铋离子掺杂红外发光材料的综述

铋离子掺杂红外发光材料的综述
铋离子掺杂红外发光材料的综述

毕业设计(论文)

题目铋离子掺杂红外发光材料综述系(院)化学与化工系

专业应用化工技术

班级2010级4班

学生姓名居晨

学号1023100825

指导教师刘志亮

职称助教

二〇一三年三月十五日

铋离子掺杂红外发光材料综述

摘要

铋离子红外发光具有良好的应用前景,铋是天然放射性元素,为有银白色光泽的金属,质脆易粉碎;室温下,铋不与氧气或水反应,在空气中稳定,加热到熔点以上时能燃烧,发出淡蓝色的火焰,生成三氧化二铋,铋在红热时与空气作用,也可与硫、卤素化合。而发光是物体将某种方式吸收的能量转化为光辐射的过程,而红外发光是某一段波长的光波吸收能量转换为光辐射的过程。近红外有机发光材料主要集中在两大类:一是稀土元素配合物;二是有机离子染料。远红外线是红外线中的一种,远红外线有较强的渗透力和辐射力,具有显著的温控效应和共振效应,它易被物体吸收并转化为物体的内能。本文章就铋离子掺杂红外发光材料的机理以及影响因素做出理论解释,并就铋离子掺杂红外发光材料的前景进行展望。

关键字:铋离子;红外发光;机理;影响因素

Review on Bi-doped infra-luminescence materials

Abstract

Bismuth ions infrared glow light has good of application prospects, bismuth is natural radioactive elements, for metal with silver luster, very brittle shatter easily; At room temperature, bismuth does not react with oxygen or water, stable in the air, heated to melting point above can burn, a light blue flame, and generate the bismuth oxide bismuth in red with the air, also can compound with sulfur and halogen. And luminous objects is to absorb the way energy is converted to optical radiation, the process of the infrared light is a Duan Bo long wavelengths absorbed energy is converted to optical radiation process. Nir organic light-emitting materials are mainly concentrated in two categories: one is the rare earth complexes; Second, the organic dye ions. Far infrared ray is one of the infrared, far infrared ray has strong penetration and radial force, has a significant effect, temperature effect and resonance, it is easy to absorbed by the object and translated into the internal energy of the object. This article is bismuth ions doping mechanism and affecting factors of the infrared light emitting materials to make theoretical explanation, and bismuth ions doped future infrared light-emitting materials is prospected as well.Bismuth ion infrared glow has good of application prospects, bismuth is natural radioactive element, for has silver gloss of metal, mass crisp easy crushed; at room temperature Xia, bismuth not and oxygen or

water reaction, in air in the stability, heating to melting point above Shi can burning, issued light blue of flame, generated three oxidation II bismuth, bismuth in red hot Shi and air role, also can and sulfur, and halogen combined. , Shiny object somehow absorbed radiation energy into light, and infrared light is a wavelength of light energy converted to optical radiation absorption process. Near infra-red organic light-emitting materials are mainly concentrated in two broad categories: first, the complexes of rare earth elements; the second, organic Ionic dyes. Far infrared is a form of infrared, far infrared rays with strong penetration and radiation, with significant temperature effects and resonance effects, it is absorbed by the body and transform into objects of internal energy. The article bismuth-doped infrared light emitting materials to theoretical explanations of the mechanism and influencing factors and prospect prospect of bismuth ions-doped infrared light emitting material.

Key words: Bismuth ion; infra-luminescence; mechanization; influencing factor

目录

引言 ................................................................................................................................................... - 2 -第一章铋离子简介 .................................................................................................................... - 2 -1.1铋离子简介 . (2)

第二章红外发光材料研究进展............................................................................................. - 3 -2.1发光材料简述 (3)

2.2红外发光材料简述 (3)

2.2.1近红外有机发光材料 (3)

2.2.2远红外有机发光材料 (4)

第三章铋离子掺杂红外发光材料机理................................................................. - 5 -3.1近红外发光机理.. (6)

3.1.1高价态离子B I5+ (6)

3.1.2低价态B I离子B I+ (6)

3.1.3B I原子或者团簇 (6)

第四章铋离子掺杂红外发光材料影响因素..................................................................... - 7 -4.1光学碱度 (7)

4.2配位环境 (7)

4.3晶体场 (7)

4.4能量传递 (8)

第五章铋离子掺杂红外发光技术的前景展望................................................................ - 8 -参考文献.......................................................................................................................................... - 9 -谢辞............................................................................................................................................... - 10 -

引言

随着社会的不断进步,发光材料已经广泛进入我们的生活生产中,而红外发光材料又是生活中应用最多的一种材料,近期又发现铋离子掺杂红外发光材料具有良好的应用前景,铋是天然放射性元素,为有银白色光泽的金属,质脆易粉碎;室温下,铋不与氧气或水反应,在空气中稳定,加热到熔点以上时能燃烧,发出淡蓝色的火焰,生成三氧化二铋,铋在红热时与空气作用,也可与硫、卤素化合。而发光是物体将某种方式吸收的能量转化为光辐射的过程,而红外发光是某一段波长的光波吸收能量转换为光辐射的过程。近红外有机发光材料主要集中在两大类:一是稀土元素配合物;二是有机离子染料。远红外线是红外线中的一种,远红外线有较强的渗透力和辐射力,具有显著的温控效应和共振效应,它易被物体吸收并转化为物体的内能。本文就铋离子的结构,性质进行介绍,结合红外发光材料进一步阐述铋离子掺杂红外发光材料的实用性以及在生活生产中的价值。

第一章铋离子简介

1.1 铋离子简介

铋,天然放射性元素,为有银白色光泽的金属,质脆易粉碎;熔点271.3°C,沸点1560°C,密度9.8克/厘米3;导电导热性差;由液态到固态时体积增大。室温下,铋不与氧气或水反应,在空气中稳定,加热到熔点以上时能燃烧,发出淡蓝色的火焰,生成三氧化二铋,铋在红热时与空气作用,也可与硫、卤素化合。铋不溶于水,不溶于非氧化性的酸(如盐酸)即使浓硫酸和浓盐酸,也只是在共热时才稍有反应,但能溶于王水和浓硝酸。

第二章红外发光材料研究进展

2.1 发光材料简述

发光是物体将某种方式吸收的能量转化为光辐射的过程。要确定某一种材料是否发光并没有明显的界限,一般条件下不发光的材料在非常强的能量激发下也有微弱的发光。有些材料需要提高纯度,发光才能变好,有些材料纯度高,但是发光效果不好,需要掺入一些杂质才能有好的发光。除了在极强激发下才能发光的材料以外,自然界中天然或者合成的发光数量仍然很大。如今,发光现象和发光材料已在国民经济、人民生活和国防建设的很多领域得到了广泛应用。

2.2 红外发光材料简述

如上所述,发光是物体将某种方式吸收的能量转化为光辐射的过程,而红外发光是某一段波长的光波吸收能量转换为光辐射的过程。红外线是波长介乎微波与可见光之间的电磁波,波长在760纳米至1毫米之间,是波长比红光长的非可见光。覆盖室温下物体所发出的热辐射的波段。透过云雾能力比可见光强。在通讯、探测、医疗、军事等方面有广泛的用途。红外线有较强的渗透力和辐射力,具有显著的温控效应和共振效应,它易被物体吸收并转化为物体的内能。

2.2.1 近红外有机发光材料

近红外有机发光材料主要集中在两大类:一是稀土元素配合物;二是有机离子染料。由于稀土元素的f-f跃迁是宇称禁阻的,其分子的激发需要通过配体与中心离子的能量转移,发光效率较低。而有机离子染料由于静电相互作用,分子容易因聚集而导致发光淬灭,并且主客体掺杂器件还存在着主体材料伴随着红外发光的问题以及效率低和制备工艺复杂等缺点。传统有机非离子型发光材料则不受上述因素的限制,可得到聚集态下较高的发光效率。科学家试着从这些材料中寻找最适合的来作为应用材料。

