分插复用器(OADM)结构原理和应用

分插复用器(OADM)结构原理和应用
分插复用器(OADM)结构原理和应用

学院:理学院

专业名称:光信息科学与技术年级: 2009级

学号:

姓名:

一、摘要 ----------------------------------------------------------------------------------------------------------------- 3

二、引言 ----------------------------------------------------------------------------------------------------------------- 3

三、光分插复用技术概念 ------------------------------------------------------------------------------------------- 3

四、OADM几种典型结构 ------------------------------------------------------------------------------------------ 4

1、基于声光可调谐滤波器(AOTF)的OADM ------------------------------------------------------------ 4

2、基于磁调谐FBG的OADM ------------------------------------------------------------------------------ 4

3、基于波长光栅路由器(WGR)的0ADM技术 --------------------------------------------------------- 5

4、基于分波器+空间交换单元+合波器型的OADM技术-------------------------------------------- 6

5耦合单元+滤波单元+合波器型的OADM技术-------------------------------------------------------- 6

五、OADM的应用---------------------------------------------------------------------------------------------------- 7

1、OAOM在WDM全光网络中的应用------------------------------------------------------------------- 7

2、OADM在OCDMA全光网络中的应用 --------------------------------------------------------------- 8

六、OADM的前景展望---------------------------------------------------------------------------------------------- 9

七、参考文献 ----------------------------------------------------------------------------------------------------------- 9

光分插复用器(OADM)的结构原理和应用一、摘要

本文主要介绍了光分插复用器(OADM)的结构和应用,由于WDM全光网络的发展,其特点是节点的光子化,但由于目前还缺乏实用的光逻辑器件,因此采用电控光交换是一个可行的方案,因此出现了OCDM,本文从

OCDM的原理、结构和应用及前景展望等方面介绍了OADM。

关键词:光分插复用器(OADM)、全光网络、波分复用

二、引言

这篇论文主要介绍了光分插复用器的结构原理及其应用前景。对WDM 全光网而言,其关键技术是光分插复用(OADM:Optical Add and Drop Multiplexer)、光交叉连接(OXC)与密集波分复用(DWDM)技术。因此光分插复用器(OADM)在光纤通信尤其是全光网络通信中有着重要的作用。采用光分插复用器(OADM)构成的WDM网络环形网不仅具有很强的生存性,而且大大增加了节点的吞吐容量,突破了传统网络中电子瓶颈的限制。OADM环形网的核心设备成为人们研究的热点。

三、光分插复用技术概念

光分差复用器英文名称是optical add-drop multiplexer。简写为OADM。其定义为对多波长光信号,一种能从中分出单个光波长信号,或将单个光波长信号加入到多波长光信号中的光波分复用设备。光分插复用(OADM)可以看作是OXC的功能简化OADM 光分插复用器是一种用滤光器或分用器从波分复用传输链路插入或分光信号的设备。它是光传送网(OTN)的关键网元,可以不经光/电/光转换和电处理,就能实现波分复用信道的分插功能,也就是说OADM在光域实现了传统的电SDH分插复用器在时域内完成的功能,因而在光网络中有着极大的应用前景。

四、OADM 几种典型结构

1、基于声光可调谐滤波器(AOTF)的OADM

声光调谐滤波器是一种以声光相互作用原理为基础的新型器件,它具有调谐范围宽,滤波带宽窄,驱动功率低等优点。它的核心结构是一个由双折射材料制成的波导,假设入射光能量都处于TE 模中,一个只选择TM 模式光能量的偏振器位于波导的另一端,当选定波长附近的一个窄光带的光能量转换成TM 模时,其他光能量继续以TE 模传播。因此相当于一个波长选择滤波器。之所以能发生TE 模和TM 模之间的互换,是由于当超声波在波导中传输时,引起波导材料周期性疏密变化,直接导致波导折射率周期性变化,形成一个光纤布拉格光栅(FEjG),若光栅周期为T ,输入光是完全偏振的TE 模,只有满足布拉格条件的光才能生模式转换。

图1是基于AOTF 的OADM 示意图上路波长光信号和输入的WDM 信号中的同波长

光信号偏振方向垂直,它们进入AOTF 后,输入的WDM 信号经偏振分束器(PBS)分成TM 模和TE 模后进入声波波段选频.厂控制的模式转换单元,选频厂针对不同的下路波长进行调谐,所选波长的光的TM 模和TE 模发生模式转换,之后经下一个PBS 后从下路端口输出到本地,其他的WDM 波长没有发生模式变换从输出端口到输出光纤,而上路波长经模式转换单元后也从输出端口输出到光纤上。

2、基于磁调谐FBG 的OADM

它是由两个相同的三端口光环行器,多个中心波长的磁调谐的FBG 和波长复用/解复用器构成的,如图2所示 ,复用的光信号(1λ, ……n λ)从左端光环形器的端口1输入,从右端光环形器的端口3输出。本地上载的信号通过右端光环行器的端口1输入,并经相应的光栅反射也从光环形器的端口3输出,从而继续在干线上传输。FBG 的作用是从传输的信号中反射要下载或上载的信号,光环行器的作用除提供输入输出端口外,并且使由FBG 反射的信号改变传输方向。此结构的最大特点是将每个FBG 设计为磁调谐结构,可以得到较宽的调谐范围和较快的调谐速度。磁调谐的FBG 是这种OADM 的核心设备,它由写入布拉格光栅的光纤,固定磁铁,螺

旋管线圈构成。螺旋管线圈用来产生可控磁场,磁极和FBG被插入到螺旋管线圈中,当脉冲电流强度在螺旋管线圈内变化时,磁极间中心磁场的磁化强度以毫秒量级快速改变,感应磁场诱发磁力作用施加于FBG,使其布拉格波长向长波方向偏离。

3、基于波长光栅路由器(WGR)的0ADM技术

WGR是一种具有光栅结构的双向波长路由器,若一个方向输入为复用方式,则令一个输入为解复用方式[7l。输出端口的解复用下载的波长顺序与输入端口有关。如果DWDM 信号对应于WGR的N个波长,输入端口序号和输出端口序号分别为1~N,输出端口1~N的解复用波长分别为~,当DWDM 波长信号从输入端口1进入时,输出端口1~N的解复用波长分别为,~一1,当从输入端口2进入时,输出端口的解复用波长分别为一1 ,入l~一2,所以在WGR信号的输入端用光开关来选择DWDM 信号的不同输入口,由此决定下路波长,实现OADM 的可调谐性。WGRA的作用是把输出的N个波长依次在控制信号控制下进行交换,复用信号可通过解复用器解复用。上路信号与支路中的信号一起进入WGRB,然后以复用方式合波为DWDM信号,经选择开关进入光纤中传输。具体结构如图3。

4、基于分波器+空间交换单元+合波器型的OADM技术

这种方案是目前比较流行的分插复用技术的解决方案。方案中的分波器可以是普通的解复用器, 波长交换单元一般采用开关和开关阵列, 合波器可以采用耦合器和复用器, 因此整个OADM的串扰水平主要是由解复用器所决定的。目前解复用器的隔离度通常不低于25 dB (通道间隔0.8 nm )。但如果复用器也采用滤波器型器件, 会大大减小系统的串扰。目前解复用器可以做到的隔离度达到0.8 nm/25 dB以上,能够满足系统要求.图2和图3是对这种方案的具体实现.图2是基于解复用器和光开关的OADM,空间交换单元采用光开关,图3是基于解复用器和开关阵列的OADM,空问交换单元采用光开关阵列.机械2×2光开关的插损、隔离度性能相当优越,但开关速度较慢,在毫秒量级;固态光开关的开关速度虽然较快,在微秒甚至纳秒量级,但插入损耗、隔离等重要指标目前均不如机械光开关.此种结构的分插复用单元,串扰主要来自合/分波器,但如果合波器也采用滤波器型器件,会大大减小系统的串扰.这是目前较为流行的解分复用方案。

