两条异面直线所成的角

合集下载

高中数学两条异面直线所成的角

高中数学两条异面直线所成的角

两条异面直线所成的角一、素质教育目标(一)知识教学点1.两异面直线所成角的定义及两异面直线互相垂直的概念.2.两异面直线的公垂线和距离的概念及两异面直线所成角及距离的求法.(二)能力训练点1.利用转化的思想,化归的方法掌握两异面直线所成角的定义及取值范围,并体现了定义的合理性.2.利用类比的方法掌握两异面直线的公垂线和距离等概念,应用在证题中体现了严格的逻辑思维,并会求两条异面直线所成角与距离.(三)德育渗透点进一步培养学生的空间想象能力,以及有根有据、实事求是等严肃的科学态度和品质.二、教学重点、难点、疑点及解决方法1.教学重点:两异面直线所成角的定义;两异面直线的公垂线及距离的概念;两异面直线所成角和距离的求法.2.教学难点:两异面直线所成角及距离的求法.3.教学疑点:因为两条异面直线既不相交,但又有所成的角,这对于初学立体几何的学生来说是难以理解的.讲解时,应首先使学生明了学习异面直线所成角的概念的必要性.三、课时安排1课时.四、教与学的过程设计(一)复习提问引入课题师:上新课前,我们先来回忆:平面内两条相交直线一般通过什么来反映它们之间的相互位置关系?生:通过它们的夹角.如图1-46,a、b的位置关系与a′、b′的位置关系是不一样的,a、b的夹角比a′、b′的夹角来的小.师:那么两条异面直线是否也能用它们所成的角来表示它们之间相互位置的不同状况.例如要表示大桥上火车行驶方向与桥下轮船航行方向间的关系,就要用到两条异面直线所成角的概念.(二)异面直线所成的角师:怎么定义两条异面直线所成的角呢?能否转化为用共面直线所成的角来表示呢?生:可以把异面直线所成角转化为平面内两直线所成角来表示.如图1-47,异面直线a、b,在空间中任取一点O,过点O分别引a′∥a,b′∥b,则a′,b′所成的锐角(或直角)叫做两条异面直线所成的角.师:针对这个定义,我们来思考两个问题.问题1:这样定义两条异而直线所成的角,是否合理?对空间中的任一点O 有无限制条件?答:在这个定义中,空间中的一点是任意取的.若在空间中,再取一点O′,过点O′作a″∥a,b″∥b,根据等角定理,a″与b″所成的锐角(或直角)和a′与b′所成的锐角(或直角)相等.即过空间任意一点引两条直线分别平行于两条异面直线,它们所成的锐角(或直角)都是相等的,值是唯一的、确定的,而与所取的点位置无关,这表明这样定义两条异面直线所成角的合理性.注意:有时,为了方便,可将点O取在a或b上.问题2:这个定义与平面内两相交直线所成角是否有矛盾?答:没有矛盾.当a、b相交时,此定义仍适用,表明此定义与平面内两相交直线所成角的概念没有矛盾,是相交直线所成角概念的推广.师:在定义中,两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直(出示模型:正方体).例如,正方体上的任一条棱和不平行于它的八条棱都是相互垂直的,其中有的和这条棱相交,有的和这条棱异面.(三)两条异面直线的距离师:(出示模型)观察模型,思考问题:a与b,a′与b所成角相等,但是否就表示它们之间的相互位置也一样呢?生:不是.它们之间的远近距离不一样,从而得到两条异面直线的相互位置除了用它们所成的角表示,还要用它们之间的距离表示.师:那么如何表示两条异面直线之间的距离呢?我们来回忆在平面几何中,两条平行线间的位置关系是用什么来表示的?生:用两平行线间的距离来表示.师:对.如图1-50,要知道它们的距离,先要定义它们的公垂线,如图1-50:a∥b,a′∥b′,c⊥a,c′⊥a′,则a、b与a′、b′的公垂线分别为c、c′,且线段AB、A′B′的长度分别是a、b与a′、b′之间的距离.对两条异面直线的距离,我们可以应用类似的方法先定义它们的公垂线.定义:和两条异面直线都垂直相交的直线叫做两条异面直线的公垂线.师:根据定义,思考问题.问题1:和两条异面直线都垂直的直线有多少条?答:无数条.因为两条异面直线互相垂直时,它们不一定相交,所以公垂线的定义要注意“相交”的含义.问题2:两条异面直线的公垂线有几条?答:有且只有一条(出示正方体骨架模型),能和AA′、 B′C′都垂直相交的只有A′B′一条;能和AB与面A′C′内过点A′的直线都垂直相交的直线只有一条AA′.师:有了两条异面直线公垂线的概念,我们就可以定义两条异面生成的距离.定义:两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.如图1-52中的线段AB的长度就是异面直线a、b间的距离.下面,我们来完成练习和例题.(四)练习(1)图中哪些棱所在的直线与直线BA′例设图1-53中的正方体的棱长为a,成异面直线?(2)求直线BA′和CC′所成的角的大小.(3)求异面直线BC和AA′的距离.解:(l)∵A′平面BC′,而点B,直线CC′都在平面BC′∴直线BA′与CC′是异面直线.同理,直线C′D′、D′D、DC、AD、B′C′都和直线BA′成异面直线.(2)∵CC′∥BB′,∴BA′和BB′所成的锐角就是BA′和CC′所成的角.∵=∠A′BB′=45°,∴BA′和CC′所成的角是45°.(3)∵AB⊥AA′,AB∩AA′=A,又∵AB⊥BC,AB∩BC=B,∴AB是BC和AA′的公垂线段.∵AB=a,∴BC和AA′的距离是a.说明:本题是判定异面直线,求异面直线所成角与距离的综合题,解题时要注意书写规范.【练习】(P.16练习1、3.)1.(1)两条直线互相垂直,它们一定相交吗?答:不一定,还可能异面.(2)垂直于同一直线的两条直线,有几种位置关系?答:三种:相交,平行,异面.3.画两个相交平面,在这两个平面内各画一条直线使它们成为(1)平行直线;(2)相交直线;(3)异面直线.解:(五)总结本节课我们学习了两条异面直线所成的角,以及两条异面直线间的距离和有关概念.并学会如何求两条异面直线所成角及距离,懂得将其转化为平面几何问题来解决.五、作业P.17-18中9、10.。

