汇编跳转指令小结

汇编跳转指令小结
汇编跳转指令小结

汇编跳转指令小结

一、状态寄存器

PSW(Program Flag)程序状态字寄存器,是一个16位寄存器,由条件码标志(flag)和控制标志构成,如下所示:

1 5 1

4

1

3

1

2

1

1

1

9 8 7 6 5 4 3 2 1 0

O

F

D

F

I

F

T

F

S

F

Z

F

A

F

PF CF

条件码:

①OF(Overflow Flag)溢出标志。溢出时为1,否则置0。

②SF(Sign Flag)符号标志。结果为负时置1,否则置0.

③ZF(Zero Flag)零标志,运算结果为0时ZF位置1,否则置0.

④CF(Carry Flag)进位标志,进位时置1,否则置0.

⑤AF(Auxiliary carry Flag)辅助进位标志,记录运算时第3位(半个字节)产生的进位置。有进位时1,否则置0.

⑥PF(Parity Flag)奇偶标志。结果操作数中1的个数为偶数时置1,否则置0.

控制标志位:

⑦DF(Direction Flag)方向标志,在串处理指令中控制信息的方向。

⑧IF(Interrupt Flag)中断标志。

⑨TF(Trap Flag)陷井标志。

二、直接标志转移

指令格式机

测试

条件

如...则转移

指令

格式

机器

测试

条件

如...则转

JC 72 C=1 有进位JNS 79 S=0 正号JNC 73 C=0 无进位JO 70 O=1 有溢出JZ/J

E

74 Z=1 零/等于JNO 71 O=0 无溢出JNZ/

JNE 75 Z=0 不为零/不等于JP/JPE 7A P=1

奇偶位为

JS 78 S=1 负号

JNP/IP

O 7B P=0

奇偶位为

三、间接标志转移

指令格式机器码测试格式如...则转移JA/JNBE(比较无

符号数) 77 C或Z=0

> 高于/不低于或

等于

JAE/JNB(比较无

符号数) 73 C=0

>=高于或等于/

不低于

JB/JNAE(比较无

符号数) 72 C=1

< 低于/不高于或

等于

JBE/JNA(比较无76 C或Z=1 <=低于或等于/

符号数) 不高于JG/JNLE(比较带

符号数) 7F (S异或O)或Z=0

> 大于/不小于或

等于

JGE/JNL(比较带

符号数) 7D S异或O=0

>=大于或等于/

不小于

JL/JNGE(比较带

符号数) 7C S异或O=1

< 小于/不大于或

等于

JLE/JNG(比较带

符号数) 7E (S异或O)或Z=1

<=小于或等于/

不大于

四、无条件转移指令JMP

指令格式执行操作

机器

说明

段内直接短转移Jmp short (IP)←(IP)+8位

位移量

EB

转移范围-128到+127字

段内直接近转移Jmp near (IP)←(IP)+16位

位移量

E9 转移到段内的任一位置

段内间接转移Jmp word (IP)←(有效地址

EA)

FF

段间直接(远)转移Jmp far

(IP)←(偏移地

址)

(CS)←(段地址)

EA

段间间接转移(IP)←(EA)

Jmp dword (CS)←(EA+2)

天正建筑命令大全整理篇详解

天正建筑命令快捷键大全一 1 轴网菜单 2 重排轴号CPZH 改变图中一组轴线编号,该组编号自动进行重新排序 3 4 倒排轴号DPZH 倒排轴线编号,适用于特定方向的立剖面轴线绘制 5 单轴变号DZBH 只改变图中单根轴线的编号 6 绘制轴网HZZW 包括旧版本的直线轴网和弧线轴网 7 两点轴标LDZB 选择起始轴与结束轴标注其中各轴号与尺寸 8 墙生轴网QSZW 在已有墙中按墙基线生成定位轴线 9 删除轴号SQZH 在已有轴网上删除轴号, 其余轴号自动重排 10 添补轴号TBZH 在已有轴号基础上,关联增加新轴号 添加径轴TJJZ 在已有圆弧轴网上添加新的径向轴线,并插入轴号 11 12 添加轴线TJZX 在已有轴网基础上增加轴线,并插入轴号 13 绘制轴网HZZW 包括旧版本的直线轴网和弧线轴网 逐点轴标ZDZB 逐个选择轴线,标注不相关的多个轴号 14 15 轴线裁剪ZXCJ 用矩形或多边形裁剪轴网的一部分 轴改线型ZGXX 切换轴线的线型 16 墙体菜单 17 边线对齐BXDQ 墙基线不变, 墙线偏移到过给定点 18 19 单线变墙DXBQ 将已绘制好的单线或者轴网转换为双线表示的墙对象 20 倒墙角DQJ 将转角墙按给定半径倒圆角生成弧墙或将墙角交接好 21 等分加墙DFJQ 将一段墙按轴线间距等分, 垂直方向加墙延伸到给定边界 22 改墙厚GQH 批量改墙厚: 墙基线不变,墙线一律改为居中 23 改外墙高GWQG 修改已定义的外墙高度与底标高, 自动将内墙忽略 24 改外墙厚GWQH 注意修改外墙墙厚前, 应先进行外墙识别,否则命令不会执行 25 绘制墙体HZQT 连续绘制双线直墙、弧墙,包括幕墙、弧墙、矮墙、虚墙等墙类型 26 墙保温层JBWC 在墙线一侧添加保温层或撤销保温层 27 加亮外墙JLWQ 亮显已经识别过的外墙 28 矩形立面JXLM 在立面显示状态, 将非矩形的立面部分删除, 墙面恢复矩形 29 净距偏移JJPY 按墙体净距离偏移平行生成新墙体 30 平行生线PXSX 在墙任意一侧, 按指定偏移距离生成平行的线或弧 31 墙面UCS QMUCS 临时定义一个基于所选墙面(分侧)的UCS, 在指定视口转为立面显示32 墙端封口QDFK 打开和闭合墙端出头的封口线 33 墙体造型QTZX 构造平面形状局部凸出的墙体,附加在墙上形成一体 34 识别内外SBNW 自动识别内外墙, 适用于一般情况 35 修墙角XQJ 清理互相交叠的两道墙或者更新融合同材质的墙与墙体造型 36 异型立面YXLM 在立面显示状态, 将墙按给定的轮廓线切割生成非矩形的立面 37 指定内墙ZDNQ 人工识别内墙, 用于内天井、局部平面等无法自动识别的情况 38 指定外墙ZDWQ 人工识别外墙, 用于内天井、局部平面等无法自动识别的情况门窗菜单 39 40 编号复位BHFW 把用户移动过的门窗编号恢复到默认位置