图4 基于解复用器好光开关的OADM 在图4中,对于采用1×8的解复用器,能力,由于采用了光转发器(Transponder),则8×8的光交叉矩阵使光波长具有无堵塞交叉任意波长光信号均可以插入。

图5 基于解复用器和开关阵列的OADM

5耦合单元+滤波单元+合波器型的OADM技术

这种类型的方案中, 耦合单元一般为普通的耦合器(Coupler)或光环形器(Optical Circulator) 等, 滤波单元有光纤光栅( FBG) 、法- 伯腔( F- P) 滤波器等, 合波器为普通的耦合器和复用器。这类方案的OADM性能则主要取决于滤波单元的性能。就目前的器件水平,光纤光栅的隔离度高于20 dB/0.8 nm,而F—P腔的隔离度性能更好,可达40 dB/O.8 nm,前者温度性能较好.图5是目前较为普遍采用的一种OADM 方案,输入WDM信号经开关选路, 每路的光栅对应一个波长, 被光栅反射的波长经环形器下路到本地, 其它的输入WDM信号波长通过光栅经环形器跟本地节点的上路信号合波,继续向前传输。这个方案同样可以根据开关和光栅来任意选择上下话路的波长, 但开关的使用同样会带来延时和损耗问题。因此如果对图4 的方案进行简化———不使用开关, 只做单个固定单波长的上下话路就有很好的性能, 整个光路在上下话路的过程中是没有断路的, 几乎没有延时, 但是缺点就是没有调谐能力。

图6 基于光栅和开关的OADM

图6是采用F-P腔滤波器的OADM.输入的WDM 信号经F-P腔滤波器后,下路需要的波长到本地节点,其他波长被反射后继续向前传输.本地节点到干线的业务使用与下路相同的波长上路到输出线上.它的突出优点在于F-P腔滤波器的连续可调性,因此可根据需要选择上下路任意的波长.

五、OADM的应用

1、OAOM在WDM全光网络中的应用

图7 是采用O A D M/o X C 的全光网络结构。光分插复用器(OA D M )允许不同光网络的不同波长信号在不同的地点分插复用, 光交叉连接(O XC) 设备允许不同网络可以动态组合, 按需分配波长资源, 实现更大范围的网络互连。光分插复用器(O A D M )和光交叉连接(O X C) 设备只将需要在节点下载的信息送人处理设备(包括AT M 交换机、S D H 交换机和IP路由器), 而不需要本节点处理的信息直接由光信道从本节点通过, 从而大大提高节点处理信息的效率,服电处理节点必须对所有到达的IP 包进行处理的缺点。

图7 采用OADM/OXC的WDM全光网络结构

2、OADM在OCDMA全光网络中的应用

光码分多址(OCDMA)技术是很好的全光网组网技术, 它避免了通信设备的“电子瓶颈”效应和网络协议的排队延迟, 能实现高速信息传输和快步异步信息接入。采用OCDMA 技术构成的全光主干网,信息的上下路既可以在节点中进行, 也可以在光纤线路经过的任何地点进行, 而且不会影响光纤线路上其他用户的正常传输, 它克服了传统网络中信息的上下路只能在节点中进行的限制。图8 是O DMA 全光网络开放结构, 光上下路可以按需要在两个光交叉连接节点或光交换节点之间随时进行。

图8 OADM在OCDMA全光网络中的应用

六、OADM的前景展望

目前光的处理技术还没有取得根本性的突破,不少光元器件性能还不成熟,而且价格昂贵,这一切限制了光节点设备的广泛应用。因此在实验室里,新型的光学元件、新的光信号处理技术、新的节点结构仍然是众多科研人致力的研究方向。例如对双芯光纤的研究,对新型光开关的研究,对光纤光栅构成的系统的研究E4]等。光网络如何面向需求,提供更多的业务一如VPN等、提供更好的Qcs服务,是光网络设备研究的另一个主要方向。作为WDM全光通信网的核心设备的光分插复用器,对全光网的传输能力、组网方式、关键性能都具有重要影响。目前我国无论是在全光通信网的研究方面,还是在相关的核心技术及产品设备的研制开发方面均远远落后于其他发达国家。而建设一个高度透明、灵活以及超大容量的国家骨干网不仅可以为未来的国家信息基础设施奠定一个坚实的基础,而且对下一世纪我国的信息产业和国民经济的腾飞及国家的安全具有极其重要的战略意义。为此,跟踪世界先进水平,深入开展全光网相关技术的研究,并最终形成具有自主知识产权的科技成果和商用化产品,已成为国内相关领域的科研机构和企业界的当务之急。目前,国家“863”计划正立项开展“中围高速信息示范网”的研究和开发,而OADM是其中的一项重大课题,相信通过国家的支持,国内各相关单位的协同攻关,从各个方面很好的带动和促进我国信息网的建设和信息网关建设设备的产业化进程,为我国在信息技术领域走在世界前列赢得了宝贵的优势,相信在当前的有利形势下,我国的光网络通信一定会在世界上占有一席之地。

七、参考文献

[1]样祥林、孟宇.光纤通信系统(第2版)[M],北京:国防工业出版社2009.06.

[2]董海峰、蔡茂国、样淑雯.光分差复用器技术及其应[N].深圳大学学报(理工版)2002.6.

[3]郑小平.光插分复用(OADM)及其应用[J].激光集锦,第13卷第2、3期.

[4]胡国庆、孙超、王钰、曹芳、韦琳.光插分复用原理及其应用[J].中国新通信(技术版)2009.01.

[5]戈丽萍.WDM全光通信网技术及其发展[J].科技与经济,2006年第22期.

[6]谢次琳.光网络中的分差复用技术[J],网络通信与安全,2001.09.

多路复用器、模拟开关设计指南 第十二版

MUX & SWITCH
Data Sheets
DESIGN GUIDE
Free Samples
ANALOG
Applications Notes
1
1
e Futurcts Produ
!
SOT
/ Maxim ( SPST )
+2.0V
+5.5V
: +25° C 0.5 SOT23-5 1 MAX4544 SOT23 PDA 1 +2.0V
MAX4626/MAX4627/MAX4628
+5.5V 50ns t ON 50ns t OFF MAX4501/MAX4502 MAX4514/MAX4515 TC7S66F Maxim MAX4644 / : MAX4661–MAX4669 ±15V 1.25 5 ( SPDT )
MAX4624/MAX4625 +25 °C MAX4626/MAX4627/MAX4628 MAX4624 ( BBM ) ( MBB ) MAX4625
6
MAX4680/MAX4690/MAX4700
+25 °C ( MAX4624* MAX4625* MAX4626* MAX4627* MAX4628*
* —
RON )
+25 °C
RON () 6 6 5 5 5
– SOT23 SOT23 SOT23 SOT23 SOT23
(ns) tON 50 50 50 50 50 t OFF 50 50 50 50 50
1 2 3 4 5 6 7 8 9 10 11 12
1 1 0.5 0.5
/
0.3 0.3 0.2 0.2 0.2
0.5