异面直线成角求法

异面直线成角求法

求异面直线所成的角求异面直线所成的角,一般有两种方法,一种是几何法,这是高二数学人教版(A )版本倡导的传统的方法,其基本解题思路是“异面化共面,认定再计算”,即利用平移法和补形法将两条异面直线转化到同一个三角形中,结合余弦定理来求。

还有一种方法是向量法,即建立空间直角坐标系,利用向量的代数法和几何法求解,这是高二数学人教版(B )倡导的方法,下面举例说明两种方法的应用。

例:长方体ABCD -A 1B 1C 1D 1中,AB=AA 1=2cm ,AD=1cm ,求异面直线A 1C 1与BD 1所成的角。

解法1:平移法设A 1C 1与B 1D 1交于O ,取B 1B 中点E ,连接OE ,因为OE//D 1B ,所以∠C 1OE 或其补角就是异面直线A 1C 1与BD 1所成的角△C 1OE 中211E B C B E C 2312221BD 21OE 25C A 21OC 22212111221111=+=+==++⋅====()552325222325OEOC 2E C OE OC OE C cos 2221212211=⨯⨯-⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⋅-+=∠所以55a r c c o sOE C 1=∠所以 所以异面直线111BD C A 与所成的角为55arccos图1解法2:补形法在长方体ABCD —A 1B 1C 1D 1的面BC 1上补上一个同样大小的长方体,将AC 平移到BE ,则∠D 1BE 或其补角就是异面直线A 1C 1与BD 1所成的角,在△BD 1E 中,BD 1=3,5BE =,5224E D 221=+=()()555325253BE BD 2E D BE BD BE D cos 2221212211-=⨯⨯-+=⋅-+=∠所以异面直线A 1C 1与BD 1所成的角为55arccos图2解法3:利用公式21cos cos cos θθθ⋅=设OA 是平面α的一条斜线,OB 是OA 在α内的射影,OC 是平面α内过O 的任意一条直线,设OA 与OC 、OA 与OB 、OB 与OC 所成的角分别是θ、θ1、θ2,则21cos cos cos θθθ⋅=(注:在上述题设条件中,把平面α内的OC 换成平面α内不经过O 点的任意一条直线,则上述结论同样成立)D 1B 在平面ABCD 内射影是BD ,AC 看作是底面ABCD 内不经过B 点的一条直线,BD 与AC 所成的角为∠AOD ,D 1B 与BD 所成角为∠D 1BD ,设D 1B 与AC 所成角为θ,AOD cos BD D cos cos 1∠⋅∠=θ,55BD BD BD D cos 11==∠。

