过程控制仪表
过程控制与自动化仪表课程设计

过程控制与自动化仪表课程设计前言过程控制与自动化仪表课程是工程领域中非常重要的基础课程之一,它涉及到工程研发、生产运营以及企业管理等多个方面。
本文将介绍一种基于实践的课程设计方法,旨在让学生深入掌握过程控制与自动化仪表的基础知识。
设计目标•确定学生对过程控制与自动化仪表的基本概念和技术掌握程度。
•培养学生的设计和实验能力,让他们能够运用所学知识分别设计并完成过程控制实验和自动化仪表实验。
•提高学生的团队合作和沟通能力,通过设计项目的过程,激发学生的创新潜力。
设计内容过程控制实验设计实验一:温度控制系统设计在该实验中,学生需要设计一个基于PID控制算法的温度控制系统。
通过调整控制器的参数,让温度快速稳定在设定值附近,并且能够在温度变化时快速响应和自适应调整。
实验二:流量控制系统设计在该实验中,学生需要设计一个基于比例控制算法的流量控制系统。
通过调整控制器的参数,让流量在设定值附近稳定,并且能够在流量变化时快速响应和自适应调整。
自动化仪表实验设计实验三:温度传感器的实现在该实验中,学生需要实现一个基于热电偶的温度传感器。
通过校准测试,让学生了解测量误差来源和校准方法。
实验四:流量计的实现在该实验中,学生需要实现一个流量计,通过实验测试让学生了解其特性和测量误差来源。
设计方法阶段一:学习基础概念和技术在本阶段,学生需要学习过程控制和自动化仪表的基础概念和技术,包括控制系统、PID控制器、量程、精度等方面的知识。
阶段二:组建设计小组在本阶段,每个小组需要选择一个相对复杂的课程设计内容,进行深入的研究和讨论,拟定初步设计方案。
阶段三:设计与实现在本阶段,学生需要分成小组,负责具体的实验设计与实现。
在设计的过程中,需要充分考虑过程控制和自动化仪表的基本原理和设计要求。
在实现的过程中,需要用到软件工具和实验平台。
阶段四:实验测试与评价在本阶段,学生需要对实验设计进行测试,并记录数据处理结果。
测试过程中需要考虑实验中的各种随机与不确定因素。
过程控制及自动化仪表总结

练习题
一台具有比例积分控制规律的DDZ-III型控制器, 其比例度δ为200%时,稳态输出为5mA。在某瞬 间,输入突然变化了0.5 mA,经过30s后,输出由 5mA变为6mA,试问该控制器的积分时间TI为多 少?
比例积分控制器,列写出PI控制算式。KP =1, TI=2分钟,当输入是幅值为A的阶跃信号时,2分 钟后输出的变化量是多少?
练习题
什么是仪表的测量范围及上、下限和量程?彼此 有什么关系?
练习题
什么是仪表的测量范围及上、下限和量程?彼此 有什么关系? 用于测量的仪表都有测量范围,测量范围的最 大值和最小值分别称为测量上限和测量下限, 量程是测量上限值和测量下限值的差,用于表 示测量范围的大小。 已知上、下限可以确定量程,但只给出量程则 无法确定仪表的上、下限以及测量范围。
4、简单控制系统
n 了解简单控制系统的结构、组成及作用 n 掌握简单控制系统中被控变量、操纵变量选择的一般 原则 n 了解各种基本控制规律的特点及应用场合 n 掌握控制器正、反作用确定的方法 n 掌握控制器参数工程整定的方法
主要内容
★分析给定的系统 ★制定控制方案 被控对象、被控变量、操纵变量、执行器、控制器 ★画出控制系统的方框图 ★选择执行器的气开、气关 ★选择控制器的控制规律
差压式液位计的工作原理是什么?当测量密闭 有压容器的液位时,差压计的负压室为什么一定 要与气相相连接?
