2018-2019学年广东省深圳实验学校七年级(下)期末数学试卷

合集下载

2018-2019学年广东省深圳高中七年级下学期期末考试数学试卷解析版

2018-2019学年广东省深圳高中七年级下学期期末考试数学试卷解析版

2018-2019学年广东省深圳高中七年级下学期期末考试数学试卷解析版一、选择题(本题共有12小题,每小题3分,共36分)1.下列图形中,是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选:B.2.2019年端午节假日,中国出游旅客共计395万人次,将395万用科学记数法表示应为()A.0.395×107B.395×103C.3.95×106D.3.95×105解:395万用科学记数法表示应为3.95×106,故选:C.3.如图是一个由4个相同的长方体组成的立体图形,它的左视图是()A.B.C.D.解:立体图形的左视图是.故选:A.4.下列长度的三条线段能组成三角形的是()A.2cm,3cm,6cm B.3cm,4cm,7cmC.5cm,6cm,8cm D.7cm,8cm,16cm解:A、2+3<6,不能组成三角形,故此选项不符合题意;B、3+4=7,不能组成三角形,故此选项不符合题意;C、5+6>8,能组成三角形,故此选项符合题意;D、8+7<16,不能组成三角形,故此选项不符合题意;故选:C.5.下列运算正确的是()A.x2•x6=x12B.(﹣6x6)÷(﹣2x2)=3x3C.2a﹣3a=﹣a D.(x﹣2)2=x2﹣4解:∵x2•x6=x8≠x12.∴选项A错误;∵(﹣6x6)÷(﹣2x2)=3x4,∴选项B错误;∵2a﹣3a=﹣a,∴选项C正确;∵(x﹣2)2=x2﹣4x+4,∴选项D错误;故选:C.6.如图,OP平分∠MON,P A⊥ON于点A,点Q是射线OM上的一个动点,若P A=2,则PQ的最小值为()A.4B.1C.3D.2解:作PH⊥OM于M,如图,∵OP平分∠MON,P A⊥ON,∴PH=P A=2,∴点P到OM的距离为2,∴Q点运动到H点时,PQ最小,即PQ的最小值为2.故选:D.。