中科院长春应化所先进有机光电材料与器件研究中心研究员马东阁等,通过与加拿大卡尔顿大学教授王植源合作,首次将强电子给体与受体共轭连接,利用分子内电荷转移机制,合成了一系列高效的近红外有机非离子型发光材料。通过

调控其中电子给体、受体和连接基团的结构,可使分子的最长吸收波长达到1.1微米以上,光致发射波长达1.5微米,与以往报道的材料相比,波长有大幅度的红移。并且通过真空蒸镀法制备了非掺杂的电致发光器件,器件发射很好的近红外光,发射波长为1.08微米,效率可达0.28%,比离子染料型器件的效率提高了近10倍。通过进一步优化分子结构,发射波长可调至1.22微米,接近了光通讯窗口,是迄今为止有机近红外电致发光器件相关报道中发射波长最长的。该材料合成简便,器件发光效率高,除可用于信息显示和夜视背景光源,在生物传感等方面也有广泛的应用前景。

2.2.2 远红外有机发光材料

远红外线是红外线中的一种,远红外线有较强的渗透力和辐射力,具有显著的温控效应和共振效应,它易被物体吸收并转化为物体的内能。

产生远红外线主要方法选择热交换能力强、能放射特定波长远红外线的材料,然后加工制造成各种形式、各种用途的的产品。远红外线纤维产品所采用的材料能有效放射5.6um-15um的远红外线,占整体波长90%以上。常用发生远红外线的材料和产品有如下种类:

1、生物炭:例如高温竹炭、备长炭、竹炭粉、竹炭粉纤维以及各种制品等。

2、碳纤维制品:例如用来取暖的碳纤维地暖片、碳纤维发热电缆、碳纤维暖气片等,通电后的碳纤维中的碳分子做“布朗运动”,在产生热量的同时,会产生85%左右的远红外线来辐射热量。

3、电气石:例如电气石原矿、电气石颗粒、电气石粉、电气石微粉纺织纤维以及各种制品等。

4、远红外陶瓷:例如利用电气石、神山麦饭石、桂阳石、火山岩等高负离子、远红外材料按照不同的比例配各种用途的陶瓷材料,再烧制成各种用途的产品。

5、远红外陶瓷制品:例如远红外陶瓷球、陶瓷装饰建材、陶瓷涂料、陶瓷酒具餐具、陶瓷灯具、陶瓷工艺品、陶瓷微粉纺织纤维、陶瓷能量板、家用电器陶瓷元件等等。

6. 玉石:含有各种微量元素,如钙,镁,锌,硒,锰等对人体有益矿物质,加热后具有更多的有益于人体的远红外线。中国自古就有“人养玉,玉养人”之说。

7、金属氧化物及碳化硅:致密多孔的金属氧化物薄膜如氧化铝、氧化铜、氧化银,以及疏松多孔的碳化硅物质,在温度高于150摄氏度时发出的远红外线,波长主要集中在8~13微米,是石英管﹑红外线灯泡﹑线管之类产品始终无法达到的。

铋离子掺杂玻璃具有带宽,荧光寿命长等优点,一旦铋离子掺杂玻璃应用于光放大器用基质材料,能够只用一根光纤实现整个低损耗光通讯窗口的光信号放大。然而,目前对于铋离子宽带发光的机理尚不清楚,同时铋离子掺杂玻璃本身有一些问题需要克服,因此,需要从玻璃基质对铋离子宽带发光的影响出发,探讨铋离子宽带发光的机理,从而选取更加优异的基质材料,解决铋离子宽带发光面临的问题,进而实现性能更加优异的宽带发光。

总体来说远红外在生活和生产中对人类有很多的益处,研究以及彻底了解红外发光技术,对我们有很大的好处。

第三章铋离子掺杂红外发光材料机理

主族金属铋离子的电子构型为6s26p3,外层电子处于半满状态,使得电子较活跃,容易发生转移而形成多种价态的铋离子,如Bi5+,Bi3+,Bi2+和Bi+等,其中三价态Bi离子最稳定,发光性能的研究而很多,认为中心波长一般位于蓝,绿波段[1]。在某些基质材料中也可以形成稳定的Bi2+,其发光现象存在很多争议,特别是对近红外发光特性的研究。

3.1近红外发光机理

尽管国际上包括国内针对Bi离子近红外宽带发光现象展开了大量研究,然而到现在为止,关于近红外发光机理仍没有达成一致的观点,主要有一下几种观点:①高价态Bi离子Bi5+[2];②低价态Bi离子Bi+[3];③Bi原子或团族[4]④色心[5]等等。下面就以上几种观点进行逐一介绍。

3.1.1高价态离子Bi5+

2001年,日本学者Fujimoto等人[6]首次报道Bi离子掺杂玻璃的近红外宽带发光现象后,不久便提出其发光中心是高价态Bi离子Bi5+,这一观点的提出并没有直接的可靠依据,随后,Fujimoto等人通过多种测试手段还进行了一系列的研究,其结果都支持此前的结论,此外,国内夏海平教授等人[7]的研究工作也支持Bi5+。

3.1.2 低价态Bi离子Bi+

2005年. 孟宪赓等人[8]率先提出近红外发光中心属于低价态的Bi离子Bi+的观点,该观点的理由是:所选取的玻璃体系成分为GeO2,为弱酸性,根据Duffy 的光学碱度理论分析,随着基质碱性的减弱,有利于多价态离子生成低价态离子,而不利于高价态离子的存在;Bi2O3在高温下通常会发生分解反应,分解成BiO 或者金属铋;根据试验得到的吸收光谱机选出的能及结构提出是Bi+。2007年Arai 等人在掺杂Bi的玻璃中加入C粉,得到无色具有近红外发光特性的玻璃,随着C 粉加入量的增加,其近红外发光强度先增强后减弱,基于C粉高温还原作用有利于低价态离子的存在,他们推断近红外发光中心应属于低价态Bi离子,即Bi+或者Bi原子簇。

3.1.3 Bi原子或者团簇

针对Bi离子近红外发光机理研究,提出了另外一种解释,即认为是Bi原子或者多个原子形成原子团簇。依据是Bi2O3在高温下容易分解成BiO,会进一步分解成Bi原子。而Arai等[9]认为是低价态Bi离子,包括Bi+和Bi原子团簇,虽然没有给出确切的解释,但是的得到了一个一致的结论:Bi原子形成的胶质或纳米晶不是近红外发光中心。

第四章铋离子掺杂红外发光材料影响因素

铋离子红外发光[10]受多中因素的影响,如共价键[11],配位环境[12],晶格对称性等均可能影响铋离子掺杂材料的红外发光,目前,铋离子红外发光的机制尚不清楚,但是普遍认为,基质环境对铋离子红外发光起主要作用。

4.1 光学碱度

光学碱度的本质是:光学碱度利用探针离子的信息表示材料中的相对“自由”氧离子,在不同玻璃中,由于化学结构与环境不同,产生不同的极化率,造成O2-对探针离子的电子捐献能力不同。从而,形成光学碱度的差异。

4.2 配位环境

一个原子(或离子)周围相邻结合的同种原子(或异号离子)的个数,称为该原子(或离子)的配位数。配位数不同,结构不同,表现出来的性质也不同。铋属于周期表中第六周期第5主族重金属元素,位于金属和非金属交界处,具有特殊的理化性质。随着人们对其性质认识的不断深入,发现它无毒且不具有致癌特性,被称为绿色金属。它激起人们对其配位化学性质及其配合物合成研究的浓厚兴趣,合成了大量以满足不同需要的性质奇特,结构新颖的配合物。玻璃中场强强大的阳离子(小离子半径和高电荷)所形成的配位多面体是牢固的,当相当于各种原因引起配位数改变时,可使玻璃某些性质改变。铋离子受周围配位环境的影响,价态变化,Fujimoto等使配位模型,推论Bi离子红外发光源于Bi5+。