(完整word版)汇编语言常用指令大全,推荐文档

MOV指令为双操作数指令,两个操作数中必须有一个是寄存器. MOV DST , SRC // Byte / Word 执行操作: dst = src 1.目的数可以是通用寄存器, 存储单元和段寄存器(但不允许用CS段寄存器). 2.立即数不能直接送段寄存器 3.不允许在两个存储单元直接传送数据 4.不允许在两个段寄存器间直接传送信息 PUSH入栈指令及POP出栈指令: 堆栈操作是以“后进先出”的方式进行数据操作. PUSH SRC //Word 入栈的操作数除不允许用立即数外,可以为通用寄存器,段寄存器(全部)和存储器. 入栈时高位字节先入栈,低位字节后入栈. POP DST //Word 出栈操作数除不允许用立即数和CS段寄存器外, 可以为通用寄存器,段寄存器和存储器. 执行POP SS指令后,堆栈区在存储区的位置要改变. 执行POP SP 指令后,栈顶的位置要改变. XCHG(eXCHanG)交换指令: 将两操作数值交换. XCHG OPR1, OPR2 //Byte/Word 执行操作: Tmp=OPR1 OPR1=OPR2 OPR2=Tmp 1.必须有一个操作数是在寄存器中 2.不能与段寄存器交换数据 3.存储器与存储器之间不能交换数据. XLAT(TRANSLATE)换码指令: 把一种代码转换为另一种代码. XLAT (OPR 可选) //Byte 执行操作: AL=(BX+AL) 指令执行时只使用预先已存入BX中的表格首地址,执行后,AL中内容则是所要转换的代码. LEA(Load Effective Address) 有效地址传送寄存器指令 LEA REG , SRC //指令把源操作数SRC的有效地址送到指定的寄存器中. 执行操作: REG = EAsrc 注: SRC只能是各种寻址方式的存储器操作数,REG只能是16位寄存器 MOV BX , OFFSET OPER_ONE 等价于LEA BX , OPER_ONE MOV SP , [BX] //将BX间接寻址的相继的二个存储单元的内容送入SP中 LEA SP , [BX] //将BX的内容作为存储器有效地址送入SP中 LDS(Load DS with pointer)指针送寄存器和DS指令 LDS REG , SRC //常指定SI寄存器。 执行操作: REG=(SRC), DS=(SRC+2) //将SRC指出的前二个存储单元的内容送入指令中指定的寄存器中,后二个存储单元送入DS段寄存器中。

51单片机汇编指令集(附记忆方法)

51单片机汇编指令集 一、数据传送类指令(7种助记符) MOV(英文为Move):对内部数据寄存器RAM和特殊功能寄存器SFR的数据进行传送; MOVC(Move Code)读取程序存储器数据表格的数据传送; MOVX (Move External RAM) 对外部RAM的数据传送; XCH (Exchange) 字节交换; XCHD (Exchange low-order Digit) 低半字节交换; PUSH (Push onto Stack) 入栈; POP (Pop from Stack) 出栈; 二、算术运算类指令(8种助记符) ADD(Addition) 加法; ADDC(Add with Carry) 带进位加法; SUBB(Subtract with Borrow) 带借位减法; DA(Decimal Adjust) 十进制调整; INC(Increment) 加1; DEC(Decrement) 减1; MUL(Multiplication、Multiply) 乘法; DIV(Division、Divide) 除法; 三、逻辑运算类指令(10种助记符) ANL(AND Logic) 逻辑与; ORL(OR Logic) 逻辑或; XRL(Exclusive-OR Logic) 逻辑异或; CLR(Clear) 清零; CPL(Complement) 取反; RL(Rotate left) 循环左移; RLC(Rotate Left throught the Carry flag) 带进位循环左移; RR(Rotate Right) 循环右移; RRC (Rotate Right throught the Carry flag) 带进位循环右移; SWAP (Swap) 低4位与高4位交换; 四、控制转移类指令(17种助记符) ACALL(Absolute subroutine Call)子程序绝对调用; LCALL(Long subroutine Call)子程序长调用; RET(Return from subroutine)子程序返回; RETI(Return from Interruption)中断返回; SJMP(Short Jump)短转移; AJMP(Absolute Jump)绝对转移; LJMP(Long Jump)长转移; CJNE (Compare Jump if Not Equal)比较不相等则转移;