异面直线所成角的正弦值公式

异面直线所成角的正弦值公式

异面直线所成角的正弦值公式正文:异面直线是指两条直线不在同一个平面内,它们之间的距离称为角度。

如果我们将异面直线上的两个点 A 和 B 连接起来,并且连接点 A 和 B 的线段与异面直线垂直,那么我们可以得到一个角θ,这个角是异面直线所成角。

正弦值是指一个角的正弦值,它是角的角度值与正弦值的比值。

在数学上,正弦值可以表示为:sinθ = 角度值 / 正弦值其中,角度值是指异面直线所成角的大小,正弦值是指这个角的正弦值。

异面直线所成角的正弦值公式可以通过以下方式得到:1. 假设两条直线分别为 A 和 B,它们之间的距离为 d,角度为θ。

2. 那么这两条直线的夹角β就是异面直线所成角。

3. 由于β是一个角度,所以它的正弦值可以用正弦公式计算: sinθ = 1 / 2 * (√(AB^2 + AA^2) - AA^2 / AB^2) 其中,AA 表示直线 A 的终点到直线 B 的起点的距离,AB 表示直线 A 和直线 B 之间的距离。

4. 由于β是异面直线所成角,所以它的余弦值可以用余弦公式计算:cosβ = (AA^2 + BB^2 - AB^2) / 2 * AA * BB其中,AA 和 BB 分别表示直线 A 和直线 B 的起点到终点的距离。

5. 最后,我们可以将上述两个公式联立起来,得到异面直线所成角的正弦值公式:sinθ = 1 / 2 * (√(AB^2 + AA^2) - AA^2 / AB^2) 其中,θ是异面直线所成角的大小,AB 是直线 A 和直线 B 之间的距离,AA 是直线 A 的起点到终点的距离。

拓展:异面直线所成角的余弦值公式也可以通过类似的步骤得到。

假设两条直线分别为 A 和 B,它们之间的距离为 d,角度为β。

那么,异面直线所成角的余弦值可以表示为:cosβ = (AA^2 + BB^2 - AB^2) / 2 * AA * BB其中,AA 和 BB 分别表示直线 A 和直线 B 的起点到终点的距离。

考点18 异面直线所成的角-庖丁解题2019学年高一数学人教版(必修2)(解析版)

考点18 异面直线所成的角-庖丁解题2019学年高一数学人教版(必修2)(解析版)

原创精品资源学科网独家享有版权,侵权必究!
1
异面直线所成的角
1.定义:已知两条异面直线a ,b ,经过空间任一点O 作直线a ′∥a ,b ′∥b ,我们把a ′与b ′所成的锐角或直角叫做异面直线a 与b 所成的角或夹角.
2.异面直线所成的角θ的取值范围:(090]︒︒,
3.当θ=o 90时,a 与b 互相垂直,记作a b ⊥.
【例】设P 是直线l 外一定点,过点P 且与l 成30°角的异面直线( )
A .有无数条
B .有两条
C .至多有两条
D .有一条
【答案】A
【规律总结】异面直线所成的角的大小与O 点的位置无关,即O 点位置不同时,这一角的大小是不会改变的.
1.如图所示,在长方体1111ABCD A B C D -中,AB 11BC CC ==,则异面直线11AC BB 与所成角的大。