4.3 晶体场

晶体场理论是研究过渡族元素(络合物)化学键的理论。它在静电理论的基础上,结合量子力学和群论(研究物质对称的理论)的一些观点,来解释过渡族元素和镧系元素的物理和化学性质,着重研究配位体对中心离子的d轨道和f轨道的影响。

晶体场理论认为开壳层离子的能级在晶体中收到周围环境的作用,使得自由里子的能级因为收到晶体环境作用而产生能级劈裂,能级劈裂使得同一离子再不同的晶体中产生不同的能及位置和光谱。

4.4 能量传递

发光材料吸收光,整个体系进入激发态,然后会通过发光或非辐射跃迁方式回到基态,还存在另外一种返回基态的可能性,即通过激发能从激发中心向另一个中心传递的方式。铋离子红外发光相对较弱,如果能够在铋离子掺杂光放大材料中加入某种敏化剂,使得铋离子发光显著增强,将大大推进铋离子掺杂的发展进程。

总之,目前Bi离子近红外发光机理仍不明确,各种解释都是基于各自的实验条件和结果推断出来的。关于铋掺杂红外发光机理的研究均是基于各项研究小组的实验条件和实验结果提出的,有多重不同的,甚至互相抵触的观点,没有形成统一的,能够解释何种实验现象的理论分析。也有一种机制来解释所有的实验现象,也许Bi掺杂的材料确实存在两种甚至两种以上的近红外发光中心。这一机理有待各种检测设备和研究工作的继续完善,或许能找到一种符合所有现象的解释。因此,铋离子掺杂红外光激励和影响因素的研究具有理论和实际意义。

第五章铋离子掺杂红外发光技术的前景展望

通过以上对铋离子,红外发光材料以及影响铋离子掺杂红外发光技术的因素,我们可以知道以下几点:

1、Bi离子掺杂红外发光是当今值得研究的有价值的课题,我们要将铋离子的结构,以及掺杂红外发光技术的机理研究清楚。

2、发光现象和发光材料已在国民经济、人民生活和国防建设的很多领域得到了广泛应用。发展红外发光技术对人们生活生产有很大的帮助。

3、目前红外发光机理还没有形成统一的认识,要想进一步进行发展,形成统一的认识是当前迫切需要解决的问题。

4、铋离子掺杂红外发光技术是红外技术中对人民生活生产最有用的技术之一,在未来几年中要大力研究并发展此技术,并大力应用于人民生活中,提高人民生活生产水平。

参考文献

[1] G.Blasse, A.Bril, Investigation on Bi3+-activated phosphors, Joumal of Physics and Chemistry

of Solids,1968,48(1):217-222.

[2] Ye L, Huang S. Study of P (AM-NVP-DM- DA) hydrophobic ally associating water-soluble

polymer [J]. Applied Polymer Science, 1999, 7(4): 211-217

[3] X.G,Meng,J.R.QIU,M.Y.Peng.et al,Near infrared broadband emission of bismuth-doped

aluminophosphate glass,Opt,Exp,2005,13(5):1628-1634.

[4] S.Khonthon, S.Morinoto, Y.Arai,et al,Lunubescence characteristics of Te-and Bi-doped glass

and glass-ceramics,J.Ceram.Soc,2007,115(4):259-263.

[5] M.Y.Sharonov, A.B.Bykov, V.Petriceic,et al,2008,33(18):2131-2133.

[6] 周时凤,徐时清,邱建荣,超宽带放大用新型发光材料,硅酸盐学报,2006,34(9):1130-1136.

[7] Bock J, et al. Enhanced oil recovery with hydrophobic ally associating polymers containing

N-vinyl-pyrrolidone functionality: US, 4709759[P]: 19-87

[8] H.P.Xia, X.J.Wang, Near infrared broadband emission of bismuth-doped aluminophosohate

glass,Opt.Exp,2005,13(5):1628-1634.

[9] 彭明营,汪晨,邱建荣,超宽带光纤放大器用的新型掺铋发光材料,激光与光子学进

展,2005,42(12):41-45.

[10] Corstjens Plam, ZuiderwijkM,Nilsson M, et al. Lateral2flow and up2converting phosphor

reporters to detect single2stranded nucleic acids in asandwich2hybridization assay[J].

Analytical Biochemistry, 2003, 312 (2) : 1912200.

[11] Vetrone F, Boyer J C, Capobianco J A, et al. Concentration2dependent near2infrared to

visible up-conversion in nanocrystalline and bulk..

[12] Joubert M F.Photon Avalanche Up-conversion in Rare Earth Laser Materials[J].Op t

Mater,1999,11:181—203.

谢辞

在此论文撰写过程中,要特别感谢我的导师刘志亮老师的指导与督促,同时感谢他的谅解与包容。本文是在刘志亮老师的悉心指导下完成的,刘志亮对待科学研究严谨的态度,对我以后的工作、学习和生活产生了积极的影响。他呕心沥血、关爱同学、不求回报、无私奉献的精神很让我感动,再次向他表示由衷的感谢。

还要感谢大学三年来所有的老师,为我们打下化学专业知识的基础;同时还要感谢所有的同学们,正是因为有了你们的支持和鼓励,此次毕业论文才会顺利完成。

最后感谢滨州学院化学与化工系对我三年来的培养!

量子点发光材料综述

量子点发光材料综述 1.量子点简介 1.1量子点的概述 量子点(quantum dot, QD)是一种细化的纳米材料。纳米材料是指某一个维度上的尺寸小于100nm的材料,而量子点则是要求材料的尺寸在3个维度都要小于100nm[1]。更进一步的规定指出,量子点的半径必须要小于其对应体材料的激子波尔半径,其尺寸通常在1-10nm左右[2]。由于量子点半径小于对应体材料的激子波尔半径,量子点能表现出明显的量子点限域效应,此时载流子在三个向上的运动受势垒约束,这种约束主要是由静电势、材料界面、半导体表面的作用或是三者的综合作用造成的。量子点中的电子和空穴被限域,使得连续的能带变成具有分子特性的分离能级结构[1]。这种分离结构使得量子点有了异于体材料的多种特性以及在多个领域里的特殊应用。 1.2量子点的特性 由于量子点中载流子运动受限,使得半导体的能带结构变成了具有分子原子特性的分离能级结构,表现出与对应体材料完全不同的光电特性。 1.2.1 量子尺寸效应 纳米粒子中的载流子运动由于受到空间的限制,能量发生量子化,连续能带变为分立的能级结构,带隙展宽,从而导致纳米颗粒的吸收和荧光光谱发生变化[3]。这种现象就是典型的量子尺寸效应。研究表明,随着量子点尺寸的缩小,其荧光将会发生蓝移,且尺寸越小效果越显著[4]。 1.2.2 表面效应 纳米颗粒的比表面积为,也就是说量子点比表面积随着颗粒半径的减小而增大。量子点尺寸很小,拥有极大的比表面积,其性质很大程度上由其表面原子决定。当其表面拥有很大悬挂键或缺陷时,会对量子点的光学性质产生极大影响[5]。 1.2.3 量子隧道效应 量子隧道效应是基本的量子现象之一。简单来说,即当微观粒子(例如电子等)能量小于势垒高度时,该微观粒子仍然能越过势垒。当多个量子点形成有序

浅析未来材料的发展趋势(1)

北京科技大学 本科生学术报告 题目:________________________ ________________________ 学院:________________________ 专业:________________________ 姓名:________________________ 学号:________________________ 指导教师签字:________________________ 年月日

目录 近现代材料的发展历史和作用 (3) 材料发展历史 (3) 材料的地位和作用 (4) 材料发展分析 (5) 电子材料 (5) 新型战略性材料 (6) 美国材料战略和发展趋势简略分析 (7) 日本材料战略和发展趋势简略分析 (8) 欧盟材料战略简略分析 (10) 其他部分国家材料发展计划 (10) 我国新材料发展战略 (11) 总结 (13) 参考文献 (14)