C语言指令汇总

●一、数据传送类指令 指令格式功能简述字节数周期 MOV A,Rn 寄存器送累加器1 1 MOV Rn,A 累加器送寄存器1 1 MOV A ,@Ri 内部RAM单元送累加器1 1 MOV @Ri ,A 累加器送内部RAM单元1 1 MOV A ,#data 立即数送累加器2 1 MOV A ,direct 直接寻址单元送累加器2 1 MOV direct ,A 累加器送直接寻址单元2 1 MOV Rn,#data 立即数送寄存器2 1 MOV direct ,#data 立即数送直接寻址单元3 2 MOV @Ri ,#data 立即数送内部RAM单元2 1 MOVX A ,@DPTR 外部RAM单元送累加器(16位地址) 1 2 MOVX @DPTR ,A 累加器送外部RAM单元(16位地址) 1 2 MOVC A ,@A+DPTR 查表数据送累加器(DPTR为基址) 1 2 MOVC A ,@A+PC 查表数据送累加器(PC为基址) 1 2 XCH A ,Rn 累加器与寄存器交换1 1 XCH A ,@Ri 累加器与内部RAM单元交换1 1 XCHD A ,direct 累加器与直接寻址单元交换2 1 XCHD A ,@Ri 累加器与内部RAM单元低4位交换1 1 SWAP A 累加器高4位与低4位交换1 1 POP direct 栈顶弹出指令直接寻址单元2 2 PUSH direct 直接寻址单元压入栈顶2 2 ●算术运算类指令 ADD A,Rn 累加器加寄存器1 1 ADD A,@Ri 累加器加内部RAM单元1 1 ADD A,direct 累加器加直接寻址单元2 1 ADD A,#data 累加器加立即数2 1 ADDC A,Rn 累加器加寄存器和进位标志1 1 ADDC A,@Ri 累加器加内部RAM单元和进位标志1 1 ADDC A,#data 累加器加立即数和进位标志2 1 ADDC A,direct 累加器加直接寻址单元和进位标志2 1 INC A 累加器加1 1 1 INC Rn 寄存器加1 1 1 INC direct 直接寻址单元加1 2 1 INC @Ri 内部RAM单元加1 1 1 INC DPTR 数据指针加1 1 2 DA A 十进制调整1 1 SUBB A,Rn 累加器减寄存器和进位标志1 1 SUBB A,@Ri 累加器减内部RAM单元和进位标志1 1 SUBB A,#data 累加器减立即数和进位标志2 1

(完整word版)汇编语言指令集合-吐血整理,推荐文档

8086/8088指令系统记忆表 数据寄存器分为: AH&AL=AX(accumulator):累加寄存器,常用于运算;在乘除等指令中指定用来存放操作数,另外,所有的I/O指令都使用这一寄存器与外界设备传送数据. BH&BL=BX(base):基址寄存器,常用于地址索引; CH&CL=CX(count):计数寄存器,常用于计数;常用于保存计算值,如在移位指令,循环(loop)和串处理指令中用作隐含的计数器. DH&DL=DX(data):数据寄存器,常用于数据传递。他们的特点是,这4个16位的寄存器可以分为高8位: AH, BH, CH, DH.以及低八位:AL,BL,CL,DL。这2组8位寄存器可以分别寻址,并单独使用。 另一组是指针寄存器和变址寄存器,包括: SP(Stack Pointer):堆栈指针,与SS配合使用,可指向目前的堆栈位置; BP(Base Pointer):基址指针寄存器,可用作SS的一个相对基址位置; SI(Source Index):源变址寄存器可用来存放相对于DS段之源变址指针; DI(Destination Index):目的变址寄存器,可用来存放相对于ES 段之目的变址指针。 指令指针IP(Instruction Pointer) 标志寄存器FR(Flag Register) OF(overflow flag) DF(direction flag) CF(carrier flag) PF(parity flag) AF(auxiliary flag) ZF(zero flag) SF(sign flag) IF(interrupt flag) TF(trap flag) 段寄存器(Segment Register) 为了运用所有的内存空间,8086设定了四个段寄存器,专门用来保存段地址: CS(Code Segment):代码段寄存器; DS(Data Segment):数据段寄存器; SS(Stack Segment):堆栈段寄存器;

DSP汇编指令总结

DSP汇编指令总结 一、寻址方式: 1、立即寻址: 短立即寻址(单指令字) 长立即数寻址(双指令字) 第一指令字 第二指令字 16位常数=16384=4000h 2、直接寻址 ARU 辅助寄存器更新代码,决定当前辅助寄存器是否和如何进行增或减。N规定是否改变ARP值,(N=0,不变)

4.3.1、算术逻辑指令(28条) 4.3.1.1、加法指令(4条); 4.3.1.2、减法指令(5条); 4.3.1.3、乘法指令(2条); 4.3.1.4、乘加与乘减指令(6条); 4.3.1.5、其它算数指令(3条); 4.3.1.6、移位和循环移位指令(4条); 4.3.1.7、逻辑运算指令(4条); 4.3.2、寄存器操作指令(35条) 4.3.2.1、累加器操作指令(6条) 4.3.2.2、临时寄存器指令(5条) 4.3.2.3、乘积寄存器指令(6条) 4.3.2.4、辅助寄存器指令(5条) 4.3.2.5、状态寄存器指令(9条) 4.3.2.6、堆栈操作指令(4条) 4.3.3、存储器与I/O操作指令(8条)4.3.3.1、数据移动指令(4条) 4.3.3.2、程序存储器读写指令(2条) 4.3.3.3、I/O操作指令(2条) 4.3.4、程序控制指令(15条) 4.3.4.1、程序分支或调用指令(7条) 4.3.4.2、中断指令(3条) 4.3.4.3、返回指令(2条) 4.3.4.4、其它控制指令(3条)

4.3.1、算术逻辑指令(28条) 4.3.1.1、加法指令(4条); ▲ADD ▲ADDC(带进位加法指令) ▲ADDS(抑制符号扩展加法指令) ▲ADDT(移位次数由TREG指定的加法指令) 4.3.1.2、减法指令(5条); ★SUB(带移位的减法指令) ★SUBB(带借位的减法指令) ★SUBC(条件减法指令) ★SUBS(减法指令) ★SUBT(带移位的减法指令,TREG决定移位次数)4.3.1.3、乘法指令(2条); ★MPY(带符号乘法指令) ★MPYU(无符号乘法指令) 4.3.1.4、乘加与乘减指令(6条); ★MAC(累加前次积并乘)(字数2,周期3) ★MAC(累加前次积并乘) ★MPYA(累加-乘指令) ★MPYS(减-乘指令) ★SQRA(累加平方值指令) ★SQRS(累减并平方指令) 4.3.1.5、其它算数指令(3条); ★ABS(累加器取绝对值指令) ★NEG(累加器取补码指令) ★NORM(累加器规格化指令) 返回 4.3.1.6、移位和循环移位指令(4条); ▲ SFL(累加器内容左移指令) ▲ SFR(累加器内容右移指令) ▲ROL(累加器内容循环左移指令) ▲ROR(累加器内容循环右移指令) 返回 4.3.1.7、逻辑运算指令(4条); ▲ AND(逻辑与指令) ▲ OR(逻辑或指令) ▲ XOR(逻辑异或指令) ▲ CMPL(累加器取反指令) 返回 4.3.2、寄存器操作指令(35条) 4.3.2.1、累加器操作指令(6条)

photoshop快捷键命令大全汇总

photoshop快捷键命令大全汇总一、文件: 新建【CTRL】+【N】 打开【CTRL】+【O】 打开为【ALT】+【CTRL】+【O】 关闭【CTRL】+【W】 保存【CTRL】+【S】 另存为【CTRL】+【SHIFT】+【S】 另存为网页格式【CTRL】+【ALT】+【S】 打印设置【CTRL】+【ALT】+【P】 页面设置【CTRL】+【SHIFT】+【P】 打印【CTRL】+【P】 退出【CTRL】+【Q】 二、编辑: 撤消【CTRL】+【Z】

