离散型随机变量和分布列(基础+复习+习题+练习)

合集下载

中职高考数学一轮复习讲练测专题10-4 离散型随机变量的分布列(讲)(含详解)

中职高考数学一轮复习讲练测专题10-4  离散型随机变量的分布列(讲)(含详解)

专题10.4 离散型随机变量的分布列【考纲要求】1. 了解离散型随机变量; 2.离散型随机变量的分布列. 3. 独立重复试验. 【考向预测】1. 独立重复试验与二项分布.2. 离散型随机变量的分布列.【知识清单】1. 离散型随机变量随着试验结果变化而变化的变量称为_随机变量__,所有取值可以一一列出的随机变量,称为_离散型__随机变量.2.离散型随机变量的分布列及性质(1)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则表称为离散型随机变量X 的_概率分布列__(2)离散型随机变量的分布列的性质①p i ≥0(i =1,2,…,n );②∑ni =1p i =_p 1+p 2+…+p n __=1. 3.常见离散型随机变量的分布列(1)两点分布:若随机变量X 服从两点分布,其分布列为其中p =P (X =1)称为成功概率.若X 服从两点分布,则E (X )=p ,D (X )=p (1-p ).(2)超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -k N -MC n N,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N 、M ≤N ,n 、M 、N ∈N +,称随机变量X 服从超几何分布.4.独立重复试验与二项分布(1)独立重复试验:在相同条件下重复做的n 次试验称为n 次独立重复试验,若用A i (i =1,2,…,n )表示第i 次试验结果,则P (A 1A 2A 3…A n )=_P (A 1)P (A 2)P (A 3)…P (A n )__.(2)二项分布:在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记为X ~B (n ,p ). 若X ~B (n ,p ),则E (X )=_np __,D (X )=_np (1-p )__.【考点分类剖析】考点一 独立重复试验的概率例1. 某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位). (1)5次预报中恰有2次准确的概率; (2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.【方法归纳】 1.运用独立重复试验的概率公式求概率,首先要分析问题中涉及的试验是否为n 次独立重复试验,若不符合条件,则不能应用公式求解.2.解决这类实际问题往往需把所求的概率的事件分拆为若干个事件,而这每个事件均为独立重复试验. 3.在解题时,还要注意“正难则反”的思想的运用,即利用对立事件来求其概率.【变式探究】甲、乙两人各射击一次,击中目标的概率分别是23和34,假设每次射击是否击中目标,相互之间没有影响.(结果须用分数作答)(1)求甲射击3次,至少1次未击中目标的概率;(2)求两人各射击2次,甲恰好击中目标2次且乙恰好击中目标1次的概率. 考点二 离散型随机变量的分布列-二项分布例.在一次数学考试中,第14题和第15题为选做题.规定每位考生必须且只需在其中选做一题.设4名考生选做这两题的可能性均为12.(1)求其中甲、乙2名考生选做同一道题的概率;(2)设这4名考生中选做第15题的考生人数为X ,求X 的分布列.【方法归纳】 解决二项分布问题的两个关注点(1)对于公式P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n )必须在满足“独立重复试验”时才能运用,否则不能应用该公式.(2)判断一个随机变量是否服从二项分布,关键有两点:一是对立性,即一次试验中,事件发生与否两者必有其一;二是重复性,即试验独立重复地进行了n 次.【变式探究】一袋中有大小相同的4个红球和2个白球,给出下列结论: ①从中任取3球,恰有一个白球的概率是35;②现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为25;③从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为2627.其中所有正确结论的序号是__ __. 考点三 二项分布的应用例.高二(1)班的一个研究性学习小组在网上查知,某珍稀植物种子在一定条件下发芽成功的概率为13,该研究性学习小组又分成两个小组进行验证性试验.(1)第一小组做了5次这种植物种子的发芽试验(每次均种下一粒种子),求他们的试验中至少有3次发芽成功的概率;(2)第二小组做了若干次发芽试验(每次均种下一粒种子),如果在一次试验中种子发芽成功就停止试验,否则将继续进行下次试验,直到种子发芽成功为止,但试验的次数最多不超过5次.求第二小组所做种子发芽试验的次数ξ的概率分布列.【方法归纳】 1.二项分布的简单应用是求n 次独立重复试验中事件A 恰好发生k 次的概率.解题的一般思路是:根据题意设出随机变量→分析出随机变量服从二项分布→找到参数n ,p →写出二项分布的分布列→将k 值代入求解概率.2.利用二项分布求解“至少”“至多”问题的概率,其实质是求在某一取值范围内的概率,一般转化为几个互斥事件发生的概率的和,或者利用对立事件求概率.【变式探究】1.在一次抗洪抢险中,准备用射击的办法引爆从上游漂流而下的一个巨大汽油罐,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆,每次射击是相互独立的,且命中的概率都是23.(1)求油罐被引爆的概率;(2)如果引爆或子弹打光则停止射击,设射击次数为X ,求X 不小于4的概率.2.甲、乙两位同学参加诗词大会,设甲、乙两人每道题答对的概率分别为23和34.假定甲、乙两位同学答题情况互不影响,且每人各次答题情况相互独立.①用X表示甲同学连续三次答题中答对的次数,求随机变量X的分布列和数学期望;②设M为事件“甲、乙两人分别连续答题三次,甲同学答对的次数比乙同学答对的次数恰好多2”,求事件M发生的概率.考点四离散型随机变量的分布列-超几何分布例1袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率;(2)随机变量X的分布列;【方法归纳】求离散型随机变量的分布列应注意的问题(1)正确求出分布列的前提是必须先准确写出随机变量的所有可能取值,再依古典概型求出每一个可能取值的概率.至于某一范围内取值的概率,应等于它取这个范围内各个值的概率之和.(2)在求解过程中注重知识间的融合,常常会用到排列组合、古典概率及互斥事件、对立事件的概率等知识.【变式探究】1.从装有除颜色外完全相同的6个白球,4个黑球和2个黄球的箱中随机地取出两个球,规定每取出1个黑球赢2元,而每取出1个白球输1元,取出黄球无输赢.(1)以X表示赢得的钱数,随机变量X可以取哪些值?求X的分布列;(2)求出赢钱(即X>0时)的概率.2.在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率;(2)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列.专题10.4 离散型随机变量的分布列【考纲要求】1. 了解离散型随机变量; 2.离散型随机变量的分布列. 3. 独立重复试验. 【考向预测】1. 独立重复试验与二项分布.2. 离散型随机变量的分布列.【知识清单】1. 离散型随机变量随着试验结果变化而变化的变量称为_随机变量__,所有取值可以一一列出的随机变量,称为_离散型__随机变量.2.离散型随机变量的分布列及性质(1)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则表称为离散型随机变量X 的_概率分布列__(2)离散型随机变量的分布列的性质①p i ≥0(i =1,2,…,n );②∑ni =1p i =_p 1+p 2+…+p n __=1. 3.常见离散型随机变量的分布列(1)两点分布:若随机变量X 服从两点分布,其分布列为其中p =P (X =1)称为成功概率.若X 服从两点分布,则E (X )=p ,D (X )=p (1-p ).(2)超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -k N -MC n N,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N 、M ≤N ,n 、M 、N ∈N +,称随机变量X 服从超几何分布.4.独立重复试验与二项分布(1)独立重复试验:在相同条件下重复做的n 次试验称为n 次独立重复试验,若用A i (i =1,2,…,n )表示第i 次试验结果,则P (A 1A 2A 3…A n )=_P (A 1)P (A 2)P (A 3)…P (A n )__.(2)二项分布:在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记为X ~B (n ,p ). 若X ~B (n ,p ),则E (X )=_np __,D (X )=_np (1-p )__.【考点分类剖析】考点一 独立重复试验的概率例1. 某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位). (1)5次预报中恰有2次准确的概率; (2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率. [解析] (1)记预报一次准确为事件A ,则P (A )=0.8. 5次预报相当于5次独立重复试验,2次准确的概率为P =C 25×0.82×0.23=0.0512≈0.05,因此5次预报中恰有2次准确的概率约为0.05.(2)“5次预报中至少有2次准确”的对立事件为“5次预报全部不准确或只有1次准确”,其概率为P =C 05×(0.2)5+C 15×0.8×0.24=0.00672≈0.01.所以所求概率为1-P =1-0.01=0.99.所以5次预报中至少有2次准确的概率约为0.99. (3)说明第1,2,4,5次中恰有1次准确.所以概率为P =C 14×0.8×0.23×0.8=0.02048≈0.02,所以恰有2次准确,且其中第3次预报准确的概率约为0.02.【方法归纳】 1.运用独立重复试验的概率公式求概率,首先要分析问题中涉及的试验是否为n 次独立重复试验,若不符合条件,则不能应用公式求解.2.解决这类实际问题往往需把所求的概率的事件分拆为若干个事件,而这每个事件均为独立重复试验.3.在解题时,还要注意“正难则反”的思想的运用,即利用对立事件来求其概率.【变式探究】甲、乙两人各射击一次,击中目标的概率分别是23和34,假设每次射击是否击中目标,相互之间没有影响.(结果须用分数作答)(1)求甲射击3次,至少1次未击中目标的概率;(2)求两人各射击2次,甲恰好击中目标2次且乙恰好击中目标1次的概率.[解析] (1)记“甲射击3次至少有1次未击中目标”为事件A 1,由题意,射击3次,相当于3次独立重复试验,故P (A 1)=1-P (A 1)=1-(23)3=1927.(2)记“甲射击2次,恰有2次击中目标”为事件A 2,“乙射击2次,恰有1次击中目标”为事件B 2,则P (A 2)=C 22×(23)2=49,P (B 2)=C 12×(34)1×(1-34)=38,由于甲、乙射击相互独立,故P (A 2B 2)=49×38=16. 考点二 离散型随机变量的分布列-二项分布例.在一次数学考试中,第14题和第15题为选做题.规定每位考生必须且只需在其中选做一题.设4名考生选做这两题的可能性均为12.(1)求其中甲、乙2名考生选做同一道题的概率;(2)设这4名考生中选做第15题的考生人数为X ,求X 的分布列.[解析] (1)设事件A 表示“甲选做第14题”,事件B 表示“乙选做第14题”,则甲、乙2名考生选做同一道题的事件为“AB ∪A B ”,且事件A ,B 相互独立.所以P (AB ∪A B )=P (A )P (B )+P (A )P (B ) =12×12+(1-12)×(1-12)=12. (2)随机变量X 的可能取值为0,1,2,3,4.且X ~B (4,12).所以P (X =k )=C k 4(12)k (1-12)4-k=C k 4(12)4(k =0,1,2,3,4). 所以变量X 的分布列为:【方法归纳】 解决二项分布问题的两个关注点(1)对于公式P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n )必须在满足“独立重复试验”时才能运用,否则不能应用该公式.(2)判断一个随机变量是否服从二项分布,关键有两点:一是对立性,即一次试验中,事件发生与否两者必有其一;二是重复性,即试验独立重复地进行了n 次.【变式探究】一袋中有大小相同的4个红球和2个白球,给出下列结论: ①从中任取3球,恰有一个白球的概率是35;②现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为25;③从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为2627.其中所有正确结论的序号是__①③__.[解析] ①恰有一个白球的概率P =C 12C 24C 36=35,故①正确;②设A ={第一次取到红球},B ={第二次取到红球}.则P (A )=23,P (A ∩B )=4×36×5=25,∴P (B |A )=P (A ∩B )P (A )=35,故②错;③每次取到红球的概率P =23,所以至少有一次取到红球的概率为 1-(1-23)3=2627,故③正确.考点三 二项分布的应用例.高二(1)班的一个研究性学习小组在网上查知,某珍稀植物种子在一定条件下发芽成功的概率为13,该研究性学习小组又分成两个小组进行验证性试验.(1)第一小组做了5次这种植物种子的发芽试验(每次均种下一粒种子),求他们的试验中至少有3次发芽成功的概率;(2)第二小组做了若干次发芽试验(每次均种下一粒种子),如果在一次试验中种子发芽成功就停止试验,否则将继续进行下次试验,直到种子发芽成功为止,但试验的次数最多不超过5次.求第二小组所做种子发芽试验的次数ξ的概率分布列.[解析] (1)至少有3次发芽成功,即有3次、4次、5次发芽成功.设5次试验中种子发芽成功的次数为随机变量X ,则P (X =3)=C 35×(13)3×(23)2=40243,P (X =4)=C 45×(13)4×23=10243, P (X =5)=C 55×(13)5×(23)0=1243.所以至少有3次发芽成功的概率P =P (X =3)+P (X =4)+P (X =5)=40243+10243+1243=51243=1781.(2)随机变量ξ的可能取值为1,2,3,4,5. P (ξ=1)=13,P (ξ=2)=23×13=29,P (ξ=3)=(23)2×13=427,P (ξ=4)=(23)3×13=881,P (ξ=5)=(23)4×1=1681.所以ξ的分布列为:【方法归纳】 1.二项分布的简单应用是求n 次独立重复试验中事件A 恰好发生k 次的概率.解题的一般思路是:根据题意设出随机变量→分析出随机变量服从二项分布→找到参数n ,p →写出二项分布的分布列→将k 值代入求解概率.2.利用二项分布求解“至少”“至多”问题的概率,其实质是求在某一取值范围内的概率,一般转化为几个互斥事件发生的概率的和,或者利用对立事件求概率.【变式探究】1.在一次抗洪抢险中,准备用射击的办法引爆从上游漂流而下的一个巨大汽油罐,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆,每次射击是相互独立的,且命中的概率都是23.(1)求油罐被引爆的概率;(2)如果引爆或子弹打光则停止射击,设射击次数为X ,求X 不小于4的概率.[解析] (1)油罐引爆的对立事件为油罐没有引爆,没有引爆的可能情况是:射击5次只击中一次或一次也没有击中,故该事件的概率为C 15·23·(13)4+(13)5, 所以所求的概率为1-[C 15·23·(13)4+(13)5]=232243. (2)当X =4时记为事件A , 则P (A )=C 13·23·(13)2·23=427.当X =5时,意味着前4次射击只击中一次或一次也未击中,记为事件B . 则P (B )=C 14·23·(13)3+(13)4=19, ∴射击次数不小于4的概率为427+19=727.2.甲、乙两位同学参加诗词大会,设甲、乙两人每道题答对的概率分别为23和34.假定甲、乙两位同学答题情况互不影响,且每人各次答题情况相互独立.①用X 表示甲同学连续三次答题中答对的次数,求随机变量X 的分布列和数学期望;②设M 为事件“甲、乙两人分别连续答题三次,甲同学答对的次数比乙同学答对的次数恰好多2”,求事件M 发生的概率.[解析] ①X 的所有可能取值为0,1,2,3, 则P (X =0)=⎝⎛⎭⎫133=127; P (X =1)=C 13·23×⎝⎛⎭⎫132=29; P (X =2)=C 23⎝⎛⎭⎫232×13=49; P (X =3)=⎝⎛⎭⎫233=827. ∴随机变量X 的分布列为∴E (X )=0×127+1×29+2×49+3×827=2或E (ξ)=np =23.②设Y 为乙连续3次答题中答对的次数, 由题意知Y ~B ⎝⎛⎭⎫3,34, P (Y =0)=⎝⎛⎭⎫143=164,P (Y =1)=C 13⎝⎛⎭⎫341⎝⎛⎭⎫142=964,所以P (M )=P (X =3且Y =1)+P (X =2且Y =0) =827×964+49×164=7144. 即事件M 发生的概率为7144.考点四 离散型随机变量的分布列-超几何分布例1袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X 表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率; (2)随机变量X 的分布列;[解析] (1)解法一:记“一次取出的3个小球上的数字互不相同”的事件记为A ,则P (A )=C 35C 12C 12C 12C 310=23. 解法二:记“一次取出的3个小球上的数字互不相同”为事件A ,“一次取出的3个小球上的数字中有两个数字相同”为事件B ,事件A 和事件B 是对立事件.因为P (B )=C 15C 22C 18C 310=13,所以P (A )=1-P (B )=1-13=23.(2)由题意,X 所有可能的取值为2,3,4,5.P (X =2)=C 22C 12+C 12C 22C 310=130;P (X =3)=C 24C 12+C 14C 22C 310=215; P (X =4)=C 26C 12+C 16C 22C 310=310;P (X =5)=C 28C 12+C 18C 22C 310=815. 所以随机变量X 的概率分布列为:【方法归纳】 求离散型随机变量的分布列应注意的问题(1)正确求出分布列的前提是必须先准确写出随机变量的所有可能取值,再依古典概型求出每一个可能取值的概率.至于某一范围内取值的概率,应等于它取这个范围内各个值的概率之和.(2)在求解过程中注重知识间的融合,常常会用到排列组合、古典概率及互斥事件、对立事件的概率等知识.【变式探究】1.从装有除颜色外完全相同的6个白球,4个黑球和2个黄球的箱中随机地取出两个球,规定每取出1个黑球赢2元,而每取出1个白球输1元,取出黄球无输赢.(1)以X 表示赢得的钱数,随机变量X 可以取哪些值?求X 的分布列; (2)求出赢钱(即X >0时)的概率.[解析] (1)从箱中取两个球的情形有以下6种:{2个白球},{1个白球,1个黄球},{1个白球,1个黑球},{2个黄球},{1个黑球,1个黄球},{2个黑球}.当取到2个白球时,随机变量X =-2;当取到1个白球,1个黄球时,随机变量X =-1; 当取到1个白球,1个黑球时,随机变量X =1; 当取到2个黄球时,随机变量X =0;当取到1个黑球,1个黄球时,随机变量X =2;当取到2个黑球时,随机变量X =4.所以随机变量X 的可能取值为-2,-1,0,1,2,4. P (X =-2)=C 26C 212=522,P (X =-1)=C 16C 12C 212=211,P (X =0)=C 22C 212=166,P (X =1)=C 16C 14C 212=411,P (X =2)=C 14C 12C 212=433,P (X =4)=C 24C 212=111.所以X 的分布列如下:(2)P (X >0)=P (X =1)+P (X =2)+P (X =4)=411+433+111=1933.所以赢钱的概率为1933.2.在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率; (2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列.[解析] (1)记接受甲种心理暗示的志愿者中包含A 1但不包含B 1的事件为M , 则P (M )=C 48C 510=518.(2)由题意知X 可取的值为0,1,2,3,4,则P (X =0)=C 56C 510=142,P (X =1)=C 46C 14C 510=521,P (X =2)=C 36C 24C 510=1021,P (X =3)=C 26C 34C 510=521,P (X =4)=C 16C 44C 510=142.因此X 的分布列为。