异面直线所成角cos公式

异面直线所成角cos公式

异面直线所成角cos公式
直线a,b是异面直线,经过空间一点O,分别引直线A//a,B//b,相交直线A,B所成的锐角(或直角)叫做异面直线a,b所成的角。

异面直线所成角cos公式为cosa=|m1m2+n1n2+p1p2|/[√(m1^2+n1^2+p1^2)√(m2^2+n2^2+ p2^2)],计算时代入具体的数据即可。

异面直线是不在同一平面上的两条直线,异面直线是既不相交,又不平行的直线,因为两条直线如果相交或平行,则它们必在同一平面上。

异面直线夹角公式是cosθ=a*b/(|a|*|b|)。

长度为0的向量叫做零向量,记为0。

模为1的向量称为单位向量。

与向量a长度相等而方向相反的向量,称为a的相反向量。

记为-a方向相等且模相等的向量称为相等向量。

a(x1,y1,z1)b(x2,y2,z2)a*b=x1x2+y1y2+z1z2。

|a|=√(x1^2+y1^2+z1^2),
|b|=√(x2^2+y2^2+z2^2)cosθ=a*b/(|a|*|b|),角
θ=arccosθ。

异面直线所成角的计算

异面直线所成角的计算

C1
D
C
则MON=120,
即异面直线AC与BD所成的角为60°.
2.已知正方体的棱长为a , M为AB的中点,N 为 BB1的中点, 求 A1M 与 C1 N 所成角的余弦值.
解: 如图,取AB的中点E, 连BE, 有BE∥ A1M
取CC1的中点G,连BG. 有BG∥ C1N 则∠EBG即为所求角. 在△EBG 中 D1 C1
1 2 1 2
∴异面直线 AD, BC 所成的角即为 EG, FG 所成的角(或其补角)
∵ EG AD 1, FG BC 1 ,
EG 2 FG 2 EF 2 1 ,∴ EGF 120 在 EGF 中, cos EGF 2 EG FG 2

∵两异面直线所成角的范围是: 00 , 90 0 ∴异面直线 AD, BC 所成的角为 60
BG=BE=
由余弦定理, cos∠EBG=2/5
5 2
a,, F C1 =
6 a 2
A1
E
F
B1
G D N C
想一想:还有其他定角的方法吗?
取EB1的中点F,连NF,有BE∥NF
则∠FNC为所求角.
A
M
B
小结:
1、求异面直线所成的角是把空间角转化为平面角,体现了化 归的数学思想.
化归的一般步骤是:定角
方法归纳: 平移法 即根据定义,以“运动”的观点,用“平移
转化”的方法,使之成为相交直线所成的角.
解法二:
如图,补一个与原长方体全等的并与原长方体有公共面
BC1的方体B1F, 连结A1E,C1E,则A1C1E为A1C1与BD1 所成的角(或补角), 在A1C1E中, 由余弦定理得