向前一步【CTRL】+【SHIFT】+【Z】 向后一步【CTRL】+【ALT】+【Z】 退取【CTRL】+【SHIFT】+【F】 剪切【CTRL】+【X】 复制【CTRL】+【C】 合并复制【CTRL】+【SHIFT】+【C】 粘贴【CTRL】+【V】 原位粘贴【CTRL】+【SHIFT】+【V】 自由变换【CTRL】+【T】 再次变换【CTRL】+【SHIFT】+【T】 色彩设置【CTRL】+【SHIFT】+【K】 三、图象 调整→色阶【CTRL】+【L】 调整→自动色阶【CTRL】+【SHIFT】+【L】 调整→自动对比度【CTRL】+【SHIFT】+【ALT】+【L】

调整→曲线【CTRL】+【M】 调整→色彩平衡【CTRL】+【B】 调整→色相/饱和度【CTRL】+【U】 调整→去色【CTRL】+【SHIFT】+【U】调整→反向【CTRL】+【I】 提取【CTRL】+【ALT】+【X】 液化【CTRL】+【SHIFT】+【X】 四、图层 新建图层【CTRL】+【SHIFT】+【N】 新建通过复制的图层【CTRL】+【J】 与前一图层编组【CTRL】+【G】 取消编组【CTRL】+【SHIFT】+【G】 合并图层【CTRL】+【E】 合并可见图层【CTRL】+【SHIFT】+【E】

《汇编语言》段总结

《汇编语言》段总结 我们可以可以将一段内存定义为一个段,用一个段地址指示段,用偏移地址访问段内的单元。这完全是我们自己的安排。 “段地址”这个名称中包含着“段”的概念。这种那个说法可能对一些学习者产生了误导【呵呵,曾经有一段时间真的误导了我,有时我禁不住在想为什么会被误导,那是因为我没有真懂。】,使人误以为内存被划分了一个一个的段,每一个段有一个段地址。如果我们在一开始形成了这种认识,将影响以后对汇编语言的深入理解和灵活应用。 其实,内存并没有分段,段的划分来自于CPU,由于8086CPU用“基础地址(段地址x16)+偏移地址=物理地址”的方式给出内存单元的物理地址,使得我们可以用分段的方式来管理内存。 这就好比水杯,水杯并没有给自己刻度,刻度的划分来自于人类。 我们为什么进行这样的安排?因为这可使得我们可以用分段的方式来管理内存,即为了方便、有序的管理内存。 这就是人类的伟大之处,一个没有生命的东西,如果我们给它一个设定,并对这个设定赋予思想,这个被我们设定的没有生命的东西就会以生命的形式存在。 我们可以用一个段存放数据,将它定义为“数据段”; 我们可以用一个段存放代码,将它定义为“代码段”; 我们可以用一个段当作栈,将它定义为“栈段”; 我们可以这样安排。但若要让CPU按照我们的安排来访问这些段,就要: 对于数据段,将它的段地址放在DS中,用mov、add、sub等访问内存单元的指令时,CPU就将我们定义的数据段中的内容当作数据来访问; 对于代码段,将它的段地址放在CS中,将段中第一条指令的偏移地址放在IP中,这样CPU就将执行我们定义的代码段中的指令; 对于栈段,将它的段地址放在SS中,将栈顶单元的偏移地址放在SP中,这样CPU在需要进行栈操作的时候,比如执行push、pop指令等,就将我们定义的栈段当作栈空间来使用。 其实,CS相当于一个指挥部,负责勘探,作战计划的制定、部署等。即任意时刻,CPU将CS:IP指向的内容当作指令执行。 而DS就相当于一个中转部,负责将CS制定出的计划传达,比如作战人员、物质等。 SS就相当于最终的实际的执行者,因为战场在内存中,SS接收到DS传送的CS制定出的计划,及作战人员、物质等开始作战。 总结:CPU相当于一个作战机构,而内存相当于战地。CS、DS及SS用的是望远镜原理,但这个望远镜带有照相功能,其实质是数字记位法。 可见,不管我们如何安排,CPU将内存中的某段内容当作代码,是因CS:IP指向了那里;CPU将某段内存当作栈,是因为SS:SP指向了那里。 我们一定要清楚,什么是我们的安排,以及如何让CPU按我们的安排行事。要非常清楚CPU的工作机理,才能控制CPU按照我们的安排运行的时候做到游刃有余。

CMD常用命令大全(最新整理)