电动机的基本结构及工作原理

电动机的基本结构及工作原理 交流电机分异步电机和同步电机两大类。异步电机一般作电动机使用,拖动各种生产机械作功。同步电机分分为同步发电机和同步电动机两类。根据使用电源不同,异步电机可分为三相和单相两种型式。 一、异步电动机的基本结构 三相异步电动机由定子和转子两部分组成。因转子结构不同又可分为三相笼型和绕线式电机。 1、三相异步电动机的定子: 定子主要由定子铁心、定子绕组和机座三部分组成。定子的作用是通入三相对称交流电后产生旋转磁场以驱动转子旋转。定子铁心是电动机磁路的一部分,为减少铁心损耗,一般由0.35~0.5mm厚的导磁性能较好的硅钢片叠成圆筒形状,安装在机座内。定子绕组是电动机的电路部分,安嵌安在定子铁心的内圆槽内。定子绕组分单层和双层两种。一般小型异步电机采用单层绕组。大中型异步电动机采用双层绕组。机座是电动机的外壳和支架,用来固定和支撑定子铁心和端盖。 电机的定子绕组一般采用漆包线绕制而成,分三组分布在定子铁心槽内(每组间隔120O),构成对称的三相绕组。三相绕组有6个出线端,其首尾分别用U1、U2;V1、V2;W1、W2表示,连接在电机机壳上的接线盒中,一般3KW以下的电机采用星形接法(Y接),3KW以上的电机采用三角形接法(△接)。当通入电机定子的三相交流电相序改变后,因定子的旋转磁场方向改变,所以电机的转子旋转方向也改变。

2、三相异步电动机的转子: 转子主要由转子铁心、转子绕组和转轴三部分组成。转子的作用是产生感应电动势和感应电流,形成电磁转矩,实现机电能量的转换,从而带动负载机械转动。转子铁心和定子、气隙一起构成电动机的磁路部分。转子铁心也用硅钢片叠压而成,压装在转轴上。气隙是电动机磁路的一部分,它是决定电动机运行质量的一个重要因素。气隙过大将会使励磁电流增大,功率因数降低,电动机的性能变坏;气隙过小,则会使运行时转子铁心和定子铁心发生碰撞。一般中小型三相异步电动机的气隙为0.2~1.0mm,大型三相异步电动机的气隙为1.0~1.5mm。 三相异步电动机的转子绕组结构型式不同,可分为笼型转子和绕线转子两种。笼型转子绕组由嵌在转子铁心槽内的裸导条(铜条或铝条)组成。导条两端分别焊接在两个短接的端环上,形成一个整体。如去掉转子铁心,整个绕组的外形就像一个笼子,由此而得名。中小型电动机的笼型转子一般都采用铸铝转子,即把熔化了的铝浇铸在转子槽内而形成笼型。大型电动机采用铜导条;绕线转子绕组与定子绕组相似,由嵌放在转子铁心槽内的三相对称绕组构成,绕组作星形形联结,三个绕组的尾端连结在一起,三个首端分别接在固定在转轴上且彼此绝缘的三个铜制集电环上,通过电刷与外电路的可变电阻相连,用于起动或调速。 3、三相异步电动机的铭牌: 每台电动机上都有一块铭牌,上面标注了电动机的额定值和基本技术数据。铭牌上的额定值与有关技术数据是正确选择、使用和检修电动机的依据。下面对铭牌中和各数据加以说明: 型号异步电动机的型号主要包括产品代号、设计序号、规格代号和特

照相机的组成及工作原理

本文摘自再生资源回收-变宝网(https://www.360docs.net/doc/e010554125.html,)照相机的组成及工作原理 照相机简称相机,是一种利用光学成像原理形成影像并使用底片记录影像的设备。很多可以记录影像设备都具备照相机的特征。 一、照相机的组成 镜头 取景器 快门和光圈 输片计数机构 机身 二、照相机的工作原理 照相机品种繁多,按用途可分为风光摄影照相机、印刷制版照相机、文献缩微照相机、显微照相机、水下照相机、航空照相机、高速照相机等;按照相胶片尺寸,可分为110照相机(画面13×17毫米)、126照相机(画面28×28毫米)、135照相机(画面24×18,24×36毫米)、127照相机(画面45x45毫米)、120照相机(包括220照相机,画面60×45,60×60,60×90毫米)、圆盘照相机(画面8.2x10.6毫米);按取景方式分为透视取景照相机、双镜头反光照相机、单镜头反光照相机。 三、照相机的分类划分 1、照相机根据其成像介质的不同

可以分为胶片相机与数码照相机以及宝丽来相机。胶片相机主要是指通过镜头成像并应用胶片记录影像的设备。而数码照相机则是应用半导体光电耦合器件和数字存储方法记录影像的摄影设备,有使用方便,照片传输方便,保存方便等特点。宝丽来相机又称一次成像相机,是将影象直接感光在特种像纸上,可在一分钟内看到照片,合适留念照等。 2.按照相机使用的胶片和画幅尺寸 可分为35mm照相机(常称135照相机)、120照相机、110照相机、126照相机、中幅照相机、大幅照相机、APS相机、微型相机等。135照相机使用35mm胶片,其所拍摄的标准画幅为24mm X 36mm,一般每个胶卷可拍照36张或24张。 3.按照相机的外型和结构 可分为平视取景照相机(VIEWFINDER)和单镜头反光照相机(单反相机)。此外还有折叠式照相机、双镜头反光相机、平视测距器相机(RANGFINDER)、转机、座机等等。 4.按照相机的快门形式 可分为镜头快门照相机(又称中心快门照相机)、焦平面快门照相机、程序快门照相机等。 5.按照相机具有的功能和技术特性

照相机成像原理和构造

照相机成像原理和构造 光博会后看到照相机后的观后感,了解照相机原理及构造,以下资料来自专业人士介绍以及所学工程光学教材知识。 照相机的镜头是一个凸透镜,来自物体的光经过凸透镜后,在胶卷上形成一个缩小、倒立的实像。 胶卷上涂着一层感光物质,它能把这个像记录下来,经过显影、定影后成为 底片,用底片洗印就得到相片。 照相时,物体离照相机镜头比较远,像是倒立、缩小的。 照相机是用于摄影的光学器械。被摄景物反射出的光线通过照相镜头(摄景物镜)和控制曝光量的快门聚焦后,被摄景物在暗箱内的感光材料上形成潜像,经冲洗处理(即显影、定影)构成永久性的影像,这种技术称为摄影术。

最早的照相机结构十分简单,仅包括暗箱、镜头和感光材料。现代照相机比较复杂,具有镜头、光圈、快门、测距、取景、测光、输片、计数、自拍等系统,是一种结合光学、精密机械、电子技术和化学等技术的复杂产品。 1550年,意大利的卡尔达诺将双凸透镜置于原来的针孔位置上,映像的效果比暗箱更为明亮清晰;1558年,意大利的巴尔巴罗又在卡尔达诺的装置上加上光圈,使成像清晰度大为提高;1665年,德国僧侣约翰章设计制作了一种小型的可携带的单镜头反光映像暗箱,因为当时没有感光材料,这种暗箱只能用于绘画。 1822年,法国的涅普斯在感光材料上制出了世界上第一张照片,但成像不太清晰,而且需要八个小时的曝光。1826年,他又在涂有感光性沥青的锡基底版上,通过暗箱拍摄了一张照片。 1839年,法国的达盖尔制成了第一台实用的银版照相机,它是由两个木箱组成,把一个木箱插入另一个木箱中进行调焦,用镜头盖作为快门,来控制长达三十分钟的曝光时间,能拍摄出清晰的图像。 1860年,英国的萨顿设计出带有可转动的反光镜取景器的原始的单镜头反光照相机;1862年,法国的德特里把两只照相机叠在一起,一只取景,一只照相,构成了双镜头照相机的原始形式;1880年,英国的贝克制成了双镜头的反光照相机。 随着感光材料的发展,1871年,出现了用溴化银感光材料涂制的干版,1884年,又出现了用硝酸纤维(赛璐珞)做基片的胶卷。 随着放大技术和微粒胶卷的出现,镜头的质量也相应地提高了。1902年,德国的鲁道夫利用赛得尔于1855年建立的三级像差理论,和1881年阿贝研究成功的高折射率低色散光学玻璃,制成了著名的“天塞”镜头,由于各种像差的降低,使得成像质量大为提高。在此基础上,1913年德国的巴纳克设计制作了使用底片上打有小孔的、35毫米胶卷的小型莱卡照相机。 不过这一时期的35毫米照相机均采用不带测距器的透视式取景器。1930年制成彩色胶卷;1931年,德国的康泰克斯照相机已装有运用三角测距原理的双像重合测距器,提高了调焦准确度,并首先采用了铝合金压铸的机身帘快门。