浅析未来材料的发展趋势 谢帅(北京科技大学,北京 2016) 摘要:步入21世纪后,科技的发展速度变得十分迅速,每时每刻都可能有新的科技成果出现。在这科技爆炸的年代,身为理工人,了解自己学科的发展状况、预测自己未来的发展方向是十分重要的。身为材料专业的学生,如果能很好的预测出未来材料的可能重点发展方向,不仅能够为选专业提供参考,还能更好了解材料这个学科,让自己成为自己未来的“指路人”。,要对材料有较为深刻的认识。材料是人类文明的里程碑,首先,我通过了解材料发展历程和地位,认识材料对国家、世界乃至人类文明发展的重要性。由于国情不同,不同国家会有不同的发展重点。所以之后对美国、日本、欧盟等国家的材料战略和其重点领域进行了解及简略分析,得出这些国家的材料发展趋势。最后当然要了解我国材料领域的重点和国家的关于材料的发展规划,展望新材料领域发展趋势:复合材料、生物材料、纳米材料、制造材料的新工艺、新流程及结构与性能的新测试方法、材料表证和评价科学技术、材料设计与性能预测科学技术。 关键词:新材料材料发展战略性材料 近现代材料的发展历史和作用 材料发展历史 材料是人类文明的里程碑,对材料的认识和能力决定着社会的形态和人类生活的质量。在人类社会发展的历程中,可以发现很多阶段都是以材料为主要标志或是材料起主导作用,如远古的旧石器时期、新石器时代、陶瓷时代、青铜器时代、铁器时代,到近现代的煤炭时代、蒸汽机时代、水泥时代、钢铁时代、石油时代、电气与化工时代、半导体时代,以及发展中的复合材料、纳米材料、绿色环保材料等新时代材料(图1)[1]4图

红外图像增强算法研究

红外图像增强算法研究 安阳,胡耀祖 武汉理工大学信息学院,武汉 (430070) E-mail:alen1983@https://www.360docs.net/doc/e015310924.html, 摘要:本文根据红外图像的特点介绍了几种经典的图像增强算法,讨论算法的效果,提出对算法的一些改进,给出了一些改进后的效果。 关键词:红外图像,直方图,锐化 1.引言 红外技术是二战后兴起的一项红外信息转换与处理技术。它研究红外辐射的发射、传输和接收的规律及其应用原理,而红外成像技术是其应用最广泛的方面。随着科技的不断发展,红外热成像技术在军事、科研、工农业生产、医疗卫生等领域的应用越来越广泛,与此同时图像实时处理的研究也得到了迅速发展[1]。 随着红外成像技术的广泛应用,人们对红外图像成像质量的要求越来越高,要提高红外图像的质量可以有两种途径:一是不断研究更高性能的红外探测器;另一个就是要进行红外图像的预处理,从而改善图像质量。 目前随着材料技术的突破,美国,西欧等发达国家在红外成像阵列的研制取得了巨大的发展,高密度,高灵敏度,快响应的红外焦平面阵列在军事上已经得到了应用,非制冷焦平面阵列也得到了快速的发展。 但是由于材料器件的限制,仅仅依靠红外探测器的提高不能完全达到我们所期望的图像质量,而且高精度的探测器件的研制所花费的人力物力是十分巨大的。而解决这个问题的一个有效的手段就是对红外图像进行实时图像预处理。实时图像处理技术能在现有的条件下不仅能提高红外图像质量,而且在较短的时间内迅速改善和提高红外热像仪的各项性能指标。 2.红外图像对比度增强算法 2.1 红外图像的特点 红外成像的目标和背景的红外辐射需经过大气传输、光学成像、光电转换和电子处理等过程,才被转换成为红外图像。所以从红外图像的产生过程分析,红外图像主要有以下特点:1)空间相关性强,对比度低;2)表征对象的温度分布,是灰度图像,分辨率较低,图像比较模糊;3)噪声干扰较大,噪声比较复杂,信噪比低;4)存在器件性的非均匀性等。 我们可以看出红外图像存在很多缺陷,对人眼来说其最显著的特点就是对比度很低,图像很模糊,所以本文主要从对比度提升和图像锐化两个方面进行增强算法的研究。 2.2 红外图像的直方图均衡化及改进 红外图像直方图的特点是像素相对比较集中,灰度值变化不大,使得图像的对比度很低,视觉效果很差。直方图均衡的作用是改变图像中灰度概率分布,使其均匀化。使图像中灰度概率密度较大的像素向附近灰度级扩展,因而灰度层次拉开,而概率密度较小的像素的灰度级收缩,从而让出原来占有的部分灰度级,这样的处理使图像充分有效地利用各个灰度级,因而增强了图像对比度。

超导的研究现状及其发展前景

题目:超导的研究现状及其发展前景 作者单位:陕西师范大学物理学与信息技术学院物理学一班 作者姓名:杜瑞,程琳,党晓菲,闫甜,王福琼,刘洁,刘园,郭丽丽 学号:40606043,40606042,40606044,40606045,40606046,40606047,40606048,40606049 指导教师:郭芳侠 交论文时间:20007-11-28

超导的研究现状及其发展前景 (陕西师范大学物理学一班第七组 710062) 摘要:本文简单介绍了一些与超导相关的概念,超导材料,超导的简史,超导的研究现状及对超导应用的前景展望。 关键字:超导,超导体,超导现象,超导材料,临界参量,研究现状,前景 Superconductivity research present situation and prospects for development (Shaanxi normal university physics one class Seventh group 710062) Abstract: This article simply introduced some and the superconductivity correlation concept, the superconductivity material, the superconductivity brief history, the superconductivity research present situation and to the superconductivity application prospect forecast.

碳纳米材料综述

碳纳米材料综述 课程: 纳米材料 日期:2015 年12月

碳纳米材料综述 摘要:纳米材料是一种处于纳米量级的新一代材料,具有多种奇异的特性,展现特异的光、电、磁、热、力学、机械等物理化学性能,这使得纳米技术迅速地渗透到各个研究领域,引起了国内外众多的物理学家、化学家和材料学家的广泛关注,也成为当前世界最热门的科学研究热点。物理学家对纳米材料感兴趣是因为它具有独特的电磁性质,化学家是因为它的化学活性以及潜在的应用价值,材料学家所感兴趣的是它的硬度、强度和弹性。毫无疑问,基于纳米材料的纳米科技必将对当今世界的经济发展和社会进步产生重要的影响。因此,对纳米材料的科学研究具有非常重要的意义。其中,碳纳米材料是最热的科学研究材料之一。 我们知道,碳元素是自然界中存在的最重要的元素之一,具有sp、sp2、sp3等多种轨道杂化特性。因此,以碳为基础的纳米材料是多种多样的,包括常见的石墨和金刚石,还包括近几年比较热门的碳纳米管、碳纳米线、富勒烯和石墨烯等新型碳纳米材料。 关键词:纳米材料碳纳米材料碳纳米管富勒烯石墨烯 1.前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)。自20世纪80年代初,德国科学家Gleiter提出“纳米晶体材料’,的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料己引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1—100 nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域[1]。 碳纳米材料主要包括富勒烯、碳纳米管和石墨烯等,是纳米科学技术中不可或缺的材料,从1985年富勒烯(Fullerene)的出现到1991年碳纳米管(carbon nanotube,CNTs)的发现,碳纳米材料所具有的独特物理和化学性质引起了国内外研究人员广泛而深入的研究,二十年来取得了很多的成果。2004 年Geim研究组的报道使得石墨烯(Graphene)成为碳纳米材料新一轮的研究热点,其出现充实了碳纳米材料家族,石墨烯具有由碳原子组成的单层蜂巢状二维结构,由于它只有一个原子的厚度,可以将其视为形成其它各种维度的石墨相关结构碳材料的基本建筑块,石墨烯既可翘曲形成零维的富勒烯及卷曲形成一维的碳纳米管,亦可面对面堆积形成石墨,由于石墨烯具有优异的电学、导热和机械性能及较大的比表面积,因而在储氢材料、超级电容器、高效催化剂及纳米生物传感等方面有着广泛的应用[2]。 2.常见的碳纳米材料