离散型随机变量及分布列(一轮复习)

离散型随机变量及分布列(一轮复习)

答案:D
离散型随机变量分布列
[例2] 袋中有4个红球,3个黑球,从袋中随机取球,设 取到1个红球得2分,取到1个黑球得1分,从袋中任取4个球.
(1)求得分X的分布列; (2)求得分大于6分的概率.
[自主解答] (1)从袋中随机取 4 个球的情况为 1 红 3 黑, 2 红 2 黑,3 红 1 黑,4 红四种情况,分别得分为 5 分,6 分, 7 分,8 分,故 X 的可能取值为 5,6,7,8.
[易误辨析] (1)本题由于离散型随机变量ξ的取值情况较多,极易 发生对随机变量取值考虑不全而导致解题错误. (2)此类问题还极易发生如下错误:虽然弄清随机变 量的所有取值,但对某个取值考虑不全而导致解题错 误. (3)避免以上错误发生的有效方法是验证随机变量的 概率和是否为1.
1-2q≥0, q2≥0, 12+1-2q+q2=1,
解得
q=1-
2 2.
或由 1-2q≥0⇒q≤12,可排除 A、B、C.
(2)由分布列的性质知0.2+0.1+0.1+0.3+m=1,解
得m=0.3.首先列表为:
ξ
01234
2ξ+1 1 3 5 7 9
|ξ-1| 1 0 1 2 3
离散型随机变量分布列的性质
[例1] (1)设ξ是一个离散型随机变量,其分布列为:
ξ -1
0
1
P
1 2
1-2q
q2
则q的值为
()
A.1
B.1±
2 2
C.1+
2 2
D.1-
2 2
(2)设离散型随机变量ξ的分布列为: ξ0 1 2 34 P 0.2 0.1 0.1 0.3 m
求:①2ξ+1的分布列;②|ξ-1|的分布列. [自主解答] (1)由分布列的性质,有