(完整版)机械原理知识点归纳总结

第一章绪论 基本概念:机器、机构、机械、零件、构件、机架、原动件和从动件。 第二章平面机构的结构分析 机构运动简图的绘制、运动链成为机构的条件和机构的组成原理是本章学习的重点。 1. 机构运动简图的绘制 机构运动简图的绘制是本章的重点,也是一个难点。 为保证机构运动简图与实际机械有完全相同的结构和运动特性,对绘制好的简图需进一步检查与核对(运动副的性质和数目来检查)。 2. 运动链成为机构的条件 判断所设计的运动链能否成为机构,是本章的重点。 运动链成为机构的条件是:原动件数目等于运动链的自由度数目。 机构自由度的计算错误会导致对机构运动的可能性和确定性的错误判断,从而影响机械设计工作的正常进行。 机构自由度计算是本章学习的重点。 准确识别复合铰链、局部自由度和虚约束,并做出正确处理。 (1) 复合铰链 复合铰链是指两个以上的构件在同一处以转动副相联接时组成的运动副。 正确处理方法:k个在同一处形成复合铰链的构件,其转动副的数目应为(k-1)个。 (2) 局部自由度 局部自由度是机构中某些构件所具有的并不影响其他构件的运动的自由度。局部自由度常发生在为减小高副磨损而增加的滚子处。 正确处理方法:从机构自由度计算公式中将局部自由度减去,也可以将滚子及与滚子相连的构件固结为一体,预先将滚子除去不计,然后再利用公式计算自由度。 (3) 虚约束 虚约束是机构中所存在的不产生实际约束效果的重复约束。 正确处理方法:计算自由度时,首先将引入虚约束的构件及其运动副除去不计,然后用自由度公式进行计算。 虚约束都是在一定的几何条件下出现的,这些几何条件有些是暗含的,有些则是明确给定的。对于暗含的几何条件,需通过直观判断来识别虚约束;对于明确给定的几何条件,则需通过严格的几何证明才能识别。 3. 机构的组成原理与结构分析 机构的组成过程和机构的结构分析过程正好相反,前者是研究如何将若干个自由度为零的基本杆组依次联接到原动件和机架上,以组成新的机构,它为设计者进行机构创新设计提供了一条途径;后者是研究如何将现有机构依次拆成基本杆组、原动件及机架,以便对机构进行结构分类。 第三章平面机构的运动分析 1.基本概念:速度瞬心、绝对速度瞬心和相对速度瞬心(数目、位置的确定),以及“三心定理”。 2.瞬心法在简单机构运动分析上的应用。 3.同一构件上两点的速度之间及加速度之间矢量方程式、组成移动副两平面运动构件在瞬时重合点上速度之间和加速度的矢量方程式,在什么条件下,可用相对运动图解法求解? 4.“速度影像”和“加速度影像”的应用条件。 5.构件的角速度和角加速度的大小和方向的确定以及构件上某点法向加速度的大小和方向的确定。 6.哥氏加速度出现的条件、大小的计算和方向的确定。 第四章平面机构的力分析 1.基本概念:“静力分析”、“动力分析”及“动态静力分析” 、“平衡力”或“平衡力矩”、“摩擦角”、“摩擦锥”、“当量摩擦系数”和“当量摩擦角”(引入的意义)、“摩擦圆”。 2.各种构件的惯性力的确定: ①作平面移动的构件; ②绕通过质心轴转动的构件;

多光谱相机原理及组成

多光谱相机原理及组成 多光谱成像技术自从面世以来,便被应用于空间遥感领域。而随着搭载平台的小型化和野外应用的需求,光谱成像仪在农业、林业、军事、医药、科研等领域的需求也越来越大。而在此之前成像技术并没有那么高,只能对特定的单一的谱段进行成像。虽然分辨率高但是数据量大难以进行分析、存储、检索,而多光谱成像是将所有的信息结合在一起,这不仅仅是二维空间信息,同时也把光谱的辐射信息也包含在内,从而在更宽的谱段范围内成像。 多光谱相机的基本构成 1.光学系统 可以在各个谱段内范围内成像,可以很好的的控制杂散光,是多光谱相机最重要的部分,对工作谱段范围和分辨能力起了决定性的作用,还可以设定工作焦距视场角大小等 2.控制和信息处理器 控制监督多光谱相机的整个工作过程,并收集图像数据,并进行储存。 3.热控装置 由温度控制器、隔热材料、散热器、热控涂层等组成 4.其他结构 物镜、电路系统、探测器及其他零配件 多光谱相机的工作谱段范围 人眼所能能识别的光谱区间为可见光区间,波长从400nm到700nm;普通数码相机的光谱响应区间与人眼识别的光谱区间相同,包含蓝、绿、红、三个波段;而多光谱相机的工作谱段范围在其基础上,可以分可见光、近红外光、紫外光等每台多光谱相机的分辨率不同,所应用的领域也不同 就比如说我们在做植被调查的时候,植被的可见光波段对绿色比较敏感对红色和蓝色反射较弱。相对于可见光波段,植被在近红外波段具有很强的反射特性,多数植被在可见光波段的光谱差异很小。而在近红外波段的光谱差异更大,光谱差异越明显越有利于分类。 光谱特性 我们知道像素运用复杂的大气准则来,复原反射光谱和辐射光谱所的到的数据分析,得到不同物质的反射率不同,称之为光谱特征。如果有足够的光谱特证,可用于识别场景中的专用材质,其中包括光谱范围、宽度、分辨率。范围是指相机获取图像来自的光谱段,谱段的宽度反映了谱段设置的要求、通过努力衡量大气中物质的光谱特性还有传感器的光谱响应,就要考虑大气中的吸收和散射。多光谱相机的光学系统 光学系统是指由透镜、反射镜、棱镜和光阑等多种光学元件按一定次序组合成的系统。通常用来成像或做光学信息处理。曲率中心在同一直线上的两个或两个以上折射(或反射)球面组成的光学系统称为共轴球面系统,曲率中心所在的那条直线称为光轴。其中参数包括焦距、视场角、相对孔径等。 多光谱相机的反射光学系统 如果光学系统中的光学镜片为反射镜,则此系统称之为反射系统,反射式光学系统最大的优势就在于其光谱范围很大,对各个谱段都适用,并且不需要矫正二级光谱,但是因选用的是非球面镜片,会使系统的加工和装配变得十分困难,增加制作工艺难度