隐身材料发展历史综述和应用前景展望

1.绪论 1.1前言 随着无线电技术和雷达探测技术的迅速发展,电子和通信设备向着灵敏、密集、高频以及多样化的方向发展,这不仅引发电磁波干扰、电磁环境污染,更重要的是导致电磁信息泄漏,军用电子设备的电磁辐射有可能成为敌方侦察的线索。为消除或降低导弹阵地的电磁干扰、减少阵地的电磁泄漏,需要大大提高阵地在术来战争中的抗电磁干扰及生存能力。高放能、宽频带的电磁波吸波/屏蔽材料的研究开发意义重大。 吸波材料是一种重要的军事隐身功能材料,它的基本物理原理是,材料对入射电磁波进行有效吸收,将电磁波能量转化为热能或其他形式的能量而消耗掉。该材料应该具备两个特性,即波阻抗匹配性和衰减特性。波阻抗匹配特性即入射电磁波在材料介质表面的反射系数最小,从而尽可能的从表面进人介质内部;衰减特性指进入材料内部的电磁波被迅速吸收。损耗大小,可用电损耗因子和磁损耗因子来表征。对于单一组元的吸收体,阻抗匹配和强吸收之间存在矛盾,有必要进行材料多元复合,以便调节电磁参数,使它尽可能在匹配条件下,提高吸收损耗能力。吸波材料按材料的吸波损耗机理可分为电阻型、电介质和磁介质型。吸波材料的性能主要取决于吸波剂的损耗吸收能力,因此,吸波剂的研究一直是吸波材料的研究重点。 1.2隐身材料定义 随着人们生活水平的提高,各种电器的频繁使用,使我们周围的电磁辐射日益增强,电磁污染成为世界环境的第五害,严重的危害了人类的身体健康。电磁辐射对人的作用有5种:热效应、非热效应、致癌、致突变和致畸作用。因此,在建筑空间中,各类电子,电器以及各种无线通信设备的频繁使用,无时无刻不产生电磁辐射,电磁污染已经引起人们的广泛关注。 电磁吸波材料即隐身材料最早在军事上隐身技术中应用。隐身材料是实现武器隐身的物质基础。武器系统采用隐身材料可以降低被探测率,提高自身的生存率,增加攻击性,获得最直接的军事效益。因此隐身材料的发展及其在飞机、主战坦克、舰船、箭弹上应用,将成为国防高技术的重要组成部分。对于地面武器

高温超导材料的研究进展及前景展望论文正稿

兴义民族师范学院 2013届本科毕业生学位论文 高温超导材料的研究进展及 前景展望 姓 名: 马 关 爱 教 学 系: 物 理 系 专 业: 物 理 学 导师姓名: 张 星 中国﹒贵州﹒兴义 2013年5月

目录 摘要............................................................................................................................ I ABSTRACT .................................................................................................................. II 第一章绪论. (1) 1.1超导体的发现 (1) 1.2高温超导体的概述 (4) 第二章高温超导材料研究的内容 (6) 2.1高温超导材料的研究背景 (6) 2.2高温超导材料的特性 (7) 2.3高温超导材料的研究目标 (8) 2.4高温超导材料的研究状况 (9) 2.4.1高温超导的物理进展 (10) 2.4.2对BCS理论的修正[7] (11) 2.4.3RVB理论[7] (11) 2.4.4Luttinger液体理论[7] (12) 2.4.5铁磁自旋理论[7-10-11] (12) 2.4.6掺杂型高温超导体的研究进展 (12) 2.4.7高温超导材料其他方面的进展 (14) 2.5影响高温超导研究的因素 (14) 2.5.1交流损耗是一个影响高温超导材料应用的重要因素 (14) 2.5.2磁场是影响高温超导材料研究的一个重要因素 (15) 2.5.3量子限制效应对超导薄膜性质的影响 (15) 2.5.4超导体中的人工钉扎与磁通匹配效应 (15) 2.5.5薄膜表面等离子激元和增强透射效应 (15) 第三章高温超导材料的制备工艺 (16) 3.1高温超导材料的研究方法 (16) 3.1.1磁控溅射(MS)法 (16) 3.1.2脉冲激光沉积法 (16)

量子点发光材料综述

量子点 1.量子点简介 1.1量子点的概述 量子点(quantum dot, QD)是一种细化的纳米材料。纳米材料是指某一个维度上的尺寸小于100nm的材料,而量子点则是要求材料的尺寸在3个维度都要小于100nm[1]。更进一步的规定指出,量子点的半径必须要小于其对应体材料的激子波尔半径,其尺寸通常在1-10nm左右[2]。由于量子点半径小于对应体材料的激子波尔半径,量子点能表现出明显的量子点限域效应,此时载流子在三个方向上的运动受势垒约束,这种约束主要是由静电势、材料界面、半导体表面的作用或是三者的综合作用造成的。量子点中的电子和空穴被限域,使得连续的能带变成具有分子特性的分离能级结构[1]。这种分离结构使得量子点有了异于体材料的多种特性以及在多个领域里的特殊应用。 1.2量子点的特性 由于量子点中载流子运动受限,使得半导体的能带结构变成了具有分子原子特性的分离能级结构,表现出与对应体材料完全不同的光电特性。 1.2.1 量子尺寸效应 纳米粒子中的载流子运动由于受到空间的限制,能量发生量子化,连续能带变为分立的能级结构,带隙展宽,从而导致纳米颗粒的吸收和荧光光谱发生变化[3]。这种现象就是典型的量子尺寸效应。研究表明,随着量子点尺寸的缩小,其荧光将会发生蓝移,且尺寸越小效果越显著[4]。 1.2.2 表面效应 纳米颗粒的比表面积为,也就是说量子点比表面积随着颗 粒半径的减小而增大。量子点尺寸很小,拥有极大的比表面积,其性质很大程度上由其表面原子决定。当其表面拥有很大悬挂键或缺陷时,会对量子点的光学性质产生极大影响[5]。 1.2.3 量子隧道效应 量子隧道效应是基本的量子现象之一。简单来说,即当微观粒子(例如电子等)能量小于势垒高度时,该微观粒子仍然能越过势垒。当多个量子点形成有序阵列,载流子共同越过多个势垒时,在宏观上表现为导通状态。因此这种现象又

功能材料发展趋势

材料】功能材料发展趋势 功能材料发展趋势 功能材料是一大类具有特殊电、磁、光、声、热、力、化学以及生物功能的新型材料,是信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料,同时也对改造某些传统产业,如农业、化工、建材等起着重要作用。功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。功能材料按使用性能分,可分为微电子材料、光电子材料、传感器材料、信息材料、生物医用材料、生态环境材料、能源材料和机敏(智能)材料。由于我们已把电子信息材料单独作为一类新材料领域,所以这里所指的新型功能材料是除电子信息材料以外的主要功能材料。 功能材料是新材料领域的核心,对高新技术的发展起着重要的推动和支撑作用,在全球新材料研究领域中,功能材料约占85%。随着信息社会的到来,特种功能材料对高新技术的发展起着重要的推动和支撑作用,是二十一世纪信息、生物、能源、环保、空间等高技术领域的关键材料,成为世界各国新材料领域研究发展的重点,也是世界各国高技术发展中战略竞争的热点。 鉴于功能材料的重要地位,世界各国均十分重视功能材料技术的研究。1989年美国200多位科学家撰写了《90年代的材料科学与材料工程》报告,建议政府支持的6类材料中有5类属于功能材料。从1995年至2001年每两年更新一次的《美国国家关键技术》报告中,特种功能材料和制品技术占了很大的比例。2001年日本文部省科学技术政策研究所发布的第七次技术预测研究报告中列出了影响未来的100项重要课题,一半以上的课题为新材料或依赖于新材料发展的课题,而其中绝大部分均为功能材料。欧盟的第六框架计划和韩国的国家计划等在他们的最新科技发展计划中,都把功能材料技术列为关键技术之一加以重点支持。各国都非常强调功能材料对发展本国国民经济、保卫国家安全、增进人民健康和提高人民生活质量等方面的突出作用。 1、新型功能材料国外发展现状 当前国际功能材料及其应用技术正面临新的突破,诸如超导材料、微电子材料、光子材料、信息材料、能源转换及储能材料、生态环境材料、生物医用材料及材料的分子、原子设计等