练习题
差压计三阀组的安装示意图如图所示, 它包括两个切断阀和一个平衡阀。 安装三阀组的主 要目的是为了在开 停表时,防止差压计单向受到很大的 静压力,使仪表产生附加误差,甚至 损坏。为此,必须正确地使用三阀组。 具体步骤是:
★选择控制器的正作用、反作用
过程控制与自动化仪表PPT

图1-9 过渡过程品质指标示意图
假定自动控制系统在阶跃输入作用下,被控变量的 变化曲线如上图所示,这是属于衰减振荡的过渡过程
过程控制与自动化仪表
37
五种重要品质指标之一
1. 最大动态偏差或超调量
最大动态偏差是指在过渡过程中,被控变量偏 离稳态值的幅度。在衰减振荡过程中,最大偏差 就是第一个波的峰值。特别是对于一些有约束条 件的系统,如化学反应器的化合物爆炸极限、触 媒烧结温度极限等,都会对最大偏差的允许值有 所限制。
发散震荡过程
X
过程控制与自动化仪表
34
预备知识
○、数学模型的基本概念 一、控制系统的运动微分方程 二、非线性数学模型的线性化
微分方程 传递函数 脉冲响应函数
三、拉氏变换和拉氏反变换 四、传递函数
五、系统方框图和信号流图
六、控制系统传递函数推导举例
11/19/2019 过程控制与自动化仪表
自动化仪表 与
过程控制
1
概念
自动化:机器设备、系统或过程(生产、管理过程)在没
有人或较少人的直接参与下,按照人的要求,经过自动检测、 信息处理、分析判断、操纵控制,实现预期的目标的过程。
电力
过程控制 石油
煤炭
自动化钢铁运动控制Fra bibliotek冶金 化工
过程控制与自动化仪表
2
过程控制
过程控制----泛指石油、化工、电力、冶金、核能
态,这种状态就是静态。
过程控制与自动化仪表
29
动态——被控变量随时间变化的不平衡状态 。
从干扰作用破坏静态平衡,经过控制,直到系统 重新建立平衡,在这一段时间中,整个系统的各个环 节和信号都处于变动状态之中,这种状态叫做动态。
过程控制系统与仪表 王再英 第3章 控制仪表-2010

y = K pe
3.1 基本控制规律及特点
3.1.2 比例控制(P) 比例控制( )
杠杆(控制器) 杠杆(控制器) 浮球:测量元件 浮球:
活塞阀
图3-3 简单的自力式 比例控制系统示意图
29
3.1 基本控制规律及特点
原来系统处于平衡, 原来系统处于平衡,进 水量与出水量相等, 水量与出水量相等,此时进 水阀有一开度。 水阀有一开度。 t=0时 t=0时,出水量阶跃增 加,引起液位下降,浮球下 引起液位下降, 移带动进水阀开大。 移带动进水阀开大。 当进水量增加到与出水 量相等时,系统重新平衡, 量相等时,系统重新平衡, 液位也不再变化。 液位也不再变化。
y = K pe
(3-3) )
K p为放大倍数(比例增益),它的大小决定了比例控制作用 为放大倍数(比例增益), ),它的大小决定了比例控制作用 的强弱。 K p越大,比例控制作用越强。 的强弱。 越大,比例控制作用越强。
24
3.1 基本控制规律及特点
3.1.2 比例控制(P) 比例控制( )
y = K pe
(3-3) )
比例度: 比例度:就是指控制器输入偏差的相对变化值与相应的输出的 相对变化值之比,用百分数表示: 相对变化值之比,用百分数表示:
e P= x −x min max
ymax
y − ymin
× 100%
(3-4) )
式中: 为输入偏差 为相应的输出变化量 为输入偏差; 为相应的输出变化量; 式中:e为输入偏差;y为相应的输出变化量; (xmax − xmin )为测量输入的最大变化量,即控制器的输入量程; 为测量输入的最大变化量,即控制器的输入量程; ( y max − y min )为输出的最大变化量,即控制器的输出量程。 为输出的最大变化量,即控制器的输出量程。
过程控制与自动化仪表-第三版-课后答案

答:
过程控制系统设计的主要步骤:
1。确定控制目标;
2.选择被控参数;
3。选择控制量;
4。确定控制方案;
5。选择控制策略;
6.选择执行器;
7.设计报警和联锁保护系统;
8.系统的工程设计;
9.系统投运、调试和整定调节器的参数。
(8)通常过程控制系统可分为哪几种类型?试举例说明。
答:
过程控制系统按结构不同主要分为三类:
1。反馈控制系统:反馈控制系统是根据被控参数与给定值的偏差进行控制的,最终达到或消除或减小偏差的目的,偏差值是控制的依据。它是最常用、最基本的过程控制系统.
