.直⾓三⾓形 C.等腰⾮等边三⾓形 D.三边均不相等的三⾓形9、若,则与的夹⾓为; = .10、已知, ,如果与的夹⾓为锐⾓,则的取值范围是11、 = 时,与垂直12、设向量其中,则的值是.13、已知向量与的夹⾓为,,则 = .14、已知,⑴求与的夹⾓;⑵求;⑶若,,求的⾯积.15、已知向量且.⑴求及;⑵若的最⼩值是,求的值.2.4平⾯向量的应⽤【学习⽬标】1.经历⽤向量⽅法解决某些简单的平⾯⼏何问题、⼒学问题与其他⼀些实际问题的过程,体会向量是⼀种处理⼏何问题、物理问题等的⼯具,发展运算能⼒2.运⽤向量的有关知识对物理中的问题进⾏相关分析和计算,并在这个过程中培养学⽣探究问题和解决问题的能⼒1.在△ABC中,AB=a,AC=b,当a•b <0时,△ABC为()A.直⾓三⾓形B.锐⾓三⾓形C.钝⾓三⾓形D.等腰三⾓形2.若向量a、b、c满⾜a +b+c=0,|a|=3,|b|=1,|c|=4,则a b+b c+c a等于()A. 11 B. 12 C. 13 D. 143.已知点,则∠BAC 的余弦值为.4.已知,且a 与b的夹⾓为钝⾓,则x的取值范围是.5.的顶点为,重⼼.求:(1)边上的中线长;(2)边上的⾼的长.6.已知O为△ABC所在平⾯内的⼀点,且满⾜,试判断△ABC的形状.7.已知,设C是直线OP上的⼀点,其中O为坐标原点.(1)求使取得最⼩值时向量的坐标;(2)当点C满⾜(1)时,求cos∠ACB.8、已知O为△ABC所在平⾯内的⼀点,且满⾜,试判断△ABC的形状.9、已知,设C是直线OP上的⼀点,其中O为坐标原点.(1)求使取得最⼩值时向量的坐标;(2)当点C满⾜(1)时,求cos∠ACB.平⾯向量测试卷命题⼈:蓝承⼀、选择题:本⼤题共8⼩题,每⼩题4分,共32分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1、设向量,,则下列结论中正确的是()A、 B、C、与垂直D、∥2、在平⾏四边形ABCD中,AC为⼀条对⾓线,若, ,则()A.(3,5) B.(2,4) C、(-2,-4) D.(-3,-5)3、义平⾯向量之间的⼀种运算“ ”如下,对任意的,,令,下⾯说法错误的是()A.若与共线,则B.C.对任意的,有D.4、已知向量a,b满⾜a•b=0,|a|=1,|b|=2,则|2a-b|=()A、8B、4C、2D、05、在中,,.若点满⾜,则()A. B. C. D.6、设点M是线段BC的中点,点A在直线BC外,则()A、8B、4C、 2D、17、中,点在上,平⽅.若,,,,则()A、 B、 C、 D 、8、已知和点满⾜ .若存在实数使得成⽴,则 =()A. 2 B. 3 C. 4 D. 5⼆、填空题:本⼤题共4⼩题,每⼩题4分,共16分.把答案填在答题卡的相应位置.9、如图,在中,,,则 = 。

2013年高考文综全国卷2

徐老师2013年普通高等学校招生全国统一考试(全国新课标卷2)文科综合能力测试使用地区:宁夏、辽宁、黑龙江、吉林、新疆、云南、内蒙古、青海、贵州、甘肃、西藏本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分300分,考试时间150分钟。

注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上。

2. 回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号框。

写在本试卷上无效。

3. 回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷和草稿纸上无效。

4. 考试结束,将本试卷和答题卡一并交回。

5. 本试卷共16页。

如遇缺页、漏页、字迹不清等情况,考生须及时报告监考老师。

第Ⅰ卷本卷共35小题,每小题4分,共140分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

图1表示我国部分省级行政区域2005—2010年间迁移人口比重。

迁移人口以青壮年为主。

读图1并结合相关知识,完成1,2题。

图11. 2005—2010年()A. 迁出人口数量贵州多于四川B. 迁入人口数量上海多于广东C. 人口增长率浙江高于江苏D. 人口自然增长率安徽低于天津2. 2005—2010年,省级行政区城间的人口迁移()A. 延缓了皖、赣、黔的老龄化进程B. 延缓了沪、京、津的老龄化进程C. 降低了皖、赣、黔的城市化水平D. 降低了沪、京、津的城市化水平地膜覆盖具有保温、保湿、保土等作用,可有效提高农作物产量和农产品质量。