高二数学必修2第二章异面直线成角(线线角)求解方法情况总结与例题

构造异面直线所成角的几种方法二、例题讲解例1已知a、b、c是两两异面的三条直线,且a⊥b,d是a、b的公垂线.若c⊥a,那么c与d有何位置关系?并说明理由.讲解:构造恰当的几何体是判断空间诸条直线位置关系的最佳思维选择,因为几何体具有直观和易于判断之优点.根据本题的特点,可考虑构造正方体.构造正方体ABCD-A1B1C1D1,如图7-1所示,因为AB与CC1异面且垂直,BC是它们的公垂线,所以可记AB、CC1、BC分别为a、b、d.图7-1因为c与a、b均异面,且c⊥a,注意到a⊥侧面ADD1A1,因此侧面ADD1A1内的任一直线均与a垂直.从图中可以看出,侧面ADD1A1内的A1D1和A1D均与a、b异面,且均与a垂直,所以可记A1D1或A1D为c.此时由A1D1∥B1C1∥BC知c∥d;由A1D与BC异面知c与d为异面直线.综上可知c与d平行或异面.正方体是一个很简单且很重要的几何模型.构造它可直观、简捷地判断线线、线面关系,特别是有关异面直线的问题易于解决.下面一组题目供思考练习:(1)无论怎样选择平面,两条异面直线在该平面内的射影都不可能是().A.两条平行直线B.两条相交直线C.一条直线和直线外一点D.两个点(2)在空间中,记集合M={与直线l不相交的直线},集合N={与直线l平行的直线},则M与N 的关系是().A.M=N B.M N C.M N D.不确定(3)a、b、c是空间中的三条直线,则下述传递关系中,为真命题的是().A.若a∥b,b∥c,则a∥cB.若a⊥b,b⊥c,则a⊥cC.若a与b相交,b与c相交,则a与c相交D.若a与b异面,b与c异面,则a与c异面(4)同时与两条异面直线都相交的两条直线一定不是().A.异面直线B.相交直C.平行直线D.垂直直线(5)如图7-2所示,正方体ABCD-A1B1C1D1中,EF是异面直线A1D和AC的公垂线,则直线EF和BD1的关系是().图7-2A.异面B.平行C.相交且垂直D.相交且不垂直例2在正三棱柱ABC-A1B1C1中,若AB=BB1,则AB1与C1B所成的角的大小为().A.60°B.90°C.105°D.75°讲解:根据题设作出图形(图7-3).欲求异面直线AB1与C1B所成角的大小,需进行异面直线的平移,而平移既可在体内进行,也可通过补形(补面、补体)向体外发展.若考虑体内平移,则常常通过作出中位线达到平移目的,从而有:图7-3解法1.设AB、B1B、B1C1的中点依次为P、H、F,连结PH、HF.显然有PH∥=(1/2)AB1,HF∥=(1/2)C1B,则∠PHE即为所求异面直线所成的角.连结PF,并设BB1=1,则正三棱柱的底面边长为.易求得PH=HF=(/2).取BC的中点E,连结PE、EF.易知△PEF是Rt△.在Rt△PEF中,求得PF2=(3/2).显然有PH2+HF2=PF2.故∠PHE=90°,选B.若考虑体外平移,则可通过补面或补体来实现平移.从而又有如下两种方法:解法2.如图7-4,延长AB到D,使BD=AB,作DD1∥=AA1,连B1D1、BD1.图7-4∵AB∥=B1D1,∴AB1∥BD1.则∠C1BD1即为所求异面直线所成的角.易求得BC1=BD1=,C1D1=2·sin60°=.又∵BC12+BD12=C1D12,∴∠C1BD1=90°.解法3.可从B1作一射线与BC1平行,由于这样一条射线虽然位置确定,并在侧面BB1C1C所在平面上,但却位于已知三棱柱外面,因而无法寻求与已知条件的联系.为了解决这一难点,可在已知三棱柱的下面作一个同样的三棱柱.作直三棱柱A1B1C1-A2B2C2,使C1为CC2之中点(图7-5),连结B1C2、AC2,图7-5∵BB1∥=C1C2,∴C1B∥C2B1,则∠AB1C2即为所求异面直线所成的角.易求得∠AB1C=90°.究竟选择体内还是体外平移,应“因图而异”,总之以简洁、直观为宜.