随机变量练习题

随机变量练习题

题型一 离散型随机变量分布列的性质 例1 若离散型随机变量X 的分布列为则X 的均值E (X )等于( )A .2 B .2或12 C.12D .1例2 已知随机变量X 的分布规律为P (X =i )=i2a (i =1,2,3),则P (X =2)=________.1.设随机变量X 的分布列如下,则P (|X -2|=1)等于( ) A.712 B.12 C.512 D.162.离散型随机变量X 的概率分布规律为P (X =n )=a n (n +1)(n =1,2,3,4),其中a 是常数,则P ⎝⎛⎭⎫12<X <52的值为________. 3.设离散型随机变量X 的分布列为(1)求随机变量Y =2X +1的分布列;(2)求随机变量η=|X -1|的分布列;(3)求随机变量ξ=X 2的分布列. 题型二 分布列的求法例3 设某人有5发子弹,当他向某一目标射击时,每发子弹命中目标的概率为23.若他连续两发命中或连续两发不中则停止射击,否则将子弹打完.(1)求他前两发子弹只命中一发的概率 求他所耗用的子弹数X 的分布列.例1 (1)设X 是一个离散型随机变量,其分布列为则q 等于________. (2)设随机变量ξ的分布列为P (ξ=i )=a (13)i ,i =1,2,3,则实数a 的值为( )A .1 B.913 C.1113 D.2713已知随机变量X 的分布列为P (X =i )=i 2a (i =1,2,3,4),则P (2<X ≤4)等于( )A.910 B.710 C.35 D.12例2 连续抛掷同一颗均匀的骰子,令第i 次得到的点数为a i ,若存在正整数k ,使a1+a 2+…+a k =6,则称k 为你的幸运数字.(1)求你的幸运数字为3的概率;(2)若k =1,则你的得分为6分;若k =2,则你的得分为4分;若k =3,则你的得分为2分;若抛掷三次还没找到你的幸运数字,则记0分,求得分ξ的分布列.袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量ξ,则P (ξ≤6)=________.例3在2016年全国高校自主招生考试中,某高校设计了一个面试考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立回答全部问题.规定:至少正确回答其中2题的便可通过.已知6道备选题中考生甲有4题能正确回答,2题不能回答;且每题正确回答与否互不影响.写出甲考生正确回答题数的分布列,并计算其均值和方差.某班举行了一次“心有灵犀”的活动,教师把一张写有成语的纸条出示给A 组的某个同学,这个同学再用身体语言把成语的意思传递给本组其他同学.若小组内同学甲猜对成语的概率是0.4,同学乙猜对成语的概率是0.5,且规定猜对得1分,猜不对得0分,则这两个同学各猜1次,得分之和X (单位:分)的均值为( ) A .0.9 B .0.8 C .1.2 D .1.1 3.离散型随机变量的均值与方差 一般地,若离散型随机变量X 的分布列为(1)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望.它反映了离散型随机变量取值的平均水平. (2)方差称D (X )=∑ni =1(x i -E (X ))2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,并称其算术平方根D (X )为随机变量X 的标准差. 4.均值与方差的性质(1)E (aX +b )=aE (X )+b . (2)D (aX +b )=a 2D (X ).(a ,b 为常数)典例 某射手有5发子弹,射击一次命中概率为0.9.如果命中就停止射击,否则一直到子弹用尽,求耗用子弹数ξ的分布列.1.某射手射击所得环数X 的分布列为则此射手“射击一次命中环数大于7”的概率为( )A .0.28 B .0.88 C .0.79 D .0.51 2.设X 是一个离散型随机变量,其分布列为 则q 等于( )A .1 B .1±22 C .1-22 D .1+223.从装有3个白球,4个红球的箱子中,随机取出3个球,则恰好是2个白球,1个红球的概率是( )A.435 B.635 C.1235 D.363435.一射手对靶射击,直到第一次命中为止,每次命中的概率都为0.6,现有4颗子弹,则射击停止后剩余子弹的数目X 的均值为( )A .2.44B .3.376C .2.376D .2.46.袋中装有大小完全相同,标号分别为1,2,3,…,9的九个球.现从袋中随机取出3个球.设ξ为这3个球的标号相邻的组数(例如:若取出球的标号为3,4,5,则有两组相邻的标号3,4和4,5,此时ξ的值是2),则随机变量ξ的均值E (ξ)为( )A.16B.13C.12D.237.甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分);若X 是甲队在该轮比赛获胜时的得分(分数高者胜),则X 的所有可能取值是________ 8.设离散型随机变量X 的分布列为 若随机变量Y =|X -2|,则P (Y =2)=________.9.已知随机变量ξ的分布列为P (ξ=k )=12k -1,k =1,2,3,…,n ,则P (2<ξ≤5)=________.10.两封信随机投入A ,B ,C 三个空邮箱,则A 邮箱的信件数ξ的均值E (ξ)=________.11.一射击测试中每人射击三次,每击中目标一次记10分,没有击中记0分.某人每次击中目标的概率为23,则此人得分的均值与方差分别为________,________.12.一个袋子中装有6个红球和4个白球,假设每一个球被摸到的可能性是相等的.从袋子中摸出2个球,其中白球的个数为X ,则X 的均值是________.9.一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数为ξ. (1)列表说明可能出现的结果与对应的ξ的值;(2)若规定抽取3个球中,每抽到一个白球加5分,抽到黑球不加分,且最后不管结果都加上6分.求最终得分η的可能取值,并判定η的随机变量类型.10.从含有2名女生的10名大学毕业生中任选3人进行某项调研活动,记女生入选的人数为ξ,求ξ的分布列. 12.一木箱中装有8个同样大小的篮球,编号为1,2,3,4,5,6,7,8,现从中随机取出3个篮球,以ξ表示取出的篮球的最大号码,则ξ=8表示的试验结果数为( )A .18 B .21 C .24 D .1013.(多选)已知随机变量X 的分布列如下表所示,其中a ,b ,c成等差数列,则( )A.a =13B .b =13C .c =13D .P (|X |=1)=23一、求离散型随机变量的方差例1 袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球.ξ表示所取球的标号.(1)求ξ的分布列、均值和方差; (2)若η=aξ+b ,E (η)=1,D (η)=11,试求a ,b 的值. 反思感悟 (1)求离散型随机变量方差的步骤①理解随机变量X 的意义,写出X 的所有取值;②求出X 取每个值的概率;③写出X 的分布列; ④计算E (X );⑤计算D (X ).(2)线性关系的方差计算:若η=aξ+b ,则D (η)=a 2D (ξ). 跟踪训练1 已知随机变量ξ的分布列如下表:(1)求E (ξ),D (ξ),D (ξ); (2)设η=2ξ+3,求E (η),D (η). 二、方差的应用例2 有甲、乙两种建筑材料,从中各取等量样品检查它们的抗拉强度如下:其中,ξA ,ξB 分别表示甲、乙两种材料的抗拉强度,在使用时要求抗拉强度不低于120,试比较甲、乙两种建筑材料的稳定程度(哪一个的稳定性较好).跟踪训练2 甲、乙两个野生动物保护区有相同的自然环境,且候鸟的种类和数量也大致相同,两个保护区每个季度发现违反保护条例的事件次数的分布列分别为试评定这两个保护区的管理水平. 三、分布列、均值、方差的综合应用例3 甲、乙两人进行定点投篮游戏,投篮者若投中,则继续投篮,否则由对方投篮;第一次由甲投篮,已知每次投篮甲、乙命中的概率分别为13,34.(1)求第三次由乙投篮的概率;(2)在前3次投篮中,乙投篮的次数为X ,求X 的分布列、均值及标准差.跟踪训练3 有三张形状、大小、质地完全相同的卡片,在各卡片上分别写上0,1,2,现从中任意抽取一张,将其上数字记作x ,然后放回,再抽取一张,其上数字记作y ,令X =xy ,求: (1)X 所取各值的分布列;(2)随机变量X 的均值与方差. 1.设随机变量X 的方差D (X )=1,则D (2X +1)的值为( ) A .2 B .3 C .4 D .52.有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本均值E (X 甲)=E (X 乙),方差分别为D (X 甲)=11,D (X 乙)=3.4.由此可以估计( )A .甲种水稻比乙种水稻分蘖整齐B .乙种水稻比甲种水稻分蘖整齐C .甲、乙两种水稻分蘖整齐程度相同D .甲、乙两种水稻分蘖整齐程度不能比较9.甲、乙两名射手在一次射击中得分为两个相互独立的随机变量ξ与η,且ξ,η的分布列为(1)求a ,b 的值;(2)计算ξ,η的均值与方差,并以此分析甲、乙的技术状况.10.已知X 的分布列为(1)求X 2的分布列;(2)计算X 的方差;(3)若Y =4X +3,求Y 的均值和方差.15.编号为1,2,3的三位学生随意入座编号为1,2,3的三个座位,每位学生坐一个座位,设与座位编号相同的学生的人数是ξ,则E (ξ)=________,D (ξ)=________.。

随机变量及其分布列习题(含解析)

随机变量及其分布列习题(含解析)

一.解答题(共8小题)1.(1)100件产品中有10件次品,从中有放回地任取5件,求其中次品数ξ的分布列;(2)某批数量较大的商品的次品率为10%,从中任意地连续抽取5件,求其中次品数η的分布列.2.为创建国家级文明城市,某城市号召出租车司机在高考期间至少进行一次“爱心送考”,该城市某出租车公司共200名司机,他们进行“爱心送考”的次数统计如图所示.(1)求该出租车公司的司机进行“爱心送考”的人均次数;(2)从这200名司机中任选2人,设这2人进行送考次数之差的绝对值为随机变量X,求X的概率分布.3.从6名男生和4名女生中随机选出3名同学参加一项竞技测试.(1)求选出的3名同学中至少有1名女生的概率;(2)设ξ表示选出的3名同学中男生的人数,求ξ的分布列.4.甲袋中有2个黑球,4个白球,乙袋中有3个黑球,3个白球,从两袋中各取一球.(Ⅰ)求“两球颜色相同”的概率;(Ⅱ)设ξ表示所取白球的个数,求ξ的概率分布列.5.设X是一个离散型随机变量,其分布列为:X−101P1﹣2q q2(1)求q的值;(2)求P(X<0),P(X<1).6.某射手进行射击训练,假设每次射击击中目标的概率为,且每次射击的结果互不影响.(1)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答);(2)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答);(3)设随机变量ξ表示射手第3次击中目标时已射击的次数,求ξ的分布列.7.袋中有3个红球,4个黑球,从袋中任取4个球.(1)求红球个数X的分布列;(2)若取到一个红球得2分,取到一个黑球得1分,求得分不小于6分的概率.8.从5名男生和3名女生中任选2人去参加学校组织的“低碳杯”知识抢答赛,用ξ表示选出的女生的人数.(1)求随机变量ξ的分布列;(2)求事件“选出的2学生至少有一女生”的概率.参考答案与试题解析一.解答题(共8小题)1.(1)100件产品中有10件次品,从中有放回地任取5件,求其中次品数ξ的分布列;(2)某批数量较大的商品的次品率为10%,从中任意地连续抽取5件,求其中次品数η的分布列.【解答】解:(1)由题意知ξ的可能取值为0,1,2,3,4,5,每次取出次品的概率为:,相当于5次独立重复实验,ξ~B(5,),P(ξ=0)==0.59059,P(ξ=1)==0.32805,P(ξ=2)==0.07329,P(ξ=3)==0.0081,P(ξ=4)==0.00045,P(ξ=5)==0.00001,∴ξ的分布列为:ξ012345P0.590590.328050.07290.00810.000450.00001(2)由题意知η的可能取值为0,1,2,3,4,5,且η~B(5,0.1),∴η的分布列为:η012345P0.590590.328050.07290.00810.000450.000012.为创建国家级文明城市,某城市号召出租车司机在高考期间至少进行一次“爱心送考”,该城市某出租车公司共200名司机,他们进行“爱心送考”的次数统计如图所示.(1)求该出租车公司的司机进行“爱心送考”的人均次数;(2)从这200名司机中任选2人,设这2人进行送考次数之差的绝对值为随机变量X,求X的概率分布.【解答】解:(1)由统计图得200名司机中送考1次的有20人,送考2次的有100人,送考3次的有80人,∴该出租车公司的司机进行“爱心送考”的人均次数为;(2)从该公司任选两名司机,记“这两人中﹣人送考1次,另一人送考2次”为事件A,“这两人中一人送考2次,另一人送考3次“为事件B,“这两人中﹣人送考1次,另一人送考3次”为事件C,“这两人送考次数相同”为事件D,由题意知X的所有可能取值为0,1,2,,,,所以X的分布列为:X012P3.从6名男生和4名女生中随机选出3名同学参加一项竞技测试.(1)求选出的3名同学中至少有1名女生的概率;(2)设ξ表示选出的3名同学中男生的人数,求ξ的分布列.【解答】解:(1)由意可知,选出的3名同学全是男生的概率为=,∴选出的3名同学中至少有1名女生的概率为P=1﹣=.(2)根据题意,ξ的可能取值为0,1,2,3,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,∴ξ的分布列为:ξ0123P4.甲袋中有2个黑球,4个白球,乙袋中有3个黑球,3个白球,从两袋中各取一球.(Ⅰ)求“两球颜色相同”的概率;(Ⅱ)设ξ表示所取白球的个数,求ξ的概率分布列.【解答】解:(I)从甲中取出黑球的概率为,取出白球的概率为,从乙中取出黑球的概率为,取出白球的概率为,故“两球颜色相同”的概率P=.(II)由题意可得,ξ所有可能取值为0,1,2,P(ξ=0)==,P(ξ=1)=,P(ξ=2)=,故ξ的分布列为:ξ012P5.设X是一个离散型随机变量,其分布列为:X−101P1﹣2q q2(1)求q的值;(2)求P(X<0),P(X<1).【解答】解:(1)依题意,得,解得或(舍去),所以.(2)由(1)得,,所以,.6.某射手进行射击训练,假设每次射击击中目标的概率为,且每次射击的结果互不影响.(1)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答);(2)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答);(3)设随机变量ξ表示射手第3次击中目标时已射击的次数,求ξ的分布列.【解答】解:(1)设事件该射手第i次射击,击中目标为A i,i=1,2,3,则,所以,事件射手在3次射击中,至少有两次连续击中目标可表示为,因为事件,,A1A2A3互斥,所以又事件A1,A2,A3相互独立,所以==;(2)事件射手第3次击中目标时,恰好射击了4次等于事件前3次中恰好击中两次目标且第四次击中目标,又各次击中目标的概率为,所以前3次中恰有两次击中目标的概率为,第四次击中目标的概率为,所以事件射手第3次击中目标时,恰好射击了4次的概率;(3)由已知ξ的取值有3,4,5,⋅⋅⋅,n,⋅⋅⋅,又,,,⋅⋅⋅,,所以随机变量ξ的分布列为:ξ345…n…P……7.袋中有3个红球,4个黑球,从袋中任取4个球.(1)求红球个数X的分布列;(2)若取到一个红球得2分,取到一个黑球得1分,求得分不小于6分的概率.【解答】解:(1)由题意可得,X可能取值为0,1,2,3,P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=,故X的分布列为:X0123P(2)设得分为Y,则得分Y可以取4,5,6,7,分别对应4个黑球,3黑1红,2黑2红,1黑3红四种情况,P(Y≥6)=P(Y=6)+P(Y=7)=,故得分不小于6分的概率为.8.从5名男生和3名女生中任选2人去参加学校组织的“低碳杯”知识抢答赛,用ξ表示选出的女生的人数.(1)求随机变量ξ的分布列;(2)求事件“选出的2学生至少有一女生”的概率.【解答】解:(1)由题意得ξ的可能取值为0,1,2,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,∴随机变量ξ的分布列为:ξ012P(2)事件“选出的2学生至少有一女生”的概率为:P=P(ξ=1)+P(ξ=2)==.。