我国目前使用的地膜多是超薄型地膜,易破,难回收,难以自然降解,易造成严重的“白色污染”。

据此完成3~5题。

3. 我国大部分地区使用地膜覆盖主要在()A. 春季B. 夏季C. 秋季D. 冬季4. 下列地区相比较,地膜覆盖的保湿、保温、保土作用最显著的是()A. 东南沿海地区B.西南地区C. 东北地区D. 西北地区5. 残留在土壤中的地膜会()①危害作物根系发育②阻碍土壤温度提升③阻碍土壤水肥运移④加快表土流失速度A. ①③B. ①④C. ②③D. ②④图2示意某地区年均温的分布,读图2,完成6~8题。

普通高等学校招生全国统一考试 数学(上海卷)

普通高等学校招生全国统一考试(上海卷)数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分)1.行列式的值为2.双曲线的渐近线方程为______3.的二项展开式中的系数为(结果用数值表示)4.设常数,函数,若的反函数的图像经过点,则=5.已知复数满足,(是虚数单位),则6.记等差数列的前项和为,若,则7.已知.若函数为奇函数,且在上递减,则8.在平面直角坐标系中,已知点是轴上的两个动点,且,则最小值为9.有编号互不相同的五个砝码,期中5克,3克,1克砝码各两个,从中随机挑选三个,则这三个砝码的总质量为9克的概率为___________(结果用最简分数表示)10.设等比数列的通项公式为,前项和为,若,则___________11.已知常数,函数的图像经过点,若,则=12.已知实数1212,,,x x y y 满足:22221122121211,1,2x y x y x x y y +=+=+=,则+的最大值为_____二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设p 是椭圆22153x y +=上的动点,则p 到该椭圆的两个焦点的距离之和为()A. B. C. D.14.已知a R ∈,则“1a >”是“11a<”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马。

2013年全国各地高考英语试题(答案)

1.2013年普通高等学校招生全国统一考试英语(课标卷I)选择题答案第一、二、三部分36-40 CCDAB41-45 DABAC 46-50 CDDBA 51-55 BCADB 56-60 AACCB61-65 DCDDB 66-70 BCABD第二节:One Possible VersionDear Peter,How are you doing?I’m writing to tell you that my uncle Li Ming is going to your city for a conference, and I’ve asked him to bring you the Chinese painting you’ve asked for before.Also, I’d like you to do me a favor. Would you please meet my uncle at the airport and take him to his hotel since this is his first visit to the U.S.? Thank you in advance!His flight number is CA985, and it will arrive at 11:30 am, August 6. My uncle is tall and he is wearing glasses. And he will be in a blue jacket.Looking forward to your reply.Yours,Li Hua2.2013年普通高等学校招生全国统一考试英语(课标卷II)选择题:16-20: ADBBA 21-25: CBDCA 26-30: CDBCA31-35: DDBCA 36-40: BADBA 41-45: DBDCD 46-50: CABCDDear Tom,How are you doing? I wonder if you could sell some Chinese knots for me. I made them myself with red silk threads, cloth and other materials. They look really beautiful in the shape of a diamond, about 5 inches long and 4 inches wide. In china, these knots stand for friendship, love and good luck. People can either give them as gifts to friends or hang them in their houses. They are only 12.99 US dollars each. If anyone wants to know more about the knots, let them write to me. Also, do let me know if you need further information. Thank you!Li hua.2013年普通高等学校招生全国统一考试英语(大纲卷)选择题答案:第一、二、三部分:1.A 2.C 3.A 4.C 5.B 6.B 7.B 8.A 9.B 10.A11.B 12.A 13.C 14.A 15.A 16.B 17.C 18.B 19.C 20.C21.D 22.A 23.A 24.C 25.D 26.B 27.C 28.A 29.B 30.B31.D 32.B 33.A 34.D 35.C 36.A 37.D 38.B 39.B 40.A41.C 42.B 43.D 44.C 45.A 46.C 47.D 48.B 49.C 50.A51.D 52.D 53.B 54.C 55.A 56.B 57.A 58.D 59.B 60.A61.D 62.B 63.D 64.C 65.D 66.C 67.A 68.B 69.A 70.C71.D 72.C 73.A 74.C 75.B非选择题答案:第二节:英语答案第1页(共2页)Dear Tom,How are you doing? I wonder if you could sell some Chinese knots for me. I made them myself with red silk threads, cloth and other materials. They look really beautiful in the shape of a diamond, about 5 inches long and 4 inches wide. In china, these knots stand for friendship, love and good luck. People can either give them as gifts to friends or hang them in their houses. They are only 12.99 US dollars each. If anyone wants to know more about the knots, let them write to me. Also, do let me know if you need further information. Thank you!Li hua.4. 2013年普通高等学校招生全国统一考试英语(北京卷)第二部分: 第一节:单选21-25: DACBB 25-30: CDBDA 31-35: BCCDA第二节: 完形36-40: CAADB 41-45:BCDCD46-50:ACBDA 51-55:BDCAB第三部分: 阅读56-60: BADAC 61-65: CDBBA 66-70:DDACC 71-75: EDBAF第四部分:作文第一节:情景作文内容要点:1. 告别2.生病3.照顾. 4.夸奖Last Monday, my father said goodbye to my mother and me and went on a business trip. He would be awayfor three days. Just the next morning, I found my mother wasn’t feeling well. She had a cold. I immediatelywent to get her some medicine and then prepared some noodles for her, with my special care. My mother recovered quickly. When my father came back home, my mother told him what had happened he praised me for what I had done. I feel very happy that I have done something for my mother第二节开放作文I think the picture is telling us that there is usually a difference between one’s dream and reality. Peopleneed to learn to face it. Everyone has his dream, however, it is not so easy for people to realize their dreamsevery time. Just like the man in the picture, instead of the big fish he wishes for. He actually catches a smallone. In my opinion, People need to learn to accept the reality and keep on trying. With another try, they may gain what they dream of.5. 2013年普通高等学校招生全国统一考试英语(天津卷)单选1-15 BABDC BCAAD ACDBD完形16-35 CDABA BCDBA CDCBA ABACD阅读36-55 ABCDD ACDBC BCBDA ACDBDGood afternoon, my dear friends,My name is Li Jin. I feel excited to have the honor of running for vice president of our English Club. I think I am fully qualified for the job.Firstly, I am easygoing and can communicate with others in English fluently. Secondly, as a dynamic person, I have rich experience in organizing activities, such as English parties and all kinds of lectures. I will make good plans and spare no efforts to do more exchanges with other schools by holding English Speech Competition and debates if I get the chance. If I am lucky enough to be elected, I will make great contributions to serve students and try to make their life more colorful! I sincerely hope you can give me a chance. Thank you!6.2013年普通高等学校招生全国统一考试英语(上海卷)第一大题第1至第10小题,每题1分;第11至第16小题,每题2分;第17至第24小题,每题1分,共30分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

