深圳市龙华中英文实验学校高二数学选修11圆
广东省深圳市市南山中英文学校高二数学文模拟试题含解析

广东省深圳市市南山中英文学校高二数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 关于x的不等式x2+x+c>0的解集是全体实数的条件是()A.c<B.c≤C.c>D.c≥参考答案:C【考点】二次函数的性质.【分析】由判别式小于零,求得c的范围.【解答】解:关于x的不等式x2+x+c>0的解集是全体实数的条件是判别式△=1﹣4c<0,解得 c>,故选:C.2. 给出两个命题:p:平面内直线与抛物线有且只有一个交点,则直线与该抛物线相切;命题q:过双曲线右焦点的最短弦长是8。
则()A.q为真命题B.“p 或q”为假命题C.“p且q”为真命题D.“p 或q”为真命题参考答案:B略3. 在△ABC中,A=,AB=3,AC=3,D在边BC上,且CD=2DB,则AD=()A.B.C.5 D.参考答案:A【考点】余弦定理.【分析】在三角形ABC中,利用余弦定理求出BC的长,进而确定出BD与CD的长,再三角形ABD与三角形ACD中分别利用余弦定理表示出cos∠ADB与cos∠ADC,根据两值互为相反数求出AD的长即可.【解答】解:在△ABC中,A=,AB=3,AC=3,利用余弦定理得:BC2=AB2+AC2﹣2AB?AC?cos∠BAC=27+9﹣27=9,即BC=3,∴BD=1,CD=2,在△ABD中,由余弦定理得:cos∠ADB=,在△ADC中,由余弦定理得:cos∠ADC=,∴cos∠ADB=﹣cos∠ADC,即=﹣,解得:AD=(负值舍去),故选:A.4. a、b∈R,下列命题正确的是()A.若a>b,则a2>b2 B.若|a|>b,则a2>b2C.若a>|b|,则a2>b2 D.若a≠|b|,则a2≠b2参考答案:C5. 命题p:?x0∈R,x0≤2的否定是()A.¬p:?x∈R,x≤2 B.¬p:?x∈R,x>2 C.¬p:?x∈R,x>2 D.¬p:?x∈R,x≤2参考答案:C【考点】命题的否定.【分析】根据已知中的原命题,结合特称命题否定的方法,可得答案.【解答】解:命题p:?x0∈R,x0≤2的否定为¬p:?x∈R,x>2,故选:C【点评】本题考查的知识点是命题的否定,特称命题,难度不大,属于基础题.6. 已知圆O1:(x﹣2)2+y2=16和圆O2:x2+y2=r2(0<r<2),动圆M与圆O1、圆O2都相切,动圆圆心M的轨迹为两个椭圆,这两个椭圆的离心率分别为e1、e2(e1>e2),则e1+2e2的最小值是()A.B.C.D.参考答案:A【考点】椭圆的简单性质.【分析】分别求出e1、e2(e1>e2),利用基本不等式求出e1+2e2的最小值.【解答】解:①当动圆M与圆O1、O2都相内切时,|MO2|+|MO1|=4﹣r=2a,∴e1=.②当动圆M与圆O1相内切而与O2相外切时,|MO1|+|MO2|=4+r=2a′,∴e2=∴e1+2e2=+=,令12﹣r=t(10<t<12),e1+2e2=2×≥2×==故选:A.7. 设向量不共面,则下列集合可作为空间的一个基底的是()A.B.C.D.参考答案:D略8. 在等差数列中,,,则数列的前项和为....参考答案:B9. 的内角A、B、C的对边分别为、、,若、、成等比数列,且,则( ).A. B. C. D.参考答案:B略10. ( )A. B. C. D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 计算: +(3+i17)﹣= .参考答案:4+2i【考点】A7:复数代数形式的混合运算.【分析】利用复数的运算法则分别计算即可.【解答】解:原式=+(3+i)﹣=+3+i﹣i10=i+3+i+1=4+2i;故答案为:4+2i.12. .参考答案:略13. 在平面直角坐标系xOy中,对于点,若函数满足:,都有,就称这个函数是点A的“限定函数”.以下函数:①,②,③,④,其中是原点O的“限定函数”的序号是______.已知点在函数的图象上,若函数是点A的“限定函数”,则a的取值范围是______.参考答案:①③ (-∞,0]【分析】分别运用一次函数、二次函数和正弦函数、对数函数的单调性,结合集合的包含关系可判断是否是原点的限定函数;由指数函数的单调性,结合集合的包含关系,解不等式可得a的范围.【详解】要判断是否是原点O的“限定函数”只要判断:,都有,对于①,由可得,则①是原点O的“限定函数”;对于②,由可得,则②不是原点O的“限定函数”对于③,由可得,则③是原点O的“限定函数”对于④,由可得,则④不是原点O的“限定函数”点在函数的图像上,若函数是点A的“限定函数”,可得,由,即,即,可得,可得,且,即的范围是,故答案为:①③;.【点睛】本题考查函数的新定义的理解和运用,考查常见函数的单调性和运用,考查集合的包含关系,以及推理能力,属于基础题.14. 已知圆O:,直线:,若圆O上恰有3个点到的距离为1,则实数m= ____________.参考答案:15. 已知且,则xy的最大值为__________.参考答案:16. 过抛物线y2=4x的焦点,作倾斜角为的直线交抛物线于P、Q两点,O为坐标原点,则POQ的面积为_________参考答案:2.17. 某学校高一、高二、高三年级的学生人数之比为,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取名学生.参考答案:15三、解答题:本大题共5小题,共72分。
深圳华南中英文学校高中数学选修2-1第二章《空间向量与立体几何》测试题(答案解析)

一、选择题1.如图,在三棱锥A BCD -中,平面ABC ⊥平面BCD ,BAC 与BCD △均为直角三角形,且90BAC BCD ∠=∠=︒,AB AC =,112CD BC ==,点P 是线段AB 上的动点,若线段CD 上存在点Q ,使得异面直线PQ 与AD 成30的角,则线段PA 长的取值范围是( )A .20,2⎛⎤ ⎥⎝⎦B .60,3⎛⎤⎥ ⎝⎦C .(0,1]D .(0,2⎤⎦2.如图,在几何体111ABC A B C -中,ABC ∆为正三角形,111////AA BB CC ,1AA ⊥平面ABC ,若E 是棱11B C 的中点,且1112AB AA CC BB ===,则异面直线1A E 与1AC 所成角的余弦值为( )A .1313B .21313C .2613D .226133.长方体12341234A A A A B B B B -的底面为边长为1的正方形,高为2,则集合12{|i j x x A B A B =⋅,{1,2,3,4},{1,2,3,4}}i j ∈∈中元素的个数为( )A .1B .2C .3D .44.阅读材料:空间直角坐标系O ﹣xyz 中,过点P (x 0,y 0,z 0)且一个法向量为=(a ,b ,c )的平面α的方程为a (x ﹣x 0)+b (y ﹣y 0)+c (z ﹣z 0)=0;过点P (x 0,y 0,z 0)且一个方向向量为d =(u ,v ,w )(uvw≠0)的直线l 的方程为000x x y y z z u v w---==,阅读上面材料,并解决下面问题:已知平面α的方程为x+2y ﹣2z ﹣4=0,直线l 是两平面3x ﹣2y ﹣7=0与2y ﹣z+6=0的交线,则直线l 与平面α所成角的大小为( ) A .arcsin 1414 B .arcsin 421C .arcsin51442D .arcsin123773775.正方体ABCD —A′B′C′D′中,AB 的中点为M ,DD′的中点为N ,则异面直线B′M 与CN 所成角的大小为 A .0°B .45°C .60 °D .90°6.如图,在正方体1111ABCD A B C D ﹣中,1A H ⊥平面11AB D ,垂足为H ,给出下面结论:①直线1A H 与该正方体各棱所成角相等; ②直线1A H 与该正方体各面所成角相等;③过直线1A H 的平面截该正方体所得截面为平行四边形; ④垂直于直线1A H 的平面截该正方体,所得截面可能为五边形, 其中正确结论的序号为( )A .①③B .②④C .①②④D .①②③7.如图,已知平行六面体1111ABCD A BC D -中,底面ABCD 是边长为1的正方形,12AA =, 011120A AB A AD ∠=∠=,则线段1AC 的长为( )A 2B .1C .2D 38.在四面体O-ABC 中,G 1是△ABC 的重心,G 是OG 1上的一点,且OG=3GG 1,若OG =x OA +y OB +z OC ,则(x ,y ,z )为( )A .111,,444⎛⎫⎪⎝⎭B .333,,444⎛⎫⎪⎝⎭ C .111,,333⎛⎫⎪⎝⎭D .222,,333⎛⎫⎪⎝⎭9.若向量(3,1,0)a =,(1,0,)b z =,,3a b π=,则实数z 的值为( )A .2B .2C .2±D .2±10.如图,在空间四边形OABC 中,点E 为BC 中点,点F 在OA 上,且2OF FA =, 则EF 等于( )A .121+232OA OB OC - B .211+322OA OB OC -+ C .111222OA OB OC +- D .211322OA OB OC -- 11.如图,在棱长都相等的正三棱柱111ABC A B C -中,D 是棱1CC 的中点,E 是棱1AA 上的动点.设AE x =,随着x 增大,平面BDE 与底面ABC 所成锐二面角的平面角是( )A .增大B .先增大再减小C .减小D .先减小再增大12.如图,四棱锥P ABCD -的底面是边长为2的正方形, Q 为BC 的中点,PQ ⊥面ABCD ,且2PQ =,动点N 在以D 为球心半径为1的球面上运动,点M 在面 ABCD内运动,且PM 5=,则MN 长度的最小值为( )A .352-B .23-C .25-+D .332-二、填空题13.若平面α的一个法向量为()n 122=,,,A(1,0,2),B(0,-1,4),A ∉α,B ∈α,则点A 到平面α的距离为__________.14.若非零向量,αβ满足αβαβ+=-,则α与β所成角的大小为___. 15.ABC △中,90C ∠︒=,60A ∠︒=,2AB =,M 为AB 中点,将BMC △沿CM 折叠,当平面BMC ⊥平面AMC 时,A ,B 两点之间的距离为_____.16.如图,在棱长为2的正方体1111ABCD A BC D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为________.17.在正方体1111ABCD A BC D -中,M 为棱11A B 的中点,则异面直线AM 与1BC 所成的角的大小为________(结果用反三角函数值表示).18.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,,,M E F 分别为,,PQ AB BC 的中点,则直线ME 与平面ABCD 所成角的正切值为________;异面直线EM 与AF 所成角的余弦值是________.19.如图,直三棱柱111ABC A B C -中,12AA =,1AB BC ==, 90ABC ∠=︒,外接球的球心为O ,点E 是侧棱1BB 上的一个动点.有下列判断:① 直线AC 与直线1C E 是异面直线;②1A E 一定不垂直1AC ; ③ 三棱锥1E AAO -的体积为定值; ④1AE EC +的最小值为22. 其中正确的序号序号是______.20.如图,在四面体D ABC -中,5AD BD AC BC ====,6AB DC ==.若M 为线段AB 上的动点(不包含端点),则二面角D MC B --的余弦值取值范围是__________.三、解答题21.在三棱台ABC DEF -中,2,60AB BC DE DAB EBA ∠∠====,平面ABED ⊥平面,.ABC BC BE ⊥(1)求证:平面ABED ⊥平面BCFE ; (2)求直线DF 与平面ABF 所成角的正弦值. 22.如图,在四棱锥P ABCD -中,6π∠=CAD ,且321,2AD CD PA ABC ===,和PBC 均是等边三角形,O 为BC 的中点.(I )求证:PO ⊥平面ABCD ; (Ⅱ)求CB 与平面PBD 所成角的正弦值.23.如图,在四棱锥P ABCD -中,90BAD ∠=,//AD BC , PA AD ⊥,PA AB ⊥,122PA AB BC AD ====.(Ⅰ)求证://BC 平面PAD ;(Ⅱ)求平面PAB 与平面PCD 所成锐二面角的余弦值.24.如图,四边形ABCD 与四边形BDEF 均为菱形,60DAB DBF ∠=∠=︒,且FA FC =(1)求证:平面ACF ⊥平面ABCD ; (2)求二面角A FC B --的余弦值.25.如图,平面ABCD ⊥平面ABEF ,其中四边形ABCD 为正方形,四边形ABEF 为直角梯形,1//902AB AF BE AF BE BAF ==∠=︒,,,M 为线段CE 上一点,//MF 平面ABCD .(1)确定点M 的位置,并证明你的结论; (2)求直线DF 与平面BFM 所成角的正弦值.26.如图,在四棱锥P ABCD -中,平面PAB ⊥平面ABCD ,PA AB ⊥,4PA AD ==,//BC AD ,AB AD ⊥,2AB BC ==,()01PE PC λλ=≤<.(1)若12λ=,求直线DE 与平面ABE 所成角的正弦值; (2)设二面角B AE C --的大小为θ,若234cos θ=,求λ的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】以C 为原点,CD 为x 轴,CB 为y 轴,过C 作平面BCD 的垂线为z 轴,建立空间直角坐标系,利用向量法能求出PA 长的取值范围. 