2.前馈控制系统:前馈控制系统是根据扰动量的大小进行控制的,扰动是控制的依据.由于没有被控量的反馈,所以是一种开环控制系统。由于是开环系统,无法检查控制效果,故不能单独应用.
过程控制系统的一般性框图如图1-1所示:
图1—1过程控制系统的一般性框图
(3)单元组合式仪表的统一信号是如何规定的?
答:
各个单元模块之间用统一的标准信号进行联络。
1)模拟仪表的信号:气动0.02~0.1MPa;电动Ⅲ型:4~20mADC或1~5V DC.
2)数字式仪表的信号:无统一标准。
(4)试将图1—2加热炉控制系统流程图用方框图表示。
答:
体积流量是以体积表示的瞬时流量.质量流量是以质量表示的瞬时流量。瞬时流量和累积流量可以用体积表示,也可以用重量或质量表示。
瞬时流量:单位时间内流过工艺管道某截面积的流体数量.
累积流量:某一段时间内流过工艺管道某截面积的流体总量。
(12)某被测温度信号在40~80℃范围内变化,工艺要求测量误差不超过±1%,现有两台测温仪表,精度等级均为0。5级,其中一台仪表的测量范围为0~100℃,另一台仪表的测量范围为0~200℃,试问:这两台仪表能否满足上述测量要求?
《过程控制与自动化仪表》—教学教案

《过程控制与自动化仪表》课程教案一、相关知识1. 自动控制定义是指在没有人直接参与的情况下,利用外加设备或控制装置使生产 过程或被控对象中的某一物理屋或多个物理虽自动地按照期望的规律 运行或变化。
这种外加的设备或控制装置就称为自动控制装置。
2. 过程控制定义是指根据工业生产过程的特点,采用测虽仪表、执行机构和计算机 等自动化工具,应用控制理论,设计工业生产过程控制系统,实现工业 生产过程的自动化。
3. 发展过程(1 ) 20世纪50年代,单输入单输出的单回路定值控制系统,多采 用基地式仪表、气动组合仪表和气动仪表控制器来完成简单控制。
(2 ) 20世纪60年代,集中控制及直接数字控制。
电动仪表开始使 用,并逐步取代气动仪表,单元组合式仪表和组装式仪表。
(3 ) 20世纪70年代,集散控制系统(DCS 先进控制技术、数字 化仪表、计算机,特别是网络通信技术的进一步发展,体现“分散控制, 集中管理“的理念。
(4 ) 20世纪70年代,集散控制系统(DCS 先进控制技术、数字 化仪表、计算机,特别是网络通信技术的进一步发展,体现“分散控制, 集中管理“的理念。
4. 开环与闭环的概念 (1 )开环控制系统开环控制是最简单的一种控制方式。
它的特点是,仅有从输入到输 出的前向通路,而没有从输出到输入的反馈通路。
缺点:控制精度取决于组成系统的元件的精度,因此对元器件的要 求比较高。
由于输出屋不能反馈回来影响控制部分,所以输出虽受扰动 信号的影响比较大,系统抗干扰能力差。
案例分析:教学 时间教学内容85分钟(大屏幕投 影) 讲解过程控 制的基本概(大屏幕投 影) 解说开环控 制系统,举例 分析,让学生 加深印象图1-2厲流电动机转速丿「•环控制示意图(2) 闭环控制系统不仅有一条从输入端到输出端的前向通路,还有一条从输出端到输 入端的反馈通路。
输出虽通过一个测虽变送元件反馈到输入端,与输入 量比较后得到偏差信号来作为控制器的输入,反馈的作用是减小偏差, 以达到满意的控制效果。
过程控制及自动化仪表-复习重点知识点

1, 测量温度的方法:接触式,非接触式。
2, 热电偶:当两种不同导体货半导体连接成闭合回路时,若两个节点温度不同,回路中就会出现热电动势并产生电流。
3, 第三导体定律:除热电偶A, B两种导体外,又插入第三种导体C组合成闭合回路,只要插入的第三种导体的两个接点温度相等,它的接入对回路毫无影响。