。 1

2013年高考真题—物理(上海卷)解析版 本试卷共7页,满分l50分,考试时间l20分钟。全卷包括六大题,第一、二大题为单项选择题,第三大题为多项选择题,第四大题为填空题,第五大题为实验题,第六大题为计算题。 考生注意: 1、答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名。 2、第一、第二和第三大题的作答必须用28铅笔涂在答题纸上相应区域内与试卷题号对应的位置,需要更改时,必须将原选项用橡皮擦去,重新选择。第四、第五和第六大题的作答必须用黑色的钢笔或圆珠笔写在答题纸上与试卷题号对应的位置(作图可用铅笔)。 3、第30、31、32、33题要求写出必要的文字说明、方程式和重要的演算步骤。只写出最后答案,而未写出主要演算过程的,不能得分。有关物理量的数值计算问题,答案中必须明确写出数值和单位。 一.单项选择题(共16分,每小题2分。每小题只有一个正确选项。) 1.电磁波与机械波具有的共同性质是 (A)都是横波 (B)都能传输能量 (C)都能在真空中传播 (D)都具有恒定的波速 答案:B 解析:电磁波与机械波具有的共同性质是都能传输能量,选项B正确。

2.当用一束紫外线照射锌板时,产生了光电效应,这时 (A)锌板带负电 (B)有正离子从锌板逸出 (C)有电子从锌板逸出 (D)锌板会吸附空气中的正离子 答案:C 解析:当用一束紫外线照射锌板时,产生了光电效应,有电子从锌板逸出,锌板带正电,选项C正确ABD错误。

3.白光通过双缝后产生的干涉条纹是彩色的,其原因是不同色光的 (A)传播速度不同 (B)强度不同 (C)振动方向不同 (D)频率不同 答案:D 解析:白光通过双缝后产生的干涉条纹是彩色的,其原因是不同色光的频率不同。