【详解】如图,以C 为原点,CD 为x 轴,CB 为y 轴,过C 作平面BCD 的垂线为z 轴,建立空间直角坐标系,则()()()()0,0,0,0,1,1,0,2,0,1,0,0C A B D ,设(),0,0Q q ()01q ≤≤,设()0,,AP AB λλλ==-()01λ<≤,则()(,0,0)(0,1,1)(0,,)(,1,1)PQ CQ CA AP q q λλλλ=-+=---=---,(1,1,1)AD =--,异面直线PQ 与AD 成30的角,22||3cos30||||223PQ AD PQ AD q λ⋅∴===⋅++⋅, 22182516q q λ∴+=-+, 201,516[0,11]q q q ≤≤∴-+∈,即22182018211λλ⎧+≥⎨+≤⎩,解得2222λ-≤≤, 201,02λλ<≤∴<≤, 可得2||||22(0,1]PA AP λλ===∈.故选:C. 【点睛】利用向量求解空间角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.2.C解析:C 【解析】 【分析】以C 为原点,在平面ABC 内过C 作BC 的垂线为x 轴,CB 为y 轴,CC 1为z 轴,建立空间直角坐标系,利用向量法能求出异面直线A 1E 与AC 1所成角的余弦值 【详解】以C 为原点,在平面ABC 内过C 作BC 的垂线为x 轴, CB 为y 轴,CC 1为z 轴,建立空间直角坐标系, 设AB =AA 1=CC 1=2BB 1=2,则A 1(3,1,2),A (310,,),C 1(0,0,2),B 1(0,2,1),E (0,1,32), 1A E =(3-,0,12-),1AC =(3-,﹣1,2),设异面直线A 1E 与AC 1所成角为θ,则cosθ1111226131384A E AC A E AC ⋅===⋅⋅. ∴异面直线A 1E 与AC 1所成角的余弦值为2613. 故选C .【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是基础题.3.C解析:C 【分析】建立空间直角坐标系,结合向量的数量积的定义,进行计算,即可求解. 【详解】由题意,因为正方体12341234A A A A B B B B -的底面为班车为1的正方形,高为2, 建立如图所示的空间直角坐标系,则12341234(1,1,0),(0,1,0),(0,0,0),(1,0,0),(1,1,2),(0,1,2),(0,0,2),(1,0,2)A A A A B B B B , 则12(1,0,2)A B =-, 与11(0,0,2)A B =相等的向量为223344A B A B A B ==,此时1211224A B A B ⋅=⨯=, 与14(0,1,2)A B =-相等的向量为23A B ,此时1214224A B A B ⋅=⨯=, 与41(0,1,2)A B =相等的向量为32A B ,此时1241224A B A B ⋅=⨯=, 与21(1,0,2)A B =相等的向量为34A B ,此时1221143A B A B ⋅=-+=, 与12(1,0,2)A B =-相等的向量为43A B ,此时1212145A B A B ⋅=+=, 体对角线向量为13(1,1,2)A B =--,此时1213145A B A B ⋅=+=, 24(1,1,2)A B =-,此时1224143A B A B ⋅=-+=, 31(1,1,2)A B =,此时1231143A B A B ⋅=-+=, 42(1,1,2)A B =-,此时1242145A B A B ⋅=+=,综上集合11{|,{1,2,3,4},{1,2,3,4}}{3,4,5}i j x x A B A B i j =⋅∈∈=,集合中元素的个数为3个. 故选:C .【点睛】本题主要考查了集合的元素的计算,以及向量的数量积的运算,其中解答中建立恰当的空间直角坐标系,熟记向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.4.B解析:B【分析】先根据两个平面的方程,求出平面交线的方向向量,结合已知平面的方程确定平面的法向量,然后求解.【详解】平面α的法向量为n =(1,2,﹣2),联立方程组3270260x y y z --=⎧⎨-+=⎩,令x =1,得y =﹣2,z =2,令x =3,得y =1,z =8, 故点P (1,﹣2,2)和点Q (3,1,8)为直线l 的两个点,∴PQ =(2,3,6)为直线l 的方向向量, ∵44cos ,3721||||PQ n PQ n PQ n ⋅-<>===-⨯ ,∴直线l 与平面α所成角的正弦值为421, 故选B .【点睛】本题主要考查直线和平面所成角的正弦,属于信息提供题目,理解题中所给的信息是求解关键. 5.D解析:D 【分析】以A 为原点,AB 为x 轴,AD 为y 轴,1AA 为z 轴建立空间直角坐标系,利用向量1(1,0,2)B M =--,(2,0,1)CN =-的数量积为0,即可求解.【详解】以A 为原点,AB 为x 轴,AD 为y 轴,1AA 为z 轴建立空间直角坐标系如图所示, 设正方体1111ABCD A BC D -的棱长为2,由图可知(1,0,0)M ,1(2,0,2)B ,(2,2,0)C ,(0,2,1)N , 所以1(1,0,2)B M =--,(2,0,1)CN =-所以1cos ,0B M CN 〈〉=所以异面直线B M '与CN 所成的角为90︒.故本题正确答案为D.【点睛】本题主要考查了异面直线所成角,属于基础题.6.D解析:D【解析】【分析】由A1C⊥平面AB1D1,直线A1H与直线A1C重合,结合线线角和线面角的定义,可判断①②;由四边形A1ACC1为矩形,可判断③;由垂直于直线A1H的平面与平面AB1D1平行,可判断④.【详解】如图,在正方体ABCD﹣A1B1C1D1中,A1H⊥平面AB1D1,垂足为H,连接A1C,可得A1C⊥AB1,A1C⊥AD1,即有A1C⊥平面AB1D1,直线A1H与直线A1C重合,直线A1H与该正方体各棱所成角相等,均为2①正确;直线A1H与该正方体各面所成角相等,均为arctan22,故②正确;过直线A1H的平面截该正方体所得截面为A1ACC1为平行四边形,故③正确;垂直于直线A1H的平面与平面AB1D1平行,截该正方体,所得截面为三角形或六边形,不可能为五边形.故④错误.故选:D.【点睛】本题考查线线角和线面角的求法,以及正方体的截面的形状,考查数形结合思想和空间想象能力,属于中档题.7.A解析:A【分析】由11AC AB BC CC =++,两边平方,利用数量积的运算法则及数量积公式能求出21AC 的值,从而可得结果.【详解】平行六面体1111ABCD A BC D -中,底面ABCD 是边长为1的正方形,1112,120AA A AB A AD =∠=∠=, 11AC AB BC CC ∴=++,()2211AC AB BC CC ∴=++222111222AB BC CC AB CC BC CC AB BC =+++⋅+⋅+⋅ 114212cos120212cos12002=+++⨯⨯⨯+⨯⨯⨯+=,∴线段1AC 的长为12AC = A.【点睛】 本题主要考查利用空间向量求线段的长,考查向量数量积的运算法则,属于中档题.向量数量积的运算主要掌握两点:一是数量积的基本公式cos a b a b θ⋅=;二是向量的平方等于向量模的平方22a a =. 8.A解析:A【分析】如图所示,连接AG 1交BC 于点E ,则E 为BC 中点,利用空间向量的运算法则求得131114444OG OG OA OB OC ===++,即得(x,y,z). 【详解】如图所示,连接AG 1交BC 于点E ,则E 为BC 中点,1(2AE AB AC =+)=1(2OB -2OA OC +), 121(33AG AE OB ==-2OA OC +). 因为OG =31GG =3(1OG OG -),所以OG=34OG 1. 则1133(44OG OG OA AG ==+)=31211114333444OA OB OA OC OA OB OC ⎛⎫+-+=++ ⎪⎝⎭ . 故答案为A【点睛】(1)本题主要考查空间向量的运算法则和基底法,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 如果三个向量,,a b c 不共面,那么对于空间任意一个向量p ,存在一个唯一的有序实数组,,x y z 使p xa yb zc =++.我们把{},,x y z 叫做空间的一个基底,其中,,a b c 叫基向量.9.C解析:C【解析】 分析:根据两个向量的数量积的定义式,推导出其所成角的余弦公式,从而利用cos ,a ba b a b ⋅<>=,结合22a a =,将有关量代入求得z 的值,得到结果.详解:根据题意得31cos ,23a b ⨯===+,化简得22z =,解得z = C.点睛:该题考查的是有关向量夹角余弦公式的问题,在解题的过程中,需要把握住向量夹角余弦公式,再者就是向量的模的平方和向量的平方是相等的,还有就是向量的模的坐标运算式.10.D解析:D【解析】分析:利用向量多边形与三角形法则即可求出,首先分析题中各选项都是由从O 出发的三个向量表示的,所以将待求向量用从O 出发的向量来表示,之后借助于向量的差向量的特征以及中线向量的特征,求得结果.详解:由题意可得21()32EF OF OE OA OB OC =-=-+ 211322OA OB OC =--,故选D. 点睛:该题考查的是有关空间向量基本定理,考查了用向量表示几何的量,向量的线性运算,解题的关键是根据图形把所研究的向量用三个基向量表示出来,本题是向量的基础题. 11.D解析:D【分析】设正三棱柱111ABC A B C -棱长为2,设平面BDE 与底面ABC 所成锐二面角为α,,02AE x x =≤≤,以A 为坐标原点建立空间直角坐标系,确定出,,B D E 点的坐标,求出平面BDE 的法向量m ,底面ABC 的法向量坐标为(0,0,1)n =,将cos α表示为关于x 的函数,通过讨论cos α的增减变化,即可求出结论.【详解】设正三棱柱111ABC A B C -棱长为2,,02AE x x =≤≤,设平面BDE 与底面ABC 所成锐二面角为α,以A 为坐标原点,过点A 在底面ABC 内与AC 垂直的直线为x 轴,1,AC AA 所在的直线分别为,y z 轴建立空间直角坐标系, 则(3,1,0),(0,2,1),(0,0,),(3,1,1),(0,2,1)B D E x BD ED x =-=-,设平面BDE 的法向量(,,)m s t k =,则m BD m ED ⎧⊥⎨⊥⎩, 即302(1)0s t k t x k ⎧-++=⎪⎨+-=⎪⎩,令23k =,则33,1t x s x =-=+, 所以平面BDE 的一个法向量(1,33,23)m x x =+-,底面ABC 的一个法向量为(0,0,1)n =,222233cos |cos ,|115(1)3(1)12()24m n x x x α=<>==++-+-+ 当1(0,)2x ∈,cos α随着x 增大而增大,则α随着x 的增大而减小,当1(,2)2x ∈,cos α随着x 增大而减小,则α随着x 的增大而增大.故选:D.【点睛】本题考查空间向量法求二面角,应用函数思想讨论二面角的大小,考查直观想象、数学计算能力,素养中档题.12.C解析:C【分析】若要使MN 最短,点N 必须落在平面ABCD 内,且一定在DN 的连线上,此时应满足,,,D N M Q 四点共线,通过几何关系即可求解【详解】如图,当点N 落在平面ABCD 内,且,,,D N M Q 四点共线时,MN 距离应该最小,由PM 5=1MQ =,即点M 在以Q 为圆心,半径为1的圆上,由几何关系求得5DQ ,1DN MQ ==,故552NM DN MQ -=故答案选:C【点睛】本题考查由几何体上的动点问题求解两动点间距离的最小值,属于中档题二、填空题13.【分析】利用点到直线的距离公式借助平面的法向量利用公式即可求解【详解】由题意平面的一个法向量为且则所以点A 到平面的距离为【点睛】本题主要考查了点到平面的距离的求法其中解答中熟记空间向量在几何问题中的 解析:13【分析】利用点到直线的距离公式,借助平面的法向量,利用公式,即可求解.【详解】由题意,平面α的一个法向量为,,(1)22n =,且(1,0,2),(0,1,4),,A B A B αα-∉∈,则(1,1,2)BA =-,所以点A 到平面α的距离为12413144BA n d n ⋅+-===++. 【点睛】本题主要考查了点到平面的距离的求法,其中解答中熟记空间向量在几何问题中的应用,以及点到直线的距离公式,准确计算是解答的关键,着重考查了推理与计算能力,属于基础题.14.90°【分析】对该方程两边分别平方即可得到即可【详解】则∴α与β所成角的大小为90°故答案为90°【点睛】本题考查了向量模去绝对值问题可以通过对向量模平方去掉绝对值即可解析:90°【分析】对该方程两边分别平方,即可得到0αβ⋅=,即可.【详解】 αβαβ+=-222222ααββααββ∴+⋅+=-⋅+则0αβ⋅=∴α与β所成角的大小为90°故答案为90°【点睛】本题考查了向量模去绝对值问题,可以通过对向量模平方,去掉绝对值,即可. 15.【解析】【分析】取MC 中点O 连结AOBO 推导出AC =BM =AM =CM =1AO =BO =AO ⊥MCAO ⊥平面BMCAO ⊥BO 由此能求出AB 两点之间的距离【详解】取MC 中点O 连结AOBO ∵△ABC 中∠C =解析:102【解析】【分析】 取MC 中点O ,连结AO ,BO ,推导出AC =BM =AM =CM =1,AO =32,BO =72,AO ⊥MC ,AO ⊥平面BMC ,AO ⊥BO ,由此能求出A ,B 两点之间的距离.【详解】取MC 中点O ,连结AO ,BO ,∵△ABC 中,∠C =90°,∠A =60°,AB =2,M 为AB 中点,∴AC =BM =AM =CM =1,∴AOBO= AO ⊥MC ,将△BMC 沿CM 折叠,当平面BMC ⊥平面AMC 时,AO ⊥平面BMC ,∴AO ⊥BO ,∴A ,B 两点之间的距离|AB |2==,. 【点睛】 本题考查两点间距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.16.