说起cmd大家都很熟悉吧很有用哦这里我为大家接扫常见的命令 dos命令[只列出我们工作中可能要用到的] cd\ '返回到根目录 cd.. '返回到上一级目录 1、cd 显示当前目录名或改变当前目录。 2、dir 显示目录中的文件和子目录列表。 3、md 创建目录。 4、del 删除一或数个文件。 5、chkdsk 检查磁盘并显示状态报告。 6、cacls 显示或者修改文件的访问控制表(ACL) 7、copy 将一份或多份文件复制到另一个位置。 8、date 修改日期 9、format 格式化磁盘 10、type 显示文本文件的内容。 11、move 移动文件并重命名文件和目录。 12、expand 展开一个或多个压缩文件。 13、ren 重命名文件。 14、attrib 显示或更改文件属性。 15、time 显示或设置系统时间。 16、at at命令安排在特定日期和时间运行命令和程序。要使用AT 命令,计划服务必须已在运行中。 17、net [user],[time],[use] 多,自己去查 18、netstat 显示协议统计和当前tcp/ip连接 19、nbtstat 基于NBT(net bios over tcp/ip)的协议统计和当前tcp/ip连接 20、route 操作和查看网络路由表 21、ping 就不说了,大家都熟悉吧 22、nslookup 域名查找 23、edit 命令行下的文本编辑器 24、netsh强大的命令行下修改tcp/ip配置的工具 25、fdisk 相信现在用的人比较少了,不过在没有其他工具的情况,他还是有用的 更多: attrib 设置文件属性 ctty 改变控制设备 defrag 磁盘碎片整理 doskey 调用和建立DOS宏命令 debug 程序调试命令

AVRmega8汇编指令汇总.

指令集概述 指令操作数说明操作标志 # 时钟数 算数和逻辑指令 ADD Rd, Rr 无进位加法Rd ← Rd + Rr Z,C,N,V,H 1 ADC Rd, Rr 带进位加法Rd ← Rd + Rr + C Z,C,N,V,H 1 ADIW Rdl,K 立即数与字相加Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2 SUB Rd, Rr 无进位减法Rd ← Rd - Rr Z,C,N,V,H 1 SUBI Rd, K 减立即数Rd ← Rd - K Z,C,N,V,H 1 SBC Rd, Rr 带进位减法Rd ← Rd - Rr - C Z,C,N,V,H 1 SBCI Rd, K 带进位减立即数Rd ← Rd - K - C Z,C,N,V,H 1 SBIW Rdl,K 从字中减立即数Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2 AND Rd, Rr 逻辑与Rd ← Rd ? Rr Z,N,V 1 ANDI Rd, K 与立即数的逻辑与操作Rd ← Rd ? K Z,N,V 1 OR Rd, Rr 逻辑或Rd ← Rd v Rr Z,N,V 1 ORI Rd, K 与立即数的逻辑或操作Rd ← Rd v K Z,N,V 1 EOR Rd, Rr 异或Rd ← Rd ⊕ Rr Z,N,V 1 COM Rd 1 的补码Rd ← 0xFF ? Rd Z,C,N,V 1 NEG Rd 2 的补码Rd ← 0x00 ? Rd Z,C,N,V,H 1 SBR Rd,K 设置寄存器的位Rd ← Rd v K Z,N,V 1

CBR Rd,K 寄存器位清零Rd ← Rd ? (0xFF - K Z,N,V 1 INC Rd 加一操作Rd ← Rd + 1 Z,N,V 1 DEC Rd 减一操作Rd ← Rd ? 1 Z,N,V 1 TST Rd 测试是否为零或负Rd ← Rd ? Rd Z,N,V 1 CLR Rd 寄存器清零Rd ← Rd ⊕ Rd Z,N,V 1 SER Rd 寄存器置位Rd ← 0xFF None 1 MUL Rd, Rr 无符号数乘法R1:R0 ← Rd x Rr Z,C 2 MULS Rd, Rr 有符号数乘法R1:R0 ← Rd x Rr Z,C 2 MULSU Rd, Rr 有符号数与无符号数乘法 R1:R0 ← Rd x Rr Z,C 2 FMUL Rd, Rr 无符号小数乘法R1:R0 ← (Rd x Rr << 1 Z,C 2 FMULS Rd, Rr 有符号小数乘法R1:R0 ← (Rd x Rr << 1 Z,C 2 FMULSU Rd, Rr 有符号小数与无符号小数乘法R1:R0 ← (Rd x Rr << 1 Z,C 2跳转指令 RJMP k 相对跳转PC ← PC + k + 1 无 2 IJMP 间接跳转到(Z PC ← Z 无 2 RCALL k 相对子程序调用PC ← PC + k + 1 无 3 ICALL 间接调用(Z PC ← Z 无 3 RET 子程序返回PC ← STACK 无 4 RETI 中断返回PC ← STACK I 4

(整理)广州数控指令代码大全

广州数控指令代码大全 2011-01-31 02:13 GSK980TA/D编程教材 《一》编程的基本概念 《二》常用G代码介绍 《三》单一固定循环 《四》复合型固定循环 《五》用户宏程序 《六》螺纹加工 《七》T代码及刀补 《八》F代码及G98、G99 《九》S代码及G96、G97 (注意:本教材仅供学习参考,实际操作编程时应以广数 GSK980T车床数控系统使用手册为准)2007年9月 《一》编程的基本概念: 一个完整的车床加工程序一般用于在一次装夹中按工艺要求完成对工件的加工,数控程序包括程序号、程序段。 (一)程序号:相当于程序名称,系统通过程序号可从存储器中多个程序中识别所要处理的程序,程序号由字母O及4位数字组成。

(二)程序段:相当于一句程序语句,由若干个字段组成,最后是一个分号(;)录入时在键入EOB键后自动加上。整个程序由若干个程序段构成,一个程序段用来完成刀具的一个或一组动作,或实现机床的一些功能。 (三)字段(或称为字):由称为“地址”的单个英语字母加若干位数字组成。根据其功能可分成以下几种类型的字段: ▲程序段号:由字母N及数字组成,位于程序段最前面,主要作用是使程序便于阅读,可以省略,但某些特殊程序段(如表示跳转指令的目标程序段)必须标明程序段号。 为了便于修改程序时插入新程序段,各句程序段号一般可间隔一些数字(如N0010、N0020、N0030)。 ▲准备功能:即G代码,由字母G及二位数字组成,大多数G 代码用以指示刀具的运动。(如G00、G01、G02) ▲表示尺寸(坐标值)的字段:一般用在G代码字段的后面,为表示运动的G代码提供坐标数据,由一个字母与坐标值(整数或小数)组成。字母包括: 表示绝对坐标:X、Y、Z 表示相对坐标:U、V、W 表示园心坐标:I、 J、 K (车床实际使用的坐标只有X、Z,所以Y、V、J都用不着) ▼表示进给量的字段:用字母F加进给量值组成,一般用在插补指令的程序段中,规定了插补运动的速度。