超导材料的现状及发展趋势分析

超导材料的现状及发展方向自1911年荷兰莱顿实验室的卡末林·昂纳斯首次在4.2K时发现水银零电阻现 象即超导现象以来。人们相继在超导 材料方面取得很多突破,后来在梅斯 勒发现超导体的抗磁性之后, 1934 —1985年后超导物理学理论逐步发 展,超导材料逐步应用于实际科学技 术领域。但由于种种原因,至今超导 物理学理论也不够完善。在这一阶段 人们研究的超导材料临界转变温度 较低。 后来进入高温超导研究阶段,高温超导材料指的是:钇系(92 K)、铋系(110 K)、铊系(125 K)和汞系(135 K)以及2001年1月发现的新型超导体二硼化镁(39 K)。高温超导体属于非理想的第II类超导体。临界磁场和临界电流且比低温超导体更高。同时已对高温超导材料进研究开发,氧化物复合超导材料具有耐用和稳定性好的特点。通过研究浸泡实验表明,超导电性的退化主要来自于杂相及时效过程中的析出相。为了改善薄膜对环境的敏感性,美国西北大学的Mirkin建议把分子单层表面化学改性引入到高温超导铜氧化合物中。 以铋锶钙铜氧系为第一代高温超导带材,它的可加工性优良,在超导强电应用领域占据重要位置。但铋系材料的实用临界电流密度较低,并且在77 K的应用磁场也很低。然而钇钡铜氧化物材料在77 K的超导电性比铋锶钙铜氧材料好的多;但它的可加工性极差,故要做出超导性好的带材通过传统的压力加工和热处理工艺就很难。 随着材料科学工艺技术的发展,近年来一种在轧制金属基带上制造钇钡铜氧超导带材的工艺被称作“第二代”带材。欧洲国家努力开展高温超导材料工艺及应用研究。丹麦已批量制造铋系超导带材。2003年11月我国第一个10m、 10.5kV/1.5kA 三相交流高温超导电缆系统日前在中国科学院电工研究所研制成功,并于成功地进行了试验运行。2011年5月信赢和公司团队研发的世界最大功率的超导限流器刚成功。2011年9月25日,特拉维夫大学的研究小组开发出了一种超导体材料——蓝宝石单晶体纤维,可用于高压电缆输电,输电量是相同直径铜线输电量的40倍。研究人员称这种超导材料将有可能彻底改变电力输送占空间、高损耗的状况。 高温超导材料主要有:膜材(薄膜、厚膜)、块材、线材和带材等类型。薄膜最常用、最有效的两种镀膜技术是:磁控溅射和脉冲激光沉积。还有金属有机

三维纳米材料制备技术综述

三维纳米材料制备技术综述 摘要:纳米材料的制备方法甚多。目前,制备纳米材料中最基本的原则有二:一是将大块固体分裂成纳米微粒;二是由单个基本微粒聚集,并控制聚集微粒的生长,使其维持在纳米尺寸。本文主要介绍纳米材料分类和性能,同时介绍了一些三维纳米材料的制备方法,如水热法、溶剂热法和微乳液法。 关键词:纳米材料;纳米器件;纳米阵列;水热法;溶剂热法;微乳液法 1.引言 随着信息科学技术的飞速发展,人们对物质世界认识随之也从宏观转移到了微观,也就是说从宏观的块体材料转移到了微观的纳米材料。所谓纳米材料,是材料尺寸在三维空间中,至少有一个维度处于纳米尺度范围的材料。如果按照维度的数量来划分,纳米材料的的种类基本可以分为四类:(1)零维,指在空间中三维都处在纳米尺度,如量子点,尺度在纳米级的颗粒等;(2)—维,指在空间中两个维度处于纳米尺度,还有一个处于宏观尺度的结构,例如纳米棒、纳米线、纳米管等;(3)二维,是指在空间中只有一个维度处于纳米尺度,其它两个维度具有宏观尺度的材料,典型的二维纳米材料具有层状结构,如多层膜结构、一维超晶格结构等;(4)三维,即在空间中三维都属于宏观尺度的纳米材料,如纳米花、纳米球等各种形貌[1]。 当物质进入纳米级别,其在催化、光、电和热力学等方面都出现特异性,这种现象被称为“纳米效应”。纳米材料具有普通材料所不具备的3大效应:(1)小尺寸效应——其光吸收、电磁、化学活性、催化等性质发生很大变化;(2)表面效应——在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应,例如纳米微粒表现出令人难以置信的奇特的宏观物理特性,如高强度和高韧性,高热膨胀系数、高比热容和低熔点,异常的导电率和磁化率,极强的吸波性,高扩散性,以及高的物理、化学和生物活性等[2]。 纳米科学发展前期,人们更多关注于一维纳米材料,并研究其基本性能。随着纳米科学快速发展,当今研究热点开始转向以微纳结构和纳米结构器件为方向的对纳米阵列组装体系的研究。以特定尺寸和形貌的一维纳米材料为基本单元,采用物理和化学的方法在两维或三维空间内构筑纳米体系,可得到包括纳米阵

量子点发光材料综述

量子点发光材料综述

————————————————————————————————作者:————————————————————————————————日期: ?

量子点 1.量子点简介 1.1量子点的概述 量子点(quantum dot, QD)是一种细化的纳米材料。纳米材料是指某一个维度上的尺寸小于100nm的材料,而量子点则是要求材料的尺寸在3个维度都要小于100nm错误!未找到引用源。。更进一步的规定指出,量子点的半径必须要小于其对应体材料的激子波尔半径,其尺寸通常在1-10nm左右[2]。由于量子点半径小于对应体材料的激子波尔半径,量子点能表现出明显的量子点限域效应,此时载流子在三个方向上的运动受势垒约束,这种约束主要是由静电势、材料界面、半导体表面的作用或是三者的综合作用造成的。量子点中的电子和空穴被限域,使得连续的能带变成具有分子特性的分离能级结构错误!未找到引用源。。这种分离结构使得量子点有了异于体材料的多种特性以及在多个领域里的特殊应用。 1.2量子点的特性 由于量子点中载流子运动受限,使得半导体的能带结构变成了具有分子原子特性的分离能级结构,表现出与对应体材料完全不同的光电特性。 1.2.1 量子尺寸效应 纳米粒子中的载流子运动由于受到空间的限制,能量发生量子化,连续能带变为分立的能级结构,带隙展宽,从而导致纳米颗粒的吸收和荧光光谱发生变化错误!未找到引用源。。这种现象就是典型的量子尺寸效应。研究表明,随着量子点尺寸的缩小,其荧光将会发生蓝移,且尺寸越小效果越显著[4]。 1.2.2 表面效应 纳米颗粒的比表面积为A m=S V =4πR2 4 3 πR3 =3 R ,也就是说量子点比表面积随着颗 粒半径的减小而增大。量子点尺寸很小,拥有极大的比表面积,其性质很大程度上由其表面原子决定。当其表面拥有很大悬挂键或缺陷时,会对量子点的光学性质产生极大影响错误!未找到引用源。。 1.2.3量子隧道效应