电动机结构与工作原理

电动机结构与工作原理 三相异步电动机 实现电能与机械能相互转换的电工设备总称为电机。电机是利用电磁感应原理实现电能与机械能的相互转换。把机械能转换成电能的设备称为发电机,而把电能转换成机械能的设备叫做电动机。 在生产上主要用的是交流电动机,特别三相异步电动机,因为它具有结构简单、坚固耐用、运行可靠、价格低廉、维护方便等优点。它被广泛地用来驱动各种金属切削机床、起重机、锻压机、传送带、铸造机械、功率不大的通风机及水泵等。对于各种电动机我们应该了解下列几个方面的问题:(1)基本构造;(2)工作原理;(3)表示转速与转矩之间关系的机械特性;(4)起动、调速及制动的基本原理和基本方法;(5)应用场合和如何正确使用。 三相异步电动机的结构与工作原理 1.三相异步电动机的构造 三相异步电动机的两个基本组成部分为定子(固定部分)和转子(旋转部分)。此外还有端盖、风扇等附属部分,如图5-1所示。 1).定子 三相异步电动机的定子由三部分组成:

2).转子 三相异步电动机的转子由三部分组成: 鼠笼式电动机由于构造简单,价格低廉,工作可靠,使用方便,成为了生产上应用得最广泛的一种电动机。 为了保证转子能够自由旋转,在定子与转子之间必须留有一定的空气隙,中小型电动机的空气隙约在0.2~1.0mm之间。 2.三相异步电动机的转动原理 1).基本原理 为了说明三相异步电动机的工作原理,我们做如下演示实验,如图5-2所示。

(1).演示实验:在装有手柄的蹄形磁铁的两极间放置一个闭合导体,当转动手柄带动蹄形磁铁旋转时,将发现导体也跟着旋;若改变磁铁的转向,则导体的转向也跟着改变。 (2).现象解释:当磁铁旋转时,磁铁与闭合的导体发生相对运动,鼠笼式导体切割磁力线而在其内部产生感应电动势和感应电流。感应电流又使导体受到一个电磁力的作用,于是导体就沿磁铁的旋转方向转动起来,这就是异步电动机的基本原理。 转子转动的方向和磁极旋转的方向相同。 (3).结论:欲使异步电动机旋转,必须有旋转的磁场和闭合的转子绕组。

(完整word版)三相分离器结构及工作原理

一、三相分离器结构及工作原理 1.三相分离器的工艺流程 所有来油经游离水三项分离器分离再添加破乳剂进入换热器加热升温至70~75℃然后进入高效三相分离器进行分离,分离器压力控制在0.15~0.20Mpa,油液面控制在80~100cm、水液面控制在100~120cm,除油器进出口压差控制在0.2Mpa,处理合格后的原油含水率控制在2%左右经稳定塔闪蒸稳定后进入原油储罐,待含水小于0.8%后外输至管道。 2.三相分离器工作原理 各采油队来液由分离器进液管进入进液舱,容积增大,流速降低,缓冲降压,气体随压力的降低自然逸出上浮,在进液舱油、气、水靠比重差进行初步分离。分离后的水从底部通道进入沉降室。经过分离的液体经过波纹板时,由于接触面积增加,不锈钢波纹板又具有亲水憎油的特性,再进行油、气、水的分离。随后进入沉降室,靠油水比重差进行分离;通过加热使液体温度增加,增加油水分子碰撞机会,加大了油水比重差;小油滴和小水滴碰撞机会多聚结为大油滴和大水滴,加速油水分离速度;油上浮、水下沉实现油、水进一步分离;油、气和水通过出口管线排出。 2.1重力沉降分离 分离器正常工作时,液面要求控制在1/2~2/3之间。在分离器的下部分是油水分离区。经过一定的沉降时间,利用油和水的比重差实现分离。 2.2 离心分离 油井生产出来的油气混合物在井口剩余压力的作用下,从油气分离器进液管喷到碟形板上使液体和气体,在离心力的作用下气体向上,而液体(混合)比重大向下沉降在斜板上,向下流动时,还有一部分气体向气出口方向流去,当气体流到削泡器处,需改变气体的流动方向,气体比重小,在气体中还有一部分大于100微米的液珠与消泡器碰撞掉下沉降到液面上,同时液面上的油泡碰撞在削泡器,使气体向上流动,完成了离心的初步气液分离 2.3碰撞分离 当离心分离出来的气体进入分离器上面除雾器,气体被迫绕流,由于油雾的密度大,在气体流速加快时,雾状液体惯性力增大,不能完全的随气流改变方向,而除雾器网状厚度300mm截面孔隙只有0.3mm小孔道,雾滴随气流提高速度,获得惯性能量,气体在除雾器中不断的改变方向,反复改变速度,就连续造成雾滴与结构表面碰撞并吸附在除雾器网上。吸附在除雾器网上油雾逐渐累起来,由大变小,沿结构垂直面流下,从而完成了碰撞分离。

相机工作原理

工作原理 在单反数码相机的工作系统中,光线透过镜头到达反光镜后,折射到上面的对焦屏并结成影像,透过接目镜和五棱镜,可以在观景窗中看到外面的景物。与此相对的,一般数码相机只能通过LCD屏或者电子取景器(EVF)看到所拍摄的影像。显然直接看到的影像比通过处理看到的影像更利于拍摄。从取景器中看到的影响是通过:一次反射(面镜)、二次全反射(五菱镜)CCD获取图像信息是当拍摄的瞬间面镜弹起来,然后打开快门暴光的。 在DSLR拍摄时,当按下快门钮,反光镜便会往上弹起,感光元件(CCD或CMOS)前面的快门幕帘便同时打开,通过镜头的光线便投影到感光原件上感光,然后后反光镜便立即恢复原状,观景窗中再次可以看到影像。单镜头反光相机的这种构造,确定了它是完全透过镜头对焦拍摄的,它能使观景窗中所看到的影像和胶片上永远一样,它的取景范围和实际拍摄范围基本上一致,十分有利于直观地取景构图。 单反相机取景器 单反相机的取景器称为TTL(Through The Lens)单反取景器。这是专业相机上必备的取景方式,也是真正没有误差、通过镜头的光学取景器。这种取景器的取景范围可达实拍画面的95%。惟一缺点就是如果镜头过小,取景器会很暗淡,影响手动对焦。不过现在都具备自动对焦,这一点已无大碍。当然,如用了TTL单反取景器,为了不使取景器过暗,厂家自会用大口径高级镜头,所以目前单反相机的镜头普遍较大,就是这个因素造成的。从取景器中看到的影响是通过:一次反射(面镜)、二次全反射(五菱镜)CCD获取图象信息是当拍摄的瞬间面镜弹起来,然后打开快门暴光的。 反光镜的翻起动作带来了一些问题: 拍摄照片的瞬间,取景器会被挡住。由于被遮挡的时间只是刹那间的事情,因此这对于立即复位的反光镜来说并不是什么主要问题。但是,又引出了一些偶然性问题。例如,在使用频闪光拍摄时,将不能通过取景器看到频闪装置是否闪光正常。 反光镜运动的噪声。这在需要安静的场所这可能会成为重要问题。由于测距取景式照相机中没有突然阻挡光路的移动反光镜,所以不会产生这种噪声。 相机的震动,即由反光镜的翻起动作所造成的照相机整体的运动。假设用1/500秒的快门速度进行拍摄,那么不必担心。这种震动不至被察觉。但是,如果以较低的快门速度拍摄一幅精确照片的话,比如在微弱的光线下使用远摄镜头进行拍摄时,这种震动对成像就可能很成问题。 使用SLR取景还存在另一个问题。比如我们想使用f/32这样的小光圈进行拍摄,而光圈f/32允许进入镜头的光线是非常微弱的,这会导致取景器中看到的影像也很暗淡,可能会难以聚焦。 单反相机主要特点 单反数码相机的一个很大的特点就是可以交换不同规格的镜头,这是单反相机天生的优点,是普通数码相机不能比拟的。 单反就是指光线直接照到取景器上,而不用通过棱镜的反射! 光线损失的少!