汇编语言指令汇总

汇编语言程序设计资料简汇 通用寄存器 8位通用寄存器8个:AL、AH、BL、BH、CL、CH、DL、DH。 16位通用寄存器8个:AX、BX、CX、DX、SI、DI、BP、SP。 AL与AH、BL与BH、CL与CH、DL与DH分别对应于AX、BX、CX和DX的低8位与高8位。专用寄存器 指令指针:IP(16位)。 标志寄存器:没有助记符(FLAGS 16位)。 段寄存器 段寄存器:CS、DS、ES、SS。 内存分段:80x86采用分段内存管理机制,主要包括下列几种类型的段: ?代码段:用来存放程序的指令序列。 ?数据段:用来存放程序的数据。 ?堆栈段:作为堆栈使用的内存区域,用来存放过程返回地址、过程参数等。 物理地址与逻辑地址 ?物理地址:内存单元的实际地址,也就是出现在地址总线上的地址。 ?逻辑地址:或称分段地址。 ?段地址与偏移地址都是16位。 ?系统采用下列方法将逻辑地址自动转换为20位的物理地址: 物理地址= 段地址×16 + 偏移地址 ?每个内存单元具有唯一的物理地址,但可由不同的逻辑地址描述。 与数据有关的寻址方式 立即寻址方式 立即寻址方式所提供的操作数紧跟在操作码的后面,与操作码一起放在指令代码段中。立即数可以是8位数或16位数。如果是16位数,则低位字节存放在低地址中,高位字节存放在高地址中。 例:MOV AL,18 指令执行后,(AL)= 12H 寄存器寻址方式 在寄存器寻址方式中,操作数包含于CPU的内部寄存器之中。这种寻址方式大都用于寄存器之间的数据传输。 例3:MOV AX,BX 如指令执行前(AX)= 6789H,(BX)= 0000H;则指令执行后,(AX)= 0000H,(BX)保持不变。 直接寻址方式 直接寻址方式是操作数地址的16位偏移量直接包含在指令中,和指令操作码一起放在代码段,而操作数则在数据段中。操作数的地址是数据段寄存器DS中的内容左移4位后,加上指令给定的16位地址偏移量。直接寻址方式适合于处理单个数据变量。 寄存器间接寻址方式 在寄存器间接寻址方式中,操作数在存储器中。操作数的有效地址由变址寄存器SI、DI或基址寄存器BX、BP提供。 如果指令中指定的寄存器是BX、SI、DI,则用DS寄存器的内容作为段地址。 如指令中用BP寄存器,则操作数的段地址在SS中,即堆栈段。

一些常用的汇编语言指令

汇编语言常用指令 大家在做免杀或者破解软件的时候经常要用到汇编指令,本人整理出了常用的 希望对大家有帮助! 数据传送指令 MOV:寄存器之间传送注意,源和目的不能同时是段寄存器;代码段寄存器CS不能作为目的;指令指针IP不能作为源和目的。立即数不能直接传送段寄存器。源和目的操作数类型要一致;除了串操作指令外,源和目的不能同时是存储器操作数。 XCHG交换指令:操作数可以是通用寄存器和存储单元,但不包括段寄存器,也不能同时是存储单元,还不能有立即数。 LEA 16位寄存器存储器操作数传送有效地址指令:必须是一个16位寄存器和存储器操作数。 LDS 16位寄存器存储器操作数传送存储器操作数32位地址,它的16位偏移地址送16位寄存器,16位段基值送入DS中。 LES :同上,只是16位段基址送ES中。 堆栈操作指令 PUSH 操作数,操作数不能使用立即数, POP 操作数,操作数不能是CS和立即数 标志操作指令 LAHF:把标志寄存器低8位,符号SF,零ZF,辅助进位AF,奇偶PF,进位CF传送到AH 指定的位。不影响标志位。 SAHF:与上相反,把AH中的标志位传送回标志寄存器。 PUSHF:把标志寄存器内容压入栈顶。 POPF:把栈顶的一个字节传送到标志寄存器中。 CLC:进位位清零。 STC:进位位为1。 CMC:进位位取反。 CLD:使方向标志DF为零,在执行串操作中,使地址按递增方式变化。 STD:DF为1。 CLI:清中断允许标志IF。Cpu不相应来自外部装置的可屏蔽中断。 STI:IF为1。 加减运算指令

注意:对于此类运算只有通用寄存器和存储单元可以存放运算结果。如果参与运算的操作数有两个,最多只能有一个存储器操作数并且它们的类型必须一致。 ADD。 ADC:把进位CF中的数值加上去。 INC:加1指令 SUB。 SBB:把进位CF中数值减去。 DEC:减1指令。 NEG 操作数:取补指令,即用0减去操作数再送回操作数。 CMP:比较指令,完成操作数1减去操作数2,结果不送操作数1,但影响标志位。可根据ZF(零)是否被置1判断相等;如果两者是无符号数,可根据CF判断大小;如果两者是有符号数,要根据SF和OF判断大小。 乘除运算指令 MUL 操作数:无符号数乘法指令。操作数不能是立即数。操作数是字节与AL中的无符号数相乘,16位结果送AX中。若字节,则与AX乘,结果高16送DX,低16送AX。如乘积高半部分不为零,则CF、OF为1,否则为0。所以CF和OF表示AH或DX中含有结果的有效数。IMUL 操作数:有符号数乘法指令。基本与MUL相同。 DIV 操作数:被除数是在AX(除数8位)或者DX和AX(除数16位),操作数不能是立即数。如果除数是0,或者在8(16)位除数时商超过8(16)位,则认为是溢出,引起0号中断。IDIV:有符号除法指令,当除数为0,活着商太大,太小(字节超过127,-127字超过32767,-32767)时,引起0号中断。 符号扩展指令 CBW,CWD:把AL中的符号扩展到寄存器AH中,不影响各标志位。CWD则把AX中的符号扩展到DX,同样不影响标志位。注意:在无符号数除之前,不宜用这两条指令,一般采用XOR 清高8位或高16位。 逻辑运算指令与位移指令 注意:只能有一个存储器操作数;只有通用寄存器或存储器操作数可作为目的操作数,用于存放结果;操作数的类型必须一致。 NOT:取反,不影响标志位。 AND 操作数1 操作数2:操作结果送错作数1,标志CF(进位)、OF(溢出)清0,PF(奇偶)ZF(0标志) SF(符号)反映运算结果,AF(辅助进位)未定义。自己与自己AND值不变,她主要用于将操作数中与1相与的位保持不变,与0相与清0。(都为1时为1)OR 操作数1 操作数2:自己与自己OR值不变,CF(进位)、OF(溢出)清0,PF(奇偶)ZF(0标志)SF(符号)反映运算结果,AF(辅助进位)未定义。她使用于将若干位置1:

汇编语言学习心得

汇编学习心得 08网工(一)班李锐 0804031002 在大三接触汇编语言之前,我们在计算机组成原理课程中就已经有所了解了,但也只是略微明白一些如jmp,mov这样的指令,极度缺乏系统性的学习。 在接触这门课程后,感到汇编语言并不是很容易就可以弄懂的。相比较以前学过的高级语言如C、C++等,电脑等于在迁就人的思维方式,但学汇编,人却必须要去迁就电脑的思维方式,要设身处地地用电脑的角度去思考问题,这就是我们学习汇编语言时遇到的最大的障碍。 另外,在C语言中不到10个语句构成的程序,用汇编语言却要好几十行甚至上百行。这不得不让我们对汇编产生一种恐惧感。事实上,这是完全不必要的。一旦对它的原理掌握后,编写程序就容易多了。另外,学习汇编语言能让我们更加了解计算机内部的组织结构,对我们计算机专业的学生来说,学习汇编也是提升综合能力的关键环节。 汇编的学习不仅仅是学习其语法,而更多的是学习计算机基本的体系结构。其中遇到很多新的概念,名字。如寄存器、中断、寻址方式等。这些概念在刚接触汇编这门课的时候难以理解,但在之后的学习中通过老师的讲解,自己亲手编程的方式也就渐渐清晰明了。 我们在学习之前都需要明确什么是汇编语言。计算机能够直接识别的数据是由二进制数0和1组成的代码。机器指令就是用二进制代码组成的指令,一条机器指令控制计算机完成一个基本操作。为了克服机器语言的缺点,人们采用助记符表示机器指令的操作码,用变量代替操作数的存放地址等,这样就形成了汇编语言。 经过一个学期的学习,我也慢慢摸出了汇编学习的规律。 首先,学习这门语言时如果能联系上以前学过的其他高级语言的知识,则会起到良好的效果。例如C语言程序的运行逻辑结构有顺序(按语句依次执行)、分支结构(IF...THEN...ELSE...),循环结构(FOR...NEXT)三种结构,也通过C 语言了解并掌握了什么是子程序,什么是调用。事实上,汇编语言中有关程序结构,子程序等等的知识都是跟C语言十分相似的,只是在编程时用到的语言不同:汇编语言完全面向机器,需要指明数据在寄存器、内存中的流向。 第二,学习汇编语言,首要问题是学习80X86指令系统。如果能将指令系统中的各个助记符、格式等都能完全掌握并灵活运用,大部分工作就已经完成了。指令系统确定了CPU所能完成的功能,是用汇编语言进行程序设计的最基本部分。如果不熟悉汇编指令的功能及其有关规定,那肯定不能灵活使用汇编语言。 指令的种类十分繁杂,但其格式却是统一的。 其中方括号中的内容为可选项。指令助记符决定了指令的功能,对应一条二进制编码的机器指令。指令的操作数个数由该指令确定,可以没有操作数,也可以有

汇编语言的各条指令

常用命令 数据传送指令 一通用数据传送指令 MOV指令为双操作数指令,两个操作数中不能全为内存操作数 格式:MOV DST,SRC 执行操作:dst = src 注:1.目的数可以是通用寄存器,存储单元和段寄存器(但不允许用CS段寄存器). 2.立即数不能直接送段寄存器 3.不允许在两个存储单元直接传送数据 4.不允许在两个段寄存器间直接传送信息 PUSH入栈指令及POP出栈指令: 堆栈操作是以“后进先出”的方式进行数据操作。 格式:PUSH SRC //Word 执行操作:(SP)<-(SP)-2 ((SP)+1,(SP))<-(SRC) 注:1.入栈的操作数除不允许用立即数外,可以为通用寄存器,段寄存器(全部)和存储器。

2.入栈时高位字节先入栈,低位字节后入栈。 格式:POP DST //Word 执行操作:(DST)<-((SP+1),(SP)) (SP)<-(SP)+2 注:1.出栈操作数除不允许用立即数和CS段寄存器外,可以为通用寄存器,段寄存器和存储器。 2.执行POP SS指令后,堆栈区在存储区的位置要改变。 3.执行POP SP 指令后,栈顶的位置要改变。 XCHG(eXCHanG)交换指令: 将两操作数值交换。 格式:XCHG OPR1,OPR2 //Byte/Word 执行的操作:(OPR1)<-->(OPR2) 注:1.必须有一个操作数是在寄存器中 2.不能与段寄存器交换数据 存储器与存储器之间不能交换数据。 二累加器专用传送指令 IN输入指令 长格式为:IN AL,PORT(字节) IN AX,PORT(字) 执行的操作:(AL)<-(PORT)(字节)