【精选3份合集】2018-2019年深圳市七年级下学期数学期末达标检测试题

【精选3份合集】2018-2019年深圳市七年级下学期数学期末达标检测试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.a cb b <【答案】B【解析】先由数轴观察a、b、c的正负和大小关系,然后根据不等式的基本性质对各项作出正确判断. 【详解】由数轴可以看出a<b<0<c,因此,A、∵a<b,∴a﹣c<b﹣c,故选项错误;B、∵a<b,∴a+c<b+c,故选项正确;C、∵a<b,c>0,∴ac<bc,故选项错误;D、∵a<c,b<0,∴a cb b>,故选项错误.故选B.【点睛】此题主要考查了不等式的基本性质及实数和数轴的基本知识,比较简单.2.若将一副三角板按如图所示的方式放置,则下列结论不正确的是()A.∠1=∠2 B.如果∠2=30°,则有AC∥DEC.如果∠2=45°,则有∠4=∠D D.如果∠2=45°,则有BC∥AD【答案】A【解析】根据两种三角板的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.【详解】解:∵∠CAB=∠DAE=90°,∴∠1=∠3,故A错误.∵∠2=30°,∴∠1=∠3=60°∴∠CAD=90°+60°=150°,∴∠D+∠CAD=180°,∴AC∥DE,故B正确,∵∠2=45°,∴∠1=∠2=∠3=45°,∵∠D+∠3=∠B+∠4,∴∠4=30°,∵∠D=30°,∴∠4=∠D,故C正确,∵∠2=45°,∴∠3=45°,∴∠B=∠3,∴BC∥AD故D正确.故答案选:A.【点睛】此题主要考查了学生对平行线判定与性质、余角和补角的理解和掌握,解答此题时要明确两种三角板各角的度数.3.已知点P(0,m)在y轴的负半轴上,则点M(−m,−m+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】∵P(m,0)在x轴负半轴上,∴m<0,∴-m>0,-m+1>0,∴点M(-m,-m+1)在第一象限;故选A.4.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是()A.某市5万名初中毕业生的中考数学成绩B.被抽取500名学生C.被抽取500名学生的数学成绩D.5万名初中毕业生【答案】C【解析】解:样本是从总体中所抽取的一部分个体,故选C5.下列条件中,能说明AD∥BC的条件有()个①∠1=∠4;②∠2=∠3;③∠1+∠2=∠3+∠4;④∠A+∠C=180°;⑤∠A+∠ABC=180°⑥∠A+∠ADC=180°.A.1 B.2 C.3 D.4【详解】根据“内错角相等,两直线平行”可得②∠2=∠3,可推出AD ∥BC ;根据“同旁内角互补,两直线平行”可得⑤∠A+∠ABC=180°,可推出AD ∥BC ;其他条件不能推出AD ∥BC ;故选B【点睛】熟记平行线的判定定理.6.如图,在△ABC 中,AC 的垂直平分线交BC 于点D ,交AC 于点E ,连接AD .若△ABC 的周长是17cm ,AE=2cm ,则△ABD 的周长是( )A .13cmB .15cmC .17cmD .19cm【答案】A【解析】分析: 根据“线段垂直平分线的定义和性质”结合已知条件分析解答即可.详解:∵AC 的垂直平分线交BC 于点D ,交AC 于点E ,∴AC=2AE=4cm ,AD=CD ,∵AB+BC+AC=17cm ,∴AB+BC=17cm-4cm=13cm ,∵△ABD 的周长=AB+BD+AD ,∴△ABD 的周长=AB+BD+CD=AB+BC=13cm.故选A.点睛:熟记“线段垂直平分线的定义和性质”是解答本题的关键.7.如图,点E 在BC 的延长线上,下列条件中不能判定AB CD ∥的是( )A .12∠=∠B .34∠=∠C .B DCE ∠=∠D .180D DAB ∠+∠=︒【详解】解:A 、∵∠1=∠2,∴AB ∥CD ,本选项不合题意;B 、∵∠3=∠4,∴AD ∥BC ,本选项符合题意.C 、∵∠B=∠DCE ,∴AB ∥CD ,本选项不合题意;D 、∵∠D+∠DAB=180°,∴AB ∥CD ,本选项不合题意;故选:B .【点睛】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.8.如图,能推断AB//CD 的是( )A .35∠=∠;B .24∠∠=;C .123∠=∠+∠ ;D .045180D ∠+∠+∠=.【答案】B 【解析】根据平行线的判定定理(①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行)判断即可.【详解】A 、∵∠3=∠5,∴BC ∥AD ,不能推出AB ∥CD ,故本选项错误;B 、∵∠2=∠4,∴AB ∥CD ,故本选项正确;C 、∵∠1=∠2+∠3,∴∠1=∠BAD ,∴BC ∥AD ,不能推出AB ∥DC ,故本选项错误;D 、∵∠D+∠4+∠5=180°,∴BC ∥AD ,不能推出AB ∥DC ,故本选项错误;【点睛】考查了平行线的判定,注意:平行线的判定定理有①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.9.如图所示,直线a 、b 被直线c 所截,下列条件不能使//a b 的是( )A .25∠=∠B .17∠=∠C .37∠=∠D .18180∠+∠=︒【答案】A 【解析】结合图形分析两角的位置关系,根据平行线的判定方法判断.【详解】解:A 、24∠∠=,4∠与5∠是同旁内角,同旁内角相等不能说明//a b ;故A 符合题意; B 、57∠=∠,1∠与5∠是同位角,同位角相等能说明//a b ;故B 不符合题意;C 、37∠=∠,同位角相等能说明//a b ,故C 不符合题意;D 、1∠=5∠,8∠与5∠是邻补角,则18180∠+∠=︒能说明//a b ;故D 不符合题意;故选:A .【点睛】本题考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角. 10.英国《Which ?》杂志最近对31部手机进行了检测,结果发现有近四分之一的手机携带的细菌数量达到可接受数量的11倍,其中一部最脏的手机一度让它的主人出现严重消化不良.在手机上发现的有害细菌中,最为常见的有害细菌当属金黄色葡萄球菌.这种细菌可导致一系列感染,金黄色葡萄球菌为球形,直径0.0000008m 左右,1.1111118米这个数用科学记数法表示为( )A .7810-⨯米B .6810-⨯米C .8810-⨯米D .9810-⨯米【答案】A【解析】科学记数法的表示形式为a×11n 的形式,其中1≤|a|<11,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】1.1111118是较小的数,用科学计数法表示为:n a 10-⨯其中a=8,小数点向右移动7位,这个数变为8,故n=7∴这个数表示为:7810-⨯故选:A .【点睛】本题考查了科学记数法的表示方法,科学记数法的表示形式为a×11n 的形式,其中1≤|a|<11,n 为整数,表示时关键要正确确定a 的值以及n 的值.二、填空题题11_____.【答案】19的算术平方根,根据算术平方根的定义即可求出结果.【详解】∵12=9,∴1,故答案为1.【点睛】本题考查了算术平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12﹣6y ﹣33|=0,求代数式的值:168x+2018y+1=_______.【答案】1【解析】利用非负数的性质列出方程组,求出方程组的解得到x 与y 的值,代入原式计算即可求出值.+|5x ﹣6y ﹣33|=1,∴34165633x y x y +⎧⎨-⎩=①,=②①×3+②×2得:19x=114,解得:x=6,把x=6代入①得:y=-12, 则原式=168×6-2118×12+1=1. 故答案为1【点睛】本题考查解二元一次方程组,以及非负数的性质,熟练掌握运算法则是解题关键.13.已知s 2+t 2=15,st =3,则s ﹣t =_____.【答案】±1【解析】先计算(s ﹣t )2的值,再开平方可得结论.【详解】解:∵s 2+t 2=15,st =1,∴(s ﹣t )2=s 2﹣2st+t 2=15﹣2×1=9,∴s ﹣t =±1,故答案为:±1.【点睛】本题考查了完全平方公式,正确运用完全平方公式代入计算是本题的关键.14.不等式()231a x -<的解集是123x a >-,则a 的取值范围是_______________________. 【答案】32a < 【解析】据已知不等式的解集,结合x 的系数确定出2a-3为负数,求出a 的范围即可. 【详解】解:∵不等式(2a-3)x <1的解集是123x a >-, ∴2a-3<0, ∴32a <, 即a 的取值范围是32a <, 故答案为:32a <. 【点睛】 本题考查了解一元一次不等式和不等式的性质,能根据不等式的性质得出关于a 的不等式是解此题的关键.15.已知方程组2311329x y x y +=⎧⎨+=⎩,则x+y=______. 【答案】4【解析】分析:根据方程组中两个方程的特点,把两个方程相加可得5x+5y=20,由此即可得到x+y=4.详解:在方程组()()2311? 1329? 2x y x y ⎧+=⎪⎨+=⎪⎩中, 由(1)+(2)可得:5x+5y=20,∴x+y=4.故答案为:4.点睛:“观察方程组中两个未知数系数的特征,发现把两个方程相加可得新方程:5x+5y=20”是解答本题的关键.16.若x+y=2,xy=-1,则x 2+y 2=______.【答案】1.【解析】把x+y=2的两边平方得出,x2+2xy+y2=2,再进一步由xy=-1,把代数式变形求得答案即可【详解】解:∵x+y=2,∴(x+y)2=2,x2+2xy+y2=2.∵xy=-1,∴x2+y2=9-2×(-1)=1.故答案为1.【点睛】此题考查代数式求值,注意利用完全平方公式把代数式的变形.17.如图a 是长方形纸带,∠DEF=19°,将纸带沿EF 折叠成图b,再沿BF 折叠成图c,则图c 中的∠DHF 的度数是________ .【答案】57°【解析】由题意知∠DEF=∠EFB=19°图b∠GFC=142°,图c中的∠DHF =180°-∠CFH.【详解】∵AD∥BC,∠DEF=19°,∴∠BFE=∠DEF=19°,∴∠EFC=180°-19°=161°(图a),∴∠BFC=161°-19°=142°(图b),∴∠CFE=142°-19°=123°(图c),∴由DH∥CF得∠DHF =180°-123°=57°【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.三、解答题18.光明电器超市销售每台进价分别为190元、160元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周2台6台1840元(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备再采购这两种型号的电风扇共40台,这40台电风扇全部售出后,若利润不低于2660元,求A种型号的电风扇至少要采购多少台?【答案】(1)A种型号的电风扇的销售单价为10元/台,B种型号的电风扇的销售单价为220元/台.(2)A种型号的电风扇至少要采购1台.【解析】(1)设A种型号的电风扇的销售单价为x元/台,B种型号的电风扇的销售单价为y元/台,根据总价=单价×数量结合该超市近两周的销售情况表格中的数据,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设采购A种型号的电风扇m台,则采购B种型号的电风扇(40-m)台,根据总利润=每台利润×购进数量结合利润不低于160元,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:(1)设A种型号的电风扇的销售单价为x元/台,B种型号的电风扇的销售单价为y元/台,根据题意得:261840 572840x yx y+=⎧+=⎨⎩,解得:{260220x y==.答:A种型号的电风扇的销售单价为10元/台,B种型号的电风扇的销售单价为220元/台.(2)设采购A种型号的电风扇m台,则采购B种型号的电风扇(40-m)台,根据题意得:(10-190)m+(220-160)(40-m)≥160,解得:m≥1.答:A种型号的电风扇至少要采购1台.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,正确列出一元一次不等式.19.食品加工是一种专业技术,就是把原料经过人为处理形成一种新形式的可直接食用的产品,这个过程就是食品加工.比如用小麦经过碾磨、筛选、加料搅拌、成型烘干,成为饼干,就是属于食品加工的过程.下表给出了甲、乙、丙三种原料中的维生素A、B的含量(单位:g/kg).将甲、乙、丙三种原料共100kg混合制成一种新食品,其中原料甲xkg,原料乙ykg.(1)这种新食品中,原料丙的含量__________kg ,维生素B 的含量__________g ;(用含x 、y 的式子表示)(2)若这种新食品中,维生素A 的含量至少为440g ,维生素B 的含量至少为480g ,请你证明:50x y +≥.【答案】(1)100,42400x y x y ---+;(2)详见解析【解析】(1)直接利用表格中数据进而得出原料丙的含量以及维生素B 的含量;(2)直接利用表格中数据进而得出维生素A 的含量至少为440g ,维生素B 的含量至少为480g 的不等式即可得出答案.【详解】解:(1)解:∵将甲、乙、丙三种原料共100kg 混合制成一种新食品,其中原料甲xkg ,原料乙ykg ,∴这种新食品中,原料丙的含量为:(100−x−y )kg ,维生素B 的含量为:8x +2y +4(100−x−y )=4x−2y +400;故答案为:(100−x−y );(4x−2y +400);(2)证明:由题意可得464(100)440x y x y ++--≥∴20y ≥又∵42400480x y -+≥∴240x y -≥∴23100x y y -+≥∴50x y +≥.【点睛】此题主要考查了一元一次不等式的应用,正确得出不等关系是解题关键.20.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个涂成黑色,使整个涂成黑色的图形成为轴对称图形.在下面每个网格中画出一种符合要求的图形.【答案】见解析.【解析】利用轴对称的性质设计出图案即可.【详解】如图.【点睛】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的定义是解题关键.21.图1是一个长为2a,宽为2b的长方形,沿图中虚线剪开分成四块小长方形,然后按图2的形状拼成一个正方形.()1图2的阴影部分的正方形的边长是______.()2用两种不同的方法求图中阴影部分的面积.(方法1)S阴影= ____________;(方法2)S阴影= ____________;(3) 观察图2,写出(a+b)2,(a-b)2,ab这三个代数式之间的等量关系;()4根据()3题中的等量关系,解决问题:若m+n=10,m-n=6,求mn的值.【答案】a-b (a-b)2(a+b)2-4ab【解析】分析:(1)观察图形的特征可得结果;(2)可分别利用边长的平方和大正方形的面积减去小正方形的面积两种方法得到中间小正方形的面积;(3)根据两幅图的空白处面积相等即可得到它们之间的关系.(4)根据(3)中的结论直接整体代入即可求出mn的值.详解:的1)式或地次因式人方相等,数写厉线的定底色(1)a-b;(2)方法1:S阴影=(a-b)2,方法2:S阴影=(a+b)2-4ab;(3)(a+b)2,(a-b)2,ab这三个代数式之间的等量关系为:(a-b)2=(a+b)2-4ab;()4根据()3题中的结论得(m-n)2=(m+n)2-4mn,∵m+n=10,m-n=6,∴36=100-4mn,∴mn=16.点睛:仔细观察图形,明确两幅图中空白区域面积的计算方法及它们面积相等是解题的关键.22.若=2m x ,=3n x ,求3-m n x 的值. 【答案】83【解析】根据幂的乘方可得同底数幂的除法,根据同底数幂的除法可得答案.【详解】33m n m n x x x -=÷=()3m n x x ÷∵=2m x ,=3n x ,∴原式=323÷=83÷=83. 【点睛】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题的关键.23.为了丰富学生课余生活,某区教育部门准备在七年级开设兴趣课堂.为了了解学生对音乐、书法、球类、绘画这四个兴趣小组的喜爱情况,在全区进行随机抽样调查,并根据收集的数据绘制了下面两幅统计图(信息不完整),请根据图中提供的信息,解答下面的问题:(1)此次共调查了多少名同学?(2)将条形图补充完整,并计算扇形统计图中音乐部分的圆心角的度数(3)如果该区七年级共有2000名学生参加这4个课外兴趣小组,而每名教师最多只能辅导本组的20名学生,则绘画兴趣小组至少需要准备多少名教师?【答案】 (1)300名;(2)补图见解析;96°;(3)需准备1名教师辅导.【解析】(1)根据球类人数及其所占百分比可得总人数;(2)根据各组人数之和等于总人数求得音乐人数,据此可补全条形图;再用360°乘以音乐人数所占比例可得圆心角度数;(3)总人数乘以样本中绘画人数所占比例,再除以1即可得.【详解】解:(1)此次调查的学生人数为11÷40%=300(名);(2)音乐的人数为300﹣(60+11+40)=80(名),补全条形图如下:扇形统计图中音乐部分的圆心角的度数为360°×80300=96°; (3)60÷300×100÷1=1.∴需准备1名教师辅导.【点睛】 本题考查条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 24.如图,观察每个正多边形中α∠的变化情况,解答下列问题:……(1)将下面的表格补充完整: 正多边形的边数 3 45 6 …… n α∠的度数 __________________ _________ _________ …… _________ (2)根据规律,是否存在一个正n 边形,使其中的20α∠=︒?若存在,写出n 的值;若不存在,请说明理由.(3)根据规律,是否存在一个正n 边形,使其中的21α∠=︒?若存在,写出n 的值;若不存在,请说明理由.【答案】 (1)60°,45°,36°,30°,180n ︒;(2)当多边形是正九边形,能使其中的20α∠=︒;(3)不存在,理由见解析.【解析】(1)首先根据多边形的内角公式:(n-2)×180°,将n =3、4、5、6、8、12代入公式分别计算出各多边形的内角和;然后再根据多边形的外角和为360°,即可得到各多边形的内角和,进而完成表格.(2)依据题意得∠α=20°=180n ︒,即可求出n 的值。