2020_2021学年高中数学第七章随机变量及其分布7.2离散型随机变量及其分布列第2课时课后习题含

2020_2021学年高中数学第七章随机变量及其分布7.2离散型随机变量及其分布列第2课时课后习题含

第七章随机变量及其分布7.2 离散型随机变量及其分布列第2课时 课后篇巩固提升基础达标练1.设离散型随机变量X 的分布列为若随机变量Y=X-2,则P (Y=2)等于( )A.0.3B.0.4C.0.6D.0.70.2+0.1+0.1+0.3+m=1,得m=0.3,故P (Y=2)=P (X=4)=0.3.2.(2020浙江高三专题练习)已知离散型随机变量X 的分布列如下表,则实数c 为( )X 0 1 P9c 2-c 3-8cA.13 B.23 C.1或23D.14,9c 2-c ≥0,3-8c ≥0,9c 2-c+3-8c=1,解得c=13.故选A.3.若随机变量X 的分布列为则当P (X<a )=0.8时,实数a 的取值范围是( ) A.(-∞,2] B.[1,2] C.(1,2] D.(1,2)X 的分布列知P (X<1)=0.5,P (X<2)=0.8,故当P (X<a )=0.8时,实数a 的取值范围是(1,2].4.(2020潍坊高三月考)若随机变量X 的分布列如下表所示,则a 2+b 2的最小值为( )X 0 1 2 3P 14a14bA.124B.116C.18D.14a+b=12,故a2+b2≥(a+b)22=18,当且仅当a=b=14时,等号成立.故选C.5.已知离散型随机变量X的概率分布规律为P(X=n)=an (n+1)(n=1,2,3,4),其中a 是常数,则P12<X<52的值为()A.23B.34C.45D.56P(X=n)=an(n+1)(n=1,2,3,4),∴a2+a6+a12+a20=1,∴a=54,∴P12<X<52=P(X=1)+P(X=2)=54×12+54×16=56.6.已知随机变量X的分布列如下表.则X为奇数的概率为.7.有一种密码,明文由三个字母组成,密码由明文的这三个字母对应的五个数字组成.编码规则如下表.明文由表中每一排取一个字母组成,且第一排取的字母放在第一位,第二排取的字母放在第二位,第三排取的字母放在第三位,对应的密码由明文所取的这三个字母对应的数字按相同的次序排成一组组成.如明文取的三个字母为AFP,则与它对应的五个数字(密码)就为11223.(1)假设明文是BGN,求这个明文对应的密码;(2)设随机变量ξ表示密码中所含不同数字的个数.①求P (ξ=2);②求随机变量ξ的分布列.这个明文对应的密码是12232.(2)①∵表格的第一、二列均由数字1,2组成,∴当ξ=2时,明文只能取表格第一、第二列中的字母. ∴P (ξ=2)=2333=827.②由题意可知,ξ的取值为2,3. ∴P (ξ=3)=1-P (ξ=2)=1-827=1927. ∴ξ的分布列为8.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格.某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.(1)求获得复赛资格的人数.(2)从初赛得分在区间(110,150]的参赛者中,利用分层随机抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]中各抽取多少人?(3)从(2)抽取的7人中,选出3人参加全市座谈交流,设X 表示得分在区间(130,150]中参加全市座谈交流的人数,求X 的分布列.由题意知在区间(90,110]的频率为1-20×(0.0025+0.005+0.0075×2+0.0125)=0.3,0.3+(0.0125+0.005)×20=0.65,故获得复赛资格的人数为800×0.65=520. (2)0.0125∶0.005=5∶2,在区间(110,150]的参赛者中,利用分层随机抽样的方法随机抽取7人, 则在区间(110,130]与(130,150]中各抽取5人,2人. (3)X 的可能取值为0,1,2,则 P (X=0)=C 53C 20C 73=27, P (X=1)=C 52C 21C 73=47,P (X=2)=C 51C 22C 73=17.故X 的分布列为能力提升练1.(多选)下列随机变量服从两点分布的是( ) A.抛掷一枚质地均匀的骰子,所得点数为随机变量X B.某射手射击一次,击中目标的次数为随机变量XC.从装有5个红球,3个白球的袋中取1个球,令随机变量X={1,取出白球,0,取出红球D.某医生做一次手术,手术成功的次数为随机变量X2.已知抛掷2枚骰子,所得点数之和X 是一个随机变量,则P (X ≤4)等于( ) A.1B.13C.12D.23,P (X=2)=136,P (X=3)=236=118,P (X=4)=336=112,故P (X ≤4)=136+118+112=16.3.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列的公差的取值范围是( ) A.0,13B.-13,13C.-3,3D.0,1ξ取x 1,x 2,x 3的概率分别为a-d ,a ,a+d (0≤a-d ≤1,0≤a+d ≤1),则由分布列的性质,得(a-d )+a+(a+d )=1,故a=13.由{13-d ≥0,13+d ≥0,解得-13≤d ≤13.4.由于电脑故障,使得随机变量X 的分布列中部分数据丢失(以“x ,y ”代替),其分布列如下.则x ,y 的值依次为 .0.20+0.10+(0.1x+0.05)+0.10+(0.1+0.01y )+0.20=1,得10x+y=25.又因为x ,y ∈{0,1,2,3,4,5,6,7,8,9},故x=2,y=5. 5.袋中有4个红球、3个黑球,从袋中任取4个球,取到1个红球得1分,取到1个黑球得3分,记得分为随机变量ξ,则P (ξ≤6)= .4个球中红球的个数可能为4,3,2,1,相应的黑球的个数为0,1,2,3,其得分ξ=4,6,8,10,则P(ξ≤6)=P (ξ=4)+P (ξ=6)=C 44×C 3C 74+C 43×C 31C 74=1335.6.已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列.记“第一次检测出的是次品且第二次检测出的是正品”为事件A ,则P (A )=A 21A 31A 52=310.(2)X 的可能取值为200,300,400, 则P (X=200)=A 22A 52=110,P (X=300)=A 33+C 21C 31A 22A 53=310,P (X=400)=1-P (X=200)-P (X=300) =1-110−310=35.故X 的分布列为素养培优练受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中随机抽取50辆,统计数据如下:将频率视为概率,解答下列问题:(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率;(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的分布列.设“甲品牌轿车首次出现故障发生在保修期内”为事件A,则P(A)=2+350=110.(2)依题意得,X1的分布列为X2的分布列为。