汇编指令分类介绍

汇编指令全集ZZ 以下是80X86汇编过程中经常用到的一些汇编指令。 从功能分类上来说,一共可分为 一、数据传送指令:MOV、XCHG、LEA、LDS、LES、PUSH、POP、 PUSHF、POPF、CBW、CWD、CWDE。 二、算术指令:ADD、ADC、INC、SUB、SBB、DEC、CMP、MUL、 DIV、DAA、DAS、AAA、AAS。 三、逻辑指令:AND、OR、XOR、NOT、TEST、SHL、SAL、SHR、 SAR、RCL、RCR、ROL、ROR。 四、控制转移指令:JMP、Jcc、JCXZ、LOOP、LOOPZ、LOOPNZ、 LOOPNE、CALL、RET、INT。 五、串操作指令:MOVS、LODS、STOS、CMPS、SCAS。 六、标志处理指令:CLC、STC、CLD、STD。 七、32位CPU新增指令 ------------------------------------------------数据传送指令---------------------------1、MOV(传送) 指令写法:MOV target,source

功能描述:将源操作数source的值复制到target中去,source值不变 注意事项:1)target不能是CS(代码段寄存器),我的理解是代码段不可写,只可读,所以相应这地方也不能对CS执行复制操作。2)target和source不能同时为内存数、段寄存器 (CS\DS\ES\SS\FS\GS)3)不能将立即数传送给段寄存器4)target 和source必须类型匹配,比如,要么都是字节,要么都是字或者都是双字等。4)由于立即数没有明确的类型,所以将立即数传送到target时,系统会自动将立即数零扩展到与target数的位数相同,再进行传送。有时,需要用BYTE PTR、WORD PTR、DWORD PTR明确指出立即数的位数 写法示例:MOV dl,01H;MOV eax,[bp]; eax =ss:[bp]双字传送。2、XCHG(交换) 指令写法:XCHG object1,object2 功能描述:交换object1与object2的值 注意事项:1)不能直接交换两个内存数的值2)类型必须匹配3)两个操作数任何一个都不能是段寄存器【看来段寄存器的写入的限制非常的严格,MOV指令也不能对段寄存器进行写入】,4)必须是通用寄存器(ax、bx、cx、dx、si、di)或内存数 写法示例:XCHG ax,[bx][si]; XCHG ax,bx;

常用汇编指令表

1. 通用数据传送指令. MOV 传送字或字节. MOVSX 先符号扩展,再传送. MOVZX 先零扩展,再传送. PUSH 把字压入堆栈. POP 把字弹出堆栈. PUSHA 把AX,CX,DX,BX,SP,BP,SI,DI依次压入堆栈. POPA 把DI,SI,BP,SP,BX,DX,CX,AX依次弹出堆栈. PUSHAD 把EAX,ECX,EDX,EBX,ESP,EBP,ESI,EDI依次压入堆栈. POPAD 把EDI,ESI,EBP,ESP,EBX,EDX,ECX,EAX依次弹出堆栈. BSWAP 交换32位寄存器里字节的顺序 XCHG 交换字或字节.( 至少有一个操作数为寄存器,段寄存器不可作为操作数) CMPXCHG 比较并交换操作数.( 第二个操作数必须为累加器AL/AX/EAX ) XADD 先交换再累加.( 结果在第一个操作数里) XLAT 字节查表转换. —— BX 指向一张256 字节的表的起点, AL 为表的索引值(0-255,即 0-FFH); 返回AL 为查表结果. ( [BX+AL]->AL ) 2. 输入输出端口传送指令. IN I/O端口输入. ( 语法: IN 累加器, {端口号│DX} ) OUT I/O端口输出. ( 语法: OUT {端口号│DX},累加器) 输入输出端口由立即方式指定时, 其范围是0-255; 由寄存器DX 指定时, 其范围是0-65535. 3. 目的地址传送指令. LEA 装入有效地址. 例: LEA DX,string ;把偏移地址存到DX. LDS 传送目标指针,把指针内容装入DS. 例: LDS SI,string ;把段地址:偏移地址存到DS:SI. LES 传送目标指针,把指针内容装入ES. 例: LES DI,string ;把段地址:偏移地址存到ES:DI.

常见汇编语言指令解释:

PC是一个16位的程序计数器。用于存放和指示下一条要执行的指令的地址。寻址范围达64KB。PC有自动加1功能,以实现程序的顺序执行。PC没有地址,是不可寻址的,无法用指令对它进行读写。但在执行转移、调用、返回等指令时能自动改变其内容,以改变程序的执行顺序。 参数代表的意义: 1、Rn 表示R0~R7中的一个 2、#data 表示8位的数值 00H~FFH 3、direct 表示8位的地址 00H~FFH(指的是内部RAM或SFR的地址) 4、@Ri 表示寄存器间接寻址只能是R0或者R1 5、@DPTR 表示数据指针间接寻址 6、bit 表示位地址 7、$ 表示当前地址 常见汇编语言指令解释: 寄存器寻址 MOV A,R1将R1中的数值赋予A 直接寻址 MOV A,3AH将地址3AH中的数值赋予A 立即寻址 MOV A,#3AH将3AH数值赋予A

寄存器间址 MOV A,@R0 将 R0中地址的数值赋予A 变址寻址 MOVC A,@A+DPTR以A中的数值为地址偏移量进行查表 相对寻址 AJMP MATN跳转到行号为MATN处 位寻址 MOV C,7FH 将位地址7FH的数值赋予C MOV A,#3AH数据传输、赋值命令 PUSH direct将direct为地址的数值压入堆栈中 POP direct将direct为地址的数值弹出堆栈 XCH A,direct将direct中的数值与A进行交换 ADD A,direct将direct中的数值与 INC direct将direct中的数值加1 SUBB A,direct将A中的数值减去direct中的数值和Cy值,并保存在A中,如果想使用不带Cy减法,可以在运算前对Cy清零:CLR C DEC direct将direct中的数值减1 DA A 用于对BCD码加减法后进行10进制调整 MUL A B将A和B相乘,并把高八位放在B中,低八位放在A中 DIV A B将A和B相除,并把商放在A中,余数放在B中 ANL A,direct将A与direct中的数值进行与运算,结果保留在A 中(与运算规律:有0出0,全1出1) ORL A,direct将A与direct中的数值进行或运算,结果保留在A中(或运算规律:有1出1,全0出0) XRL A,direct将A与direct中的数值进行异或运算,结果保留在A 中(异或运算规律:全0出0,全1出0,01、10出1)

相关文档
最新文档