2018-2019学年广东省深圳市南山区七年级(下)期末数学试卷

2018-2019学年广东省深圳市南山区七年级(下)期末数学试卷

2018-2019学年广东省深圳市南山区七年级(下)期末数学试卷一、选择题(本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上)1.(3分)以下的LOGO 中,是轴对称图形的有( )A .1个B .2个C .3个D .4个2.(3分)我国雾霾天气多发, 2.5PM 颗粒物被称为大气污染的元凶. 2.5PM 是指直径小于或等于2.5微米的颗粒物,已知1毫米1000=微米,2.5微米是多少毫米?将这个结果用科学记数法表示为( )A .32.510-⨯B .42.510-⨯C .20.2510-⨯D .42510-⨯3.(3分)下列计算正确是( )A .326()a a -=-B .623a a a +=C .22(1)1a a +=+D .325a a a ⨯=4.(3分)下列说法正确的是( )A .如果两个角相等,那么这两个角是对顶角B .内错角相等C .过直线外一点有且只有一条直线与已知直线平行D .一个角的补角一定是钝角5.(3分)如图所示,AB 是一条直线,若12∠=∠,则34∠=∠,其理由是( )A .内错角相等B .等角的补角相等C .同角的补角相等D .等量代换6.(3分)小明用一枚均匀的硬币做实验,前7次搞得的结果都是反面向上,如果将第8次掷得反面向上的概率记为P (掷得反面朝上),则( )A .P (掷得反面朝上)12=B .P (掷得反面朝上)12< C .P (掷得反面朝上)12> D .无法确定 7.(3分)如图,工人师傅砌门时,常用木条EF 固定长方形门框ABCD ,使其不变形,这样做的根据是( )A .两点之间的线段最短B .长方形的四个角都是直角C .长方形是轴对称图形D .三角形有稳定性8.(3分)下列事件:①打开电视机,正在播广告;②从一个只装有白色球的袋子摸出一个球,摸到的是白球;③13个人中至少有两个人的生日是在同一个月份;④车辆到达一个路口,遇到红灯;⑤水中捞月;⑥冬去春来.其中是必然事件的有( )A .1个B .2个C .3个D .4个 9.(3分)下面说法正确的是( )A .如果两个三角形全等,则它们必是关于直线成轴对称的图形B .等腰三角形是轴对称图形,底边中线是它的对称轴C .有一边对应相等的两个等边三角形全等D .有一个角对应相等的两个等腰三角形全等10.(3分)如图,在锐角ABC ∆中,CD ,BE 分别是AB ,AC 边上的高,且CD ,BE 相交于一点P ,若50A ∠=︒,则(BPC ∠= )A.150︒B.130︒C.120︒D.100︒11.(3分)甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离()s km和骑行时间()t h之间的函数关系如图所示.给出下列说法:(1)他们都骑行了20km;(2)乙在途中停留了0.5h;(3)甲、乙两人同时到达目的地;(4)相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有()A.1个B.2个C.3个D.4个12.(3分)如图,ABC⊥于E,则∠,DE AB∠=︒,AD平分BAC=,90∆中,AC BCC下列结论:①AD平分CDE∠,②BAC BDE∠=∠,③DE平分ADB∠,④BE AC AB+=,其中正确的有()。

2018-2019学年广东省深圳实验学校七年级下学期期末考试数学试卷及答案解析

2018-2019学年广东省深圳实验学校七年级下学期期末考试数学试卷及答案解析

2018-2019学年广东省深圳实验学校七年级下学期期末考试数学试卷及答案解析2018-2019学年广东省深圳实验学校七年级下学期期末考试数学试卷及答案解析一、选择题(本大题共10小题,每小题3分,共30分)1.下列手机软件图标中,是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选:C.2.下列计算正确的是()A.b3?b3=2b3B.(ab2)3=ab6C.(a5)2=a10D.y3+y3=y6解:A、b3?b3=b6,故此选项不符合题意;B、(ab2)3=a3b6,故此选项不符合题意;C、(a5)2=a10,故此选项符合题意;D、y3+y3=2y3,故此选项不符合题意;故选:C.3.下列各式中,是二次根式的是()3D.√3?πA.√1B.√?4C.√8解:A、√1是二次根式,故此选项正确;B、√?4,根号下不能是负数,故不是二次根式;3是立方根,故不是二次根式;C、√8D、√3?π,根号下不能是负数,故不是二次根式;故选:A.4.下列事件中,是必然事件的是()A.掷一枚质地均匀的硬币,一定正面向上B.车辆随机到达一个路口,遇到红灯C.如果a2=b2,那么a=bD.将花生油滴在水中,油会浮在水面上解:A.掷一枚质地均匀的硬币,正面向上是随机事件.B.车辆随机到达一个路口,遇到红灯是随机事件;C.如果a2=b2,那么a=b,也可能是a=﹣b,此事件是随机事件;D.将花生油滴在水中,油会浮在水面上是必然事件;故选:D.5.如图,△ABC是一块直角三角板,∠C=90°,∠A=30°,现将三角板叠放在一把直尺上,AC与直尺的两边分别交于点D、E,AB与直尺的两边分别交于点F、G,若∠1=40°,则∠2的度数为()A.40°B.50°C.60°D.70°解:∵DF∥EG,∴∠1=∠DFG=40°,又∵∠A=30°,∴∠2=∠A+∠DFG=30°+40°=70°,故选:D.6.下列长度的三条线段,能组成三角形的是()A.3,4,8B.5,6,10C.5,5,11D.5,6,11解:A选项,3+4=7<8,两边之和小于第三边,故不能组成三角形B选项,5+6=11>10,10﹣5<6,两边之各大于第三边,两边之差小于第三边,故能组成三角形C选项,5+5=10<11,两边之和小于第三边,故不能组成三角形D选项,5+6=11,两边之和不大于第三边,故不能组成三角形故选:B.。

广东省深圳市七年级初一第二学期期末数学试卷(有答案详解)

广东省深圳市七年级初一第二学期期末数学试卷(有答案详解)