高三数学考点-离散型随机变量及其分布列

高三数学考点-离散型随机变量及其分布列

10.6离散型随机变量及其分布列1.离散型随机变量的概念(1)随机变量如果随机试验的结果可以用一个随着试验结果变化而变化的变量来表示,那么这样的变量叫做____________,随机变量常用字母X,Y,ξ,η等表示.(2)离散型随机变量所有取值可以__________的随机变量,称为离散型随机变量.2.离散型随机变量的分布列(1)分布列设离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i(i=1,2,…,n)的概率P(X =x i)=p i,则称表为随机变量X的______________,简称为X的分布列.有时为了简单起见,也可用P(X=x i)=p i,i=1,2,…,n表示X的分布列.(2)分布列的性质①________________________;②________________________.3.常用的离散型随机变量的分布列(1)两点分布(又称0-1分布、伯努利分布)随机变量X的分布列为(0<p<1)则称X服从两点分布,并称p=P(X=1)为成功概率.(2)二项分布如果随机变量X的可能取值为0,1,2,…,n,且X取值的概率P(X=k)=__________(其中k=0,1,2,…,则称X服从二项分布,记为____________.(3)超几何分布在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则事件{X=k}发生的概率为__________________(k=0,1,2,…,m),其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.此时称随机变量X的分布列为超几何分布列,称随机变量X服从______________.自查自纠1.(1)随机变量(2)一一列出2.(1)概率分布列(2)①p i≥0,i=1,2,3,…,n②i=1np i=13.(1)1-p(2)C k n p k q n-k C k n p k q n-k X~B(n,p)(3)C k M C n-kN-MC n N超几何分布某射手射击所得环数X的分布列为X45678910P0.020.040.060.090.280.290.22则此射手“射击一次命中环数大于7”的概率为()A.0.28 B.0.88C.0.79 D.0.51解:P(X>7)=P(X=8)+P(X=9)+P(X=10)=0.28+0.29+0.22=0.79.故选C.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X表示这10个村庄中交通不方便的村庄数,下列概率中等于C47C68C1015的是()A.P(X=2) B.P(X≤2)C.P(X=4) D.P(X≤4)解:X服从超几何分布P(X=k)=C k7C10-k8C1015,故k=4.故选C.随机变量ξ的所有可能的取值为1,2,3,…,10,且P(ξ=k)=ak(k=1,2,…,10),则a的值为() A.1110 B.155C.110 D.55解:因为随机变量ξ的所有可能的取值为1,2,3,…,10,且P(ξ=k)=ak(k=1,2,…,10),所以a+2a+3a+…+10a=1,则55a=1,即a=155.故选B.已知X的分布列为X-101P1216a设Y=2X+1,则Y的数学期望E(Y)的值是________.解:由分布列的性质,a =1-12-16=13,所以E (X )=-1×12+0×16+1×13=-16,因此E (Y )=E (2X +1)=2E (X )+1=23.故填23.从装有3个红球,2个白球的袋中随机取出2个球,设其中有X 个红球,则随机变量X 的概率分布列为________.解:依题意,随机变量X 的可能取值为0,1,2. 则P (X =0)=C 22C 25=0.1,P (X =1)=C 13C 12C 25=0.6,P (X =2)=C 23C 25=0.3,故X 的分布列为X 0 1 2 P0.10.60.3故填X 0 1 2 P0.10.60.3类型一 随机变量的概念与性质(1)设离散型随机变量X 的分布列为X 0 1 2 3 4 P0.20.10.10.3m求:(Ⅰ)2X +1的分布列; (Ⅱ)|X -1|的分布列. 解:由分布列的性质知:0.2+0.1+0.1+0.3+m =1,解得X 0 1 2 3 4 2X +1 1 3 5 7 9 |X -1|1123从而由上表得所求分布列如下. (Ⅰ)2X +1的分布列:2X +1 1 3 5 7 9 P0.20.10.10.30.3(Ⅱ)|X -1|的分布列:|X -1| 0 1 2 3 P0.10.30.30.3(2)随机变量ξ的分布列如下:ξ-1 0 1 Pabc其中a ,b ,c 成等差数列,则P (|ξ|=1)=____________,公差d 的取值范围是____________. 解:因为a ,b ,c 成等差数列,所以2b =a +c .又a +b +c =1,所以b =13,所以P (|ξ|=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,所以-13≤d ≤13.故填23;⎣⎡⎦⎤-13,13. 【点拨】①研究随机变量的取值,关键是准确理解所定义的随机变量的含义.明确随机变量所取的值对应的试验结果是进一步求随机变量取这个值时的概率的基础.②注意离散型随机变量分布列的两个性质:p i ≥0,i =1,2,…,n ;∑i =1np i =1.③随机变量可能取某一区间内任意值,无法一一列出,则称这样的随机变量为连续型随机变量,如“长江水位”“灯管寿命”等;正态分布即是一种重要的连续型随机变量的分布.设随机变量X 等可能取值1,2,3,…,n ,如果P (X <4)=0.3,那么n =________.解:由于随机变量X 等可能取1,2,3,…,n .所以取到每个数的概率均为1n .所以P (X <4)=P (X =1)+P (X =2)+P (X =3)=3n=0.3,因此n =10.故填10.类型二 求离散型随机变量的分布列袋子中有1个白球和2个红球.(1)每次取1个球,不放回,直到取到白球为止,求取球次数X 的分布列;(2)每次取1个球,有放回,直到取到白球为止,但抽取次数不超过5次,求取球次数X 的分布列; (3)每次取1个球,有放回,共取5次,求取到白球次数X 的分布列.解:(1)X =1,2,3.P (X =1)=13;P (X =2)=A 12A 33=13;P (X =3)=A 22A 33=13.所以X 的分布列是X 12 3 P13 13 13(2)X =1,2,3,4,5.P (X =k )=⎝⎛⎭⎫23k -1×13,k =1,2,3,4. P (X =5)=⎝⎛⎭⎫234. 故X 的分布列为X 1 2 3 4 5 P13294278811681(3)因为X ~B ⎝⎛⎭⎫5,13,所以X 的分布列为P (X =k )=C k 5⎝⎛⎭⎫13k⎝⎛⎭⎫235-k,其中k =0,1,2,3,4,5.【点拨】求随机变量的分布列,一要弄清什么是随机变量,建立它与随机事件的关系;二要把随机变量的所有值找出,不要遗漏;三是准确求出随机变量取每个值的概率,确定概率和为1后写出分布列.对于抽样问题,要特别注意放回与不放回的区别.一般地,无放回抽样由排列数公式求随机变量对应的概率,放回抽样由分步计数原理求随机变量对应的概率.(2017·天津)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)记X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 解:(1)随机变量X 的所有可能取值为0,1,2,3.P (X =0)=⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-14=14, P (X =1)=12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-14+⎝⎛⎭⎫1-12×13×⎝⎛⎭⎫1-14+⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13×14=1124, P (X =2)=⎝⎛⎭⎫1-12×13×14+12×⎝⎛⎭⎫1-13×14+12×13×⎝⎛⎭⎫1-14=14, P (X =3)=12×13×14=124.所以,随机变量X 的分布列为X 0 1 2 3 P14112414124随机变量X 的数学期望E (X )=0×14+1×1124+2×14+3×124=1312.(2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为 P (Y +Z =1)=P (Y =0,Z =1)+P (Y =1,Z =0) =P (Y =0)P (Z =1)+P (Y =1)P (Z =0)=14×1124+1124×14=1148. 所以,这2辆车共遇到1个红灯的概率为1148.类型三 超几何分布(2015·天津)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望.解:(1)由已知,有P (A )=C 22C 23+C 23C 23C 48=635. 故事件A 发生的概率为635.(2)随机变量X 的所有可能取值为1,2,3,4.P (X =k )=C k 5C 4-k 3C 48(k =1,2,3,4). 故随机变量X 的分布列为X 12 3 4 P1143737114故随机变量X 的数学期望E (X )=1×114+2×37+3×37+4×114=52.【点拨】①超几何分布的概率计算公式从古典概型的角度加以理解更易记忆:P (X =k )=C k M C n -kN -MC nN,即恰取了k 件次品的概率=次品中取了k 件×正品中取了n -k 件N 件产品中任取n 件.②当n 较小,N 较大时,超几何分布的概率计算可以近似地用二项分布来代替.也就是说虽然超几何分布是不放回抽样,二项分布是放回抽样,但是当n 较小而产品总数N 很大时,不放回抽样近似于放回抽样.③超几何分布在产品检验中经常用到.(2017·山东)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示. (1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率;(2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与数学期望E (X ).解:(1)记接受甲种心理暗示的志愿者中包含A 1但不包含B 1的事件为M ,则P (M )=C 48C 510=518.(2)由题意知X 可取的值为:0,1,2,3,4,则P (X =0)=C 56C 510=142,P (X =1)=C 46C 14C 510=521,P (X =2)=C 36C 24C 510=1021,P (X =3)=C 26C 34C 510=521,P (X =4)=C 16C 44C 510=142,X 0 1 2 3 4 P1425211021521142X 的数学期望是E (X ) =0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4)=0+1×521+2×1021+3×521+4×142=2.1.求离散型随机变量的分布列的步骤(1)明确随机变量的所有可能取值,以及每个值所表示的意义,判断一个变量是否为离散型随机变量,主要看变量的值能否按一定的顺序一一列出.(2)利用概率的有关知识,求出随机变量取每个值的概率.对于古典概率、互斥事件的概率、相互独立事件同时发生的概率、n 次独立重复试验恰有k 次发生的概率等,都要能熟练计算. (3)按规范形式写出分布列,并用分布列的性质∑i =1np i =1验证.2.分布列的结构为两行,第一行为随机变量X 所有可能的取值,第二行是对应于随机变量X 的值的事件发生的概率.在每一列中,上为“事件”,下为事件发生的概率,只不过“事件”是用一个反映其结果的实数表示的.每完成一列,就相当于求一个随机事件发生的概率.3.可用超几何分布解决的题目涉及的背景多数是生活、生产实践中的问题,且往往由明显的两部分组成,如产品中的正品和次品,盒中的白球和黑球,同学中的男生和女生等.注意弄清楚超几何分布与二项分布的区别与联系.1.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X ,则X 所有可能取值的个数是( ) A .5 B .9 C .10 D .25解:X 的所有可能取值为2,3,4,5,6,7,8,9,10,共9个.故选B. 2.下列表中可以作为离散型随机变量分布列的是( )解:A 中ξ的取值出现了重复性;B 中P (ξ=0)=-14<0;C 中∑i =13P (ξi )=15+25+35=65>1.故选D.3.(2015·合肥模拟)设某项试验的成功率是失败率的2倍,试验一次要么成功要么失败,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( )A .0 B.12 C.13 D.23解:X 可能取值为0或1,而P (X =1)=2P (X =0),且P (X =1)+P (X =0)=1.所以P (X =0)=13.故选C.4.(2015·安徽模拟)一只袋内装有m 个白球,n -m 个黑球,所有的球除颜色外完全相同.连续不放回地从袋中取球,直到取出黑球为止,设此时取出了X 个白球,则下列概率等于(n -m )A 2mA 3n 的是( ) A .P (X =3) B .P (X ≥2) C .P (X ≤3) D .P (X =2)解:由超几何分布知该式对应取球3次,第3次才取到黑球的概率,所以P (X =2)=A 1n -m A 2mA 3n =(n -m )A 2m A 3n.故选D.5.设ξξ-1 0 1 P121-2qq 2则q 的值为( ) A .1 B .1±22C .1+22 D .1-22解法一:由分布列的性质,有 ⎩⎪⎨⎪⎧1-2q ≥0,q 2≥0,12+1-2q +q 2=1,解得q =1-22. 解法二:由1-2q ≥0q ≤12,可排除A 、B 、C ,故选D. 6.若P (ξ≤x 2)=1-β,P (ξ≥x 1)=1-α,其中x 1<x 2,则P (x 1≤ξ≤x 2)等于( ) A .(1-α)(1-β) B .1-(α+β) C .1-α(1-β)D .1-β(1-α)解:由分布列性质可有:P (x 1≤ξ≤x 2)=P (ξ≤x 2)+P (ξ≥x 1)-1=(1-β)+(1-α)-1=1-(α+β).故选B. 7.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.设ξ为取出的4个球中红球的个数,则P (ξ=2)=____________. 解:ξ的可能取值为0,1,2,3,所以P (ξ=2)=C 13C 12C 14+C 23C 22C 24C 26=2790=310.故填310. 8.某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;如果失败,一年后将丧失全部资金的50%.下表是过去200投资成功 投资失败 192例8例则该公司一年后估计可获收益的期望是____________元.解:由题意知,一年后获利6 000元的概率为0.96,获利-25 000元的概率为0.04,故一年后收益的期望是6 000×0.96+(-25 000)×0.04=4 760(元).故填4 760.9.某高校的一科技小组有5名男生,5名女生,从中选出4人参加全国大学生科技大赛,用X 表示其中参加大赛的男生人数,求X 的分布列. 解:依题意随机变量X 服从超几何分布,所以P (X =k )=C k 5C 4-k 5C 410(k =0,1,2,3,4).所以P (X =0)=C 05C 45C 410=142,P (X =1)=C 15C 35C 410=521,P (X =2)=C 25C 25C 410=1021,P (X =3)=C 35C 15C 410=521,P (X =4)=C 45C 05C 410=142,所以X 的分布列为10.(2017·湖北荆门调考)某市每年中考都要举行实验操作考试和体能测试,初三某班共有30名学生,下表为该班学生的这两项成绩,例如表中实验操作考试和体能测试都为优秀的学生人数为6人.由于部分数据丢失,只知道从这班30人中随机抽取一个,实验操作成绩合格,且体能测试成绩合格或合格以上的概率是15.(1)试确定a 、b 的值;(2)从30人中任意抽取3人,设实验操作考试和体能测试成绩都是良好或优秀的学生人数为ξ,求随机变量ξ的分布列及数学期望Eξ.解:由表格数据可知,实验操作成绩合格、且体能测试成绩合格或合格以上的学生共有(4+a )人,记“实验操作成绩合格、且体能测试成绩合格或合格以上”为事件A ,则P (A )=4+a 30=15,解得a =2,所以b =30-24-a =4.所以a 的值为2,b 的值为4.(2)由于从30位学生中任意抽取3位的结果数为C 330,其中实验操作成绩和体能测试成绩都是良好或优秀的学生人数为15人,从30人中任意抽取3人,其中恰有k 个实验操作考试和体能测试成绩都是良好或优秀的结果数为C k 15C 3-k 15,所以从30人中任意抽取3人,其中恰有k 人实验操作考试和体能测试成绩都是良好或优秀的概率为:P (ξ=k )=C k 15C 3-k15C 330,(k =0,1,2,3),ξ的可能取值为0,1,2,3, 则P (ξ=0)=C 015C 315C 330=13116,P (ξ=1)=C 115C 215C 330=45116,P (ξ=2)=C 215C 115C 330=45116,P (ξ=3)=C 315C 015C 330=13116,所以ξ的分布列为P13116 45116 45116 13116Eξ=0×13116+1×45116+2×45116+3×13116=174116=32.11.(2015·陕西)设某校新、老校区之间开车单程所需时间为T ,T 只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:T (分钟) 25 30 35 40 频数(次)20304010(1)求T 的分布列与数学期望E (T );(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率. 解:(1)由统计结果可得T T (分钟) 25 30 35 40 频率0.20.30.40.1以频率估计概率得T 的分布列为T 25 30 35 40 P0.20.30.40.1从而E (T )=25×0.2+30×0.3+35×0.4+40×0.1=32(分钟).(2)设T 1,T 2分别表示往、返所需时间,T 1,T 2的取值相互独立,且与T 的分布列相同.设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A 对应于“刘教授在途中的时间不超过70分钟”.解法一:P (A )=P (T 1+T 2≤70)=P (T 1=25,T 2≤45)+P (T 1=30,T 2≤40)+P (T 1=35,T 2≤35)+P (T 1=40,T 2≤30)=0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.解法二:P (A )=P (T 1+T 2>70)=P (T 1=35,T 2=40)+P (T 1=40,T 2=35)+P (T 1=40,T 2=40)=0.4×0.1+0.1×0.4+0.1×0.1=0.09, 故P (A )=1-P (A )=0.91.已知一个口袋中装有n 个红球(n ≥1且n ∈N *)和2个白球,从中有放回地连续摸三次,每次摸出两个球,若两个球颜色不同则为中奖,否则不中奖.(1)当n =3时,设三次摸球(每次摸球后放回)中奖的次数为ξ,求ξ的分布列; (2)记三次摸球(每次摸球后放回)恰有两次中奖的概率为P ,当n 取多少时,P 最大. 解:(1)当n =3时,每次摸出两个球,中奖的概率P =C 13C 12C 25=35.由题意知ξ的可能值为0,1,2,3, 故有P (ξ=0)=C 03×⎝⎛⎭⎫253=8125;P (ξ=1)=C 13×35×⎝⎛⎭⎫252=36125; P (ξ=2)=C 23×⎝⎛⎭⎫352×25=54125;P (ξ=3)=C 33×⎝⎛⎭⎫353=27125.ξ的分布列为ξ0 1 2 3或P (ξ=i )=C i 3×⎝⎛⎭⎫35i ×⎝⎛⎭⎫253-i ,i =0,1,2,3. (2)设每次摸球中奖的概率为p ,则三次摸球(每次摸球后放回)恰有两次中奖的概率为P (ξ=2)=C 23·p 2·(1-p )=-3p 3+3p 2,0<p <1,由P ′=-9p 2+6p =-3p (3p -2)知,在⎝⎛⎭⎫0,23上P 为增函数,在⎝⎛⎭⎫23,1上P 为减函数,所以当p =23时,P 取得最大值.又p =C 1n ·C 12C 2n +2=4n (n +1)(n +2)=23,即n 2-3n +2=0,解得n =1或n =2. 所以当n 取1或2时,P 最大.。