【分析】以为原点分别以所在的直线为轴建立空间直角坐标系利用向量法即可求解点N 到平面的距离得到答案【详解】由题意以为原点分别以所在的直线为轴建立空间直角坐标系则可得设平面的一个法向量为则令可得所以点N【分析】以D 为原点,分别以1,,DA DC DD 所在的直线为,,x y z 轴,建立空间直角坐标系,利用向量法,即可求解点N 到平面1D EF 的距离,得到答案.【详解】由题意,以D 为原点,分别以1,,DA DC DD 所在的直线为,,x y z 轴,建立空间直角坐标系, 则13(2,0,1),(2,,2),(2,,),(0,0,2),(2,2,1)22E M N D F λλ, 可得11(0,2,0),(0,,),(2,0,1)22EF EN ED λ===-, 设平面1D EF 的一个法向量为(,,)n x y z =,则12020n EF y n ED x z ⎧⋅==⎪⎨⋅=-+=⎪⎩,令1x =,可得(1,0,2)n =, 所以点N 到平面1D EF的距离155n ENd n ⋅===.故答案为:55.【点睛】本题主要考查了点到平面的距离的求法,以及空间中点、线、面的位置关系等知识的应用,着重考查了空间想象能力,以及推理与运算能力.17.【分析】以D 为原点DA 为x 轴DC 为y 轴DD1为z 轴建立空间直角坐标系利用向量法能求出异面直线AM 与B1C 所成的角【详解】以D 为原点DA 为x 轴DC 为y 轴DD1为z 轴建立空间直角坐标系设正方体ABCD ﹣ 解析:10 【分析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出异面直线AM 与B 1C 所成的角.【详解】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,设正方体ABCD ﹣A 1B 1C 1D 1棱长为2,则A (2,0,0),M (2,1,2),B 1(2,2,2),C (0,2,0), AM =(0,1,2),1BC =(﹣2,0,2), 设异面直线AM 与B 1C 所成的角为θ, cosθ1141058AM B CAM B C ⋅===⨯⋅ ∴θ105arccos =. ∴异面直线AM 与B 1C 所成的角为10. 故答案为:10【点睛】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意向量法的合理运用.18.【详解】试题分析:由两两垂直分别以所在的直线为轴建立如图所示的空间直角坐标系设则所以其中平面的一个法向量为所以与平面所成角的正弦值为所以;又向量与所成角的余弦值为又所以异面直线与所成角的余弦值是考点 230【详解】试题分析:由,,AB AD AQ 两两垂直,分别以,,AB AD AQ 所在的直线为,,x y z 轴建立如图所示的空间直角坐标系,设2AB =,则(0,0,0),(1,0,0),(2,1,0),(0,1,2)A E F M ,所以(1,1,2),(2,1,0)EM AF =-=,其中平面ABCD 的一个法向量为(0,0,1)n =,所以ME 与平面ABCD 所成角的正弦值为6sin 3EM n EM n α⋅==⋅,所以tan 2α=EM 与AF 所成角的余弦值为cos EM AFEM AFβ⋅=⋅ 3030=-,又(0,]2πβ∈,所以异面直线EM 与AF 所成角的余弦值是3030考点:空间向量的运算及空间角的求解.19.①③④【分析】由题意画出图形由异面直线的概念判断①;利用线面垂直的判定与性质判断②;找出球心由棱锥底面积与高为定值判断③;设BE =x 列出AE+EC1关于x 的函数式结合其几何意义求出最小值判断④【详解解析:①③④ 【分析】由题意画出图形,由异面直线的概念判断①;利用线面垂直的判定与性质判断②;找出球心,由棱锥底面积与高为定值判断③;设BE =x ,列出AE +EC 1关于x 的函数式,结合其几何意义求出最小值判断④. 【详解】 如图,∵直线AC 经过平面BCC 1B 1内的点C ,而直线C 1E 在平面BCC 1B 1内不过C , ∴直线AC 与直线C 1E 是异面直线,故①正确; 当E 与B 重合时,AB 1⊥A 1B ,而C 1B 1⊥A 1B , ∴A 1B ⊥平面AB 1C 1,则A 1E 垂直AC 1,故②错误;由题意知,直三棱柱ABC ﹣A 1B 1C 1的外接球的球心为O 是AC 1 与A 1C 的交点,则△AA 1O 的面积为定值,由BB 1∥平面AA 1C 1C ,∴E 到平面AA 1O 的距离为定值,∴三棱锥E ﹣AA 1O 的体积为定值,故③正确; 设BE =x ,则B 1E =2﹣x ,∴AE +EC 12211(2)x x =++-由其几何意义,即平面内动点(x ,1)与两定点(0,0),(2,0)距离和的最小值知,其最小值为22,故④正确. 故答案为①③④ 【点睛】本题考查命题的真假判断与应用,考查空间想象能力和思维能力,属于中档题20.【详解】以AB 的中点为原点建立如图所示的空间直角坐标系则平面的一个法向量为设平面的一个法向量为则则令所以平面的一个法向量为所以因为所以所以所以即二面角的余弦值的取值范围是点睛:本题主要考查了空间几何 解析:99(,)1616-【详解】以AB 的中点为原点,建立如图所示的空间直角坐标系,则163(0,,),(0,4,0),(,0,0)(33)22D C M a a --<<,平面MBC 的一个法向量为1(0,0,1)n =, 设平面DMC 的一个法向量为2(,,)n x y z =,则963(0,,),(,4,0)22DC MC a =-=-,则229630022040n DC y z n MC ax y ⎧⎧⋅=--=⎪⎪⇒⎨⎨⋅=⎪⎩⎪-+=⎩, 令4639,,63z x y a ===,所以平面DMC 的一个法向量为2463(,63,9)n a=, 所以122299cos ,166316636381144n n a a ==⨯⨯+++, 因为33a -<<,所以29<a ,所以2166316631441442569a ⨯⨯+>+=, 所以129cos ,16n n <,即二面角的余弦值的取值范围是99(,)1616-.点睛:本题主要考查了空间几何体的结构特征和二面角的计算问题,空间向量是解决空间几何问题的锐利武器,利用空间向量求解空间角的关键在于“四破”:第一、破“建系关”,构建恰当的空间直角坐标系;第二、破“求坐标关”,准确求解相关点的坐标;第三、破“求法向量关”,求出平面的法向量;第四、破“应用公式关”.三、解答题21.(1)证明见解析;(2)4214. 【分析】(1)过E 作EH AB ⊥于H ,由面面垂直得EH ⊥平面ABC ,从而有EH BC ⊥,再结合已知,BC BE ⊥可得线面垂直后得线线垂直;(2)将三棱台ABC DEF -补体成三棱锥P ABC -,以B 为原点建立空间直角坐标系(如图),设2AB =,得出各点坐标,求出平面ABF 的法向量,由空间向量法求得线面角的正弦值. 【详解】解:(1)过E 作EH AB ⊥于H ,因为面ABED ⊥面ABC ,面ABED ⋂面ABC BC =,所以EH ⊥平面ABC ,而BC ⊂平面ABC ,所以EH BC ⊥, 又,BC BE ⊥BEEH E =,,BE EH ⊂平面ABED ,所以BC ⊥面ABED ,又BC ⊂平面BCFE 所以平面ABED ⊥平面;BCFE(2)将三棱台ABC DEF -补体成三棱锥P ABC -,则,,D E F 分别是,,PA PB PC 的中点,PAB △是正三角形,设2AB =, 以B 为原点建立空间直角坐标系(如图),(()()13333,0,2,0,2,0,0,1,,0,22P A C F D ⎛⎛ ⎝⎭⎝⎭()()131,1,0,0,2,0,1,2DF BA BF ⎛∴=-== ⎝⎭设平面ABF 的法向量为,,,nx y z由00n AB n FB ⎧⋅=⎨⋅=⎩,有013022y x y z =⎧⎪⎨++=⎪⎩,令2z =得()3,0,2n =-. 42sin 14||||n DF n DF θ⋅∴==⋅∣.【点睛】方法点睛:本题考查证明面面垂直,求直线与平面所成的角.求线面角的常用方法 (1)定义法,作出直线在平面内的射影(主要过直线上一点作平面的垂线),由直线与射影的夹角得出直线与平面所成的角(注意证明),然后解三角形得结论;(2)空间向量法,建立空间直角坐标系,求出平面的法向量,由直线的方向向量与平面的法向量夹角余弦值的绝对值得线面角的正弦值. 22.(Ⅰ)证明见解析;(Ⅱ39【分析】(Ⅰ)根据题中的边长以及垂直关系,可求出,OA OP ,利用勾股定理判断OP OA ⊥,再根据等边三角形三线重合,判断OP BC ⊥,即可证明PO ⊥平面ABCD ;(Ⅱ)根据垂直关系,以O 为坐标原点,建立空间直角坐标系,利用向量的坐标公式求CB 与平面PBD 所成角的正弦值. 【详解】(Ⅰ)证明:在ACD △中,由已知得3AC =,ABC PBC 3O 为BC 的中点 ,OA BC OP BC ∴⊥⊥,且32OA OP ==. 在PAO 中,已知322PA =, 则有222,PO OA PA OP OA +=∴⊥. 又,OA BC O OA ⋂=⊂平面,ABCD BC ⊂平面,ABCD OP ∴⊥平面ABCD .(Ⅱ)以O 为坐标原点,,,OA OC OP 分别为x 轴,y 轴,z 轴的正方向,建立如图所示的空间直角坐标系,则3330,0,,0,,2P B C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,3D ⎛⎫ ⎪ ⎪⎝⎭. (0,3,0)(1,3,0)BC BD ∴==,,3333)2BP ⎛⎫== ⎪ ⎪⎝⎭.设平面PBD 的法向量为(,,)n x y z =,则00n BP n BD ⎧⋅=⎨⋅=⎩即3030x y y z ⎧=⎪⎨=⎪⎩,令1z =.则3,3y x =-=. ∴平面PBD 的一个法向量为(3,3,1)n =-,39sin |cos ,|13BC n θ∴=<>=.39sin θ∴= 【点睛】方法点睛:1.利用面面垂直的性质定理,得到线面垂直,进而确定线面角中的垂足,明确斜线在平面内的射影,即可确定线面角;2.在构成线面角的直角三角形中,可利用等体积法解垂线段的长度h ,而不必画出线面角,利用sin h θ= /斜线段长,进行求角;3.建立空间直角坐标系,利用向量法求解,设a 是直线l 的方向向量,n 是平面的法向量,利用公式sin cos ,a n θ=<>求解. 23.(Ⅰ)证明见解析;(Ⅱ6【分析】(Ⅰ)解法1.利用线面平行的判定定理证明; 解法2.以A 为坐标原点,,,AB AD AP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系A xyz -,利用空间向量证明直线BC 与平面PAD 的法向量垂直,从而证明结论.(Ⅱ)建立空间直角坐标系后,后利用空间向量的坐标运算求得两平面的法向量的坐标,进而计算. 【详解】 (Ⅰ)证明:解法1. 因为//BC ADBC ⊄平面PAD AD ⊂平面PAD 所以//BC 平面PAD解法2.因为PA AD ⊥,PA AB ⊥,AD AB ⊥,所以以A 为坐标原点,,,AB AD AP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系A xyz -,则(0,0,0),(2,0,0),(0,4,0),(0,0,2),(2,2,0)A B D P C , 平面PAD 的法向量为(1,0,0)t, (0,2,0)BC = ,因为 0120000t BC ⋅=⨯+⨯+⨯= ,BC ⊄平面PAD ,所以//BC 平面PAD ;(Ⅱ)解:因为PA AD ⊥,PA AB ⊥AD AB ⊥, 所以以A 为坐标原点,,,AB AD AP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系A xyz -,则(0,0,0),(2,0,0),(0,4,0),(0,0,2),(2,2,0)A B D P C所以平面PAB 的法向量为(0,1,0)n = , 设平面PCD 的法向量为(,,)m x y z =(2,2,2)PC =-,(0,4,2)PD =- ,所以2220042020x y z x y m PCm PC y z z y m PD m PD ⎧⎧+-==⎧⎧⊥⋅=⇒⇒⇒⎨⎨⎨⎨-==⊥⋅=⎩⎩⎩⎩ ,令1(1,1,2)y m ==得 ,16cos ,616n m n m n m⋅<>===⨯ 设平面PAB 与平面PCD 所成角为θθ,为锐角, 所以6cos 6θ=. 【点睛】本题考查利用空间向量证明线面垂直和求二面角问题,关键是平面的法向量的求解和夹角余弦值的计算,注意所求为两平面所成的锐二面角的余弦值,因此对两平面的法向量所成角的余弦值与两平面所成锐角的余弦值要注意区分与联系. 24.(1)证明见解析;(2)155. 【分析】(1)AC 与BD 交于点O ,连接FO 、FD ,证明FO AC ⊥,FO BD ⊥,然后得到FO ⊥平面ABCD 即可;(2)以O 为原点,OA 、OB 、OF 分别为x 、y 、z 轴建立空间直角坐标系,然后求出平面BFC 和平面ACF 的法向量,然后可算出答案.【详解】(1)证明:AC 与BD 交于点O ,连接FO 、FD ,∵FA FC =,O 是AC 中点,且O 是BD 中点,∴FO AC ⊥, ∵四边形BDEF 为菱形,60DBF ∠=︒, ∴FD FB =,∴FO BD ⊥, 又ACBD O =,∴FO ⊥平面ABCD ,∵FO ⊂平面ACF ,∴平面ACF ⊥平面ABCD (2)易知OA ,OB ,OF 两两垂直以O 为原点,OA 、OB 、OF 分别为x 、y 、z 轴建立如图所示的空间直角坐标系设2AB =,∵四边形ABCD 为菱形,60DAB ∠=︒ 则2BD =,∴1OB =,3OA OF ==故(0,0,0)O ,(0,1,0)B ,()3,0,0C -,()3F∴()3,0,3CF =,3,1,0CB,()0,1,0OB =设平面BFC 的一个法向量为(,,)n x y z =则33030n CF x z n CB x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取1x =,得()1,3,1n =-- 显然,()0,1,0OB =为平面ACF 的一个法向量 ∴15cos ,5OB n OB n OB n⋅<>==-⋅ 由图知,二面角A FC B --的平面角为锐角 ∴二面角A FC B --的余弦值为155【点睛】关键点睛:用向量法求解空间角的问题时,解题的关键是建立适当的空间直角坐标系,准确地写出点的坐标和算出直线的方向向量、平面的法向量. 