若能注意到知识间的相互渗透,本题也可通过建立直角坐标系,利用解析法求解,请读者不妨一试.例3正四面体ABCD的棱长为a,E为CD上一点,且CE/ED=1/2,求异面直线AE与BC间的距离.讲解:求异面直线间的距离通常有三种方法,一是定义法,二是公式法,三是转化法.这里宜用方法三.异面直线间的距离可转化为平行线面间的距离,进而可以转化为点到面的距离,再用等体积法求解.如图7-6,在面BCD内过点E作EF∥BC交BD于F.连结AF,则BC∥面AEF,所以异面直线BC与AE间的距离就等于BC到平面AEF的距离,也就等于点B到平面AEF的距离,设其为d,连结BE,设正四面体的高为h.图7-6∵V B-AEF=VA-BEF,∴(1/3)S△AEF·d=(1/3)S△BEF·h,∴d=(S△BEF·h/S△AEF).过点A作AO⊥面BCD于O,∵DE/EC=2/1且EF∥BC,∴O必在EF上.∵h=(/3)a,易求得EF=(2/3)a,S△AEF=(1/2)EF·AO=(/9)a2,S△BEF=(/18)a2,∴d=(/6)a.即异面直线AE与BC间的距离为(/6)a.用等体积法求点到面的距离,首先应构造以该点为顶点,以该平面内某个三角形为底面的三棱锥.其次求体积时,一般需换底面,换底面应本着新的底面上的高容易求出的原则.三、专题训练1.a、b是异面直线,过不在a、b上的任一点P,①一定可作一条直线l,使l与a、b都相交;②一定可作一条直线l,使l与a、b都垂直;③一定可作一条直线l,使l与a、b都平行;④一定可作一条直线l,使l与a、b都异面.其中正确的个数是().A.0B.1C.2D.32.如图7-7,正三棱锥V-ABC中,D、E、F分别是VC、VA、AC的中点,P为VB上任意一点,则直线DE与PF所成的角的大小是().图7-7A.π/6B.π/3C.π/2D.随P点的变化而变化3.将锐角B为60°,边长为a的菱形ABCD沿对角线折成二面角θ,若θ∈[60°,120°],则两条对角线之间的距离的最值为().A.d max=(3/2)a,d min=(/4)a B.d max=(3/4)a,d min=(/4)aC.d max=(/4)a,d min=(1/4)a D.d max=(/2)a,d min=(3/4)a4.图7-8是正方体的平面展开图,在这个正方体中,①BM与ED平行;②CN与BE是异面直线;③CN与BM成60°角;④DM与BN垂直.图-8以上四个命题中,正确命题的序号是().A.①②③B.②④C.③④D.②③④5.如图7-9,正三棱锥S-ABC的侧棱与底面边长相等.如果E、F分别为SC、AB的中点,那么异面直线EF与SA所成的角等于____________.图7-96.空间四边形ABCD中,AD=BC,M、N分别为AB、CD的中点,又MN和AD成30°角,则AD和BC所成角的度数是____________.7.异面直线a、b所成的角为θ(0<θ<(π/2)),M,N∈a,M1,N1∈b,MM1⊥b,NN1⊥b,若MN=m,则M1N1=____________.8.如图7-10,不共面的三条直线a、b、c相交于P,A、B∈a,C∈b,D∈c,且A、B、C、D均异于P.证明:直线AD与BC异面.图7-109.如图7-11,拼接一副三角板,使它们有公共边BC,且使两个三角板所在平面互相垂直.若∠CAB =90°,AB=AC,∠CBD=90°,∠BDC=60°,求AD与BC所成的角.图7-1110.已知a、b是两条异面直线,那么空间是否存在这样的直线l,使l上任意一点P到a、b的距离都相等.若存在,给出证明,若不存在,说明理由.求异面直线所成的角求异面直线所成的角,一般有两种方法,一种是几何法,这是高二数学人教版(A )版本倡导的传统的方法,其基本解题思路是“异面化共面,认定再计算”,即利用平移法和补形法将两条异面直线转化到同一个三角形中,结合余弦定理来求。