广东省深圳市七年级第二学期期末数学试卷一、选择题(本题有12小题,每题3分,共36分)1.如图所示的是四个物理实验工具的简图,从左到右依次是小车、弹簧、钩码、三极管,其中是轴对称图形的是()A.小车B.弹簧C.钩码D.三极管2.据外汇局网站5月16日消息:国家外汇管理局统计数据显示,2016年4月,银行结售汇逆差1534亿元人民币,其中“1534亿”用科学记数法表示为()A.1.534×103B.1.534×1011C.15.34×108D.1534×1083.下列计算正确是()A.a3+a2=a5 B.a8÷a4=a2C.(a4)2=a8D.(﹣a)3(﹣a)2=a54.下列算式中正确的是()A.3a3÷2a=B.﹣0.00010=(﹣9999)0C.3.14×10﹣3=0.000314 D.5.下列语句中错误的是()A.数字0也是单项式B.单项式﹣a的系数与次数都是1C.xy是二次单项式D.﹣的系数是﹣6.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=45°,那么∠1的度数为()A.45°B.35°C.25°D.15°7.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(SAS)B.(SSS)C.(ASA)D.(AAS)8.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.9.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11 cm B.7.5 cmC.11 cm或7.5 cm D.以上都不对10.如图,为估计荔香公园小池塘岸边A、B两点之间的距离,小明在小池塘的一侧选取一点O,测得OA=15m,OB=10m,则A、B间的距离可能是()A.5m B.15m C.25m D.30m11.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DE=2,AC=3,则△ADC的面积是()A.3 B.4 C.5 D.612.某中学七年级组织学生进行春游,景点门票价格情况如图,则下列说法正确的是()A.当旅游人数为50时,则门票价格为70元/人B.当旅游人数为50或者100的时,门票价格都是70元/人C.两个班级都是40名学生,则两个班联合起来购票比分别购票要便宜D.当人数增多时,虽然门票价格越来越低,但是购票总费用会越来越高二、填空题(本题有4小题,每题3分,共12分)13.5m2n(2n+3m﹣n2)的计算结果是次多项式.14.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用a、b的代数式表示).15.若a+b=3,ab=2,则a2+b2=.16.如图,有一枚质地均匀的正十二面体形状的骰子,其中1个面标有“0”,1个面标有“1”,2个面标有“2”,3个面标有“3”,4个面标有“4”,其余的面标有“5”,将这枚骰子掷出后:①”6”朝上的概率是0;②“5”朝上的概率最大;③“0”朝上的概率和“1”朝上的概率一样大;④“4”朝上的概率是.以上说法正确的有.(填序号)三、解答题(本大题有7题,其中17题15分,18题6分,19题8分,20题7分,21题6分,22题4分,23题6分,共52分)17.(1)计算:(2x2y)3÷6x3y2(2)用简便方法计算:1232﹣122×124.(3)先化简,再求值:x(x﹣3y)+(2x+y)(2x﹣y)﹣(2x﹣y)(x﹣y),其中x=﹣2,.18.观察设计(1)观察如图的①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征;(2)借助如图之⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与如图的①~④的图案不能重合)19.如图,已知,∠ADC=∠ABC,BE、DF分别平分∠ABC、∠ADC,且∠1=∠2,求证:∠A=∠C.请完成证明过程.20.如图,已知:在△AFD和△CEB中,点A,E,F,C在同一条直线上,AE=CF,∠B=∠D,AD∥BC,请问:AD与BC相等吗?为什么?21.将长为40cm,宽为15cm的长方形白纸,按如图所示的方法粘合起来,粘合部分宽为5cm.(1)根据如图,将表格补充完整.(2)设x张白纸粘合后的总长度为ycm,则y与x之间的关系式是什么?(3)你认为多少张白纸粘合起来总长度可能为2016cm吗?为什么?22.先阅读理解下面的例题,再按要求解答下列问题.求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0,∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+1的最小值;(2)求代数式4﹣x2+2x的最大值.23.如图①②,点E、F分别是线段AB、线段CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.(1)线段AD和线段BC有怎样的数量关系?请说明理由;(2)当DG⊥GC时,试判断直线AD和直线BC的位置关系,并说明理由.广东省深圳市七年级第二学期期末数学试卷一、选择题(本题有12小题,每题3分,共36分)1.如图所示的是四个物理实验工具的简图,从左到右依次是小车、弹簧、钩码、三极管,其中是轴对称图形的是()A.小车B.弹簧C.钩码D.三极管【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.2.据外汇局网站5月16日消息:国家外汇管理局统计数据显示,2016年4月,银行结售汇逆差1534亿元人民币,其中“1534亿”用科学记数法表示为()A.1.534×103B.1.534×1011C.15.34×108D.1534×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1534亿有12位,所以可以确定n=12﹣1=11.【解答】解:1534亿=1543 0000 0000=1.534×1011,故选:B.3.下列计算正确是()A.a3+a2=a5 B.a8÷a4=a2C.(a4)2=a8D.(﹣a)3(﹣a)2=a5【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】直接利用同底数幂的乘除运算法则以及合并同类项法则和幂的乘方运算法则分别化简求出答案.【解答】解:A、a3+a2无法计算,故此选项错误;B、a8÷a4=a4,故此选项错误;C、(a4)2=a8,正确;D、(﹣a)3(﹣a)2=﹣a5,故此选项错误;故选:C.4.下列算式中正确的是()A.3a3÷2a=B.﹣0.00010=(﹣9999)0C.3.14×10﹣3=0.000314 D.【考点】整式的除法;零指数幂;负整数指数幂.【分析】分别利用整式的除法运算法则以及零指数幂的性质和负整数指数的幂的性质分别化简求出答案.【解答】解:A、3a3÷2a=a2,故此选项错误;B、﹣0.00010=﹣1,(﹣9999)0=1,故此选项错误;C、3.14×10﹣3=0.00314,故此选项错误;D、(﹣)﹣2=9,正确.故选:D.5.下列语句中错误的是()A.数字0也是单项式B.单项式﹣a的系数与次数都是1C.xy是二次单项式D.﹣的系数是﹣【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.【解答】解:单独的一个数字也是单项式,故A正确;单项式﹣a的系数应是﹣1,次数是1,故B错误;xy的次数是2,符合单项式的定义,故C正确;﹣的系数是﹣,故D正确.故选B.6.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=45°,那么∠1的度数为()A.45°B.35°C.25°D.15°【考点】平行线的性质.【分析】如图,利用平行线的性质可得到∠2=∠3,再由直角三角形的性质可求得∠1.【解答】解:如图,由题意可知BD∥CE,∴∠3=∠2=45°,∵∠A=30°,∠ACB=90°,∴∠ABC=60°,∴∠1=60°﹣∠3=15°,故选D.7.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(SAS)B.(SSS)C.(ASA)D.(AAS)【考点】作图—基本作图;全等三角形的判定与性质.【分析】我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.【解答】解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;作图完毕.在△OCD与△O′C′D′,,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.故选:B.8.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:为△ABC中BC边上的高的是A选项.故选A.9.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11 cm B.7.5 cmC.11 cm或7.5 cm D.以上都不对【考点】等腰三角形的性质;三角形三边关系.【分析】题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.【解答】解:①当11cm为腰长时,则腰长为11cm,底边=26﹣11﹣11=4cm,因为11+4>11,所以能构成三角形;②当11cm为底边时,则腰长=(26﹣11)÷2=7.5cm,因为7.5+7.5>11,所以能构成三角形.故选C.10.如图,为估计荔香公园小池塘岸边A、B两点之间的距离,小明在小池塘的一侧选取一点O,测得OA=15m,OB=10m,则A、B间的距离可能是()A.5m B.15m C.25m D.30m【考点】三角形三边关系.【分析】根据三角形的三边关系定理得到5<AB<25,根据AB的范围判断即可.【解答】解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,则AB的值在5和25之间.故选B.11.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DE=2,AC=3,则△ADC的面积是()A.3 B.4 C.5 D.6【考点】角平分线的性质.【分析】过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据(1)中所求S△ACD=3列出方程求解即可.【解答】解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,∴DE=DF=2.=AC•DF=×3×2=3,∴S△ACD故选A.12.某中学七年级组织学生进行春游,景点门票价格情况如图,则下列说法正确的是()A.当旅游人数为50时,则门票价格为70元/人B.当旅游人数为50或者100的时,门票价格都是70元/人C.两个班级都是40名学生,则两个班联合起来购票比分别购票要便宜D.当人数增多时,虽然门票价格越来越低,但是购票总费用会越来越高【考点】函数的图象.【分析】根据景点门票价格情况图容易得出选项A、B、D错误,选项C正确;即可得出结论.【解答】解:根据题意得:当旅游人数不超过50人时,则门票价格为80元/人;当旅游人数为50﹣100时,门票价格都是70元/人;若两个班级都是40名学生,则两个班联合起来购票为70元/人,比分别购票要便宜;∵99×70>101×60,∴当人数增多时,虽然门票价格越来越低,但是购票总费用也不会越来越高;∴选项A、B、D错误,选项C正确;故选:C.二、填空题(本题有4小题,每题3分,共12分)13.5m2n(2n+3m﹣n2)的计算结果是五次多项式.【考点】单项式乘多项式;多项式.【分析】原式利用单项式乘以多项式法则计算即可得到结果.【解答】解:5m2n(2n+3m﹣n2)=10m2n2+15m3n﹣5m2n3,则计算结果是五次多项式,故答案为:五14.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是ab(用a、b的代数式表示).【考点】平方差公式的几何背景.【分析】利用大正方形的面积减去4个小正方形的面积即可求解.【解答】解:设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,解得,②的大正方形中未被小正方形覆盖部分的面积=()2﹣4×()2=ab.故答案为:ab.15.若a+b=3,ab=2,则a2+b2=5.【考点】完全平方公式.【分析】根据a2+b2=(a+b)2﹣2ab,代入计算即可.【解答】解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=9﹣4=5.故答案为:5.16.如图,有一枚质地均匀的正十二面体形状的骰子,其中1个面标有“0”,1个面标有“1”,2个面标有“2”,3个面标有“3”,4个面标有“4”,其余的面标有“5”,将这枚骰子掷出后:①”6”朝上的概率是0;②“5”朝上的概率最大;③“0”朝上的概率和“1”朝上的概率一样大;④“4”朝上的概率是.以上说法正确的有①③④.(填序号)【考点】概率的意义.【分析】正十二面每个面向上的机会相同,因而根据概率公式解答即可.【解答】解:没有6的面,所以①”6”朝上的概率是0,正确;②“5”朝上的概率=概率小,故②错误;③“0”朝上的概率=和“1”朝上的概率=一样大,正确;④“4”朝上的概率是.正确;故答案为:①③④三、解答题(本大题有7题,其中17题15分,18题6分,19题8分,20题7分,21题6分,22题4分,23题6分,共52分)17.(1)计算:(2x2y)3÷6x3y2(2)用简便方法计算:1232﹣122×124.(3)先化简,再求值:x(x﹣3y)+(2x+y)(2x﹣y)﹣(2x﹣y)(x﹣y),其中x=﹣2,.【考点】整式的混合运算—化简求值.【分析】(1)原式利用幂的乘方与积的乘方运算法则计算即可得到结果;(2)原式变形后,利用平方差公式计算即可得到结果;(3)原式利用单项式乘以多项式,平方差公式计算得到结果,将x与y的值代入计算即可求出值.【解答】解:(1)原式=8x6y3÷6x3y2=x3y;(2)原式=1232﹣×=1232﹣1232+1=1;(3)原式=x2﹣3xy+4x2﹣y2﹣2x2+2xy+xy﹣y2=3x2﹣2y2,当x=﹣2,y=﹣时,原式=12﹣=11.18.观察设计(1)观察如图的①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征;(2)借助如图之⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与如图的①~④的图案不能重合)【考点】利用轴对称设计图案.【分析】(1)利用已知图形的特征分别得出其共同的特征;(2)利用(1)所写的特征画出符合题意的图形即可.【解答】解:(1)答案不唯一,例如,所给的四个图案具有的共同特征可以是:①都是轴对称图形;②面积都等于四个小正方形的面积之和;③都是直线型图案;④图案中不含钝角等等.只要写出两个即可.(2)答案不唯一,只要设计的图案同时具有所给出的两个共同特征,均正确,例如,同时具备特征①、②的部分图案如图:19.如图,已知,∠ADC=∠ABC,BE、DF分别平分∠ABC、∠ADC,且∠1=∠2,求证:∠A=∠C.请完成证明过程.【考点】平行线的判定与性质.【分析】求出∠1=∠3,求出∠2=∠3,根据平行线的判定得出AB∥CD,根据平行线的性质得出∠A+∠ADC=180°,∠C+∠ABC=180°,即可得出答案.【解答】证明:∵BE、DF分别平分∠ABC、∠ADC,∴∠1=∠ABC,∠3=∠ADC(角平分线的定义),∵∠ABC=∠ADC,∴∠1=∠3(等量的代换),∵∠1=∠2,∴∠2=∠3(等量代换),∴AB∥DC(内错角相等,两直线平行),∴∠A+∠ADC=180°,∠C+∠ABC=180°(两直线平行,同旁内角互补)∴∠A=∠C(等量代换).20.如图,已知:在△AFD和△CEB中,点A,E,F,C在同一条直线上,AE=CF,∠B=∠D,AD∥BC,请问:AD与BC相等吗?为什么?【考点】全等三角形的判定与性质.【分析】先求出AF=CE,再由平行线的性质得出∠A=∠C,由AAS证明△ADF≌△CBE,得出对应边相等即可.【解答】解:AD=BC,理由如下:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,在△ADF和△CBE中,,∴△ADF≌△CBE(AAS),∴AD=BC.21.将长为40cm,宽为15cm的长方形白纸,按如图所示的方法粘合起来,粘合部分宽为5cm.(1)根据如图,将表格补充完整.(2)设x张白纸粘合后的总长度为ycm,则y与x之间的关系式是什么?(3)你认为多少张白纸粘合起来总长度可能为2016cm吗?为什么?【考点】函数关系式;函数值.【分析】(1)根据题意找出白纸张数跟纸条长度之间的关系,然后求解填空即可;(2)x张白纸黏合,需黏合(x﹣1)次,重叠5(x﹣1)cm,所以总长可以表示出来;(3)解当y=2016时得到的方程,若x为自变量取值范围内的值则能,反之不能.【解答】解:(1)75,180;(2)根据题意和所给图形可得出:y=40x﹣5(x﹣1)=35x+5.(3)不能.把y=2016代入y=35x+5,解得,不是整数,所以不能.22.先阅读理解下面的例题,再按要求解答下列问题.求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0,∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+1的最小值;(2)求代数式4﹣x2+2x的最大值.【考点】配方法的应用.【分析】(1)利用配方法把原式变形,根据非负数的性质解答;(2)利用配方法把原式变形,根据非负数的性质解答即可.【解答】解:(1)m2+m+1==,所以m2+m+1的最小值是(2)4﹣x2+2x=﹣x2+2x﹣1+5=﹣(x﹣1)2+5≤5所以4﹣x2+2x的最大值是5.23.如图①②,点E、F分别是线段AB、线段CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.(1)线段AD和线段BC有怎样的数量关系?请说明理由;(2)当DG⊥GC时,试判断直线AD和直线BC的位置关系,并说明理由.【考点】全等三角形的判定与性质.【分析】(1)由GF垂直平分DC,可得GD=GC,同理可得,GA=GB,又由∠AGD=∠BGC,即可证得△ADG≌△BCG(SAS),继而证得结论;(2)首先延长AD,与CG相交于点O、与BC的延长线相交于点Q,由(1)可证得∠ADG=∠BCG,继而可求得∠Q的度数,【解答】解:(1)AD=BC.理由:∵GF垂直平分DC,∴GD=GC同理,GA=GB,在△ADG和△BCG中,,∴△ADG≌△BCG(SAS),∴AD=BC;(2)AD⊥BC.理由:延长AD,与CG相交于点O、与BC的延长线相交于点Q.∵△ADG≌△BCG,∴∠ADG=∠BCG,则∠GDO=∠QCO,∴∠QDC+∠QCD=∠DQC+∠DCG+∠QCG=∠QDC+∠GDQ+∠DCG=∠CDG+∠DCG,∵DG⊥GC,∴∠QDC+∠QCD=∠CDG+∠DCG=90°,∴∠Q=90°,∴AD⊥BC.第21页(共21页)。