25.(1)点M 在CE 的中点处,证明见解析;(2)32. 【分析】(1)首先观察图形的特征,确定点M 的位置,之后利用线面平行的判定定理证明即可; (2)建立空间直角坐标系,设出边长,写出点的坐标,利用向量法求得线面角的正弦值. 【详解】(1)点M 在CE 的中点处,证明如下:取BC 中点P ,连接,BP AP , 根据题意,可知//,PM AF PM AF =,所以四边形AFMP 是平行四边形,所以//AP MF , 又因为FM ⊄平面ABCD ,AP ⊂平面ABCD , 所以//MF 平面ABCD ;(2)设1AF AB AD ===,如图建立空间直角坐标系,则有1(1,0,1),(1,1,0),(0,1,),(0,0,0)2D F M B , 所以(0,1,1)DF =-,1(1,1,0),(0,1,)2BF BM ==, 设平面BFM 的法向量为(,,)n x y z =,则有00n BF n BM ⎧⋅=⎨⋅=⎩,即0102x y y z +=⎧⎪⎨+=⎪⎩,取1y =,则有1,2x z =-=-, 所以平面BFM 的一个法向量为(1,1,2)n =--, 所以03cos ,226DF n DF n DF n⋅+<>===⋅, 所以直线DF 与平面BFM 所成角的正弦值32. 【点睛】思路点睛:该题考查的是有关立体几何的问题,解题思路如下:(1)首先根据图形的特征,判断出点的位置,之后利用线面平行的判定定理证明即可; (2)在证明的过程中,注意线在面外和线在面内的条件; (3)建立空间直角坐标系,求得平面的法向量和直线的方向向量; (4)利用向量所成角的余弦值得到线面角的正弦值. 26.(1470;(2)13λ=.【分析】(1)首先证明PA ⊥平面ABCD ,再以点A 为原点,{},,AB AD AP 为正交基底,建立空间直角坐标系,求平面ABE 的法向量,再求直线DE 与平面ABE 所成角的正弦值; (2)首先求平面ABE 和平面AEC 的法向量,利用法向量求二面角的余弦值,求λ的值. 【详解】解:因为平面PAB ⊥平面ABCD ,PA AB ⊥,平面PAB ⋂平面ABCD AB =,PA ⊂平面PAB ,所以PA ⊥平面ABCD .因为AD ⊂平面ABCD ,所以PA AD ⊥. 又AB AD ⊥,所以PA ,AB ,AD 两两互相垂直. 以{},,AB AD AP 为正交基底,建立如图所示的空间直角坐标系A xyz -.因为4PA AD ==,2AB BC ==,所以()0,0,0A ,()2,0,0B ,()2,2,0C ,()0,4,0D ,()0,0,4P ,(1)若12λ=,即E 为PC 中点,则()1,1,2E , 所以()1,3,2DE =-,()2,0,0AB =,()1,1,2AE =. 设平面ABE 的一个法向量为()111,,m x y z =,则00m AB m AE ⎧⋅=⎨⋅=⎩即111120,20.x x y z =⎧⎨++=⎩令11z =,得12y =-,所以平面ABE 的一个法向量为()0,2,1m =-. 设直线DE 与平面ABE 所成角为α, 则62470sin cos ,145DE m α+===⨯ (2)因为()01PE PC λλ=≤<,则()2,2,44E λλλ-. 设平面ABE 的一个法向量为()222,,n x y z =,则00n AB n AE ⎧⋅=⎨⋅=⎩即()222220,22440.x x y z λλλ=⎧⎨++-=⎩。
广东省深圳市市龙华中英文实验学校高三数学文期末试卷含解析

广东省深圳市市龙华中英文实验学校高三数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知直线,有下面四个命题:(1);(2);(3);(4).其中正确的命题是()A.(1)与(2)B.(1) 与 (3) C.(2) 与 (4)D.(3) 与 (4)参考答案:B略2. 函数图象与直线交于点P,若图象在点P处切线与x轴交点横坐标为,则log2013x1+log2013x2+…+log2013x2012值()A.-1 B.1-log20132012 C.-log20132012 D.1参考答案:A略3. 已知函数,则的零点所在的区间为()A.(0,1) B.(1,2) C.(2,3) D.(3,4)参考答案:B4. “”是“”的(A) 充分但不必要条件 (B) 必要但不充分条件(C) 充分且必要条件 (D) 既不充分也不必要条件参考答案:C当时,。
若因为同号,所以若,则,所以是成立的充要条件,选C.5. 与椭圆共焦点且渐近线方程为的双曲线的标准方程为( )A.B. C. D.参考答案:D的焦点坐标为,双曲线焦点,可得,由渐近线方程为,得,,双曲线的标准方程为,故选D.6. 已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A∩B=()A.{﹣1,0} B.{0,1} C.{﹣1,0,1} D.{0,1,2}参考答案:A【考点】交集及其运算.【分析】解一元二次不等式,求出集合B,然后进行交集的运算即可.【解答】解:B={x|﹣2<x<1},A={﹣2,﹣1,0,1,2};∴A∩B={﹣1,0}.故选:A.【点评】考查列举法、描述法表示集合,解一元二次不等式,以及交集的运算.7. 在中“”是“为钝角三角形”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件参考答案:A略8. 等差数列的前n项和为,若,那么()A.130 B.120 C.91D.81参考答案:C9. 已知函数f(x)=ln(1+x)﹣ln(1﹣x),给出以下四个命题:2?x∈(﹣1,1),有f(﹣x)=﹣f(x);②?x1,x2∈(﹣1,1)且x1≠x2,有;③?x1,x2∈(0,1),有;④?x∈(﹣1,1),|f(x)|≥2|x|.其中所有真命题的序号是()A.①②B.③④C.①②③D.①②③④参考答案:D【考点】2K:命题的真假判断与应用.【分析】①利用函数奇偶性的定义可判断出?x∈(﹣1,1),有f(﹣x)=﹣f(x),可判断①正确;②x∈(﹣1,1),由,可知f (x)在区间(﹣1,1)上单调递增,可判断②正确;③利用f′(x)=在(0,1)单调递增可判断③正确;④构造函数g(x)=f(x)﹣2x,则当x∈(0,1)时,g'(x)=f'(x)﹣2≥0,?g(x)在(0,1)单调递增,再利用g(x)=f(x)﹣2x为奇函数,可判断④正确.【解答】解:对于①,∵f(x)=ln(1+x)﹣ln(1﹣x),且其定义域为(﹣1,1),∴f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣=﹣f(x),即①?x∈(﹣1,1),有f(﹣x)=﹣f(x),故①是真命题;对于②,∵x∈(﹣1,1),由,可知f(x)在区间(﹣1,1)上单调递增,即?x1,x2∈(﹣1,1)且x1≠x2,有,故②是真命题;对于③,∵f′(x)=在(0,1)单调递增,∴?x1,x2∈(0,1),有,故③是真命题;对于④,设g(x)=f(x)﹣2x,则当x∈(0,1)时,g'(x)=f'(x)﹣2≥0,所以g(x)在(0,1)单调递增,所以当x∈(0,1)时,g(x)>g(0),即f(x)>2x;由奇函数性质可知,?x∈(﹣1,1),|f(x)|≥2|x|,故④是真命题.故选:D.10. 设四点都在同一个平面上,且,则()A. B. C. D.参考答案:A试题分析:由得,即.故选A.考点:向量的线性运算.二、填空题:本大题共7小题,每小题4分,共28分11. 是定义在R上的以3为周期的偶函数,且,则方程在区间(0,6)内解的个数的最小值是参考答案:略12. 设S n 是数列{a n }的前n 项和,已知a 1=1,a n =-S n S n -1 (n ≥2),则S n=.参考答案:13. 已知两点等分单位圆时,有相应正确关系为:;三点等分单位圆时,有相应正确关系为.由此可以推知四点等分单位圆时的相应正确关系:参考答案:14. 在平面直角坐标系x0y 中,圆C 的方程为x 2+y 2﹣8x+15=0,若直线y=kx ﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的取值范围是 .参考答案:[0,]【考点】直线和圆的方程的应用.【专题】计算题;直线与圆.【分析】将圆C 的方程整理为标准形式,找出圆心C 的坐标与半径r ,根据直线y=kx ﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,得到以C 为圆心,2为半径的圆与直线y=kx ﹣2有公共点,即圆心到直线y=kx ﹣2的距离小于等于2,利用点到直线的距离公式列出关于k 的不等式求出不等式的解集即可得到k 的范围.【解答】解:将圆C 的方程整理为标准方程得:(x ﹣4)2+y 2=1, ∴圆心C (4,0),半径r=1,∵直线y=kx ﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,∴只需圆C′:(x ﹣4)2+y 2=4与y=kx ﹣2有公共点,∵圆心(4,0)到直线y=kx ﹣2的距离d=≤2,解得:0≤k≤.故答案为:[0,].【点评】此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,点到直线的距离公式,其中当d <r 时,直线与圆相交;当d >r 时,直线与圆相离;当d=r 时,直线与圆相切(d 为圆心到直线的距离,r 为圆的半径).15. 如图,圆O 的直径AB=8,C 为圆周上一点,BC=4,过C 作圆的切线l ,过A 作直线l 的垂线AD ,D 为垂足,AD 与圆O 交于点E ,则线段AE 的长为 .参考答案:4考点:与圆有关的比例线段.专题:计算题.分析:连接OC ,BE ,由圆角定定理,我们可得BE⊥AE,直线l 是过C 的切线,故OC⊥直线l ,△OBC 为等边三角形,结合等边三角形的性质及30°所对的直角边等于斜边的一半,我们易求出线段AE 的长.解答: 解:连接OC ,BE ,如下图所示:则∵圆O 的直径AB=8,BC=4, ∴△OBC 为等边三角形,∠COB=60° 又∵直线l 是过C 的切线,故OC⊥直线l 又∵AD⊥直线l ∴AD∥OC故在Rt△ABE 中∠A=∠COB=60°∴AE=AB=4 故答案为:4点评:本题考查的知识点是切线的性质,圆周角定理,其中根据切线的性质,圆周角定理,判断出△ABE 是一个∠B=30°的直角三角形是解答本题的关键.16. △ABC 的内角A ,B ,C 对边分别为a ,b ,c ,且b=1,c=2,如果△ABC 是锐角三角形,则a 的取值范围是___________.参考答案:略17. 在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且角A=60°,若,且5sinB=3sinC ,则ABC的周长等于。
苏教版高中数学选修11高二单元测试题圆锥曲线

高中数学学习资料金戈铁骑整理制作南海中学高二单元测试题-圆锥曲线数学(理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.共120分.考试时间105分钟.第Ⅰ卷(选择题,共50分)一、选择题此题共有10个小题,每题5分;在每题给出的四个选项中,只有一项为哪一项切合题目要求的,把正确选项的代号填在试卷指定的地点上。
1.椭圆x2my21的焦点在y轴上,长轴长是短轴长的两倍,则m的值为()A.1B.1C.2D.4422.若椭圆x2y21(ab0)的离心率是3,则双曲线x2y21的离心率是()a2b22a2b2A.5B.5C.3D.54224.若双曲线x2y21的渐近线l方程为y5x,则双曲线焦点F到渐近线l的距离为39m3A.2B.14C.5D.254、直线y xb与抛物线x22y交于A、B两点,O为坐标原点,且OAOB,则b()A.2B.2C.1D.15、若直线l过点(3,0)与双曲线4x29y236只有一个公共点,则这样的直线有()条条条条6、已知双曲线中心在原点且一个焦点为F(7,0),直线y x1与其交于M、N两点,MN中点的横坐标为2,则此双曲线的方程是()3x 2y 2 1x 2 y 2x 2 y 21x 2y 2 1A. 34 B. 41C. 52D. 2537、设离心率为e 的双曲线C:x 2 y 2 1(a0,b 0 )的右焦点为F ,直线l 过点F 且斜率a 2b 2为k ,则直线l 与双曲线C 的左、右两支都订交的充要条件是()A .k 2e 2 1B .k 2 e 2 1C .e 2 k 2 1D .e 2 k 21(实验班)已知定点M (1,5)、N(4, 5),给出以下曲线方程:44①4x+2y-1=0 ② x2y23 ③x2y21④x2y 2 1 在曲线上存在点P 知足22MP NP 的全部曲线方程是()(A )①③ (B )②④ (C )①②③ (D )②③④8、双曲线两条渐近线的夹角为 60o ,该双曲线的离心率为( )A .23或2B .23或2C .3或2D .3或2339、若无论k 为什么值,直线y k(x 2)b 与曲线x 2y 2 1总有公共点,则b 的取值范围是( )A.(3,3)B.3, 3C.(2,2)D. 2,210、椭圆x 2y 2 1上一点M 到焦点F 1的距离为2,N 是MF 1的中点,则ON 等于()259A .2B .4C .6D .3x2y22(实验班做)如图,双曲线a 2-b 2=1的左焦点为F 1,极点为A 1,A 2,P 是双曲线上随意一 点,则分别以线段PF 1、A 1 A2为直径的两圆地点关系为( )yA.订交B.相切C.相离D.以上状况都有可能PF 1xA 1 OA 2南海中学高二单元测试题-圆锥曲线数学(理)第Ⅱ卷(非选择题共70分)注意事项:⒈第Ⅱ卷共4页,用钢笔或圆珠笔挺接答在试题卷中.⒉答卷前将密封线内的项目填写清楚.二三总分题号15161718分数二、填空题(本大题共4小题,每题5分,共20分)11.抛物线x ay2(a0)的焦点坐标是;12.椭圆x2y21和双曲线x2y21的公共点为F1,F2,P是两曲线的一个交点,那么cos F1PF2 623的值是__________________。