4, 测量某一点压力及大气压力之差,当这点的压力高于大气压力时,此差值称为表压。
5, 利用弹性元件受压产生变形可以测量压力。
常用的弹性测压元件有:弹簧管(常用), 水纹管及膜片三类。
6, 流量检测仪表:节流式流量计(在管道中放入肯定的节流元件,依据节流元件的推力或在节流元件前后形成的压差测量)分为:压差, 靶式, 转子流量计。
7, 热导式气体分析仪是一种物理式的气体分析仪。
依据不同气体具有不同的热传导实力这一特性,通过测定混合气体的导热系数,推算出其中某些成分含量。
(0度时H2为7.150,He为7.150)8, 调整器的作用:把测量值和给定值进行比较,依据偏差大小,按肯定的调整规律产生输出信号,推动执行器,对生产过程进行自动调整。
9, 调整规律:他的输出量及输入量(偏差信号)之间具有什么样的函数关系。
10, 比例调整特点:对干扰有及时而有力的抑制作用,但存在静态误差,是一种静差调整。
11, 积分调整特点:能够消退静差,即当有偏差存在时积分输出将随时间变化,当偏差消逝时输出能保持在某一值上不变。
但动作过于缓慢,过渡过程时间长,易造成系统不稳定。
12, 微分调整器:能在偏差信号出现或变化瞬间,马上依据变化趋势,产生调整作用,是偏差尽快的消退于萌芽状态之中。
但对静态片差毫无抑制实力,不能单独运用。
13, 在PID三作用调整器中,微分作用主要爱用来加快系统动作速度,削减超调,克服震荡。
积分作用主要用来消退静态误差。
将比例, 积分, 微分三种调整规律结合在一起,即可达到快速灵敏,又可达到平稳精确,只要协作得当便可得到满足的调整效果。
过程控制系统与仪表课后习题答案完整版

第1章思考题与习题1-1过程控制有哪些主要特点?为什么说过程控制多属慢过程参数控制?解答:1.控制对象复杂、控制要求多样2.控制方案丰富3.控制多属慢过程参数控制4.定值控制是过程控制的一种主要控制形式5.过程控制系统由规范化的过程检测控制仪表组成1-21-4解答:(PID)12.按系统的结构特点分类:(1)反馈控制系统(2)前馈控制系统(3)前馈—反馈复合控制系统1-5什么是定值控制系统?解答:在定值控制系统中设定值是恒定不变的,引起系统被控参数变化的就是扰动信号。
1-6什么是被控对象的静态特性?什么是被控对象的动态特性?二者之间有什么关系?解答:被控对象的静态特性:稳态时控制过程被控参数与控制变量之间的关系称为静态特性。
被控对象的动态特性:。
系统在动态过程中,被控参数与控制变量之间的关系即为控制过程的动态特性。
二者之间的关系:1-7试说明定值控制系统稳态与动态的含义。
为什么在分析过程控制系统得性能时更关注其动态特性?解答:稳态:只有将控1-8;残余偏差C:过渡过程结束后,被控参数所达到的新稳态值y(∞)与设定值之间的偏差C称为残余偏差,简称残差;调节时间:从过渡过程开始到过渡过程结束所需的时间;振荡频率:过渡过程中相邻两同向波峰(或波谷)之间的时间间隔叫振荡周期或工作周期,其倒数称为振荡频率;峰值时间:过渡过程开始至被控参数到达第一个波峰所需要的时间。
1-10某被控过程工艺设定温度为900℃,要求控制过程中温度偏离设定值最大不得超过80℃。
现设计的温度定值控制系统,在最大阶跃干扰作用下的过渡过程曲线如图1-4所示。