2018-2019年深圳市福田区七年级(下)期末数学模拟试卷及答案

2018-2019年深圳市福田区七年级(下)期末数学模拟试卷及答案

2018-2019年深圳市七年级(下)期末数学模拟试卷2019.5.22题号一二三总分得分一.选择题(共12小题)1.下列四个图案中,不是轴对称图案的是()A.B.C.D.2.下列运算中,正确的是()A.x3•x3=x6 B.3x2+2x3=5x5 C.(x2)3=x5 D.(ab)3=a3b3.一个三角形的两边长分别是3和7,则第三边长可能是()A.2B.3C.9D.104.如图,世界上最小的鸟是生活在古巴的吸蜜蜂鸟,身长约5.6~6.5厘米,包括了尖尖的长嘴及尾羽的长度(通常嘴和尾羽会占总身长的1/2),它的质量约为0.056盎司,将0.056用科学记数法表示为()A.5.6×10-1B.5.6×10-2C.5.6×10-3D.0.56×10-15.下列语句所描述的事件是随机事件的是()A.任意画一个四边形,其内角和为180°B.经过任意两点画一条直线C.任意画一个菱形,是中心对称图形D.过平面内任意三点画一个圆6.如右图,下列条件中,一定能判断AB∥CD的是()A.∠2=∠3B.∠1=∠2C.∠4=∠5D.∠3=∠47.下列可以运用平方差公式运算的有()①(a+b)(-b+a);②(-a+b)(a-b);③(a+b)(-a-b);④(a-b)(-a-b)A.1个B.2个C.3个D.4个8.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°9.用直尺和圆规作一个角等于已知角的作图痕迹如图所示,则作图的依据是( )A .SSSB .SASC .ASAD .AAS10.下列说法中,正确的是( ) A .随机事件发生的概率为0.5B .必然事件发生的概率为1C .概率很小的事件为不可能事件D .内错角相等是确定性事件11.小明从福田去宝安,一开始沿公路乘车,后来沿小路步行到达宝安,下列图中,横轴表示从福田出发后的时间,纵轴表示小明与福田的距离,则较符合题意的图形是( )A .B .C .D . 12.如图,在底边BC 为3,腰AB 为2的等腰三角形ABC 中,DE 垂直平分AB 于点D ,交BC 于点E ,则△ACE 的周长为( )A .3.5B .5C .4D .5.5二.填空题(共4小题)13.袋中装有6个黑球和n 个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有 个。