高二数学选修11质量检测试题(卷)2021(2)

高二数学选修11质量检测试题(卷)2021(2)高二数学选修1-1质量检测试题(卷)2021.1命题:吴小英(区教研室)考试:马静(区教研室)本试卷分第ⅰ卷(选择题)和第ⅱ卷(非选择题)两部分。
第ⅰ卷1至2页。
第ⅱ卷3至6页。
考试结束后.只将第ⅱ卷和答题卡一并交回。
参考公式:(x?)十、1(?是实数);(辛克斯)??科斯(cosx)sinx;(ex)??ex;(lnx)??x?1.第一卷(选择题,共60分)注意事项:1.在回答第一卷之前,考生必须用铅笔在答题纸上写下自己的姓名、录取号码和考试科目。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。
一、选择题:本大题共10小题,每小题6分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知p:??2,q:??3,则下列判断正确的是a、“P或Q”是真的,“?P”是真的,C.“P和Q”是真的,“?P”是假的b.“p或q”为假,“?p”为真d.“p且q”为假,“?p”为假b.若sina?sinb,则a?bd.若a?b,则sina?sinb2.命题“如果a?B,那么Sina?SINB”的逆无命题是a.如果Sina?辛布,然后是a?公元前。
如果是?b、那新浪呢?辛布3.“直线l与平面?内无数条直线都平行”是“直线l与平面?平行”的a.充要条件b、充分和不必要的条件D.既不充分也不必要的条件c.必要非充分条件4.函数y?cosx的导数为xxsinx?cosxa.2x?xsinx?cosxc.2xCoxx?xsinx2x?xsinx?cosxd。
2xb。
5.已知抛物线的准线方程是x??a.x?2y21,标准方程式是222b y?2xc。
十、2yd.y??2x2x2y2??1代表双曲线,则实数k的取值范围为6 Ruo方程k?23?ka.k?2b、 k?三c.2?k?3d、 k?2还是K?三7.以下有三种说法,其中正确说法的个数为:(1)“m是有理数”的充要条件是“m是实数”;(2)“Tana?Tanb”是“a?B”的一个充分条件和不必要条件;(3)“X?2x?3?0”是“X?3”a.0 B.1 C.2的必要条件和不充分条件2d.3个8.给定两个不动点F1(5,0)和F2(?5,0),曲线C上点P到F1和F2的距离差的绝对值为8,那么曲线C的方程为x2y2??1a.916x2y2??1c。
高二数学选修11复习课 人教实验版(B)

高二数学选修11复习课 人教实验版(B)一. 本周教学内容: 选修1-1复习课二. 教学目的1、通过复习本册知识结构,系统把握本章内容。
2、总结本章的重点题型,把握解题的主要思路和方法三. 教学重点、难点重点问题专题讲解四. 知识分析(一)命题与量词: 1、逻辑联结词对逻辑联结词“且”、“或”、“非”的考查,一般融入到具体的数学问题之中,以代数、三角、解析几何的内容为载体,考查对逻辑知识的运用,一般难度不大。
注意以下几点: (1)“或”与日常生活用语中“或”的意义有所不同,日常用语中的“或”有时带有“不可兼有”的意思,如工作或休息;而逻辑联结词“或”含有“同时兼有”的意思,如6x <或9x >。
(2)集合中的“交”、“并”、“补”与逻辑联结词“且”、“或”、“非”密切相关。
①}B x A x |x {B A ∈∈=,或 ,集合的并集是用“或”来定义的。
②}B x A x |x {B A ∈∈=,且 ,集合的交集是用“且”来定义的。
③/}A x U x |x {A C U ∈∈=且,集合的补集与“非”密切相关。
④“或”、“且”的否定形式;“p 或q ”的否定形式是“非p 且非q ”,“p 且q ”的否定形式是“非p 或非q ”。
(3)对于“p 或q ”,只有p ,q 都为假时才为假,其他情况为真;对于“p 且q ”,只有p ,q 都为真时才为真,其他情况为假;非p 的真假与p 的真假相反。
2、四种命题。
原命题:如果p ,那么q (或若p ,则q ); 逆命题:如果q ,则p ; 否命题:如果p ⌝,则q ⌝; 逆否命题:如果⌝q ,则⌝p 。
注意:原命题与它的逆否命题同为真假,原命题的逆命题与它的否命题同为真假,所以对一些命题的真假判断(或推证),我们可通过与它同真假的(具有逆否关系的)命题来判断(或推证)。
3、充分条件与必要条件:充分条件与必要条件是对命题进行研究的重要途径,因而这部分知识是高考的必考内容。
高二数学苏教版选修11讲义第一部分第1章12第二课时含逻辑联结词的命题的真假判断
其次课时含规律联结词的命题的真假推断含规律联结词的命题的真假推断[例1]分别指出以下各组命题构成的“p∧q〞“p∨q〞“綈p〞形式的命题的真假:(1)p:6<6,q:6=6;(2)p:函数y=x2+x+2的图象与x轴没有公共点.q:不等式x2+x+2<0无解;(3)p:函数y=cos x是周期函数.q:函数y=cos x是奇函数.[思路点拨]先推断命题p、q的真假,再推断“p∧q〞“p∨q〞“綈p〞的真假.[精解详析](1)∵p为假命题,q为真命题,∴p∧q为假命题,p∨q为真命题,綈p为真命题.(2)∵p为真命题,q为真命题,∴p∧q为真命题,p∨q为真命题,綈p为假命题.(3)∵p为真命题,q为假命题,∴p∧q为假命题,p∨q为真命题,綈p为假命题.[一点通]推断含规律联结词的命题的真假的步骤:(1)确定复合命题的构成形式,是“p∧q〞、“p∨q〞还是“綈p〞形式;(2)推断其中简洁命题p,q的真假;(3)依据真值表推断含规律联结词的命题的真假.1.写出由以下命题构成的“p或q〞、“p且q〞、“非p〞形式的新命题,并指出所构成的这些新命题的真假.(1)p:连续的三个整数的乘积能被2整除,q:连续的三个整数的乘积能被3整除;(2)p:等圆的面积相等,q:等圆的周长相等;(3)p:方程x2+x-1=0的两个实数根的符号相同,q:方程x2+x-1=0的两个实数根的肯定值相等.解:(1)p或q:连续的三个整数的乘积能被2或3整除,真命题;p且q:连续的三个整数的乘积能被2整除且能被3整除,真命题;非p:连续的三个整数的乘积不能被2整除,假命题.(2)p或q:等圆的面积或周长相等,真命题;p 且q :等圆的面积相等且周长相等,真命题; 非p :等圆的面积不相等,假命题.(3)p 或q :方程x 2+x -1=0的两个实数根的符号相同或肯定值相等,假命题; p 且q :方程x 2+x -1=0的两个实数根的符号相同且肯定值相等,假命题; 非p :方程x 2+x -1=0的两个实数根的符号不相同,真命题. 2.分别指出以下命题的构成形式及各命题的真假: (1)全等三角形周长相等或对应角相等; (2)9的算术平方根不是-3;(3)垂直于弦的直径平分这条弦并且平分弦所对的两段弧.解:(1)这个命题是p ∨q 的形式,其中p :全等三角形周长相等,q :全等三角形对应角相等,由于p 真q 真,所以p ∨q 为真.(2)这个命题是綈p 的形式,其中p :9的算术平方根是-3,由于p 假,所以綈p 为真. (3)这个命题是p ∧q 的形式,其中p :垂直于弦的直径平分这条弦,q :垂直于弦的直径平分这条弦所对的两段弧,由于p 真q 真,所以p ∧q 为真.含有规律联结词的命题的综合应用[例2] 22+4(m -2)x +1大于零恒成立.假设p 或q 为真,p 且q 为假,求m 的取值范围.[思路点拨] 由p 或q 为真,p 且q 为假,可推断p 和q 一真一假,进而求m 的范围. [精解详析] 假设函数y =x 2+mx +1在(-1,+∞)上单调递增,那么-m2≤-1,解得m ≥2,即p :m ≥2;假设函数y =4x 2+4(m -2)x +1恒大于零,那么Δ=16(m -2)2-16<0,解得1<m <3,即q :1<m <3. 由于p 或q 为真,p 且q 为假, 所以p 、q 一真一假,当p 真q 假时,由⎩⎪⎨⎪⎧m ≥2,m ≥3或m ≤1,得m ≥3,当p 假q 真时,由⎩⎪⎨⎪⎧m <2,1<m <3,得1<m <2.综上可知,m 的取值范围是{m |m ≥3或1<m <2}. [一点通]1.含有规律联结词的命题p ∧q 、p ∨q 的真假可以用真值表来推断,反之依据命题p ∧q 、p ∨q 的真假也可以推断命题p 、q 的真假.2.解答这类问题的一般步骤:(1)先求出构成命题p ∧q 、p ∨q 的命题p 、q 成立时参数需满意的条件; (2)其次依据命题p ∧q 、p ∨q 的真假判定命题p 、q 的真假; (3)依据p 、q 的真假求出参数的取值范围.3.p :方程x 2+mx +1=0有两个不等的负实根;q :方程4x 2+4(m -2)x +1=0无实根.假设p ∨q 为真,p ∧q 为假,求m 的取值范围.解:假设p 真,那么⎩⎪⎨⎪⎧Δ=m 2-4>0,-m <0,解得m >2.假设q 真,那么Δ=16(m -2)2-16=16(m 2-4m +3)<0, 解得1<m <3.由于p 或q 为真,p 且q 为假.所以p 为真,q 为假,或p 为假,q 为真,即⎩⎪⎨⎪⎧ m >2,m ≤1或m ≥3或⎩⎪⎨⎪⎧m ≤2,1<m <3,解得m ≥3或1<m ≤2. 故m 的取值范围是(1,2]∪[3,+∞).4.a >0,且a ≠1,设p :函数y =log a (x +1)在x ∈(0,+∞)内单调递减,q :曲线y =x 2+(2a -3)x +1与x 轴交于不同的两点,“p 或q 〞为真,“p 且q 〞为假,求实数a 的取值范围.解:当0<a <1时,函数y =log a (x +1)在(0,+∞)内单调递减;当a >1时,函数y =log a (x +1)在(0,+∞)内不是单调递减的.曲线y =x 2+(2a -3)x +1与x 轴交于不同的两点等价于(2a -3)2-4>0,即a <12或a >52.(1)假设p 为真且q 为假,即函数y =log a (x +1)在(0,+∞)内单调递减,曲线y =x 2+(2a -3)x +1与x 轴不交于不同的两点,那么a ∈(0,1)∩⎣⎡⎦⎤12,52,即a ∈⎣⎡⎭⎫12,1. (2)假设p 为假且q 为真,即函数y =log a (x +1)在(0,+∞)内不是单调递减的,曲线y=x 2+(2a -3)x +1与x 轴交于不同的两点,那么a ∈(1,+∞)∩⎝⎛⎭⎫⎝⎛⎭⎫0,12∪⎝⎛⎭⎫52,+∞,即a ∈⎝⎛⎭⎫52,+∞. 综上可知,a 的取值范围为⎣⎡⎭⎫12,1∪⎝⎛⎭⎫52,+∞.1.含规律联结词的综合问题,一般会消失“p 或q 〞为真,“p 或q 〞为假,“p 且q 〞为真,“p 且q 〞为假等这些条件,解题时应先将这些条件翻译成p ,q 的真假,p ,q 的真假有时是不确定的,需要争论,然后当它们为假时,取其补集即可.2.相关结论:使“p 或q 〞为真的参数范围为使命题p ,q 分别为真的参数范围的并集,使“p 且q 〞为真的参数范围为使命题p 、q 分别为真的参数范围的交集.[对应课时跟踪训练(四)]1.假设p 是真命题,q 是假命题,那么以下说法错误的选项是________. ①p ∧q 是真命题;②p ∨q 是假命题; ③綈p 是真命题;④綈q 是真命题.解析:p 是真命题,那么綈p 是假命题.q 是假命题,那么綈q 是真命题.故p ∧q 是假命题,p ∨q 是真命题.答案:①②③2.命题p :假设a >1,那么a x >log a x 恒成立;命题q :在等差数列{a n }中,m +n =r +s 是a m +a n =a r +a s 成立的充分不必要条件(m ,n ,r ,s ∈N *),那么下面为真命题的是________.①(綈p )∧(綈q );②(綈p )∨(綈q ); ③p ∨(綈q );④p ∧q . 解析:当a =1.1,x =2时, a x 2=1.21,log a x =log2>log1.21=2, 此时,a x <log a x ,故p 为假命题. 命题q ,由等差数列的性质,当m +n =r +s 时,a n +a m =a r +a s 成立,当公差d =0时,由a m +a n =a r +a s 不能推出m +n =r +s 成立,故q 是真命题. 故綈p 是真命题,綈q 是假命题,所以p ∧q 为假命题,p ∨(綈q )为假命题,(綈p )∧(綈q )为假命题,(綈p )∨((綈q )为真命题.答案:②3.命题p :不等式ax +b >0的解集为⎩⎨⎧⎭⎬⎫x | x >-b a ,命题q :关于x 的不等式(x -a )(x -b )<0的解集为{x |a <x <b },那么“p 或q 〞“p 且q 〞和“非p 〞形式的命题中,真命题为________.解析:命题p 是假命题,由于当a <0或a =0时解集与不同;命题q 也是假命题,由于不知道a ,b 的大小关系.所以只有非p 是真命题.答案:非p4.设α,β为两个不同的平面,m ,n 为两条不同的直线,且m ⊂α,n ⊂β,有两个命题:p :假设m ∥n ,那么α∥β;q :假设m ⊥β,那么α⊥β.那么命题①p 或q ;②p 且q ;③綈p 或q ;④綈p 且q 中是真命题的有________(填序号).解析:依据题意可知,p 是假命题,q 是真命题,所以p 或q 为真,綈p 或q 为真,綈p 且q 为真,p 且q 为假.答案:①③④5.命题p :∃x ∈R ,使tan x =1,命题q :x 2-3x +2<0的解集是{x |1<x <2},给出以下结论:①命题“p ∧q 〞是真命题;②命题“p ∧(綈q )〞是假命题;③命题“(綈p )∨q 〞是真命题;④命题“(綈p )∨(綈q )〞是假命题.其中正确的选项是________.(填序号)解析:命题p 真,q 真,所以①正确;②正确;③正确;④正确. 答案:①②③④6.命题p :函数f (x )=log a |x |在区间(0,+∞)上单调递增,命题q :关于x 的方程x 2+2x +log a 32=0的解集只有一个子集,假设“p 或q 〞为真,“綈p 或綈q 〞也为真,求实数a的取值范围.