4.做简谐振动的物体,当它每次经过同一位置时,可能不同的物理量是 (A)位移 (B)速度 (C)加速度 (D)回复力 答案:B 解析:做简谐振动的物体,当它每次经过同一位置时,位移相同,加速度相同,位移相同,可能不同的物理量是速度,选项B正确。

5.液体与固体具有的相同特点是 (A)都具有确定的形状 (B)体积都不易被压缩 (C)物质分子的位置都确定 (D)物质分子都在固定位置附近振动 答案:B 解析:液体与固体具有的相同特点是体积都不易被压缩,选项B正确。

。 2

6.秋千的吊绳有些磨损。在摆动过程中,吊绳最容易断裂的时候是秋千 (A)在下摆过程中 (B)在上摆过程中 (C)摆到最高点时 (D)摆到最低点时 答案:D 解析:当秋千摆到最低点时吊绳中拉力最大,吊绳最容易断裂,选项D正确。

7.在一个23892U原子核衰变为一个20682Pb原子核的过程中,发生β衰变的次数为 (A)6次 (B)10次 (C)22次 (D)32次 答案:A

解析:一个23892U原子核衰变为一个20682Pb原子核的过程中,发生α衰变的次数为(238-206)÷4=8次,发生β衰变的次数为2×8-(92-82)=6次,选项A正确。

8.如图,质量mA>mB的两物体A、B叠放在一起,靠着竖直墙面。让它们由静止释放,在沿粗糙墙面下落过程中,物体B的受力示意图是

答案:A 解析:两物体A、B叠放在一起,在沿粗糙墙面下落过程中,由于物块与竖直墙面之间没有压力,没有摩擦力,二者一起做自由落体运动,AB之间没有弹力作用,物体B的受力示意图是图A。

二.单项选择题(共24分,每小题3分。每小题只有一个正确选项。) 9.小行星绕恒星运动,恒星均匀地向四周辐射能量,质量缓慢减小,可认为小行星在绕恒星运动一周的过程中近似做圆周运动。则经过足够长的时间后,小行星运动的 (A)半径变大 (B)速率变大 (C)角速度变大 (D)加速度变大 答案:A 解析:恒星均匀地向四周辐射能量,质量缓慢减小,二者之间万有引力减小,小行星运动的半径增大,速率减小,角速度减小,加速度减小,选项A正确BCD错误。

10.两异种点电荷电场中的部分等势面如图所示,已知A点电势高于B点电势。若位于a、b处点电荷的电荷量大小分别为qa和qb,则 (A)a处为正电荷,qa<qb (B)a处为正电荷,qa>qb (C)a处为负电荷,qa<qb (D)a处为负电荷,qa>qb 答案:B 解析:根据A点电势高于B点电势可知,a处为正电荷,qa>qb,选项B正确。

。 3

11.如图,通电导线MN与单匝矩形线圈abcd共面,位置靠近ab且相互绝缘。当MN中电流突然减小时,线圈所受安培力的合力方向 (A)向左 (B)向右 (C)垂直纸面向外 (D)垂直纸面向里 答案:B 解析:当MN中电流突然减小时,单匝矩形线圈abcd垂直纸面向里的磁通量减小,根据楞次定律,单匝矩形线圈abcd中产生的感应电流方向顺时针方向,由左手定则可知,线圈所受安培力的合力方向向右,选项B正确。

12.在车门报警电路中,两个按钮开关分别装在汽车的两扇门上,只要有开关处于断开状态,报警灯就发光。能实现此功能的电路是

答案:B 解析:能实现此功能的电路是与门电路,选项B正确。

13.如图,足够长的直线ab靠近通电螺线管,与螺线管平行。用磁传感器测量ab上各点的磁感应强度B,在计算机屏幕上显示的大致图像是

答案:C 解析:通电螺线管外部中间处的磁感应强度最小,所以用磁传感器测量ab上各点的磁感应强度B,在计算机屏幕上显示的大致图像是C。

14.一列横波沿水平绳传播,绳的一端在t=0时开始做周期为T的简谐运动,经过时间t(34T<t<T),绳上某点位于平衡位置上方的最大位移处。则在2t时,该点位于平衡位置的 (A)上方,且向上运动 (B)上方,且向下运动 (C)下方,且向上运动 (D)下方,且向下运动

。 4

答案:B 解析:由于再经过T时间,该点才能位于平衡位置上方的最大位移处,所以在2t时,该点位于平衡位置的上方,且向上运动,选项B正确。

15.已知湖水深度为20m,湖底水温为4℃,水面温度为17℃,大气压强为1.0×105Pa。当一气泡从湖底缓慢升到水面时,其体积约为原来的(取g=10m/s2,ρ=1.0×103kg/m3) (A)12.8倍 (B)8.5倍 (C)3.1倍 (D)2.1倍 答案:C 解析:湖底压强大约为3个大气压,由气体状态方程,当一气泡从湖底缓慢升到水面时,其体积约为原来的3.1倍,选项C正确。