高考数学总复习考点知识专题讲解11 离散型随机变量及其分布列

高考数学总复习考点知识专题讲解 专题11离散型随机变量及其分布列知识点一 随机变量的概念、表示及特征1.概念:一般地,对于随机试验样本空间Ω中的每个样本点ω都有唯一的实数X (ω)与之对应,我们称X 为随机变量.2.表示:用大写英文字母表示随机变量,如X ,Y ,Z ;用小写英文字母表示随机变量的取值,如x ,y ,z .3.特征:随机试验中,每个样本点都有唯一的一个实数与之对应,随机变量有如下特征:(1)取值依赖于样本点. (2)所有可能取值是明确的. 知识点二 离散型随机变量可能取值为有限个或可以一一列举的随机变量,我们称之为离散型随机变量. 判断离散型随机变量的方法 (1)明确随机试验的所有可能结果; (2)将随机试验的结果数量化;(3)确定试验结果所对应的实数是否可以一一列出,如能一一列出,则该随机变量是离散型随机变量,否则不是.【例1】((2023•丰台区期末)下面给出的四个随机变量中是离散型随机变量的为() ①高速公路上某收费站在半小时内经过的车辆数1X ;②一个沿直线2y x 进行随机运动的质点离坐标原点的距离X;③某同学射击3次,命中的次数3X;④某电子元件的寿2命X;4A.①②B.③④C.①③D.②④【例2】(2023•从化区期中)袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球的号码之和为随机变量X,则X所有可能取值的个数是()A.25B.10C.9D.5知识点三离散型随机变量的分布列及其性质1.定义:一般地,设离散型随机变量X的可能取值为x1,x2,…,x n,我们称X取每一个值x i的概率P(X=x i)=p i,i=1,2,3,…,n为X的概率分布列,简称分布列.2.分布列的性质(1)p i≥0,i=1,2,…,n.(2)p1+p2+…+p n=1.分布列的性质及其应用(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负数.(2)求随机变量在某个范围内的概率时,根据分布列,将所求范围内各随机变量对应的概率相加即可,其依据是互斥事件的概率加法公式.【例3】(2023•辽宁期末)随机变量X的分布列如下表所示,则(2)(…)P XA .0.1B .0.2C .0.3D .0.4【例4】(2022•朝阳区开学)设随机变量X 的分布列为()(1P X k k k λ===,2,3,4),则λ的值为() A .10B .110C .10-D .110-【例5】(2023•珠海期末)已知某离散型随机变量ξ的分布列为:则(q =)A .13和1-B .13C .12D .1-【例6】(2022•多选•天津模拟)设随机变量ξ的分布列为()(15kP ak k ξ===,2,3,4,5),则()A .115a =B .141()255P ξ<<= C .112()10215P ξ<<=D .23()510P ξ=…【例7】(2023•湖北模拟)设随机变量ξ的分布列如表:则下列正确的是()A .当{}n a 为等差数列时,5615a a += B .数列{}n a 的通项公式可以为109(1)n a n n =+C .当数列{}n a 满足1(1,2,9)2n na n ==时,10912a =D .当数列{}n a 满足2()(1k P k k a k ξ==…,2,10)时,1110(1)n a n n =+知识点四 两点分布如果P (A )=p ,则P (A )=1-p ,那么X 的分布列为我们称X 服从两点分布或0-1【例8】(多选)若离散型随机变量X 的分布列如下表所示,则下列说法错误的是()A .常数c 的值为23或13B .常数c 的值为23C .1(0)3P X ==D .2(0)3P X ==【例9】(2023•阜南县期末)从6名男生和4名女生中随机选出3名同学参加一项竞技测试.(1)求选出的3名同学中至少有1名女生的概率;(2)设ξ表示选出的3名同学中男生的人数,求ξ的分布列.【例10】(2023•崂山区期末)某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得10分,回答不正确得0分,第三个问题回答正确得20分,回答不正确得10-分.如果一位挑战者回答前两个问题正确的概率都是2 3,回答第三个问题正确的概率为12,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题的总分不低于10分就算闯关成功.(1)求至少回答对一个问题的概率.(2)求这位挑战者回答这三个问题的总得分X的分布列.(3)求这位挑战者闯关成功的概率.同步训练1.(2022•多选•临朐县开学)下列X是离散型随机变量的是()A.某座大桥一天经过的某品牌轿车的辆数XB .一天内的温度为XC .某网页一天内被点击的次数XD .射击运动员对目标进行射击,击中目标得1分,未击中目标得0分,用X 表示该运动员在一次射击中的得分2.(2023•上蔡县校级月考)设随机变量ξ的概率分布列如下表:则(|2|1)(P ξ-==) A .712B .12C .512D .163.(2023•周至县期末)设随机变量X 的分布列为()(1,2,3,4,5,6)2kcP X k k ===,其中c 为常数,则(2)P X …的值为() A .34B .1621C .6364D .64634.(2023•多选•宝安区期中)已知随机变量ξ的分布如下:则实数a 的值为()A .12-B .12C .14D .14-5.(2023•和平区校级期末)设随机变量与的分布列如下:则下列正确的是()A .当{}n a 为等差数列时,5615a a +=B .当数列{}n a 满足1(12n na n ==,2,⋯,9)时,10912a = C .数列{}n a 的通项公式可以为109(1)n a n n =+D .当数列{}n a 满足2()(1k P k k a k ξ==…,2,⋯,10)时,1110(1)n a n n =+6.(2023•郫都区模拟)甲袋中有2个黑球,4个白球,乙袋中有3个黑球,3个白球,从两袋中各取一球.(Ⅰ)求“两球颜色相同”的概率;(Ⅱ)设ξ表示所取白球的个数,求ξ的概率分布列.。