广东省深圳市宝安区2018-2019学年七年级下学期期末数学试题

广东省深圳市宝安区2018-2019学年七年级下学期期末数学试题
6.如图,把一块含30°角的三角尺按如图所示的位置摆放,一直角边与l2重合,不能判断直线l1∥l2的是( )
A.∠1=150°B.∠2=30°C.∠3=30°D.∠4=150°
7.如图,太阳光线AC和 是平行的,在同一时刻,若两根木杆的影子一样长,则两根木杆高度相等.这利用了全等图形的性质,其中判断 ABC≌ 的依据是( )
6.D
【解析】
【分析】
直接利用平行线的判定方法分别判断得出答案.
【详解】
解:如图所示:
∵把一块含30°角的三角尺按如图所示的位置摆放,
∴∠5=30°,
∴当∠1=150°时,
∴∠1+∠5=180°,
∴直线l1∥l2,故选项A不合题意;
∵把一块含30°角的三角尺按如图所示的位置摆放,
∴∠5=30°,
∴当∠2=30°时,
∴∠5=∠2,
∴直线l1∥l2,故选项B不合题意;
∵把一块含30°角的三角尺按如图所示的位置摆放,
∴∠5=30°,
∴当∠3=30°时,
∴∠5=∠3,
∴直线l1∥l2,故选项C不合题意;
∵把一块含30°角的三角尺按如图所示的位置摆放,
∴∠5=30°,
∴当∠4=150°时,
无法得出直线l1∥l2,故选项D符合题意;
5.C
【解析】
【分析】
概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率.
【详解】
概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率,
∴这种幼树移植成活率的概率约为0.90,
故选:C.
【点睛】
本题考查了用频率估计概率,熟练掌握用频率估计概率的条件和方法是解答的关键.