16.汽车以恒定功率沿公路做直线运动,途中通过一块沙地。汽车在公路及沙地上所受阻力均为恒力,且在沙地上受到的阻力大于在公路上受到的阻力。汽车在驶入沙地前己做匀速直线运动,它在驶入沙地到驶出沙地后的一段时间内,位移s随时间t的变化关系可能是

答案:B 解析:在驶入沙地后,由于阻力增大,速度减小,驶出沙地后阻力减小,速度增大,在驶入沙地到驶出沙地后的一段时间内,位移s随时间t的变化关系可能是B。

三.多项选择题(共16分,每小题4分。每小题有二个或三个正确选项。全选对的,得4分;选对但不全的,得2分;有选错或不答的,得0分。) 17.某半导体激光器发射波长为1.5×10-6m,功率为5.0×10-3W的连续激光。已知可见光波长的数量级为10-7m,普朗克常量h=6.63×10-34J·s,该激光器发出的 (A)是紫外线 (B)是红外线 (C)光子能量约为1.3×10-18J (D)光子数约为每秒3.8×1016个 答案:(蓝色) 解析:由于激光波长大于可见光波长,所以该激光器发出的是红外线,选项B正确A错误。由E=hc/λ可得光子能量约为E=6.63×10-34×3×108÷(1.5×10-6)J=1.3×10-19J,选项C错误。光子数约为每秒为n=P/E=3.8×1016

个,选项D正确。

18.两个共点力Fl、F2大小不同,它们的合力大小为F,则 (A)F1、F2同时增大一倍,F也增大一倍 (B)F1、F2同时增加10N,F也增加10N (C)F1增加10N,F2减少10N,F一定不变 (D)若F1、F2中的一个增大,F不一定增大 答案:AD 解析:F1、F2同时增大一倍,F也增大一倍,选项A正确。F1、F2同时增加10N,F不一定增加10N,选项B错误;F1增加10N,F2减少10N,F可能变化,选项C错误。若F1、F2中的一个增大,F不一定

。 5

增大,选项D正确。 (蓝色) 19.如图,轰炸机沿水平方向匀速飞行,到达山坡底端正上方时释放一颗炸弹,并垂直击中山坡上的目标A。已知A点高度为h,山坡倾角为θ,由此可算出 (A)轰炸机的飞行高度 (B)轰炸机的飞行速度 (C)炸弹的飞行时间 (D)炸弹投出时的动能 答案:ABC

解析:根据题述,tanθ=v/gt,x=vt,tanθ=h/x,H=v+y,y=12gt2,由此可算出轰炸机的飞行高度y;轰炸机的飞行速度v,炸弹的飞行时间t,选项ABC正确。由于题述没有给出炸弹质量,不能得出炸弹投出时的动能,选项D错误。

20.右图为在平静海面上,两艘拖船A、B拖着驳船C运动的示意图。A、B的速度分别沿着缆绳CA、CB方向,A、B、C不在一条直线上。由于缆绳不可伸长,因此C的速度在CA、CB方向的投影分别与A、B的速度相等,由此可知C的 (A)速度大小可以介于A、B的速度大小之间 (B)速度大小一定不小于A、B的速度大小 (C)速度方向可能在CA和CB的夹角范围外 (D)速度方向一定在CA和CB的夹角范围内 答案:BD 解析:根据题述,C的速度大小一定不小于A、B的速度大小,选项A错误B正确。C的速度方向一定在CA和CB的夹角范围内,选项C错误D正确。

四.填空题(共20分,每小题4分。) 本大题中第22题为分叉题,分A、B两类,考生可任选一类答题。若两类试题均做,一律按A类题计分。

21.放射性元素21084Po衰变为20682Pb,此衰变过程的核反应方程是____;用此衰变过程中发出的射线

轰击199F,可得到质量数为22的氖(Ne)元素和另一种粒子,此核反应过程的方程是____。 答案: 21084Po→20682Pb+42He 42He+199F→2210Ne+11H。 解析:根据衰变规律,此衰变过程的核反应方程是21084Po→20682Pb+42He。用α射线轰击199F,可得到质量数为22的氖(Ne)元素和另一种粒子,此核反应过程的方程是:42He+199F→2210Ne+11H。

相关文档
最新文档