试求该系统过渡过程的单项性能指标:最大动态偏差、衰减比、振荡周期,该系统能否满足工艺要求? 解答:最大动态偏差A :C C C A ︒=︒-︒=50900950衰减比n :1:5900910900950=--=n振荡周期T :(min)36945=-=TA<80C ︒,且n>1(衰减振荡),所以系统满足工艺要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章过程控制仪表本章提要1.过程控制仪表概述2.DDZ-川型调节器3.执行器4.可编程控制器授课内容第一节概述过程控制仪表---是实现工业生产过程自动化的重要工具,它被广泛地应用于石油、化工等各工业部门。
在自动控制系统中,过程检测仪表将被控变量转换成电信号或气压信号后,除了送至显示仪表进行指示和记录外,还需送到控制仪表进行自动控制,从而实现生产过程的自动化,使被控变量达到预期的要求。
过程控制仪表包括调节器(也叫控制器)、执行器、操作器,以及可编程调节器等各种新型控制仪表及装置。
过程控制仪表的分类:按能源形式分类:液动控制仪表、气动控制仪表和电动控制仪表。
按结构形式分类:基地式控制仪表、单元组合式控制仪表、组件组装式控制仪表、集散控制装置等。
[基地式控制仪表]以指示、记录仪表为主体,附加某些控制机构而组成。
基地式控制仪表特点:一般结构比较简单、价格便宜.它不仅能对某些工艺变量进行指示或记录,而已还具有控制功能,因此它比较适用于单变量的就地控制系统。
目前常使用的XCT系列动圈式控制仪表和TA系列简易式调节器即属此类仪表。
[单元组合式控制仪表]将整套仪表划分成能独立实现一定功能的若干单元,各单元之间采用统一信号进行联系。
使用时可根据控制系统的需要,对各单元进行选择和组合,从而构成多种多样的、复杂程度各异的自动检测和控制系统。
特点:使用灵活,通用性强,同时,使用、维护更作也很方便。
它适用于各种企业的自动控制。
广泛使用的单元组合式控制仪表有电动单元组合仪表(DDZ型)和气动单元组合仪表(QD2型)。
[组件组装式控制仪表]是一种功能分离、结构组件化的成套仪表(或装置)。
它以模拟器件为主,兼用模拟技术和数字技术。
整套仪表(或装置)在结构上由控制柜和操作台组成,控制柜内安装的是具有各种功能的组件板,采用高密度安装,结构紧凑。
这种控制仪表(或装置)特别适用于要求组成各种复杂控制和集中显示操作的大、中型企业的自动控制系统。
其中国产的TF型、MZ-川型以及SPEC200等组装仪表即属此类控制仪表。
按信号形式分类:模拟控制仪表和数字控制仪表两大类。
其中DDZ型仪表和QDZ型仪表都属于模拟控制仪表;SLPC可编程调节器、KMM可编程调节器、PMK可编程调节器等都属于数字控制仪表。
过程控制仪表的发展:过程控制仪表的主体是气动控制仪表和电动控制仪表,它们的发生和发展分别经历了基地式、单元组合式(I型、n型、川型)、组装式及数字智能式等几个阶段。
过程控制仪表的信号制与传输方式:为方便有效地把自动化系统中各类现场仪表与控制室内的仪表和装置连接起来,构成各种各样的控制系统,仪表之间应有统一的标准信号进行联络和合适的传输。
调节器(控制器)分类:按能源形式可分电动、气动等按信号类型可以分为模拟式和数字式两大类按结构形式可分为基地式、单元组合式、组装式以及集散控制系统。
第二节DDZ-皿型调节器(模拟式控制器)1.有关DZZ-m型电动单元调节器的概述控制器(调节器)-----是控制系统的核心,它在闭环控制系统中根据设定目标和检测信息作出比较、判断和决策命令,控制执行器的动作。
控制器使用是否得当,直接影响控制质量。
控制器特性-----是指控制器的输出与输入之间的关系。
分析控制器的特性,也就是分析控制器的输出信号u(t)随输入情号e(t)变化的规律,即控制器的控制规律。
控制器的基本控制规律有比例、积分和微分等几种。