用多路复用器扩展MCU串口

用多路复用器扩展MCU串口 多微控制器(MCU)/微机组成的分布式、主从式系统是现代复杂通信、控制系统的典型解决方案。分布式环境下的多机协同,要求系统状态和控制信息在多机间进行快速传递,这通常借助简单有效的串行通信方式。现有的微控制器一般所带的串行接口非常适用于点对点通信的场合;但对于实时性要求高的多机通信场合,这类接口必须在串口数量和功能上进行扩展,才能满足对实时性要求较高的应用场合的需要。 ?本文讨论了一种适用于多机实时环境下的、新的可重配置串口扩展方案。图1为本方案框图。多路复用器是本方案的硬件核心。方案的要点是利用Mux动态地将MCU的串口在串行通道间切换,以达到串口扩展的目的。本文中MCU 以89C51为例,Mux 以MAX353为例。 ?MAX353 是Maxim公司推出的高性能多路复用器,实际可构成两对单刀单掷模拟开关,两对开关状态由一个引脚控制。MAX353基本参数为导通电阻小于35Ω;导通时间小于175ns,关断时间小于145ns。以上参数完全满足本方案的使用要求。 ?以下介绍本串口扩展方案的基本工作原理。 ?两串行通道和MAX353、89C51的连接两串行通道CH1,CH2通过多路复用器MAX353接到89C51的串口,多路复用器MAX353由89C51的一个I/O引脚控制。其中串行通道CH2的输出TXD2同时接到89C51的外部中断输入请 求INT0或INT1上。为了适应各种串口通信协议的需要,可在电路中加上电平转换器件,如图1所示。 ?中断源的使用和设置CH1仍旧使用串口中断,而CH2使用外部中断INT0或INT1(下面以INT0为例)。当CH2有信息来时,TXD2上将出现起始标志:

气液分离器的原理

气液分离器采用的分离结构很多,其分离方法也有: 1、重力沉降; 2、折流分离; 3、离心力分离; 4、丝网分离; 5、超滤分离; 6、填料分离等。 但综合起来分离原理只有两种: 一、利用组分质量(重量)不同对混合物进行分离(如分离方法 1、2、3、6)。气体与液体的密度不同,相同体积下气体的质量比液体的质量小。 二、利用分散系粒子大小不同对混合物进行分离(如分离方法4、5)。液体的分子聚集状态与气体的分子聚集状态不同,气体分子距离较远,而液体分子距离要近得多,所以气体粒子比液体粒子小些。 一、重力沉降 1、重力沉降的原理简述 由于气体与液体的密度不同,液体在与气体一起流动时,液体会受到重力的作用,产生一个向下的速度,而气体仍然朝着原来的方向流动,也就是说液体与气体在重力场中有分离的倾向,向下的液体附着在壁面上汇集在一起通过排放管排出。 2、重力沉降的优缺点 优点: 1)设计简单。 2)设备制作简单。

3)阻力小。 缺点: 1)分离效率最低。 2)设备体积庞大。 3)占用空间多。 3、改进 重力沉降的改进方法: 1)设置内件,加入其它的分离方法。 2)扩大体积,也就是降低流速,以延长气液混合物在分离器内停留的时间。 1)设计简单。 2)设备制作简单。 3)阻力小。 缺点: 1)分离效率最低。 2)设备体积庞大。 3)占用空间多。 3、改进 重力沉降的改进方法: 1)设置内件,加入其它的分离方法。 2)扩大体积,也就是降低流速,以延长气液混合物在分离器内停留的时间。

优点:4、由于气液混合物总是处在重力场中,所以重力沉降也广泛存在。由于重力沉降固有的缺陷,使科研人员不得不开发更高效的气液分离器,于是折流分离与离心分离就出现了。 二、折流分离 1、折流分离的原理简述 由于气体与液体的密度不同,液体与气体混合一起流动时,如果遇到阻挡,气体会折流而走,而液体由于惯性,继续有一个向前的速度,向前的液体附着在阻挡壁面上由于重力的作用向下汇集到一起,通过排放管排出。 2、折流分离的优缺点 优点: 1)分离效率比重力沉降高。 2)体积比重力沉降减小很多,所以折流分离结构可以用在(高)压力容器内。 3)工作稳定。 缺点: 1)分离负荷范围窄,超过气液混合物规定流速后,分离效率急剧下降。 2)阻力比重力沉降大。 3、改进 从折流分离的原理来说,气液混合物流速越快,其惯性越大,也就是说气液分离的倾向越大,应该是分离效率越高,而实际情况却恰恰相反,为什么呢? 究其原因: 1)在气液比一定的情况下,气液混合物流速越大,说明单位时间内分离负荷越重,混合物在分离器内停留的时间越短。 2)气体在折流的同时也推动着已经着壁的液体向着气体流动的方向流动,如果液体流到收集壁的边缘时还没有脱离气体的这种推动力,那么已经着壁的液体将被气体重新带走。在气液比一定的情况下,气液混合物流速越大,气体这种继续推动液体的力将越大,液体将会在更短的时间内

重庆大学机械原理结构分析习题3第二章 平面机构的结构分析

第二章平面机构的结构分析 1.填空题: (1)机构具有确定运动的条件是;根据机构的组成原理,任何机构都可看成是由和组成的。 (2)由M个构件组成的复合铰链应包括个转动副。 (3)零件是机器中的单元体;构件是机构中的单元体。 (4)构件的自由度是指;机构的自由度是指。 (5)在平面机构中若引入一个高副将引入个约束,而引入一个低副将引入个约束,构件数、约束数与机构自由度的关系是。 (6)一种相同的机构组成不同的机器。 A.可以 B.不可以 (7)Ⅲ级杆组应由组成。 A.三个构件和六个低副; B.四个构件和六个低副; C.二个构件和三个低副。(8)内燃机中的连杆属于。 A.机器 B.机构 C.构件 (9)有两个平面机构的自由度都等于1,现用一个有两铰链的运动构件将它们串成一个平面机构,这时自由度等于。 A .0 B.1 C.2 (10)图1.10所示的四个分图中,图所示构件系统是不能运动的。 2.画出图1.11所示机构的运动简图。

3.图1.12所示为一机构的初拟设计方案。试求: (1)计算其自由度,分析其设计是否合理?如有复合铰链,局部自由度和虚约束需说明。(2)如此初拟方案不合理,请修改并用简图表示。 4.计算图1.13所示机构的自由度,判断是否有确定运动;若不能,试绘出改进后的机构简图。修改的原动件仍为AC杆(图中有箭头的构件)。 5.计算图1.14所示机构的自由度。 6.计算图1.15所示机构的自由度。