解:当命题p 为真命题时,应有a >1;当命题q 为真命题时,应有关于x 的方程x 2+2x +log a 32=0无解,所以Δ=4-4log a 32<0,解得1<a <32,由于“p 或q 〞为真,“綈p 或綈q 〞也为真. 所以应当有两种状况:(1)p 为真且q 为假,那么綈p 为假且綈q 为真. 此时⎩⎪⎨⎪⎧a >1,a ≤1或a ≥32,解得a ≥32; (2)p 为假且q 为真,那么綈p 为真且綈q 为假, 此时⎩⎪⎨⎪⎧a ≤1,1<a <32,该不等式组无解.综上可知,实数a 的取值范围是⎣⎡⎭⎫32,+∞. 7.命题p :实数x 满意x 2-4ax +3a 2<0(a >0),命题q :实数x 满意⎩⎪⎨⎪⎧|x -1|≤2,x +3x -2≥0.(1)假设a =1,且p ∧q 为真,求实数x 的取值范围; (2)假设q ⇒綈p ,求实数a 的取值范围. 解:(1)由于a =1,那么x 2-4ax +3a 2<0⇔x 2-4x +3<0⇔1<x <3. 所以p :1<x <3.解不等式组⎩⎪⎨⎪⎧|x -1|≤2,x +3x -2≥0得2<x ≤3,所以q :2<x ≤3.由于p ∧q 为真,所以p ,q 均是真命题,解不等式组⎩⎪⎨⎪⎧1<x <3,2<x ≤3得2<x <3,所以实数x 的取值范围是(2,3). (2)綈p :x 2-4ax +3a 2≥0,a >0, x 2-4ax +3a 2≥0⇔(x -a )(x -3a )≥0⇔ x ≤a 或x ≥3a ,所以綈p :x ≤a 或x ≥3a , 设A ={x |x ≤a 或x ≥3a }, 由(1)知q :2<x ≤3, 设B ={x |2<x ≤3}. 由于q ⇒綈p ,所以B A ,所以3≤a 或3a ≤2,即0<a ≤23或a ≥3,所以实数a 的取值范围是⎝⎛⎦⎤0,23∪[3,+∞). 8.命题p :关于x 的不等式x 2+(a -1)x +a 2≤0的解集为∅,命题q :函数y =(2a 2-a )x为增函数,分别求出符合以下条件的实数a 的取值范围.(1)p ∨q 为真命题;(2)“p ∨q 〞为真,“p ∧q 〞为假.解:命题p 为真时,Δ=(a -1)2-4a 2<0, 即a >13或a <-1.①命题q 为真时,2a 2-a >1,即a >1或a <-12.②(1)当p ∨q 为真时,即p 、q 至少有一个是真命题,即上面两个范围的并集为⎩⎨⎧⎭⎬⎫a | a <-12或a >13;∴“p ∨q 〞为真时,a 的取值范围是 ⎩⎨⎧⎭⎬⎫a | a <-12或a >13.(2)当“p ∨q 〞为真,“p ∧q 〞为假,即p ,q 有且只有一个是真命题时,有两种状况:当p 真q 假时,13<a ≤1;当p 假q 真时,-1≤a <-12.∴“p ∨q 〞为真,“p ∧q 〞为假时,a 的取值范围是 ⎩⎨⎧⎭⎬⎫a | 13<a ≤1或-1≤a <-12.。
深圳市龙华中学高中数学选修2-1第三章《圆锥曲线与方程》测试题(含答案解析)
一、选择题1.已知离心率2e =2222:1(0,0)x y C a b a b -=>>的右焦点为F ,O 为坐标原点,以OF 为直径的圆与双曲线C 的一条渐近线相交于O A 、两点.若AOF ∆的面积为1,则实数a 的值为( )A .1B C .2 D .42.已知F 是双曲线22:13y C x -=的右焦点,Q 是双曲线C 左支上的一点,(0,M 是y 轴上的一点.当MQF 的周长最小时,过点Q 的椭圆与双曲线C 共焦点,则椭圆的离心率为( ) A .25B .45C .15D .233.已知P 为双曲线2222:1(0,0)x y C a b a b-=>>上一点,12,F F 为双曲线C 的左、右焦点,若112PF F F =,且直线2PF 与以C 的实轴为直径的圆相切,则C 的渐近线方程为( ) A .43y x =±B .34yx C .35y x =±D .53y x =±4.已知点F 是椭圆()2222:10x y C a b a b+=>>的一个焦点,点P 是椭圆C 上的任意一点且点P 不在x 轴上,点M 是线段PF 的中点,点O 为坐标原点.连接OM 并延长交圆222x y a +=于点N ,则PFN 的形状是 ( )A .锐角三角形B .直角三角形C .钝角三角形D .由点P 位置决定5.已知椭圆2222:1(0)x y E a b a b +=>>的左、右焦点分别为1F ,2F ,M 为E 上一点.若126MF F π∠=,21212F F F M F F +=,则E 的离心率为( )A .12 B C 1 D 16.已知双曲线221(0,0)x y m n m n-=>>和椭圆22174x y +=有相同的焦点,则11m n +的最小值为( )A .12B .32C .43D .97.点A 、B 分别为椭圆2214x y +=的左、右顶点,直线65x my =+与椭圆相交于P 、Q两点,记直线AP 、BQ 的斜率分别为1k 、2k ,则21221k k +的最小值为( ) A .14B .12C .2D .48.椭圆22221x y a b+=(0a b >>)上一点M 关于原点的对称点为N ,F 为椭圆的一个焦点,若0MF NF ⋅=,且3MNF π∠=,则该椭圆的离心率为( ) A.1BCD19.设椭圆2222:1(0)x y C a b a b+=>> 的右焦点为F ,椭圆C 上的两点,A B 关于原点对称,且满足0,||||2||FA FB FB FA FB ⋅=≤≤,则椭圆C 的离心率的取值范围是( ) A. B. C.1] D.1,1)10.12,F F 为双曲线2214x y -=-的两个焦点,点P 在双曲线上,且1290F PF ︒∠=,则12F PF △的面积是( )A .2B .4C .8D .1611.已知1F ,2F 分别是双曲线()222210,0x y a b a b-=>>的左、右焦点,抛物线28y x=的焦点与双曲线的一个焦点重合,点P 是两曲线的一个交点,12PF PF ⊥且121PF F S =△,则双曲线的离心率为( ) ABCD .212.已知双曲线()222210,0x y a b a b-=>>的一条渐近线经过点,则该双曲线的离心率为( ) A .2BC .3D二、填空题13.若ABC ∆的两个顶点坐标()4,0A -、()4,0B ,ABC ∆的周长为18,则顶点C 轨迹方程为 _____________14.如图,过抛物线2:4C y x =的焦点F 的弦AB 满足3AF FB =(点A 在x 轴上方),分别过,A B 作抛物线的切线,设两切线的交点为M ,则M 的坐标为__________.15.过抛物线2:4C y x =的焦点F 的弦AB 满足3AF FB =(点A 在x 轴上方),则以AB 为直径的圆与该抛物线准线的公共点的坐标为____________.16.已知椭圆22221(0)x y a b c a b+=>>>的左、右焦点分别为1F ,2F ,若以2F 为圆心,b c -为半径作圆2F ,过椭圆上一点P 作此圆的切线,切点为T ,且PT 的最小值不小于3)a c -,则椭圆的离心率e 的取值范围是________. 17.已知抛物线C :24y x =,点N 在C 上,点()(),00M a a ->,若点M ,N 关于直线)31y x =-对称,则a =_____.18.已知抛物线24y x =的焦点为F ,P 为抛物线上一动点,定点()1,1A ,则PAF △周长最小值为______.19.曲线C 是平面内与两个定点()11,0F -和()21,0F 的距离的积等于常数()21aa >的点的轨.给出下列四个结论:①曲线C 过坐标原点;②曲线C 关于坐标原点对称;③若点P 在曲线C 上,则122PF PF a +<;④若点P 在曲线C 上,则12FPF △的面积212S a ≤.其中,所有正确的序号是______. 20.已知椭圆()222210x y a b a b +=>>的离心率为22,右焦点为()1,0F ,三角形ABC的三个顶点都在椭圆上,设它的三条边AB 、BC 、AC 的中点分别为D 、E 、F ,且三条边所在直线的斜率分别为()123123,,0k k k k k k ≠.若直线OD 、OE 、OF 的斜率之和为-1(O 为坐标原点),则123111k k k ++=______. 三、解答题21.已知椭圆2222:1(0)x y D a b a b +=>>的离心率为22e =,点(2,1)-在椭圆D 上.(1)求椭圆D 的标准方程;(2)设点(2,0)M -,(2,0)N ,过点(2,0)F 的直线l 与椭圆交于A ,B 两点(A 点在x 轴上方),设直线MA ,NB (O 为坐标原点)的斜率分别为k 1,k 2,求证:12k k 为定值. 22.点P 为椭圆()222210,0x y a b a b+=>>在第一象限的弧上任意一点,过P 引x 轴,y 轴的平行线,分别交直线by x a=-于,Q R ,交y 轴,x 轴于,M N 两点,记OMQ 与ONR 的面积分别为12,S S .(1)若P 坐标为22,2⎛⎫ ⎪ ⎪⎝⎭,且点P 与点R 关于x 轴对称,试求椭圆的标准方程; (2)当2ab =时,试求2212S S +的最小值.23.双曲线C :2213y x -=,过点()2,1P ,作一直线交双曲线于A 、B 两点,若P 为AB的中点.(1)求直线AB 的方程;(2)求弦AB 的长24.如图,抛物线2:2(0)C y px p =>的焦点为F ,直线11:2l y x =+与C 相切.(1)求抛物线C 的方程;(2)设过F 的直线2l 交C 于M ,N 两点(M 在x 轴上方),若MF FN =3,求直线2l 的方程.25.椭圆22221(0)x y a b a b+=>>与直线2x y +=相交于P 、Q 两点,且OP OQ ⊥,其中O 为坐标原点.(1)求2211a b +的值; (2)若椭圆的离心率e 满足36e ≤≤,求椭圆长轴长的取值范围.26.椭圆C :22221(0)x y a b a b+=>>的一个焦点与抛物线2y =的焦点重合,短轴的(1)求椭圆C 的方程;(2)设过点(0,4)的直线l 与椭圆C 交于,A B 两点,且坐标原点O 在以AB 为直径的圆上,求直线l 的斜率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】双曲线2222:1x y C a b-=的右焦点为F ,O 为坐标原点,以OF 为直径圆与双曲线C 的一条渐近线相交于O ,A 两点,所以FA OA ⊥,则FA b =,OA a =,AOF ∆的面积为1,可得1 12ab =,双曲线的离心率e =222225 4c a b a a +==, 即12b a =,解得1b =,2a =,故选C. 点睛:本题考查直线与圆锥曲线的位置关系的应用,双曲线的简单性质,考查了计算能力;利用双曲线的离心率求出渐近线方程,利用三角形中直径所对的圆周角为直角,可求得直角三角形AOF ∆的面积1 12ab =,结合离心率以及恒等式222c a b =+即可得到关于,,a b c 方程组求出a 即可;2.B解析:B 【分析】当,,M Q E 三点共线时,MQ QE +最小,进而可求出Q 的坐标,结合椭圆的性质,可知椭圆的离心率EF e QE QF=+.【详解】由题意,双曲线22:13y C x -=中,2221,3,4a b c ===,设双曲线的左焦点为E ,则()2,0E -,右焦点()2,0F ,则()222324MF =+=,根据双曲线的性质可知,2QF QE a -=,则MQF 的周长为26MF MQ QF MF MQ QE a MQ QE ++=+++=++,当,,M Q E 三点共线时,MQ QE +最小,此时MQF 的周长最小,此时直线ME 的方程为)32y x =+,联立)221332y x x y ⎧==+-⎪⎨⎪⎩,消去y 得450x +=,解得54x =-,则33y = 所以MQF 的周长最小时,点Q 的坐标为5334⎛- ⎝⎭, 过点Q 的椭圆的左焦点()2,0E -,右焦点()2,0F ,则2222533533224444QE QF ⎛⎫⎛⎫⎛⎫⎛⎫+=-++--+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭614544=+=, 所以椭圆的离心率45EFe QE QF ==+.故选:B. 【点睛】本题考查双曲线、椭圆的性质,考查椭圆离心率的求法,考查学生的计算求解能力,属于中档题.3.A解析:A 【分析】结合直线和圆的位置关系以及双曲线的定义求得,a b 的关系式,由此求得双曲线的渐近线方程. 【详解】设直线2PF 与圆222x y a +=相切于点M ,则2,OM a OM PF =⊥, 取线段2PF 的中点N ,连接1NF , 由于1122PF F F c ==, 则122,NF PF NP NF ⊥=,由于O 是12F F 的中点,所以122NF OM a ==, 则22442NP c a b =-=,即有24PF b =,由双曲线的定义可得212PF PF a -=, 即422b c a -=, 即2,2b c a c b a =+=-,所以()2222b a a b -=+,化简得2434,34,3b b ab b a a ===, 所以双曲线的渐近线方程为43y x =±. 故选:A【点睛】本小题主要考查双曲线渐近线方程的求法,属于中档题.4.B解析:B 【分析】根据定义可得12PF PF a +=,进而得出OM PM a +=,根据MN ON OM =-求出MN PM MF ==,得出90PNF ∠=,即可判断. 【详解】设F 是右焦点,左焦点为1F ,12PF PF a ∴+=,在1PFF 中,,O M 分别是1,FF PF 中点,12,2PF OM PF PM ∴==,1222PF PF OM PM a ∴+=+=,即OM PM a +=,()MN ON OM a a PM PM ∴=-=--=,MN PM MF ∴==,∴N 在以线段PF 为直径的圆上,90PNF ∴∠=,故PFN 的形状是直角三角形. 故选:B.