工业上所用的控制规律是这些基本规律之间的不同组合。
DDZ —m型电动单元调节器-----是模拟式控制器个较为常见的一种,它以来自变送器或转换器的1〜5V直流测量信号作为输入信号,与1〜5V直流设定值早相比较得到偏差信号,然后对此信号进行PID运算后,输出I〜5V或4〜20mA 直流控制信号,以实现对工艺变量的控制。
m型调节器的特点:采用高增益、高阻抗线性集成电路组件,提高了仪表精度、稳定性相可靠性,降低了功耗。
采用集成电路扩展了功能,在基型调节器的基础上可增加各种功能。
如非线性调节器可以解决严重非线性过程的自动控制问题,前馈调节器可以解决大扰动及大滞后过程的控制,还可以根据需要在调节器上附加一些单元,女口偏差报警、输出双向限幅及其他功能的电路。
整套仪表可以构成安全火花型防爆系统. 而且增加了安全单元一一安全栅,实现控制室与危险场所之间的能量限制和隔离。
有软、硬两种手动操作方式,软手动与自动之间相互切换具有双向无平衡无忧动特性,提高了调节器的操作性能。
这是因为在自动与软手动之间有保持状态,此时调节器输出可长期保持不变,所以即使有偏差存在,也能实现无扰动切换。
所谓无扰动切换,是指调节器在不同操作方式切换瞬间保持输出值不变,这样调节阀的开度也将保持不变,不会内于调节器不同操作方式的切换引起被控变量发生变化,即不会产生干扰。
采用国际标准信号制, 现场传输信号为4〜20mA 直流电流,控制室联络信 号为1〜5V 直流电压,信号电流和电压的转换电阻为250 Q om 型调节器中的基型调节器类型:全刻度指示调节器、偏差指示调节器基型全刻度指示调节器的原理方框图:團4-2全劇度帘云调节器线踣原理用F调节器结构组成:控制单元、指示单元控制单元:输入电路(偏差差动和电平移动电路)、PID 运算电路(由PD 与 PI 运算电路串联)、输出电路(电压、电流转换电路)以及硬、软手操电路; 指示单元:测量信号指示电路、设定信号指示电路、内设定电路。
调节器的信号:输入信号、内设定信号:1〜5V 直流电压;外设定信号: 4〜20mA 直流电流,(它经过250 Q 精密电阻转换成 1〜5V 直流电压)调节器的工作状态:有“自动”、“软手动”、“硬手动”及“保持”四种。
设足2価V s就手播1 1斡内T-sv帕制单尤PD电踣I -SV描示单尤 设定円电路1 A基型全刻度指示调节器的原理线路图:佈亞电J1F 『电翎CZZ-・Ia11前甲曲#*电Jt__ __ T^_ 一 亠 _ Im — ------------- -------------- «re —“自动”状态:测量信号与设定信号通过输入电路进行比较,由比例微分电路、比例积分电路对其偏差进行PD和PI运算后,再经过电路转换为4〜20mA直流电流,作为调节器的输出信号去控制执行器。
“软手动”状态:可以通过选择键位调节器处于“保持’’(即它的输出保持切换前瞬间的数值)状态,或使输出电流可按快或慢两种速度线性地增加或减小,以对工艺过程进行手动控制。
“硬手动”状态:调节器的输出与手操电压成比例,即输出值与硬手动操作杆的位置-------------- 对应。
调节器的“正”、“反”作用:正偏差——调节器中将偏差e定义为测量值与设定值之差(e= y —r),在测量值大于设定值时。
负偏差-----测量值小于设定值。
“正”作用-----调节器的输出随着正偏差的增加而增加。
若是负偏差,情况相反。
“反”作用-----调节器的输出随着正偏差的增加而减小。
若是负偏差,情况相反。
2. 输入电路作用:一是将测量信号V i和设定信号V s相减,得到偏差信号,再将偏差放大两倍后输出;(其输出信号将送至比例微分电路。