2023年高考数学(理科)一轮复习——离散型随机变量及其分布列

索引
感悟提升
分布列性质的两个作用 (1)利用分布列中各事件概率之和为1可求参数的值及检查分布列的正确性. (2)随机变量X所取的值分别对应的事件是两两互斥的,利用这一点可以求随机 变量在某个范围内的概率.
索引
考点二 离散型随机变量的分布列
例1 (12分)某市某超市为了回馈新老顾客,决定在2022年元旦来临之际举行 “庆元旦,迎新年”的抽奖派送礼品活动.为设计一套趣味性抽奖送礼品的活 动方案,该超市面向该市某高中学生征集活动方案,该中学某班数学兴趣小 组提供的方案获得了征用.方案如下:将一个4×4×4的正方体各面均涂上红色, 再把它分割成64个相同的小正方体.经过搅拌后,从中任取两个小正方体,记 它们的着色面数之和为ξ,记抽奖一次中奖的礼品价值为η.
索引
6.(2021·郑州检测)设随机变量X的概率分布列为
X1 2 34
P
1 3
m
1 4
1 6
5 则P(|X-3|=1)=___1_2____.
解析 由13+m+14+16=1,解得 m=14, P(|X-3|=1)=P(X=2)+P(X=4)=14+16=152.
索引
考点突破 题型剖析
KAODIANTUPOTIXINGPOUXI
索引
P(ξ=1)=CC13·C29 16=1386=12, P(ξ=2)=CC23·C29 06=336=112.
所以ξ的分布列为
ξ 012
P
5 12
1 2
1 12
索引
感悟提升
1.超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超 几何分布的特征是: (1)考察对象分两类;(2)已知各类对象的个数;(3)从中抽取若干个个体,考查 某类个体数X的概率分布. 2.超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古 典概型.

随机变量及其分布方法总结经典习题及解答

随机变量及其分布方法总结经典习题及解答一、离散型随机变量及其分布列1、离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。

常用大写英文字母X、Y等或希腊字母ξ、η等表示。

2、分布列:设离散型随机变量ξ可能取得值为:x1,x2,…,x3,…,ξ取每一个值xi(i=1,2,…)的概率为,则称表ξx1x2…xi…PP1P2…Pi…为随机变量ξ的分布列3、分布列的两个性质:⑴Pi≥0,i=1,2,… ⑵P1+P2+…=1、常用性质来判断所求随机变量的分布列是否正确!二、热点考点题型考点一: 离散型随机变量分布列的性质1、随机变量ξ的概率分布规律为P(ξ=n)=(n=1,2,3,4),其中a是常数,则P(<ξ<)的值为A、B、C、D、答案:D考点二:离散型随机变量及其分布列的计算2、有六节电池,其中有2只没电,4只有电,每次随机抽取一个测试,不放回,直至分清楚有电没电为止,所要测试的次数为随机变量,求的分布列。

解:由题知2,3,4,5∵ 表示前2只测试均为没电,∴ ∵ 表示前两次中一好一坏,第三次为坏,∴ ∵ 表示前四只均为好,或前三只中一坏二好,第四个为坏,∴ ∵ 表示前四只三好一坏,第五只为坏或前四只三好一坏第五只为好∴ ∴ 分布列为2345P三、条件概率、事件的独立性、独立重复试验、二项分布与超几何分布1、条件概率:称为在事件A发生的条件下,事件B发生的概率。

2、相互独立事件:如果事件A(或B)是否发生对事件B (或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。

①如果事件A、B是相互独立事件,那么,A与、与B、与都是相互独立事件②两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。

我们把两个事件A、B同时发生记作AB,则有P(AB)= P(A)P(B)推广:如果事件A1,A2,…An相互独立,那么这n个事件同时发生的概率,等于每个事件发生的概率的积。

高中数学高考总复习离散型随机变量的期望方差及正态分布习题及详解

高中数学离散型随机变量的期望方差及正态分布习题及详解一、选择题1.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400 2.设随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=( )A .49B .-19C .23D .593.某区于2010年元月对全区高三理科1400名学生进行了一次调研抽测,经统计发现5科总分ξ(0<ξ<750)大致服从正态分布N (450,1302),若ξ在(0,280)内取值的概率为0.107,则该区1400名考生中总分为620分以上的学生大约有(结果四舍五入)( )A .100人B .125人C .150人D .200人 4.下列判断错误的是( )A .在1000个有机会中奖的号码(编号为000~999)中,有关部门按照随机抽取的方式确定后两位数字是09号码为中奖号码,这是用系统抽样方法确定中奖号码的;B .某单位有160名职工,其中业务人员120名,管理人员24名,后勤人员16名.要从中抽取容量为20的要本,用分层抽样的方法抽取样本;C .在正常条件下电子管的使用寿命、零件的尺寸,在一定条件下生长的小麦的株高、穗长、单位面积的产量等一般都服从正态分布;D .抛掷一枚硬币出现“正面向上”的概率为0.5,则某人抛掷10次硬币,一定有5次出现“正面向上”. 5.设口袋中有黑球、白球共7个,从中任取2个球,已知取到白球个数的数学期望值为67,则口袋中白球的个数为( )A .3B .4C .5D .26.一台机器生产某种产品,如果生产一件甲等品可获利50元,生产一件乙等品可获利30元,生产一件次品,要赔20元,已知这台机器生产甲等品、乙等品和次品的概率分别为0.6、0.3和0.1,则这台机器每生产一件产品,平均预期可获利( )A .39元B .37元C .20元D .1003元7.某公司为庆祝元旦举办了一个抽奖活动,现场准备的抽奖箱里放置了分别标有数字1000、800、600、0的四个球(球的大小相同),参与者随机从抽奖箱里摸取一球(取后即放回),公司即赠送与此球上所标数字等额的奖金(元),并规定摸到标有数字0的球时可以再摸一次,但是所得奖金减半(若再摸到标有数字0的球就没有第三次摸球机会),求一个参与抽奖活动的人可得奖金的期望值是多少元.( )A .450元B .900元C .600元D .675元8.小明每次射击的命中率都为p ,他连续射击n 次,各次是否命中相互独立,已知命中次数ξ的期望值为4,方差为2,则p (ξ>1)=( )A .255256B .9256C .247256D .7649.某次国际象棋比赛规定,胜一局得3分,平一局得1分,负一局得0分,某参赛队员比赛一局胜的概率为a ,平局的概率为b ,负的概率为c (a ,b ,c ∈[0,1)),已知他比赛一局得分的数学期望为1,则ab 的最大值为( )A .13B .12 C.112 D .1610.已知三个正态分布密度函数φi (x )=12πσie -(x -μi )22σi 2(x ∈R ,i =1,2,3)的图象如图所示,则( )A .μ1<μ2=μ3,σ1=σ2>σ3B .μ1>μ2=μ3,σ1=σ2<σ3C .μ1=μ2<μ3,σ1<σ2=σ3 D .μ1<μ2=μ3,σ1=σ2<σ3 二、填空题11.如图,A 、B 两点间有5条线并联,它们在单位时间内能通过的信息量依次为2,3,4,3,2.现从中任取3条线且记在单位时间内通过的信息总量为ξ.则信息总量ξ的数学期望为________.12.产量相同的机床Ⅰ、Ⅱ生产同一种零件,它们在一小时内生产出的次品数X 1、X 2的分布列分别如下:两台机床中,较好的是________,这台机床较好的理由是________. 13.袋中装有大小相同的黑球和白球共9个,从中任取2个都是白球的概率为512.现甲、乙两人从袋中轮流取球,甲先取,乙后取,然后甲再取…,每次取1个球,取出的球不放回,直到其中有一人取到白球时终止.用X 表示取球终止时取球的总次数.(1)袋中原有白球的个数为________. (2)随机变量X 的数学期望E (X )=________.14.如果随机变量ξ~B (n ,p ),且E (ξ)=4,且D (ξ)=2,则E (pξ-D (ξ))=________. 三、解答题15.某大学开设甲、乙、丙三门选修课,学生是否选修哪门课程互不影响,已知某学生只选修甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积.(1)记“函数f (x )=x 2+ξx 为R 上的偶函数”为事件A ,求事件A 的概率; (2)求ξ的分布列和数学期望.16.高二下学期,学校计划为同学们提供A 、B 、C 、D 四门方向不同的数学选修课,现在甲、乙、丙三位同学要从中任选一门学习(受条件限制,不允许多选,也不允许不选).(1)求3位同学中,选择3门不同方向选修的概率; (2)求恰有2门选修没有被3位同学选中的概率;(3)求3位同学中,选择选修课程A 的人数ξ的分布列与数学期望.17.设两球队A 、B 进行友谊比赛,在每局比赛中A 队获胜的概率都是p (0≤p ≤1). (1)若比赛6局,且p =23,求其中A 队至多获胜4局的概率是多少?(2)若比赛6局,求A 队恰好获胜3局的概率的最大值是多少?(3)若采用“五局三胜”制,求A 队获胜时的比赛局数ξ的分布列和数学期望.参考答案1. [解析] 记“不发芽的种子数为ξ”,则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100,而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200,故选B.2. [解析] 由条件a ,b ,c 成等差数列知,2b =a +c ,由分布列的性质知a +b +c =1,又E (ξ)=-a +c =13,解得a =16,b =13,c =12,∴D (ξ)=16×⎝⎛⎭⎫-1-132+13⎝⎛⎭⎫0-132+12⎝⎛⎭⎫1-132=59. 3. [解析] 由条件知,P (ξ>620)=P (ξ<280)=0.107,1400×0.107≈150. 4.[答案] D 5.[答案] A[解析] 设白球x 个,则黑球7-x 个,取出的2个球中所含白球个数为ξ,则ξ取值0,1,2, P (ξ=0)=C 7-x 2C 72=(7-x )(6-x )42,P (ξ=1)=x ·(7-x )C 72=x (7-x )21,P (ξ=2)=C x 2C 72=x (x -1)42,∴0×(7-x )(6-x )42+1×x (7-x )21+2×x (x -1)42=67,∴x =3.6. [解析] ξ的分布列为∴E (ξ)=50×0.6+30×0.3+(-20)×7.[解析] 摸到数字0的概率为14,再摸一次,故得500元、400元、300元、0元的概率分别为14×14=116,故分布列为∴E (ξ)=1000×14+800×14+600×14+500×116+400×116+300×116+0×116=675.8. [解析] 由条件知ξ~B (n ,P ),∵⎩⎪⎨⎪⎧ E (ξ)=4,D (ξ)=2,∴⎩⎪⎨⎪⎧np =4np (1-p )=2,解之得,p =12,n =8,∴P (ξ=0)=C 80×⎝⎛⎭⎫120×⎝⎛⎭⎫128=⎝⎛⎭⎫128,P (ξ=1)=C 81×⎝⎛⎭⎫121×⎝⎛⎭⎫127=⎝⎛⎭⎫125, ∴P (ξ>1)=1-P (ξ=0)-P (ξ=1)=1-⎝⎛⎭⎫128-⎝⎛⎭⎫125=247256.9. [解析] 由条件知,3a +b =1,∴ab =13(3a )·b ≤13·⎝⎛⎭⎫3a +b 22=112,等号在3a =b =12,即a =16,b =12时成立.10.[答案] D[解析] 正态分布密度函数φ2(x )和φ3(x )的图象都是关于同一条直线对称,所以其平均数相同,故μ2=μ3,又φ2(x )的对称轴的横坐标值比φ1(x )的对称轴的横坐标值大,故有μ1<μ2=μ3.又σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”,由图象可知,正态分布密度函数φ1(x )和φ2(x )的图象一样“瘦高”,φ3(x )明显“矮胖”,从而可知σ1=σ2<σ3.11. [解析] 由题意得,ξ的可能取值为7,8,9,10. ∵P (ξ=7)=C 21C 22C 53=15,P (ξ=8)=C 21C 22+C 22C 11C 53=310,P (ξ=9)=C 21C 21C 11C 53=25,P (ξ=10)=C 22C 11C 53=110,∴ξ的分布列为:E (ξ)=15×7+310×8+25×9+110×10=425.12.[答案] Ⅱ 因为E (X 1)=E (X 2),D (X 1)>D (X 2) 13.[答案] (1)6 (2)107[解析] (1)设袋中原有n 个白球,则从9个球中任取2个球都是白球的概率为C n 2C 92=512,即n (n -1)29×82=512,化简得n 2-n -30=0.解得n =6或n =-5(舍去).故袋中原有白球的个数为6. (2)由题意,X 的可能取值为1,2,3,4.P (X =1)=69=23;P (X =2)=3×69×8=14;P (X =3)=3×2×69×8×7=114;P (X =4)=3×2×1×69×8×7×6=184.所以X 的概率分布列为:所求数学期望E (X )=1×23+2×14+3×114+4×184=107.14.[答案] 0[解析] ∵ξ~B (n ,p ),且E (ξ)=4,∴np =4,又∵D (ξ)=2,∴np (1-p )=2,∴p =12,∴E (pξ-D (ξ))=E (12ξ-2)=12E (ξ)-2=0.15.[解析] 设该学生选修甲、乙、丙的概率分别是x ,y ,z , 由题意有⎩⎪⎨⎪⎧x (1-y )(1-z )=0.08xy (1-z )=0.121-(1-x )(1-y )(1-z )=0.88,解得⎩⎪⎨⎪⎧x =0.4y =0.6z =0.5.(1)∵函数f (x )=x 2+ξx 为R 上的偶函数,∴ξ=0. ξ=0表示该学生选修三门功课或三门功课都没选. ∴P (A )=P (ξ=0)=xyz +(1-x )(1-y )(1-z ) =0.4×0.6×0.5+0.12=0.24. (2)依题意ξ=0,2,则ξ的分布列为∴E (ξ)=0×0.24+2×0.76=1.52.16.[解析] (1)设3位同学中,从4门课中选3门课选修为事件M ,则P (M )=A 4343=38.(2)设3位同学中,从4门课中选3门课选修,恰有2门没有选中为事件N ,则P (N )=C 42C 32A 2243=916. (3)由题意,ξ的取值为0、1、2、3.则P (ξ=0)=3343=2764,P (ξ=1)=C 31×3×343=2764,P (ξ=2)=C 32×343=964,P (ξ=3)=143=164.∴ξ的分布列为∴E (ξ)=0×2764+1×2764+2×964+3×164=34.17.[解析] (1)设“比赛6局,A 队至多获胜4局”为事件A , 则P (A )=1-[P 6(5)+P 6(6)]=1-⎣⎡⎦⎤C 65⎝⎛⎭⎫235⎝⎛⎭⎫1-23+C 66⎝⎛⎭⎫236=1-256729=473729. ∴A 队至多获胜4局的概率为473729.(2)设“若比赛6局,A 队恰好获胜3局”为事件B ,则P (B )=C 63p 3(1-p )3. 当p =0或p =1时,显然有P (B )=0.当0<p <1时,P (B )=C 63p 3(1-p )3=20·[p (1-p )]3≤20·⎣⎡⎦⎤⎝⎛⎭⎫p +1-p 223=20·⎝⎛⎭⎫126=516 当且仅当p =1-p ,即p =12时取等号.故A 队恰好获胜3局的概率的最大值是516.(3)若采用“五局三胜”制,A 队获胜时的比赛局数ξ=3,4,5. P (ξ=3)=p 3,P (ξ=4)=C 32p 3(1-p )=3p 3(1-p ) P (ξ=5)=C 42p 3(1-p )2=6p 3(1-p )2, 所以ξ的分布列为:E (ξ)=3p 3(10p 2-24p +15).[点评] 本题第(3)问容易出错,“五局三胜制”不一定比满五局,不是“五局中胜三局”.A 队获胜包括:比赛三局,A 队全胜;比赛四局,A 队前三局中胜两局,第四局胜;比赛五局,前四局中胜两局,第五局胜,共三种情况.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:离散型随机变量及其分布列 考纲要求:①理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻

画随机现象的重要性;②理解超几何分布及其推导过程,并能进行简单的应用.

教材复习 1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量

随机变量常用希腊字母、等表示

2.离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变

量叫做离散型随机变量 若是随机变量,ab,其中a、b是常数,则也是随机变量 3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间的一切值,这样的变量就

叫做连续型随机变量 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变

量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 5.离散型随机变量的分布列:设离散型随机变量可能取的值为1x、2x、…、ix、…

取每一个值

ix



1,2,i的概率为()iiPxp,则称表

 1x 2x … ix

P 1p

2p

… ip …

为随机变量的概率分布,简称的分布列 6.离散型随机变量分布列的两个性质:任何随机事件发生的概率都满足:0≤()PA≤1,

并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质:1

ip≥0,1,2,i…;212pp…1

对于离散型随机变量在某一围取值的概率等于它取这个围各个值的概率的和.即(P≥1)()()kkkxPxPx

7.两点分布:若随机变量服从两点分布,即其分布列:

其中P(1)PX称为成功概率(表中01p). 8.几何分布:在独立重复试验中,某事件第一次发生时,

所作试验的次数也是一个正整数的离散型随机变量.“k”表示在第k次独立重复试验时事件第一次发生.如果把k次试验时事件A发生记为kA

、事件A不发生记为

kA,()kpAp, ()(1)kpAqqp,那么

112311231()()()()()()()kkkkkPkPAAAAAPAPAPAPAPAqpLL

(0,1,2,k…, pq1) 于是得到随机变量的概率分布如下:  1 2 3

… k …

X 0 1 P 1p p P p pq 2qp … 1kqp

称这样的随机变量服从几何分布, 记作(,)gkp 1kqp

,其中0,1,2,k…,pq1

9.超几何分布:一般地,设有N件产品,其中有M(M≤N)件次品,从中任取n(n

≤N)件产品,用X表示取出的n件产品中次品的件数,那么PXk (其中k为非负整数).如果一个随机变量的分布列由上式确定,那么称X服从参数,,NMn的超几何分布.

0 1 2

m

00nMNMnNCCC 11nMNMnNCCC 22nMNMnNCCC … mnmMNMnNCCC

10.求离散型随机变量分布列的步骤:1要确定随机变量的可能取值有哪些.明确

取每个值所表示的意义;2分清概率类型,计算取得每一个值时的概率(取球、抽取产品等问题还要注意是放回抽样还是不放回抽样;3列表对应,给出分布列,并用分布列的性质验证. 11.几种常见的分布列的求法:1取球、投骰子、抽取产品等问题的概率分布,关键

是概率的计算.所用方法主要有化归法、数形结合法、对应法等,对于取球、抽取产品等问题,还要注意是放回抽样还是不放回抽样.2射击问题:若是一人连续射击,且限制在n次射击中发生k次,则往往与二项分布联系起来;若是首次命中所需射击的次数,则它服从几何分布,若是多人射击问题,一般利用相互独立事件同时发生的概率进行计算. 3对于有些问题,它的随机变量的选取与所问问题的关系不是很清楚,此时要仔细审题,

明确题中的含义,恰当地选取随机变量,构造模型,进行求解. 典例分析: 考点一 由古典概型求离散型随机变量的分布列 问题1.(2013)一个盒子里装有7卡片, 其中有红色卡片4, 编号分别为

1,2,3,4;白色卡片3, 编号分别为2,3,4. 从盒子中任取4卡片 (假设取到任何一

卡片的可能性相同). (Ⅰ) 求取出的4卡片中, 含有编号为3的卡片的概率. (Ⅱ) 在取 出的4卡片中, 红色卡片编号的最大值设为X, 求随机变量X的分布列和数学期望. 考点二 由统计数据求离散型随机变量的分布列 问题2.(2010)某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水

线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为490,495,495,500,…,510,515,由此得到样本的频率分布直方图,如图所示.

1根据频率分布直方图,求重量

超过505 克的产品数量. 2在上述抽取的40件产品中任取

2件,设Y为重量超过505克的产

品数量, 求Y的分布列. 3从流水线上任取5件产品,

求恰有2件产品合格的重量 超过505克的概率. 考点二 两点分布 问题3.一个盒子中装有5个白色玻璃球和6红色玻璃球,从中摸出两球.当两球全为

红色玻璃球时,记0X;当两球不全为红色玻璃球时,记为1X.试求X的分布列.

考点三 超几何分布 问题4.(2012)已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,

取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和.1求X的分布列;2求X的数学期望EX. 走向高考: 1.(2012)设为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,

0;当两条棱平行时,的值为两条棱之间的距离;当两条棱异面时,1.

1求概率(0)P; 2求的分布列,并求其数学期望()E.

2.(2013)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一

个红球得1分,取出一个黄球2分,取出蓝球得3分. 1当1,2,3cba时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,

记随机变量为取出此2球所得分数之和,.求分布列;2略 3.(2011)某饮料公司招聘一名员工,现对其进行一项测试,以便确定工资级别.公司准

备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2800元;否则月工资定为2100元.令X表示此人选对A饮料的杯数.假设次人对A和B两种饮料没有鉴别能力. 1求B的分布列;2求此员工月工资的期望. 4.(2011)为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产

品中分别抽取14件和5件,测量产品中微量元素,xy的含量(单位:毫克).下表是乙厂的5件产品的测量数据:

1已知甲厂生产的产品共98件,求乙厂生产的产品数量;

2当产品中的微量元素,xy满足x≥175且y≥75时,该产品为优等品,用上述样本数

据估计乙厂生产的优等品的数量; 3从乙厂抽出的上述5件产品中,随即抽取2件,求抽取的2件产品中优等品数的分

布列及其均值(即数学期望).

编号 1 2 3 4 5 x 169 178 166 175 180

y 75 80 77 70 81 5.(2013)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装

有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一.二.三等奖如下: 奖级 摸出红、蓝球个数 获奖金额 一等奖 3红1蓝 200元 二等奖 3红0蓝 50元 三等奖 2红1蓝 10元 其余情况无奖且每次摸奖最多只能获得一个奖级. 1求一次摸奖恰好摸到1个红球的概率;

2求摸奖者在一次摸奖中获奖金额X的分布列与期望EX.

相关文档
最新文档