如何求异面直线所成的角

如何求异面直线所成的角立体几何在中学数学中有着重要的地位,求异面直线所成的角是其中重的内容之一,也是高考的热点,求异面直线所成的角常分为三个步骤:作→证→求。

其中“作”是关键,那么如何作两条异面直线所成的角呢本文就如何求异面直线所成的角提出了最常见的几种处理方法。

Ⅰ、用平移法作两条异面直线所成的角一、端点平移法例1、在直三棱柱111C B A ABC -中,090CBA ∠=,点D ,F 分别是11A C ,11A B 的中点,若1AB BC CC ==,求CD 与AF 所成的角的余弦值。

解:取BC 的中点E ,连结EF ,DF ,//DF EC 且DF EC =∴四边形DFEC 为平行四边形//EF DC ∴EFA ∴∠(或它的补角)为CD 与AF 所成的角。

设2AB =,则EF =AF =EA =故2222EF FA EA EFA EF FA +-∠==arccos10EFA ∴∠=二、中点平移法例2、在正四面体ABCD 中, M ,N 分别是BC ,AD 的中点,求AM 与CN 所成的角的余弦值。

解:连结MD ,取MD 的中点O ,连结NO ,1O 、N 分别MD 、AD 为的中点,∴NO 为DAM ∆的中位线, ∴//NO AM ,ONC ∴∠(或它的补角)为AM 与CN 所成的角。

设正四面体ABCD 的棱长为2,则有2NO =,CN =2CO =, 故2222cos 23NO CN CO ONC NO CN +-∠== 2arccos 3ONC ∴∠=三、特殊点平移法例3、如图,在空间四边形ABCD 中,点E 、F 分别是BC 、AD 上的点,已知4AB =,20CD =,7EF =,13AF BE FD EC ==,求异面直线AB 与CD 所成的角。

解:在BD 上取一点G ,使得13BG GD =,连结EG FG 、,在BCD ∆中,13BE BG EC GD ==,故//EG CD ,同理可证://FG ABFGE ∴∠(或它的补角)为AB 与CD 所成的角。

异面直线所成角课件


不在同一个平面上且互不相交的两条 直线。
异面直线不可能平行,也不可能相交 。
异面直线判定
两条直线若不相交,则可能为异面直 线。
异面直线所成角的定义
异面直线所成角:两条异面直 线在某个平面上投影所形成的 夹角。
异面直线所成角的取值范围: 0°到90°。
异面直线所成角的计算方法: 通过平移将两条异面直线转化 为相交直线,再计算夹角。
PART 05
异面直线所成角的扩展知 识
异面直线的其他性质
异面直线永远不会相交
由于异面直线不在同一平面内,因此它们永远不会在某一点相交 。
异面直线与平行线的关系
平行线是共面的直线,而异面直线是不同面的直线,因此平行线与 异面直线没有交点。
异面直线的方向向量
异面直线的方向向量在不同的平面上,因此它们的方向向量是垂直 的。
平面角的取值范围
锐角(0°,90°)或直角(90°)。
异面直线所成角的求法
01
02
03
定义
异面直线所成的角是指两 条异面直线在同一平面内 的射影所形成的锐角或直 角。
计算方法
通过平移将两条异面直线 变为相交直线,再通过平 面角的定义计算出所成角 的大小。
注意事项
平移过程中不能改变直线 的方向和位置,否则所求 得的角不是异面直线所成 的角。
异面直线所成角的性质
性质一
异面直线所成角是唯一 的,与平移无关。
性质二
两条异面直线所成的角 是锐角或直角,不可能
为钝角。
性质三
两条异面直线所成的角 与两条直线的夹角相等
或互补。
性质四
两条异面直线所成的角 可以通过平移、旋转和
对称等变换得到。
PART 02

异面直线所成角余弦值公式

异面直线所成角余弦值公式
异面直线所成角余弦值公式是一个计算数学里所谓异面直线所成角余弦值的公式,这个公式也叫作“余弦定理”,余弦定理可以用来解决一些复杂的三角形问题,它是三角函数的重要应用。

余弦定理的基本公式是:a2 = b2 + c2 - 2bc·cosA,其中a,b和c 是三角形的三边的长度,A是三角形的内角,cosA是内角A的余弦值。

余弦定理可以用来计算三角形的边长,即可以根据两边的长度和内角的余弦值来求得三角形的第三边的长度。

余弦定理也可以用来计算异面直线所成角的余弦值,其公式为:cosA = (a2 + b2 - c2)/2ab,其中a和b是两条异面直线的长度,c 是两条异面直线之间的距离,A是两条异面直线所成的角。

余弦定理可以用来解决一些有关三角形和异面直线所成角余弦值的问题,这是一个非常有用的数学工具,它可以帮助我们节省许多时间和精力,更快更准确地解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

百度文库 - 让每个人平等地提升自我
1
向量法求空间角
求空间角的大小,是立体几何的重点、难点,也是高考中的热点。运用向量解决这类
问题,可以把几何关系转化为向量问题,从而求出角的大小。向量法的最大优点是思路清晰,
过程简捷,可以不去直接做出角,从而降低了对空间想象能力和逻辑思维能力的要求。下面
对用向量求空间角分类例说。

一、两条异面直线所成的角
1、 求角的方法:

设两条异面直线为L1、L2所成的角为。向量a,b分别21ll、的方向向量。因为两条异

面直线所成的角(0,2],所以cos>0。又因为向量a,b的夹角,,0,

cos的值的符号不定,所以cos=ba,cos=baba
2、例题
例1、(09福建 17)

如图,四边形ABCD是边长为1的正方形,MDABCD平面,

NBABCD平面
,且MD=NB=1,E为BC的中点

求异面直线NE与AM所成角的余弦值
解析:如图以D为坐标原点,建立空间直角坐标Dxyz
依题意,得1(0,0,0)(1,0,0)(0,0,1),(0,1,0),(1,1,0),(1,1,1),(,1,0)2DAMCBNE。
1
(,0,1),(1,0,1)2NEAM

10cos,10||||NEAM
NEAMNEAM


所以异面直线NE与AM所成角的余弦值为1010
评析:此题中利用向量的坐标法求出两向量的夹角的余弦值为负值,但
两条异面直线所成的角的余弦值却为正值。

二、直线和平面所成的角

1、求角的方法:

直线与平面所成的角为,a是直线l的方向向量,b是平面的一个法向量,
百度文库 - 让每个人平等地提升自我
2
则sin=ba,cos=baba
说明:两种情况都成立,所以在做题时无需考虑斜线的方向向量和平面的法向量的方向
2、例题
例2、(09辽宁18) (本小题满分12分)
如图,己知两个正方形ABCD和DCEF不在同一平面内,
M,N分别为AB , DF的中点,若平面ABCD⊥平面DCEF
求直线MN与平面DCEF所成角的正弦值;

解:设正方形ABCD,DCEF的边长为2,以D为坐标原点,分别以射线DC,DF,DA为x,y,
z
轴正半轴建立空间直角坐标系如图.设直线MN与平面DCEF

所成角为。

则M(1,0,2),N(0,1,0),可得(1,1,2)MN,

又(0,0,2)DA为平面DCEF的法向量,

可得6cos,3||||MNDAMNDAMNDA

所以sin=DAMNDAMN=36
所以MN与平面DCEF所成的角的正弦值为63.

B
A
N
D

C
E

F

M
G

B
A
N
D

C
E

F

M

x
y

z
百度文库 - 让每个人平等地提升自我

3
三、二面角的平面角
1、求角的方法:
方法一:


根据二面角平面角的定义,(1)中向量AM与AN夹角的大小就是二面角平面角的大小。(2)
中向量AM与BN夹角的大小也是二面角平面角的大小
因此在解题中只需在两个半平面内与二面角的棱垂直的两个向量,求它们的夹角即可。

方法二:
利用平面向量的法向量来解决

在以上四种情况中(1)(4)两种情况向量的夹角与二面角的平面角互补,(2)(3)两种情
况向量的夹角与二面角的平面角相等。在解题时判断好法向量的方向,是以上四种中的哪一
种,从而确定二面角的大小。不用判断二面角的平面角是锐角还是钝角。(二面角的平面角
是锐角还是钝角,大部分看图就能直接看出来)
2、例题

例3:(09山东18)(本小题满分12分)
如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB
111111

B1FCP
C
1
FC

Q
PBQC1331C1FC3-FP1FC3232PB

E
A B

C

F
E

1

A
1
B

1

C
1
D

1

D
百度文库 - 让每个人平等地提升自我
4

3
1FCPB

41PB434721PB214QC232

1
QC
2
PB

QCPBQC
QCPB

QCPB

7
7

1
7

7
3
1
C
(3,1,0)CF

1
(0,0,2)CC

1
(3,1,2)FC
(,,)nxyz100nCFnCC300xyz(1,3,0)n
(0,2,0)FB

1111
(,,)nxyz
1
11

00nFBnFC




1

111

0320yxyz




1

(2,0,3)n

1
2130032nn
2
||1(3)2n
22

1
||20(3)7n

1
1

1

27
cos,7||||27nnnnnn


11

7

7
(n和1n属于方二中四种情况中的第一种)

E
A B

C

F
E

1

A
1
B

1

C
1
D

1

D
x
y

z

M

相关文档
最新文档