)二是电平移动,将以零伏为基准的V i和V s转换成以电平V B(10V)为基准的输出信号V。
!。
电路图:电路分析:输入电路的传递函数:V o!(S)V i(s) -V s(s)3. 比例微分电路(PD)作用:接收以10V电平为基准的偏差信号V oi,进行比例微分运算,其输出电压信号V O2送给比例积分电路。
电路图:电路分析:比例微分电路是由无源比例微分网络和比例运算放大器两部分组成的。
RC环节对输入信号进行比例微分运算,比例运算放大器起比例放大作用。
比例微分电路的传递函数:4. 比例积分电路(PI)作用:接收以10V为基准的PD电路的输出信号V O2,进行PI运算后,输出以10V 为基准的I〜5V电压V O3,送至输出电路。
电路图:电路分析:5. 整机PID 电路传递函数调节器的PID 电路由输入电路、PD 电路和PI 电路三个环节串联组成。
其传递 函数应是这三个环节传递函数的乘积。
调节器各项参数的取值范围: (略)由于相互干扰系数 F 的存在,实际的整定参数与刻度值之间存在换算关系。
6. 输出电路作用:将PID 电路输出的I 〜5V 直流电压信号转换成 4—20mA 直流电流输出,调节赛PID 电路恂谨曲数方框凰它实际上是一个具有电平移动的电压一电流转换器。
电路图:电路分析:(略)7. 手动操作电路手动操作电路分为硬手动操作和软手动操作两种形式,是在比例积分电路中附加手操电路实现的。
电路图:P24VKg电路分析:(略)8. 指示电路输入信号的指示电路与设定值信号的指示电路完全一样。
调节器采用双针电表, 全量程地指示测量值和设定值。
偏差的大小有两个指针间的距离反映出来,在两针重合时,偏差为零。
电路图:电路分析:(略)第二节执行器1. 有关执行器的概述执行器作用:接受调节器的控制信号,改变操纵变量,使生产过程按预定要求 正常进行。
执行器安装在生产现场直接与介质接触。
执行器组成:由执行机构和调节机构组成。
执行机构是指根据调节器控制信号 产生推力或位移的装置,调节机构是根据执行机构输出信号去改变能量或物料 输送量的装置,通常指调节阀。
执行器分类(按能源形式):气动、电动、液动 气动应用最广,电动次之。
气动:输入信号为0.02〜O.IMPa 的压力信号,其结构简单,维修方便, 价格便 宜,防火防爆,可以与 QDZ 、DDZ 仪表配用,因而广泛使用。
电动:动作迅速,其信号便于远传,并便于与计算机配合使用,但不适用于防 火防爆等生产场合。
上述三种执行器除执行机构不同外,所用的调节机构(调节阀)都相同。
2. 电动执行机构电动执行器有直行程和角行程执行器两类。
电动执行机构的组成框图:500K R J>00K标定500 kRY 1500K330nR2()n图4期电动执行机枸松图电动执行机构的工作原理:来自调节器的h 作为伺服放大器的输入信号,它与位置反馈信号I f 进行比较,其差值经放大后控制两相伺服电动机正转或反转,再经减速器减速后,改变输出轴 即调节阀的开度(或挡板的角位移)。
与此同时,输出轴的位移又经位置发送器转换 成电流信号,作为阀位指示与反馈信号 I f 。
当I f 与h 相等时,两相电动机停止转动, 这时调节阀的开度就稳定在与调节器输出 (即执行器的输入)信号,成比例的位置上。
电动伺服放大器:它由前置级磁放大器、触发器、交流可控硅开关、校正回路 和电源等组成。
伺服电动机:包括永磁低速同步电动机、位置发送器和减速器等。
3. 气动执行机构结构组成:膜片、推杆、平衡弹簧作用:是执行器的推动装置,推动调节机构动作。