7.计算图1.16所示机构的自由度。 8.判断图1.17所示各图是否为机构。 9.计算图1.18所示机构的自由度。 10.计算图1.19所示机构的自由度。

制冷系统中油分离器结构及工作原理

制冷系统中油分离器结构及工作原理 一、油分离器与集油器 (一)油分离器的作用 在蒸汽压缩式制冷系统中,经压缩后的氨蒸汽(或氟利昂蒸汽),是处于高压高温的过热状态。由于它排出时的流速快、温度高。汽缸壁上的部份润滑油,由于受高温的作用难免成油蒸汽及油滴微粒与制冷剂蒸汽一同排出。且排汽温度越高、流速越快,则排出的润滑油越多。对于氨制冷系统来说,由于氨与油不相互溶,所以当润滑油随制冷剂一起进入冷凝器和蒸发器时会在传热壁面上凝成一层油膜,使热阻增大,从而会使冷凝器和蒸发器的传热效果降低,降低制冷效果。据有关资料介绍在蒸发表面上附有0.1mm油膜时,将使蒸发温度降低2.5℃,多耗电11~12%。所以必须在压缩机与冷凝器之间设置油分离器,以便将混合在制冷剂蒸汽中的润滑油分离出来。总结起来,油分离器的主要作用有: 1.确保润滑油返回到压缩机储油槽中,防止压缩机由于润滑油的缺乏而引起故障,延长压缩机适用寿命。 2.流动速度减小和流动方向变化的互相作用引起润滑油的聚集,这样在高温下分离出来的润滑油被集中收集,并自动返回到曲轴箱中,提高效率。 3.防止压缩机产生液击。 4.更好的发挥冷凝器和蒸发器的效率。 5.减小系统高压端的震动和噪音。 6.同时这些特点还可以会使得系统的电费用降低。 (二)油分离器的工作原理 大家都知道,汽流所能带动的液体微粒的尺寸是与汽流的速度有关。若把汽流垂直向上运动产生的升力与微粒的重量相平衡时的汽流速度称为平衡速度,并用符号ω表示。则显然当汽流速度等于平衡速度时,则微粒在汽流中保持不动;如果汽流速度大于平衡速度时则将微粒带走;而当汽流速度小于平衡速度,微粒就会跌落下来,从而使油滴微粒制冷剂汽流中分离出来。 油分离器的基本工作原理主要就是利用润滑油和制冷剂蒸气的密度不同;以及通道截面突然扩大,气流速度骤降(油分离器的筒径比高压排气管的管径大3~15倍,使进入油分离器后蒸气的流速从原先的10~25m/s下降至0.8~1m/s);同时改变流向,使密度较大的润滑油分离出来沉积在油分离器的底部。或利用离心力将油滴甩出去,或采用氨液洗涤,或用水进行冷却降低汽体温度,使油蒸汽凝结成油滴,或设置过滤层等措施来增强油的分离效果。 (三)油分离器的形式和结构目前常见的油分离器有以下几种:洗涤式、离心式、过滤式、及填料式等四种结构型式,下面分述它们的结构及工作原理。 1、洗涤式油分离器 洗涤式油分离器适用于氨系统,它的主体是钢板卷焊而成的圆筒,两端焊有钢板压制的筒盖和筒底。进汽管由筒盖中心处伸入至筒下部的氨液之内。进气管的下端焊有底板,管端

SGM48752 CMOS模拟多路复用器

SGM48752 CMOS Analog Multiplexer GENERAL DESCRIPTION The SGM48752 is a CMOS analog IC configured as two 4-channel multiplexers. This CMOS device can operate from 2.5V to 5.5V single supplies. Each switch can handle rail-to-rail analog signals. The off-leakage current is only 1nA at +25℃. All digital inputs can support 1.8V logic control I/O. The SGM48752 is available in Green SOIC-16 and TSSOP-16 packages. It operates over an ambient temperature range of -40℃ to +85℃. APPLICATIONS Battery-Operated Equipment Audio and Video Signal Routing Low-Voltage Data-Acquisition Systems Communications Circuits Automotive FEATURES q2534762101 ●Guaranteed On-Resistance 48? (TYP) with +5V Supply ●Guaranteed On-Resistance Match Between Channels ●Low Off-Leakage Current 1nA at +25℃ ●Low On-Leakage Current 1nA at +25℃ ●Optimized Rise Time and Fall Time of A, B Control Pins to Reduce Clock Feedthrough Effect ●2.5V to 5.5V Single-Supply Operation ●1.8V Logic Compatible ●Low Distortion: 0.7% (R L = 600?, f = 20Hz to 20kHz) ●High Off-Isolation: -83dB (R L = 50?, f = 1MHz) ●Low Crosstalk: -110dB (f = 1MHz) ●-40℃ to +85℃ Operating Temperature Range ●Available in Green SOIC-16 and TSSOP-16 Packages

数码相机的结构及工作原理

一、数码相机的组成:镜头、图像传感器、AD转换 器、CPU、存储芯片、LCD: 作用: 1、镜头:数码相机镜头作用与普通相机镜头作用相同。取景。分类:变焦镜头、定焦镜头。 2、图象传感器:(1)、作用:将光信号转变为电信号。图象传感器是数码相机的核心部件,其质量决定了数码相机的成像质量。图象传感器的体积通常很小,但却包含了几十万个乃至上钱万个具有感光特性的二极管――光电二极管。每个光电二极管即为一个像素。当有光线照射时,光电二极管就会产生电荷累积,光线越多,电荷累积的就越多,然后这些累积的电荷就会被转换成相应的像素数据。(2)、种类。电荷耦合器件(CCD):电路复杂,读取信息需在同步信号控制下一位一位地实地转移后读取,信息读取复杂,速度慢;要三组电源供电,耗电量大,但技术成熟,成像质量好。互补金属氧化物半导体(CMOS):电路简单,信息直接读取,速度较快,只需使用一个电源,耗电两小,为CCD的1/8到1/10;但个光电传感元件、电路之间距离近,相的光、电、磁干扰较严重,对图象质量影响很大。 3、A/D转换器(模拟数字转换器):作用,将模拟信号转换成数字信号的部件。指标:转换速度、量化精度量化精度对应于A /D转换器将每一个像素的亮度或色彩值量化为若干个等级,这个等 级就是数码相机的色彩深度。对于具有数字化接口的图象传感器(如CMOS),则不需A/D转换器。 4、MPU(微处理器)作用:通过对图象传感器的感光强弱程度进行分析,调节光圈和快门。系统结构:一般数码相机采用的微处理器模块的结构如图2所示,包括图象传感器数据处理DSP、SRAM控制器,显示控制器、JPEG编码器、UBS等接口、运算处理单音频接口(非通用模块)和图象传感器时钟生成器等功能模块。

机械原理机构的结构分析复习题

第2章机构的结构分析 1.判断题 (1)机构能够运动的基本条件是其自由度必须大于零。 (错误 ) (2)在平面机构中,一个高副引入两个约束。 (错误 ) (3)移动副和转动副所引入的约束数目相等。 (正确 ) (4)一切自由度不为一的机构都不可能有确定的运动。 (错误 ) (5)一个作平面运动的自由构件有六个自由度。 (错误 ) 2.选择题 (1) 两构件构成运动副的主要特征是( D )。 A .两构件以点线面相接触 B .两构件能作相对运动 C .两构件相连接 D .两构件既连接又能作一定的相对运动 (2) 机构的运动简图与( D )无关。 A .构件数目 B .运动副的类型 C .运动副的相对位置 D .构件和运动副的结构 (3) 有一构件的实际长度0.5m L =,画在机构运动简图中的长度为20mm ,则画此机 构运动简图时所取的长度比例尺l μ是( D )。 A .25 B .25mm/m C .1:25 D .0.025m/mm (4) 用一个平面低副连接两个做平面运动的构件所形成的运动链共有(B )个自由度。 A .3 B .4 C .5 D .6 (5) 在机构中,某些不影响机构运动传递的重复部分所带入的约束为(A )。 A .虚约束 B .局部自由度 C .复合铰链 D .真约束 (6) 机构具有确定运动的条件是( D )。 A .机构的自由度0≥F B .机构的构件数4≥N C .原动件数W >1 D .机构的自由度F >0, 并且=F 原动件数W (7) 如图2-34所示的三种机构运动简图中,运动不确定是( C )。 A .(a )和(b ) B .(b )和(c ) C .(a )和(c ) D .(a )、(b )和(c ) (8) Ⅲ级杆组应由( B )组成。 (a) (c) (b) 图2-34