日本汽车新材料发展综述

日本汽车新材料发展综述 时间:2009-12-19 10:10来源:汽车与配件作者:王建萍 近年来随着全球经济的发展,能源问题和环保问题日益受到人们的关注,汽车行业面临一系列新的问题。诸如,一方面汽油价格在不断地创新高,安全法规越来越多,汽车排放指标的更新版本在不断地发布,另一方面全球化竞争愈演愈烈,降低汽车成 本压力越来越大。面对这些课题,人们对新材料技术研发寄予了厚望。近年来日本汽车行业在材料技术研发方面,诸如钢铁、有色金属、非金属等,出现了一些新的动向。 钢铁材料 1.钢板材料 车身与底盘的轻量化对于提高燃油经济性和削减CO2具有重要意义。目前,解决该问题的有效手段是使用具有高撞击安全性的高强度材料。 从车身高强度材料的应用情况来看,汽车外板如发动机罩、车门、行李箱、侧围外板等处已经应用了340MPa级烘烤硬化型钢板(以下称为BH钢板)和440MPa级高强度材料。车身骨架部件目前流行使用440MPa和590MPa级高强度材料。590MPa级 高强度材料大体分为析出硬化钢、双相钢(以下称为DP饮)和相变诱导塑性钢(以下称为TRIP钢)三种。DP钢比析出硬化钢的屈服强度低、延伸性高;TRIP钢比DP钢的延伸性高、能量吸收性能好。另外,还有一部分780MPa级和980MPa级的高强度材料也被应用,780MPa级高强度材料主要使用DP钢和TRIP钢,980MPa级的高强度材料主要使用DP钢。另外,随着高频淬火和热冲压成型技术等新的热处理技术的应用,零部件高强度化技术得到进一步发展。热冲压成型技术就是对加热的钢板进行冲压的同时 还进行冷却淬火,这样零部件抗拉强度可达1470MPa。 汽车行驶部位的部件形状复杂,强度要求高,焊接性能要求也很高,所以高强度钢板应用很困难。但是近年来人们为了提高成形性,开发了TRIP钢;为了提高扩孔加工性,开发了贝氏体钢;为了确保焊接接头疲劳强度,开发了耐HAZ(保持热影响区性能) 的软化钢板,其强度为590MPa级,有的可达780MPa。 以前汽车的耐腐蚀钢板多为各种镀锌钢板,近年来,热浸镀锌铜板(GA)成为了主流。为了提高冲压成形性,对GA上敷覆无机类或有机类起润滑作用的氧化膜,该工艺得到了推广应用。人们还进一步开发了耐腐蚀性好的Zn-AL—Mg镀锌板,主要为了省略后面的电镀工序,这已在汽车上得到了广泛应用,, 在环保方面,由于EU-ELU对报废汽车的规定)对特定的环境污染物进行了使用限制,人们开发了无六价铬表面处理技术代替以往的电镀钢板中使用含有铬酸盐“钝化”处 理的六价铬。油箱钢板不应含Pb,所以现在不再使用过去的Pb-Sn合金电镀钢板而 采用Sn-Zn电镀钢板、镀铝钢板。

铋基类钙钛矿铁电材料的合成及性质研究

铋基类钙钛矿铁电材料的合成及性质研究 【摘要】:近年来,铋基类钙钛矿铁电材料是铁电和固态电解质材料应用领域备受关注的功能材料之一,其应用研究已成为固态电子学领域的研究热点。它的高居里温度、低介电常数、良好的抗疲劳性、高氧离子导电率和环境友好,在铁电存储器和中低温固态氧化物燃料电池(SOFC)等应用上具有潜在的发展前景。但是,满足器件用的铋基类钙钛矿材料还面临若干问题,例如,铋基铁电薄膜的各向异性和结构稳定性问题,电解质材料满足器件集成的制备工艺和热稳定问题等。本论文以钒酸铋(Bi_2VO_(5.5),BVO)及其金属掺杂材料为研究对象,针对以上问题研究了BVO体系铁电薄膜和Bi_2ME_(0.1)V_(0.9)O_(5.5-δ)(BIMEVOX.10)电解质材料的制备及性能。主要研究结果如下:(1)采用化学溶液沉积(CSD)法,分别在LaNiO_3(LNO)/Si(100)、Pt/TiO_2/SiO_2/Si(100)衬底上制备了c轴取向的高质量BVO薄膜。并对CSD工艺做了改进,用钒无机盐替代最初采用的乙酰丙酮氧钒,成功解决了金属醇盐价格昂贵且不易保存的问题。深入研究了不同退火温度对BVO薄膜性能的影响。700℃退火后的BVO薄膜显示出最优的性能,具有高度c轴取向,剩余极化和漏电流密度提高到10.62μC/cm~2和 1.92×10~(-8)A/cm~2。分析了260-480K温度范围的介电特性,发现BVO薄膜中存在的多分散弛豫由氧空位等缺陷引起,传导机制主要为氧空位传导。(2)研究了BVO薄膜与p-Si(100)衬底集成所形成

MFIS(Metal-Ferroelectrics-Insulator-Semiconductor)结构的C-V特性,记忆窗大小约0.5V,这为BVO薄膜在场效应型铁电存储器的应用提供了优化的工艺条件。采用椭偏光谱获得了BVO薄膜的光学常数,有助于开发其光学特性上的应用。(3)首次用CSD法合成了具有良好铁电特性的混合铋基类钙钛矿铁电薄膜Bi_2VO_(5.5)-Bi_4Ti_3O_(12),薄膜剩余极化2P_r提高到12.46μC/cm~2,漏电流密度为1.17×10~(-8)A/cm~2。为提高BVO材料的铁电特性提供了新技术途径。(4)首次系统研究了不同比例La掺杂对BVO薄膜介电特性的影响。La掺杂使BVO薄膜的介电常数、介电损耗增加,在少量掺杂(0.025摩尔比)时表现最明显。其机理在于低浓度的La会先进行V位替换,La~(3+)和V~(5+)间的非等价替代及原子半径间的巨大相差,引起晶格体积膨胀和晶格扭曲的结构重排,引发氧空位V_o~¨等缺陷,造成介电常数、介电损耗的增加和弛豫程度的显著增强。(5)用CSD法成功制备了BIMEVOX.10(ME=Ti,Co,Fe,Ni,Mn)薄膜,研究了其结构和电学特性。重点讨论了BIMNVOX.10薄膜在300-485K温度范围的电特性,研究表明BIMNVOX.10薄膜的介电弛豫可能是由氧空位的短程扩散传导引起,属于多分散性弛豫。发现BIMNVOX.10薄膜具有室温弱铁磁特性。(6)深入研究了BIMEVOX体系电解质材料中具有最高电导率的Bi_2Cu_(0.1)V_(0.9)O_(5.35)(BICUVOX.10)粉体和薄膜材料的制备和特性。采用化学溶液法制备了BICUVOX.10纳米粉末,比常规固相法的合成温度降低了~300℃。研究了PEG4000表面活性剂、制备方法和粉末分散性间的联系。发现PEG4000能有效改变纳米颗

红外增强算法综述

红外增强算法综述 在图像形成、传输或变换的过程中,由于受到其它客观因素诸如系统噪声、曝光不足或过量、相对运动等影响,获取图像往往会与原始图像之间产生某种差异(称为降质或退化)。退化后的图像通常模糊不清或者经过机器提取的信息量减少甚至错误,因此必须对其采取一些手段进行改善。图像增强技术正是在此意义上提出的,目的就是为了改善图像的质量。图像增强根据图像的模糊情况采用各种特殊的技术突出图像中的某些信息,削弱或消除元关信息,达到强调图像的整体或局部特征的目的。图像增强尚没有统一的理论方法,常用的图像增强技术有直方图修改、图像平滑滤波、图像锐化等。下面将由红外图像的直方图出发,介绍相关的增强算法。 一、红外图像的直方图及其特点 1、红外图像的直方图 图像的基本描述有灰度、分辨率、信噪比、频谱等等。灰度直方图是用于表达图像灰度分布情况的统计图表,有一维直方图和二维直方图之分。其中最常用的是一维直方图,其定义是:对于数字图像()y x f ,,设图像灰度值为0r 、1r ......1-L r ,则概率密度函数()i r P 为: ()()....3,2,1== i r r P i i 图像上总的像素数的像素数灰度级为 且有()110 =∑-k i r P ,由于i r 取值离散,故直方图习惯画成灰度级—像素数(图1) 的形式。 图1:典型直方图 直方图具有以下性质: 1) 只表示图像中每一灰度级出现的频数,而失去了具有该灰度级的像素的位置信息; 2) 图像与直方图之间是多对一的映射关系;