【点睛】本题考查椭圆定义的应用,解题的关键是应用椭圆的定义得出MN PM MF ==,从而判断90PNF ∠=.5.B解析:B 【分析】先取线段1F M 中点P ,连接2PF ,得到2c P F =,结合正弦定理证明12F PF ∠是直角,求出12,F M MF ,再根据定义122FM MF a +=得到,a c 之间关系,即求得离心率. 【详解】如图椭圆中,取线段1F M 中点P ,连接2PF ,则21222F F F M F P +=,因为21212F F F M F F +=,所以21222F F F P c ==,则2c P F =,12F F P 中,1212122sin sin F F M P F F F P F F =∠∠,即122sin sin6c P F F c π=∠,解得12in 1s P F F =∠,又()120,F PF π∠∈,12F PF ∠=2π,故13F P c =,2PF 是线段1F M 的中垂线,故121223,2FM c MF F F c ===,结合椭圆定义122FM MF a +=, 故2322c c a +=,即)31c a =,故离心率31231c e a ===+. 故选:B. 【点睛】求椭圆离心率(或取值范围)的常见方法: (1)直接法:由a ,c 直接计算离心率ce a=; (2)构建齐次式:利用已知条件和椭圆的几何关系构建关于a ,b ,c 的方程和不等式,利用222b a c =-和ce a=转化成关于e 的方程和不等式,通过解方程和不等式即求得离心率的值或取值范围.6.C解析:C 【分析】本题首先可根据双曲线和椭圆有相同的焦点得出3m n +=,然后将11m n+转化为123m n n m ⎛⎫++ ⎪⎝⎭,最后利用基本不等式即可求出最小值. 【详解】因为双曲线221x y m n-=和椭圆22174x y +=有相同的焦点,所以743m n ,则()111111233m n m n m n n m n m ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭142233m n n m,当且仅当m n =时取等号, 故11m n+的最小值为43,故选:C. 【点睛】关键点点睛:本题考查双曲线与椭圆焦点的相关性质的应用,双曲线有222+=a b c ,椭圆有222a b c =+,考查利用基本不等式求最值,是中档题.7.B解析:B 【分析】设点()11,P x y 、()22,Q x y ,将直线PQ 的方程与椭圆的方程联立,列出韦达定理,计算出12k k 的值,利用基本不等式可求得21221k k +的最小值. 【详解】设点()11,P x y 、()22,Q x y ,联立226544x my x y ⎧=+⎪⎨⎪+=⎩,消去x 并整理得()22126440525m y my ++-=, 由韦达定理可得()1221254y y m +=-+,()12264254y y m =-+,设直线AQ 的斜率为k ,则222y k x =+,2222y k x =-,所以,()222222222222212244444y y y y k k x x x y ⋅=⋅===-+----,214k k ∴=-, 而()12121212121212121625616162252555y y y y y y k k m x x m y y y y my my ⋅=⋅==++⎛⎫⎛⎫+++++ ⎪⎪⎝⎭⎝⎭()()()22222642541641922561625254254m m mm m -+==---+++,因此,222112211162k k k k +=+≥==,当且仅当18k =±时,等号成立, 因此,21221k k +的最小值为12. 故选: B. 【点睛】关键点点睛:解本题的关键在于求得214AQ k k =-,进而利用韦达定理法求得1AQ k k ⋅为定值,再结合基本不等式求得最值.8.D解析:D 【分析】E 是另一个焦点,由对称性知MENF 是平行四边形,从而得MENF 是矩形.3MEF MNF π∠=∠=,在直角三角形MEF 中用c 表示出两直角边,再上椭圆定义得,a c 的等式,求得离心率. 【详解】如图,E 是另一个焦点,由对称性知MENF 是平行四边形, ∵0MF NF ⋅=,∴MF NF ⊥,∴MENF 是矩形.3MNF π∠=,∴3MEF π∠=,∴1cos232ME EF c c π==⨯=,2sin33MF c c π==,∴(31)2MF ME c a +=+=, ∴23131c e a ===-+. 故选:D .【点睛】关键点点睛:本题考查求椭圆的离心率,解题关键是找到,a c 的关系,本题利用椭圆的对称性,引入另一焦点E 后形成一个平行四边形MENF ,再根据向量数量积得垂直,从而得到矩形,在矩形中利用椭圆的定义构造出,a c 的关系.求出离心率.9.A解析:A 【分析】设椭圆的左焦点'F ,由椭圆的对称性结合0FA FB ⋅=,得到四边形'AFBF 为矩形,设'AF n =,AF m =,在直角ABF 中,利用椭圆的定义和勾股定理化简得到222m n c n m b+=,再根据2FB FA FB ≤≤,得到m n 的范围,然后利用双勾函数的值域得到22b a 的范围,然后由221c b e a a==-求解. 【详解】 如图所示:设椭圆的左焦点'F ,由椭圆的对称性可知,四边形'AFBF 为平行四边形, 又0FA FB ⋅=,即FA FB ⊥, 所以平行四边形'AFBF 为矩形, 所以'2AB FF c ==, 设'AF n =,AF m =,在直角ABF 中,2m n a +=,2224m n c +=,得22mn b =,所以222m n c n m b +=,令m t n =,得2212t c t b+=, 又由2FB FA FB ≤≤,得[]1,2mt n=∈, 所以221252,2c t t b ⎡⎤+=∈⎢⎥⎣⎦,所以 2251,4c b ⎡⎤∈⎢⎥⎣⎦ ,即2241,92b a ⎡⎤∈⎢⎥⎣⎦,所以c e a ==⎣⎦,所以离心率的取值范围是2⎣⎦, 故选:A. 【点睛】本题主要考查椭圆的定义,对称性,离心率的范围的求法以及函数值域的应用,还考查了转化求解问题的能力,属于中档题.10.B解析:B 【分析】先求出双曲线的a,b,c ,再利用12Rt PF F 中三边关系求出128PF PF =,再由直角三角形面积公式即得结果. 【详解】由2214x y -=-得标准方程为2214x y -=得221,4a b ==,2145c ∴=+=c ∴= 故12Rt PF F 中,()222212121212121222=2F F PF PF PF PFPF PF PF PF F F c ⎧==+⎪⎪=⎨+-=-⎪⎪⎩128PF PF ∴=所以12118422S PF PF =⋅=⨯=. 故选:B. 【点睛】本题考查了双曲线的定义和几何性质,考查了直角三角形的边长关系和面积公式,属于中档题.11.B解析:B 【分析】求出双曲线的半焦距,结合三角形的面积以及勾股定理,通过双曲线的定义求出a ,然后求解双曲线的离心率即可 【详解】由双曲线与抛物线有共同的焦点知2c =,因为12PF PF ⊥,且121PF F S =△,则122PF PF ⋅=,222212124PF PF F F c +==,点P 在双曲线上,则122PF PF a -=,故222121224PF PF PF PF a +-⋅=,则22444c a -=,所以a = 故选:B. 【点睛】本题考查双曲线以及抛物线的简单性质的应用,双曲线的定义的应用,考查计算能力,属于中档题..12.A解析:A 【分析】求出双曲线的渐近线方程,将点代入即可得ba=得离心率. 【详解】双曲线()222210,0x y a b a b-=>>的一条渐近线为b y x a =过第一象限,所以点在渐近线b y x a =b a =,所以ba=所以2c e a ==. 故选:A 【点睛】本题主要考查了求双曲线的离心率,属于中档题.二、填空题13.【分析】根据三角形的周长为定值得到点到两个定点的距离之和等于定值即点的轨迹是椭圆椭圆的焦点在轴上写出椭圆方程去掉不合题意的点【详解】的两个顶点坐标周长为点到两个定点的距离之和等于定值点的轨迹是以为焦解析:221259x y +=(0)y ≠【分析】根据三角形的周长为定值,,得到点C 到两个定点的距离之和等于定值,即点C 的轨迹是椭圆,椭圆的焦点在x 轴上,写出椭圆方程,去掉不合题意的点 【详解】ABC ∆的两个顶点坐标()40A -,、()40B ,,周长为18 810AB BC AC ∴=+=,108>,∴点C 到两个定点的距离之和等于定值,∴点C 的轨迹是以A 、B 为焦点的椭圆210283a c b ==∴=,,∴椭圆的标准方程是221259x y += ()0y ≠故答案为221259x y += ()0y ≠【点睛】本题主要考查了轨迹方程,椭圆的标准方程,解题的关键是掌握椭圆的定义及其求法.14.【分析】由已知求得抛物线焦点坐标及准线方程由求得所在直线倾斜角得到斜率写出所在直线方程联立准线方程与抛物线方程求得的坐标可求利用导数求斜率写出直线的方程再求两直线的交点则的坐标可求【详解】解:由抛物解析:⎛- ⎝⎭【分析】由已知求得抛物线焦点坐标及准线方程,由3AF FB =求得AB 所在直线倾斜角,得到斜率,写出AB 所在直线方程,联立准线方程与抛物线方程,求得A 、B 的坐标可求,利用导数求斜率,写出直线AM 、BM 的方程,再求两直线的交点,则M 的坐标可求. 【详解】解:由抛物线2:4C y x =,得焦点(1,0)F ,准线方程为1x =-. 由题意设AB 所在直线的倾斜角为θ, 由3AF FB =,得2231cos 1cos θθ=-+,即1cos 2θ=.tanθ∴=则AB 所在直线方程为1)y x =-.联立21)4y x y x⎧=-⎪⎨=⎪⎩,得231030x x -+=.解得:13x =或3x =,因为点A 在x 轴上方所以A ,1,33B ⎛⎫-⎪ ⎪⎝⎭由y =y '=y =-y '=∴3|x y='==13|x y ='==即AM 、BM 所在直线的斜率分别为33、3-. 3:23(3)3AM y x ∴-=-,231:3()33BM y x +=-- 所以323(3)32313()33y x y x ⎧-=-⎪⎪⎨⎪+=--⎪⎩解得1233x y =-⎧⎪⎨=⎪⎩M ∴的坐标为23(1,)3-. 故答案为:23(1,)3-.【点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,考查计算能力,属于中档题.15.【分析】如图先利用辅助线确定公共点位置再联立方程得到其坐标即可【详解】如图所示取AB 中点M 分别过ABM 作准线的垂线垂足依次为CDN 则AC//MN//CDMN 是梯形ABDC 中位线根据抛物线定义得即N 在解析:23⎛- ⎝⎭【分析】如图先利用辅助线确定公共点位置,再联立方程得到其坐标即可. 【详解】如图所示,取AB 中点M ,分别过A ,B ,M 作准线的垂线,垂足依次为C ,D ,N , 则AC //MN //CD ,MN 是梯形ABDC 中位线,根据抛物线定义得,2AB AF BF AC BD MN =+=+=,即N 在以AB 为直径的圆上, 即N 即是以AB 为直径的圆与该抛物线准线的公共点,易见直线AB 不平行x 轴,方程可设为1x my =+,设()()1122,,,A x y B x y联立方程214x my y x=+⎧⎨=⎩得2440y my --=, 则12124,4y y m y y +==-,又依题意3AF FB =(点A 在x 轴上方),故1120,3y y y >=-,解得122323,3y y ==-,故3m =易见N 点坐标为121,2y y +⎛⎫- ⎪⎝⎭,即()1,2m -,即公共点的坐标为23⎛- ⎝⎭.故答案为:23⎛- ⎝⎭. 【点睛】本题考查了抛物线的定义及直线与抛物线的综合应用,属于中档题.16.【分析】利用切线的性质和勾股定理可得利用椭圆的性质可得的最小值为由题意可得最小值为即可得出离心率满足的不等式再利用得联立两个不等式即可解出的取值范围【详解】因为所以当且仅当取得最小值时取得最小值而的解析:32,52⎡⎢⎣⎭【分析】利用切线的性质和勾股定理可得222||()()PT PF b c b c =-->,利用椭圆的性质可得2PF 的最小值为a c -,由题意可得PT 3)a c -,即可得出离心率e 满足的不等式,再利用b c >,得222a c c ->,联立两个不等式即可解出e 的取值范围.【详解】因为||)PT b c =>,所以当且仅当2PF 取得最小值时,PT 取得最小值.而2PF 的最小值为a c -,所以PT 23()2a c -, 所以22()4()a cbc --,所以2()a c b c --,所以2a c b +, 所以()222()4a c a c +-,所以225302c ac a +-≥,所以25230e e +-.①又b c >,所以22b c >,所以222a c c ->,所以221e <.② 联立①②,得3252e <.故答案为:35⎡⎢⎣⎭【点睛】本题主要考查了椭圆的性质,离心率的计算公式,圆的切线的性质,勾股定理,一元二次不等式的解法,属于基础题17.3【分析】设MN 关于直线对称等价于MN 中点在直线上且MN 与直线斜率相乘为联立方程可用表示再利用在抛物线上将点代入抛物线方程即可求出【详解】设因为点MN 关于直线对称所以中点在直线上且与直线垂直则中点为解析:3 【分析】设()00,N x y ,M ,N 关于直线)1y x =-对称等价于MN 中点在直线上,且MN 与直线斜率相乘为1-,联立方程,可用a 表示00,x y ,再利用()00,N x y 在抛物线上,将点代入抛物线方程,即可求出a . 【详解】设()00,N x y ,因为点M ,N 关于直线)1y x =-对称, 所以MN 中点在直线上,且MN 与直线垂直, 则MN 中点为00,22x a y , 003122y x a, 且MN 与直线垂直,0031y x a,联立方程可得00333,22a a x y ,点N 在抛物线上,2333422a a ,解得3a =或73a =-(舍去),3a ∴=.