多路复用器和模拟开关

多路复用器和模拟开关 多路复用器(MULTIPLEXER也称为数据选择器)是用来选择数字信号通路的;模拟开 关是传递模拟信号的,因为数字信号也是由高低两个模拟电压组成的,所以模拟开关也能 传递数字信号。 在CMOS多路复用器中,因为其数据通道也是模拟开关结构,所以也能用于选择多路模拟信号。但是TTL的多路复用器就不能选择模拟信号.。 用CMOS勺多路复用器或模拟开关传递模拟信号时要注意:模拟信号的变化值必须在正负电源电压之间,譬如要传递有正负半周的正弦波时,必须使用正负电源且电源电压大于传递的模拟信号峰值,这时其控制或地址信号必须以负电源电压为0,而以正电源电压为 1; 或者用单电源供电,而使模拟信号的变化中值在1/2电源电压上,传递之后再恢复到原来 的值。 一、常用CMO模拟开关引脚功能和工作原理 1. 四双向模拟开关 CD4066 CD4066的引脚功能如下图所示。每个封装内部有4个独立的模拟开关,每个模拟开关 有输入、输出、控制三个端子,其中输入端和输出端可互换。当控制端加高电平时,开关导通;当控制端加低电平时开关截止。模拟开关导通时,导通电阻为几十欧姆;模拟开关截止 时,呈现很高的阻抗,可以看成为开路。模拟开关可传输数字信号和模拟信号,可传输的模 拟信号的上限频率为 40MHz各开关间的串扰很小,典型值为一50dB。 2. 单八路模拟开关 CD4051 CD4051引脚功能如下图所示。CD4051相当于一个单刀八掷开关,开关接通哪一通道, 由输入的3位地址码ABC来决定。“INH”是禁止端,当“ INH” =1时,各通道均不接通。此外,CD4051还设有另外一个电源端 VEE以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的 CMO电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰—峰值达 15V 的交流信号。例如,若模拟开关的供电电源VDD斗5V, VSS=0V 当VEE=- 5V时,只要对此模拟开关施加0?5V的数字控制信号,就可控制幅度范围为-5V? + 5V的模拟信号。

多路复用器和比较器

实验六触发器的仿真 班级信安二班姓名李丽瑶学号201208060212 指导老师袁文澹 一、实验目的 1.用逻辑图和VHDL语言设计D锁存器,并进行仿真与分析; 2.参看QuartusⅡ中器件7474(边沿D触发器)的逻辑功能,用VHDL语言设计边沿触发式D触发器,并进行仿真与分析。 3.参看QuartusⅡ中器件7476(边沿JK触发器)的逻辑功能,用VHDL语言设计边沿触发式JK触发器,并进行仿真与分析。 二、实验内容 一、1、功能:锁存器 锁存器(Latch)是一种对脉冲电平敏感的存储单元电路,它们可以在特定输入脉冲电平作用下改变状态。锁存,就是把信号暂存以维持某种电平状态。锁存器的最主要作用是缓存,其次完成高速的控制其与慢速的外设的不同步问题,再其次是解决驱动的问题,最后是解决一个I/O 口既能输出也能输入的问题。 2、逻辑电路图: 3、真值表: EN D Q QN 1 0 0 1 1 1 0 ×保持Q 保持QN 4、VHDL代码:

5、逻辑框图: 二、1、D触发器 功能:触发器(trigger)是个特殊的存储过程,它的执行不是由程序调用,也不是手工启动,而是由个事件来触发,比如当对一个表进行操作(insert,delete,update)时就会激活它执行。触发器经常用于加强数据的完整性约束和业务规则等。 (1)它们主要用于强制服从复杂的业务规则或要求。例如,您可以根据客户当前的帐户状

态,控制是否允许插入新订单。 (2)触发器也可用于强制引用完整性,以便在多个表中添加、更新或删除行时,保留在这些表之间所定义的关系。然而,强制引用完整性的最好方法是在相关表中定义主键和外键约束。如果使用数据库关系图,则可以在表之间创建关系以自动创建外键约束。 1、逻辑电路图: 2、VHDL代码: 4、逻辑框图: 5、真值表: INPUTs OUTPUTs PR CLR CLK D Q QN 0 1 ×× 1 0 1 0 ××0 1 0 0 ××1(失效) 1(失效) 1 1 ↑ 1 1 0 1 1 ↑0 0 1 1 1 0 ×保持Q 保持QN 注:↑= Positive-going Transition 三、1、边沿式JK触发器,功能:

制冷系统中油分离器结构及工作原理

一、油分离器与集油器 (一)油分离器的作用 在蒸汽压缩式制冷系统中,经压缩后的氨蒸汽(或氟利昂蒸汽),是处于高压高温的过热状态。由于它排出时的流速快、温度高。汽缸壁上的部份润滑油,由于受高温的作用难免成油蒸汽及油滴微粒与制冷剂蒸汽一同排出。且排汽温度越高、流速越快,则排出的润滑油越多。对于氨制冷系统来说,由于氨与油不相互溶,所以当润滑油随制冷剂一起进入冷凝器和蒸发器时会在传热壁面上凝成一层油膜,使热阻增大,从而会使冷凝器和蒸发器的传热效果降低,降低制冷效果。据有关资料介绍在蒸发表面上附有油膜时,将使蒸发温度降低℃,多耗电11~12%。所以必须在压缩机与冷凝器之间设置油分离器,以便将混合在制冷剂蒸汽中的润滑油分离出来。总结起来,油分离器的主要作用有: 1.确保润滑油返回到压缩机储油槽中,防止压缩机由于润滑油的缺乏而引起故障,延长压缩机适用寿命。 2.流动速度减小和流动方向变化的互相作用引起润滑油的聚集,这样在高温下分离出来的润滑油被集中收集,并自动返回到曲轴箱中,提高效率。 3.防止压缩机产生液击。 4.更好的发挥冷凝器和蒸发器的效率。 5.减小系统高压端的震动和噪音。 6.同时这些特点还可以会使得系统的电费用降低。 (二)油分离器的工作原理 大家都知道,汽流所能带动的液体微粒的尺寸是与汽流的速度有关。若把汽流垂直向上运动产生的升力与微粒的重量相平衡时的汽流速度称为平衡速度,并用符号ω表示。则显然当汽流速度等于平衡速度时,则微粒在汽流中保持不动;如果汽流速度大于平衡速度时则将微粒带走;而当汽流速度小于平衡速度,微粒就会跌落下来,从而使油滴微粒制冷剂汽流中分离出来。 油分离器的基本工作原理主要就是利用润滑油和制冷剂蒸气的密度不同;以及通道截面突然扩大,气流速度骤降(油分离器的筒径比高压排气管的管径大3~15倍,使进入油分离器后蒸气的流速从原先的10~25m/s下降至~1m/s);同时改变流向,使密度较大的润

相关文档
最新文档