广东省深圳市罗湖区2018-2019学年七年级(下)期末数学试卷含解析

广东省深圳市罗湖区2018-2019学年七年级(下)期末数学试卷含解析

广东省深圳市罗湖区2018-2019学年七年级(下)期末数学试卷一、选择题1.(3分)计算32的结果是()A.6B.9C.8D.52.(3分)下列图形中,是轴对称图形的是()A.B.C.D.3.(3分)2015年4月,生物学家发现一种病毒的长度约为0.0000043米,利用科学记数法表示为()A.4.3×106米B.4.3×10﹣5米C.4.3×10﹣6米D.43×107米4.(3分)下列关系式中,正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+b2D.(a+b)2=a2﹣2ab+b25.(3分)如图,AB∥CD,∠CDE=140°,则∠A的度数为()A.140°B.60°C.50°D.40°6.(3分)以下事件中,必然事件是()A.打开电视机,正在播放体育节目B.三角形内角和为180°C.同位角相等D.掷一次骰子,向上一面是5点7.(3分)如图,为估计罗湖公园小池塘岸边A、B两点之间的距离,思雅学校小组在小池塘的一侧选取一点O,测得OA=28m,OB=20m,则A,B间的距离可能是()A.8m B.25m C.50m D.60m8.(3分)下列说法中正确的是()①角平分线上任意一点到角的两边的距离相等;②等腰三角形两腰上的高相等;③等腰三角形的中线也是它的高;④线段垂直平分线上的点(不在这条线段上)与这条线段两个端点构成等腰三角形A.①②③④B.①②③C.①②④D.②③④9.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中的阴影部分构成轴对称图形的概率是()A.B.C.D.10.(3分)如图,已知AD=CB,再添加一个条件使△ABC≌△CDA,则添加的条件不是()A.AB=CD B.∠B=∠D C.∠BCA=∠DAC D.AD∥BC11.(3分)一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象表示正确的是()A.B.C.D.12.(3分)如图,△ABD与△AEC都是等边三角形,AB≠AC,下列结论中,正确的个数是(),①BE=CD;②∠BOD=60°;③∠BDO=∠CEO;④若∠BAC=90°,且DA∥BC,则BC⊥CE.A.1B.2C.3D.4二、填空题(共4小题)13.(3分)n为正整数,若a9÷a n=a5,则n=.14.(3分)已知a2+b2=5,a+b=3,则ab=.15.(3分)若等腰三角形的边长分别为3和6,则它的周长为.16.(3分)如图,D、E分别是等边三角形ABC的边AC、AB上的点,AD=BE,∠BCE=15°,则∠BDC=.三.解答题(共7小题)17.计算:(1)(﹣1)2018+()﹣2﹣(3.14﹣π)0(2)20192﹣2018×202018.先化简,再求值:(x﹣y)2﹣3x(x﹣3y)+2(x+2y)(x﹣2y),其中x=,y=2.19.口袋里有红球4个、绿球5个和黄球若干个,任意摸出一个球是黄色球的概率是.求:(1)口袋里黄球的个数;(2)任意摸出一个球是红色的概率.20.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上)(1)在图中作出△ABC关于直线l对称的△A1B1C1(要求:A与A1,B与B1,C与C1相对应)(2)在(1)的结果下,连接BB1,AB1,则△A1BB1面积是;(3)在对称轴上有一点P,当△PBC周长最小时,P点在什么位置,在图中标出P点.21.如图表示甲骑摩托车和乙驾驶汽车沿相同的路线行驶90千米,由A地到B地时,行驶的路程y (千米)与经过的时间x(小时)之间的关系.请根据图象填空:(1)摩托车的速度为千米/小时;汽车的速度为千米/小时;(2)汽车比摩托车早小时到达B地.(3)在汽车出发后几小时,汽车和摩托车相遇?说明理由.22.如图,完成下列推理过程如图所示,点E在△ABC外部,点D在BC边上,DE交AC于F,若∠1=∠2=∠3,AD=AB,求证:AC=AE.证明:∵∠2=∠3(已知),∠AFE=∠DFC(),∴∠E=∠C(),又∵∠1=∠2,∴+∠DAC=+∠DAC(),即∠BAC=∠DAE,在△ABC和△ADE中∠E=∠C(已证)∵AB=AD(已知)∠BAE=∠DAE(已证)∴△ABC≌△ADE()∴AC=AE()23.四边形ABCD是正方形(四条边相等,四个角都是直角).(1)如图1,将一个直角顶点与A点重合,角的两边分别交BC于E,交CD的延长线于F,试说明BE=DF;(2)如图2,若将(1)中的直角改为45°角,即∠EAF=45°,E、F分别在边BC、CD上,试说明EF=BE+DF;(3)如图3,改变(2)中的∠EAF的位置(大小不变),使E、F分别在BC、CD的延长线上,若BE=15,DF=2,试求线段EF的长.参考答案一、选择题1.解:32=3×3=9.故选:B.2.解:A、C、D中的图形都不是轴对称图形,B中图形是轴对称图形,故选:B.3.解:0.0000043=4.3×10﹣6,故选:C.4.解:A、应为(a﹣b)2=a2﹣2ab+b2,本选项错误;B、(a+b)(a﹣b)=a2﹣b2,本选项正确;C、应为(a+b)2=a2+2ab+b2,本选项错误;D、应为(a+b)2=a2+2ab+b2,本选项错误.故选:B.5.解:∵∠CDE=140°,∴∠ADC=180°﹣140°=40°,∵AB∥CD,∴∠A=∠ADC=40°.故选:D.6.解:A、打开电视机,正在播放体育节目是随机事件;B、三角形内角和为180°是必然事件;C、同位角相等是随机事件;D、掷一次骰子,向上一面是5点是随机事件;故选:B.7.解:连接AB,根据三角形的三边关系定理得:28﹣20<AB<28+20,即:8<AB<48,则AB的值在8和48之间.故选:B.8.解:①角平分线上任意一点到角两边的距离相等是正确的.②根据三角形面积公式即可得到等腰三角形两腰上的高相等,说法是正确;③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合,说法是正确;④线段垂直平分线上的点到这条线段两个端点的距离相等,说法正确.故选:A.9.解:在序号①②③④⑤中的一个小正方形涂黑,有6种等可能结果,其中与图中的阴影部分构成轴对称图形的有②③④这3种结果,所以与图中的阴影部分构成轴对称图形的概率为=,故选:A.10.解:在△ABC与△CDA中,AD=CB,AC=CA,A、添加AB=CD,由全等三角形的判定定理SSS可以使△ABC≌△CDA,故本选项不符合题意.B、添加∠B=∠D,由全等三角形的判定定理SSA不可以使△ABC≌△CDA,故本选项符合题意.C、添加∠BCA=∠DAC,由全等三角形的判定定理SAS可以使△ABC≌△CDA,故本选项不符合题意.D、添加AD∥BC,则∠BCA=∠DAC,由全等三角形的判定定理SAS可以使△ABC≌△CDA,故本选项不符合题意.故选:B.11.解:由题意可得,火车头刚进入隧道到火车尾刚进入隧道的这一过程中,y随x的增大而增大,火车尾刚进入隧道到火车头刚要驶离隧道的这一过车中,y随x的增加不发生变化,火车头刚出隧道到火车尾刚驶离隧道这一过程中,y随x的增大而减小,故选:A.12.解:∵△ABD与△AEC都是等边三角形,∴AD=AB,AE=AC,∠ADB=∠ABD=60°,∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,在△DAC和△BAE中,,∴△DAC≌△BAE(SAS),∴BE=DC,∠ADC=∠ABE,∵∠BOD=180°﹣∠ODB﹣∠DBA﹣∠ABE=180°﹣∠ODB﹣60°﹣∠ADC=120°﹣(∠ODB+∠ADC)=120°﹣60°=60°,∴∠BOD=60°,∴①正确;②正确;∵△ABD与△AEC都是等边三角形,∴∠ADB=∠AEC=60°,但根据已知不能推出∠ADC=∠AEB,∴∠BDO=∠CEO错误,∴③错误;∵DA∥BC,∴∠DAB=∠ABC=60°,∵∠BAC=90°,∴∠ACB=30°,∵∠ACE=60°,∴∠ECB=90°,∴BC⊥CE,④正确,综上所述,①②④正确,故选:C.二、填空题(共4小题)13.解:∵a9÷a n=a5,∴9﹣n=5,n=4.故答案为:4.14.解:∵a+b=3,∴(a+b)2=a2+2ab+b2=9,∵a2+b2=5,∴5+2ab=9,解得ab=2.15.解:当3是腰时,边长为3,3,6,但3+3=6,故不能构成三角形,这种情况不可以.当6是腰时,边长为6,6,3,且3+6>6,能构成三角形故周长为6+6+3=15.故答案为:15.16.解:∵△ABC是等边三角形,∴∠A=∠EBC=60°,AB=BC,在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠BCE=∠ABD=15°,∴∠BDC=∠A+∠ABD=60°+15°=75°,故答案为:75°.三.解答题(共7小题)17.解:(1)原式=1+4﹣1=4;(2)原式=20192﹣(2019﹣1)(2019+1)=20192﹣(20192﹣1)=1.18.解:原式=x2﹣2xy+y2﹣3x2+9xy+2x2﹣8y2=7xy﹣7y2,当x=﹣,y=2时,原式=﹣2﹣28=﹣30.19.解:(1)设口袋里有x个黄球,根据题意得:=,解得:x=3,经检验,x=3是分式方程的解;答:口袋里黄球的个数有3个;(2))∵红球有4个,一共有4+5+3=12个,∴P(红球)==.20.解:(1)如图所示,△A1B1C1即为所求;(2)如图,△A1BB1面积是×2×4=4,故答案为:4;(3)如图所示,点P即为所求.21.解:(1)摩托车的速度为:90÷5=18千米/小时,汽车的速度为:90÷(4﹣2)=45千米/小时,故答案为:18、45;(2)5﹣4=1,即汽车比摩托车早1小时到达B地,故答案为:1;(3)解:在汽车出发后小时,汽车和摩托车相遇,理由:设在汽车出发后x小时,汽车和摩托车相遇,45x=18(x+2)解得x=∴在汽车出发后小时,汽车和摩托车相遇.22.证明:∵∠2=∠3(已知),∠AFE=∠DFC(对顶角相等),∴∠E=∠C(三角形内角和定理),又∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC(等量代换),即∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(AAS)∴AC=AE(全等三角形对应边相等)故答案为:对顶角相等,三角形内角和定理,∠1,∠2,等量代换,AAS,全等三角形对应边相等.23.证明:(1)∵正方形ABCD是正方形,∴AD=AB,∠BAD=∠B=∠ADC=90°,∵∠EAF=90°,∴∠BAE+∠EAD=∠EAD+∠DAF=90°,∴∠BAE=∠DAF,在△BAE和△DAF中,∵,∴△ABE≌△ADF(ASA),∴BE=DF;(2)如图2,∵AD=AB,将△ABE绕点A逆时针旋转90°得到△ADE',此时AB与AD重合.由旋转可得∠BAE=∠DAE',BE=DE',∠B=∠ADE'=90°.∴∠ADF+∠ADE'=90°+90°=180°,∴点F、D、E'在同一条直线上,∵∠EAF=45°,∴∠BAE+∠DAF=∠DAF+∠DAE'=45°=∠EAF,在△EAF和△E'AF中,∵,∴△EAF≌△E'AF(SAS),∴EF=E'F,∵E'F=DF+DE'=DF+BE,∴EF=BE+DF;(3)将△ADF绕着点A按顺时针方向旋转90°,得△ABF′,如图3所示,由四边形ABCD为正方形可知点B、C、F′在一条直线上,∵∠BAF′=∠DAF,∠EAF=∠EAD+∠DAF=45°,∴∠EAF′+∠EAD+∠DAF=90°,∴∠EAF′=∠EAF=45°.在△EAF和△EAF′中,,∴△EAF≌△EAF′(SAS),∴EF=EF′,∴EF=EF'=BE﹣BF'=BE﹣DF=15﹣2=13.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年广东省深圳实验学校七年级(下)期末数学试卷一、选择题(每小题3分,10小题,共30分)1.(3分)下列手机软件图标中,是轴对称图形的是()A.B.C.D.2.(3分)下列计算正确的是()A.b3•b3=2b3B.(ab2)3=ab6C.(a5)2=a10D.y3+y3=y63.(3分)下列各式中,是二次根式的是()A.B.C.D.4.