故答案为:3 【点睛】本题考查点与点关于直线的对称问题,知道中点在直线上且两点间连线与直线垂直是解决问题的关键.18.3【分析】求周长的最小值即求的最小值设点在准线上的射影为则根据抛物线的定义可知因此问题转化为求的最小值根据平面几何知识当三点共线时最小从而可得结果【详解】求周长的最小值即求的最小值设点在准线上的射影解析:3 【分析】求PAF ∆周长的最小值,即求||||PA PF +的最小值.设点P 在准线上的射影为D ,则根据抛物线的定义,可知||||PF PD =.因此问题转化为求||||PA PD +的最小值,根据平面几何知识,当D 、P 、A 三点共线时||||PA PD +最小,从而可得结果 【详解】求PAF ∆周长的最小值,即求||||PA PF +的最小值, 设点P 在准线上的射影为D , 根据抛物线的定义,可知||||PF PD =因此,||||PA PF +的最小值,即||||PA PD +的最小值根据平面几何知识,可得当D ,P ,A 三点共线时||||PA PD +最小, 因此的最小值为(1)112A x --=+=, ||1AF =,所以PAF ∆周长的最小值为213+=, 故答案为:3.【点睛】本题主要考查抛物线的定义、标准方程,以及简单性质的应用,判断当D ,P ,A 三点共线时||||PA PD +最小,是解题的关键.19.②④【分析】由题意曲线是平面内与两个定点和的距离的积等于常数利用直接法设动点坐标为及可得到动点的轨迹方程然后由方程特点即可加以判断【详解】解:对于①由题意设动点坐标为则利用题意及两点间的距离公式的得解析:②④ 【分析】由题意曲线C 是平面内与两个定点1(1,0)F -和2(1,0)F 的距离的积等于常数2(1)a a >,利用直接法,设动点坐标为(,)x y ,及可得到动点的轨迹方程,然后由方程特点即可加以判断. 【详解】解:对于①,由题意设动点坐标为(,)x y ,则利用题意及两点间的距离公式的得:22224[(1)][(1)]x y x y a ++-+=,将原点代入验证,此方程不过原点,所以①错; 对于②,把方程中的x 被x -代换,y 被y - 代换,方程不变,故此曲线关于原点对称,故②正确;对于③,221y x =--,224211y x a ∴+=--,P ∴到原点的距离不,当P 在y 轴时取等号,此时12PF PF a ==,122PF PF a +=故③错误;对于④,由题意知点P 在曲线C 上,则△12F PF 的面积12122F PF Sy y =⨯⨯=,由①知221y x =--或221y x =--t ,则2424t a x -=,24442211(2)4444t a a a y t t -∴=--+=--+,1222212F PF S y a ∴=,故④正确.故答案为:②④. 【点睛】本题考查了利用直接法求出动点的轨迹方程,并化简,利用方程判断曲线的对称性及利用解析式选择换元法求出值域.20.2【分析】求出椭圆的方程利用点差法求得直线的斜率同理即可求得【详解】由题意可得所以所以椭圆的标准方程为设由两式作差可得则而故即同理可得所以故答案为:2【点睛】本题考查三条直线的斜率的倒数和的求法考查解析:2 【分析】求出椭圆的方程,利用“点差法”求得直线AB 的斜率,同理即可求得123111k k k ++ 【详解】 由题意可得1c =,2c a =,所以a =1b =,所以椭圆的标准方程为2212x y +=,设()11,A x y ,()22,B x y ,()33,C x y ,1212,22x x y y D ++⎛⎫⎪⎝⎭,由221122221212x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ , 两式作差可得()()()()212121212x x x x y y y y -+=--+,则()212121212y y x x y y x x -+=-+-, 而1212OD y y k x x +=+,故1122AB ODk k k =-=-,即112OD k k =-, 同理可得212OE k k =-,312OF k k =-, 所以()12311122OD OE OF k k k k k k ++=-++=. 故答案为:2 【点睛】本题考查三条直线的斜率的倒数和的求法,考查转化思想以及计算能力,属于中档题.三、解答题21.(1)22142x y +=;(2)证明见解析.【分析】(1)由已知得到关于,a b 的方程组,解方程组即得解;(2)设直线l的方程为x my =理化简12k k 即得解.【详解】(1)椭圆D的离心率e ==a ∴=,又点1)-在椭圆D 上,22211a b∴+=,得2a =,b = ∴椭圆D 的标准方程22142x y +=.(2)由题意得,直线l的方程为x my =由22142x y x my ⎧+=⎪⎨⎪=+⎩消元可得()22220m y ++-=, 设())()1122,,,A x y B x y ,则1222y y m+=-+,12222y y m =-+, ()()1212121212222()4(2(4x x x x x x my my my my ++=+++=++++221212(2()2)m y y m y y =+++2222(222)m m m ⎛⎛⎫=-++= ⎪ +⎝⎭⎝⎭()()()2112122121222212121212222223222422x k y x y y x y y y y k x y x y x x x x ----∴=⋅=⋅=⋅==-+++-++定值). 【点睛】方法点睛:定值问题在几何问题中,有些几何量与参数无关,这就构成了定值问题,定值问题的处理常见的方法有:(1)特殊探究,一般证明;(2)直接求题目给定的对象的值,证明其结果是一个常数.22.(1)2214x y +=;(2)12.【分析】(1)根据题中条件,得到222112a b +=,求出a R -⎫⎪⎪⎭,根据点P 与点R 关于x 轴对称,得到2a b =,进而可求出,a b ,得出椭圆方程;(2)先设()P m n ,,根据题中条件,得到M ,N ,R ,Q 的坐标,由三角形面积公式,得到44442222214a n b m S b S a ++=,根据2ab =,22221m n a b+=,结合基本不等式,即可求出2212S S +的最小值.【详解】(1)因为点2P ⎭为椭圆()222210,0x y a b a b +=>>上任意一点,则222112a b +=;由x b y x a ⎧=⎪⎨=-⎪⎩可得x y a ⎧=⎪⎨=-⎪⎩,即a R -⎫⎪⎪⎭, 又点P 与点R 关于x轴对称,所以0=,则2a b =, 由2222112a ba b =⎧⎪⎨+=⎪⎩解得21a b =⎧⎨=⎩,所以椭圆的标准方程为2214x y +=; (2)由题意,设()P m n ,,其中0m >,0n >,则()0,M n ,(),0N m ,由x m b y x a =⎧⎪⎨=-⎪⎩可得x mbm y a =⎧⎪⎨=-⎪⎩,即,bm R m a ⎛⎫- ⎪⎝⎭;由y n b y x a =⎧⎪⎨=-⎪⎩可得y nan x b =⎧⎪⎨=-⎪⎩,即,an Q n b ⎛⎫- ⎪⎝⎭,所以211222OMQQ n an an S SOM x b b===⋅=,221222ONRR m bm bm S S ON y a a===⋅=, 则2424422124442222444a n b m b m a a b b S S a n +=++=, 因为2ab =,22221m n a b +=,则2222221b m a n a b+=,即22224b m a n +=, 所以444444442222444444422121632232a n a n ab m b m b m b m n a n a b S n m S +++++≥+=+=()22222442222441323222a nb m a n a b m b n m++===+, 当且仅当22222a n b m ==时,取得最小值12. 【点睛】 思路点睛:求解圆锥曲线中的三角形面积最值问题时,一般需要根据题中条件,利用三角形面积公式,表示出三角形的面积,再结合函数的性质或基本不等式,即可求出面积的最值.(有时需要利用导数的方法求解最值) 23.(1)611y x =-;(2. 【分析】(1)利用点差法求出直线斜率,检验直线与双曲线位置关系,得到直线的方程; (2)联立直线与双曲线方程,结合韦达定理利用弦长公式即可得解.【详解】(1)设()(),,,A m n B a b ,P 为AB 的中点4,2a m b n +=+=2213b a -=,2213n m -=,两式相减得:222203b a n m --=-,()()()()03b n b n a m a m +-+--=,所以()()2403b n a m ---= 所以直线AB 的斜率6b nk a m-==-, 直线AB 的方程()162y x -=-即611y x =-,将611y x =-代入双曲线2213yx -=,21321240,1321324331241333280x x -+=∆=⨯-⨯⨯=⨯>满足题意所以直线AB 的方程611y x =-;(2)由(1)将611y x =-代入双曲线2213yx -=,21241321240,4,3333x m a m x a -+=+==,33AB m =-==【点睛】此题考查利用点差法解决中点弦问题,求解直线方程,需要注意检验直线与双曲线的交点情况,根据韦达定理求解弦长.24.(1)22y x =;(2)630x --= 【分析】(1)联立直线方程与抛物线方程,利用判别式为0求出p 的值,从而可得答案;(2)设21:2l x my =+, 联立2212y xx my ⎧=⎪⎨=+⎪⎩可得2210y my --=,利用韦达定理以及平面向量的线性运算列方程组求解m 的值即可. 【详解】(1)联立222212y pxy py p y x ⎧=⎪⇒=-⎨=+⎪⎩,可得220y py p -+=, 因为直线11:2l y x =+与2:2(0)C y px p =>相切 所以24401p p p =-=⇒=, 抛物线方程为22y x =, (2)由(1)可知1,02F ⎛⎫ ⎪⎝⎭, 设21:2l x my =+, 联立2212y x x my ⎧=⎪⎨=+⎪⎩可得2210y my --=,设()()11221,,,,0M x y N x y y >,结合MF FN =3,可得12121212,3y y y y m m y y=-⎧⎪+=⇒=⎨⎪=-⎩,21:2l x y =+,即630x --=. 【点睛】 求抛物线标准方程的方法一般为待定系数法,根据条件确定关于p 的方程,解出p ,从而写出抛物线的标准方程.解决直线与抛物线的位置关系的相关问题,其常规思路是先把直线方程与抛物线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题. 25.(1)12,(2)⎡⎣ 【分析】(1)根据题意,联立直线与椭圆的方程,可得222222()4(4)0a b x a x a b +-+-=,设1122(,),(,)P x y Q x y ,又由OP OQ ⊥,得12120x x y y +=,化简可得1212(2)(2)0x x x x +--=,由根与系数的关系分析可得2222222(4)420a b a a b a b--+=++,化简即可得答案;(2)由离心率公式可得2212133b a ≤-≤,即221233b a ≤≤,又由(1)知22222a b a =-,所以22222b a a =-,化简变形即可得答案 【详解】解:(1)由222212x y a b y x ⎧+=⎪⎨⎪=-⎩,得222222()4(4)0a b x a x a b +-+-=,设1122(,),(,)P x y Q x y ,则222121222224(4),a a b x x x x a b a b-+==++, 因为OP OQ ⊥,所以12120x x y y +=,所以1212(2)(2)0x x x x +--=,化简得1212()20x x x x --+=,所以2222222(4)420a b a a b a b --+=++,化简得221112a b +=, (2)根据题意得,222221c b e a a==-,因为33e ≤≤,所以2212133b a ≤-≤, 所以221233b a ≤≤,又由(1)得,22222a b a =-,所以22222b a a =-,所以2122323a ≤≤-,解得258a ≤≤,a ≤2a ≤≤所以长轴长的取值范围为⎡⎣【点睛】关键点点睛:此题考查椭圆的几何性质,考查直线与椭圆的位置关系,解题的关键是由33e ≤≤,得221233b a ≤≤,而由221112a b +=得22222a b a =-,从而可得2122323a ≤≤-,进而可得结果 26.(1)2214x y +=;(2)【分析】(1)根据抛物线2y =的焦点为),解得c =122c b⨯⨯=b即可.(2)设直线l方程为4y kx=+,与椭圆方程联立,根据坐标原点O在以AB为直径的圆上,由OA OB⊥,即1212x x y y⋅+⋅=求解.【详解】(1)因为抛物线2y=的焦点为),由题意得:c=所以122c b⨯⨯=解得1b=,24a=,所以椭圆C的方程为2214xy+=;(2)由题意设过点(0,4)的直线l方程为4y kx=+,设()()1122,,,A x yB x y,由22414y kxxy=+⎧⎪⎨+=⎪⎩,得()221432600k x kx+++=,则1212223260,1414kx x x xk k+=-⋅=++,()()2232240140k k∆=-+>,解得k>k<,因为坐标原点O在以AB为直径的圆上,所以OA OB⊥,即1212x x y y⋅+⋅=,即()()2121214160k x x k x x+⋅+++=,所以()()2226032141601414kk kk k++-+=++,即219k=,解得k=适合0∆>,所以直线l的斜率是.【点睛】易错点点睛:易错点是由坐标原点O在以AB为直径的圆上,转化为OA OB⊥,由1212x x y y⋅+⋅=,求得斜率,而忽视要满足.0∆>.。