(3分)下列事件中,是必然事件的是()A.掷一枚质地均匀的硬币,一定正面向上B.车辆随机到达一个路口,遇到红灯C.如果a2=b2,那么a=bD.将花生油滴在水中,油会浮在水面上5.(3分)如图,△ABC是一块直角三角板,∠C=90°,∠A=30°,现将三角板叠放在一把直尺上,AC与直尺的两边分别交于点D、E,AB与直尺的两边分别交于点F、G,若∠1=40°,则∠2的度数为()A.40°B.50°C.60°D.70°6.(3分)下列长度的三条线段,能组成三角形的是()A.3,4,8B.5,6,10C.5,5,11D.5,6,117.(3分)如图,已知AB=DC,需添加下列()条件后,就一定能判定△ABC≌△DCB.A.AO=BO B.∠ACB=∠DBC C.AC=DB D.BO=CO8.(3分)如图,一位同学用直尺和圆规作出了△ABC中BC边上的高AD,则一定有()A.P A=PC B.P A=PQ C.PQ=PC D.∠QPC=90°9.(3分)如图,将五个边长都为1cm的正方形按如图所示摆放,其中点A、B、C、D分别是正方形对角线的交点、如果有n个这样大小的正方形这样摆放,则阴影面积的总和是()A.B.C.D.10.(3分)如图,△ABC的中线BD、CE相交于点O,OF⊥BC,垂足为F,且AB=6,BC=5,AC=3,OF=2,则四边形ADOE的面积是()A.9B.6C.5D.3二、填空题(每小题3分,6小题,共18分)11.(3分)已知a+2b=2,a﹣2b=,则a2﹣4b2=.12.(3分)小芸一家计划去某城市旅行,需要做自由行的攻略,父母给她分配了一项任务:借助网络评价选取该城市的一家餐厅用餐.小芸根据家人的喜好,选择了甲、乙、丙三家餐厅,对每家餐厅随机选取了1000条网络评价,统计如下:等级五星四星三星二星一星合计评价条数餐厅甲53821096129271000乙460187154169301000丙4863888113321000(说明:网上对于餐厅的综合评价从高到低,依次为五星、四星、共星、二星和一星.)小芸选择在(填“甲”、“乙”或“丙”)餐厅用餐,能获得良好用餐体验(即评价不低于四星)的可能性最大.13.(3分)如果一盒圆珠笔有12支,售价24元,用y(元)表示圆珠笔的售价,x表示圆珠笔的支数,那么y与x 之间的关系应该是.14.(3分)若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有对.15.(3分)如图所示的网格是正方形网格,点A,B,C,D均落在格点上,则∠BAC+∠ACD=°.16.(3分)如图,△ABC中,D是AB的中点,DE⊥AB,∠ACE+∠BCE=180°,EF⊥AC交AC于F,AC=12,BC=8,则AF=.三.解答题17.(16分)计算题(1)(3ab)2•(﹣ab3)(2)20182﹣2016×2020(利用乘法公式计算)(3)﹣12019+(﹣)﹣2+﹣π﹣3.140(4)[2(x+2y)2﹣(x+y)(4x﹣y)﹣9y2]÷(﹣2x),其中x=﹣2,y=.18.(6分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.19.(6分)如图,E,F分别是等边△ABC边AB,AC上的点,且AE=CF,CE,BF交于点P.(1)证明:CE=BF;(2)求∠BPC的度数.20.(6分)已知,在一个盒子旦有红球和白球共10个,它们除颜色外都相同,将它们充分摇匀后,从中随机抽出一个,记下颜色后放回.在摸球活动中得到如下数据:摸球总次数50100150200250300350400450500摸到红球的频率1732446478a103122136148摸到红球的频率0.340.320.2930.320.3120.320.294b0.302c(1)请将表格中的数据补齐a=;b=;c=;(2)根据上表,完成折线统计图;当摸球次数很大时,摸到红球的频率将会接近(精确到0.1)(3)请你估计,当摸球次数很大时,摸到红球的频率将会接近(精确到0.1)21.(8分)如图1,在长方形ABCD中,AB=12cm,BC=10cm,点P从A出发,沿A→B→C→D的路线运动,到D停止;点Q从D点出发,沿D→C→B→A路线运动,到A点停止.若P、Q两点同时出发,速度分别为每秒lcm、2cm,a秒时P、Q两点同时改变速度,分别变为每秒2cm、cm(P、Q两点速度改变后一直保持此速度,直到停止),如图2是△APD的面积s(cm2)和运动时间x(秒)的图象.(1)求出a值;(2)设点P已行的路程为y1(cm),点Q还剩的路程为y2(cm),请分别求出改变速度后,y1、y2和运动时间x (秒)的关系式;(3)求P、Q两点都在BC边上,x为何值时P、Q两点相距3cm?22.(10分)如图1,点C为线段AB上任意一点(不与点A、B重合),分别以AC、BC为一腰在AB的同侧作等腰△ACD和△BCE,CA=CD,CB=CE,∠ACD=∠BCE=30°,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接CP.(1)线段AE与DB的数量关系为;请直接写出∠APD=;(2)将△BCE绕点C旋转到如图2所示的位置,其他条件不变,探究线段AE与DB的数量关系,并说明理由;求出此时∠APD的度数;(3)在(2)的条件下求证:∠APC=∠BPC.2018-2019学年广东省深圳实验学校七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,10小题,共30分)1.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选:C.2.【解答】解:A、b3•b3=b6,故此选项错误;B、(ab2)3=a3b6,故此选项错误;C、(a5)2=a10,正确;D、y3+y3=2y3,故此选项错误;故选:C.3.【解答】解:A、是二次根式,故此选项正确;B、,根号下不能是负数,故不是二次根式;C、是立方根,故不是二次根式;D、,根号下不能是负数,故不是二次根式;故选:A.4.【解答】解:A.掷一枚质地均匀的硬币,正面向上是随机事件.B.车辆随机到达一个路口,遇到红灯是随机事件;C.如果a2=b2,那么a=b,也可能是a=﹣b,此事件是随机事件;D.将花生油滴在水中,油会浮在水面上是必然事件;故选:D.5.【解答】解:∵DF∥EG,∴∠1=∠DFG=40°,又∵∠A=30°,∴∠2=∠A+∠DFG=30°+40°=70°,故选:D.6.【解答】解:A选项,3+4=7<8,两边之和小于第三边,故不能组成三角形B选项,5+6=11>10,10﹣5<6,两边之各大于第三边,两边之差小于第三边,故能组成三角形C选项,5+5=10<11,两边之和小于第三边,故不能组成三角形D选项,5+6=11,两边之和不大于第三边,故不能组成三角形故选:B.7.【解答】解:A、添加AO=BO不能判定△ABC≌△DCB,故此选项不合题意;B、添加∠ACB=∠DBC不能判定△ABC≌△DCB,故此选项不合题意;C、添加AC=DB可利用SSS判定△ABC≌△DCB,故此选项符合题意;D、添加BO=CO不能判定△ABC≌△DCB,故此选项不合题意;故选:C.8.【解答】解:由作法得AD垂直平分CQ,所以PQ=PC.故选:C.9.【解答】解:∵点A、B、C、D分别是正方形对角线的交点∴两个正方形之间的阴影面积为正方形总面积的,即×1×1=,当有三个正方形时,其面积为+=,当有四个时,其面积为++=,所以当n个正方形时,其面积为.故选:A.10.【解答】解:∵BD、CE均是△ABC的中线,∴S△BCD=S△ACE=S△ABC,∴S四边形ADOE+S△COD=S△BOC+S△COD,∴S四边形ADOE=S△BOC=5×2÷2=5.故选:C.二、填空题(每小题3分,6小题,共18分)11.【解答】解:∵a+2b=2,a﹣2b=,∴原式=(a+2b)(a﹣2b)=2×=1,故答案为:112.【解答】解:不低于四星,即比较四星和五星的和,丙最多.故答案是:丙.13.【解答】解:∵一盒圆珠笔有12支,售价24元,∴每只平均售价为2元,∴y与x之间的关系是:y=2x.故答案为:y=2x.14.【解答】解:△BDC与△BEC、△BDC与△BAC、△BEC与△BAC共三对.故答案为:3.15.【解答】解:在△DCE和△ABD中,∵,∴△DCE≌△ABD(SAS),∴∠CDE=∠DAB,∵∠CDE+∠ADC=∠ADC+∠DAB=90°,∴∠AFD=90°,∴∠BAC+∠ACD=90°,故答案为:90.16.【解答】解:连接AE,BE,过E作EG⊥BC于G,∵D是AB的中点,DE⊥AB,∴DE垂直平分AB,∴AE=BE,∵∠ACE+∠BCE=180°,∠ECG+∠BCE=180°,∴∠ACE=∠ECG,又∵EF⊥AC,EG⊥BC,∴EF=EG,∠FEC=∠GEC,∵CF⊥EF,CG⊥EG,∴CF=CG,在Rt△AEF和Rt△BEG中,,∴Rt△AEF≌Rt△BEG(HL),∴AF=BG,设CF=CG=x,则AF=AC﹣CF=12﹣x,BG=BC+CG=8+x,∴12﹣x=8+x,解得x=2,∴AF=12﹣2=10.故答案为:10.三.解答题17.【解答】解:(1)(3ab)2•(﹣ab3)=9a2b2•(ab3)=﹣;(2)20182﹣2016×2020=20182﹣(2018﹣2)(2018+2)=20182﹣(20182﹣4)=4;(3)﹣12019+(﹣)﹣2+﹣π﹣3.140=﹣1+4+2﹣1=2+;(4)[2(x+2y)2﹣(x+y)(4x﹣y)﹣9y2]÷(﹣2x)=[2(x2+4y2+4xy)﹣(4x2﹣xy+4xy﹣y2)﹣9y2]÷(﹣2x)=(2x2+8y2+8xy﹣4x2+xy﹣4xy+y2﹣9y2)÷(﹣2x)=(﹣2x2+5xy)÷(﹣2x)=x﹣y,∴当x=﹣2,y=时,原式=﹣2﹣=.18.【解答】解:(1)CD与EF平行.理由如下:∵CD⊥AB,EF⊥AB,∵垂直于同一直线的两直线互相平行,∴CD∥EF;(2)∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠ACB=∠3=115°.19.【解答】证明:(1)∵△ABC是等边三角形,∴BC=AB,∠A=∠EBC=60°,∴在△BCE与△ABF中,,∴△BCE≌△ABF(SAS),∴CE=BF;(2)∵由(1)知△BCE≌△ABF,∴∠BCE=∠ABF,∴∠PBC+∠PCB=∠PBC+∠ABF=∠ABC=60°,即∠PBC+∠PCB=60°,∴∠BPC=180°﹣60°=120°.即:∠BPC=120°.20.【解答】解:(1)由题意:a=300×0.32=96,b==0.305,c==0.296,故答案为:96,0.305,0.296.(2)折线图如图所示:当摸球次数很大时,摸到红球的频率将会接近0.3,故答案为0.3(3)当摸球次数很大时,摸到红球的频率将会接近0.3.故答案为0.3.21.【解答】解:(1)由图象可知,当点P在BC上运动时,△APD的面积保持不变,则a秒时,点P在AB上.∴AP=6则a=6(2)由(1)6秒后点P变速,则点P已行的路程为y1=6+2(x﹣6)=2x﹣6∵Q点路程总长为34cm,第6秒时已经走12cm,点Q还剩的路程为y2=34﹣12﹣=(3)当P、Q两点相遇前相距3cm时,﹣(2x﹣6)=3解得x=10当P、Q两点相遇后相距3cm时(2x﹣6)﹣()=3解得x=∴当x=10或时,P、Q两点相距3cm22.【解答】(1)解:如图1中,∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,又∵CA=CD,CE=CB,∴△ACE≌△DCB.∴AE=BD,∴CAE=∠CDB,∵∠AMC=∠DMP,∴∠APD=∠ACD=30°,故答案为AE=BD,30°(2)解:如图2中,结论:AE=BD,∠APD=30°.理由:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,又∵CA=CD,CE=CB,∴△ACE≌△DCB.∴AE=BD,∴CAE=∠CDB,∵∠AMP=∠DMC,∴∠APD=∠ACD=30°.(3)证明:如图2﹣1中,分别过C作CH⊥AE,垂足为H,过点C作CG⊥BD,垂足为G,∵△ACE≌△DCB.∴AE=BD,∵S△ACE=S△DCB(全等三角形的面积相等),∴CH=CG,∴∠DPC=∠EPC(角平分线的性质定理的逆定理),∵∠APD=∠BPE,∴∠APC=∠BPC.。

相关文档
最新文档