3) 一副图像各子区直方图之和等于该图像的全图直方图。 在图像处理中,直方图是很有用的决策和评价工具。直方图可以提供下列信息: 1) 每个灰度级像素数出现的频数; 2) 图像像素值的动态范围; 3) 整幅图像的大致平均亮度; 4) 图像的整体对比度情况。 直方图统计在对比度拉伸,灰度级修正、动态范围调整、图像亮度调整、模型化等图像处理方法中发挥了很大作用,在本文后面的讨论中将可以看到直方图的意义。 2、红外直方图的特点 对红外图像直方图与可见光图像直方图进行对比研究可以发现,红外图像相对于可见光图像有着其特有的规律和特点: 1) 像素灰度值动态范围小,很少能覆盖整个灰度级空间。而可见光图像的像素则几乎分布于几乎整个灰度级空间。 2) 绝大部分像素集中于某些相邻的灰度级范围内,在这些范围内以外的灰度级上的像素数量很少,而可见光的像素分布则相对比较均匀。 3) 直方图中有明显的峰存在,很多情况下为单峰或者双峰(分为主峰、次峰),而可见光图像直方图的峰不是很明显,并且峰的数量一般多于两个。 但要注意的是,上述三点是大多数红外图像直方图所具备的特点。由于具体的气候条件、环境温度等因素的影响,不同季节不同时间段内各种物体的热辐射呈现不同的特点,物体越热,红外成像的亮度越高,物体温度越低,其红外成像的亮度就越低,所以实际当中的红外图像往往呈现出各自的特点,并不一定与上述特点完全一致。 二、通常的红外图像增强算法 图像增强是一种基本的图像预处理手段,对图像的某些特征,如对比度、边缘等进行增强或突显,便于后续分析和处理。它并不意味着能增加原始图像的信息,有时甚至会损失一些信息。但图像增强的结果却能加强对某些特定信息的识别能力,使图像中我们感兴趣的特征得以加强,从而使这些特征的检测和识别变得更加容易。 1、红外图像增强算法的分类 图像增强的处理技术从增强的作用域出发,可以分为空间域的方法和变换域的方法两大类,如图2所示。空间域法直接对图像像素进行操作,主要的空间域法有直方图均衡化、直方图规定化、灰度窗口和空域滤波等技术;而频率域法是首先将图像从空间域按照某种变换模型(如傅立叶变换)变换到频率域,然后对图像进行处理,再将其反变换到空间域,获得增强图像,这是一种间接地方法,频域方法有高通滤波、低通滤波、带通和带阻滤波等技术。 图像增强算法的优劣不是绝对的,由于具体用的目的和要求不同,所需要的具体的增强技术也大不相同,因此没有图像增强的通用标准,观察者才是某种增强方法优劣的最终判断者。增强算法处理的效果,除了与算法本身有一定关系外,还与图像的数据特征直接相关。实际应用中应当根据图像数据的特点和工作的要求来选择合理的图像增强处理方法。 由于红外图像的成像机理以及红外成像系统自身的原因,红外图像与可见光图像相比,大多有图像对比度低、图像较模糊、噪声大等特点。为了有利于后续

超导材料的性能与应用综述

超导材料的性能及应用综述 班级:10粉体(2)班学号:1003012003 姓名:徐明明 摘要:回顾了超导现象的发现及发展,综述了超导电性的微观机理,超导物理学研究的历史和主要成果,介绍了超导电性的几种突出的应用,并指出目前对于超导电性的认识在理论、实验、研究上都是初步的 ,还需要进行更多的和更深入全面的研究。 关键词:超导电性;超导应用;BCS理论;应用 一、超导现象的发现及发展 1908 年, 荷兰莱登实验室在卡茂林- 昂尼斯的指导下, 用液氢预冷的节流效应首次实现了氦气的液化,从而使实验温度可低到4~1K 的极低温区, 并开始在这样的低温区测量各种纯金属的电阻率。1911 年,卡茂林- 昂尼斯[1] 发现Hg 的电阻在4. 2K 时突降到当时的仪器精度已无法测出的程度, 即Hg 在一确定的临界温度T c= 4. 15K 以下将丧失其电阻,这是人们第一次看到的超导电性。昂尼斯也凭这一发现获得了1913 年的诺贝尔物理学奖。后来的实验证明,电阻突变温度与汞的纯度无关,只是汞越纯,突变越尖锐。随后,人们在Pb及其它材料中也发现这种特性:在满足临界条件(临界温度 Tc、临界电流 Ic、临界磁场 Hc)时物质的电阻突然消失,这种现象称为超导电性的零电阻现象。应该指出,只是在直流电情况下才有零电阻现象。从此,诞生了一门新兴的学科——超导。 一直到20世纪50年代,超导只是作为探索自然界存在的现象和规律在研究,1957年Bardeen、Cooper和Schrieffer[2]提出了著名的BCS理论,揭示了漫长时期不清楚的超导起因。1961年Kunzler将Nb3Sn制成高场磁体,开辟了超导在强电中的应用,特别是 1962 年Josephson效应的出现,将超导应用推广到一个崭新的领域。到20世纪70年代超导在电力工业和微弱信号检测应用方面的进展显示了它无比的优越性,但由于临界温度低,必须使用液氦,这就极大地限制了它的优越性。从20世纪70年代起人们就将注意力转向寻找高温超导体上,在周期表

纳米材料的发展及研究现状

纳米材料的发展及研究现状 在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术。新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。 纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。近年来,纳米材料和纳米结构取得了引人注目的成就。例如,存储密度达到每平方厘米400g的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世,充分显示了它在国民经济新型支柱产业和高技术领域应用的巨大潜力。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。 纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单

元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。1研究形状和趋势纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基

材料的发展趋势

材料的发展趋势 装饰材料既是一泞日专统话题,也是一个同现代科技的发展有密切关联的概念。最早的装饰材料有石、木、土、铁、铜、编织物等,随看科技进步和现代工业的发展,装饰材料从品种、规格、档次上都进入了新的时期。 近年来,展示材料总的发展趋势是:品种日益增多,性能越来越好。例如,装饰玻璃品种越来越多,包括复合装饰玻璃、组合装饰玻璃、高虽凹凸装饰玻璃等,这些材料已广泛用于各类展示设计中。日本还推出一种新颖的立体色彩玻璃,这种玻璃在白色光线的照射下,显示出立体感的彩虹色彩,其装饰效果极佳。 墙纸仍是广泛使用的墙面装饰材料,并向多功能方向发展,出现了防污染、防菌、防蛀、防火、隔热、调节湿度、防又对线、抗静电等不同功能的墙纸。欧美发展较快的是织物堆海拜口天然材料作面层的墙纸。 陶瓷面砖正逐步取代塑料、金属等饰面材料。其主要原因是塑料易老化、易燃烧,而金属饰面材料易腐蚀、价格高。陶瓷面砖则具有坚固耐用、易清洗、色彩鲜艳、防火、防水、耐磨和维修费用侃等优点。目前国外的陶瓷面砖品种正朝多样化方向发展。有一种浮雕面砖,艺术效果好、重量轻、隔音保温、长期使用不褪色,很受欢迎。 目前有一种以木头、砂石、玻璃、天然纤维等为原料制成的装饰材料受到月门的青睐,它能产生回归自然感觉。而以合成、化工原料为主的展示装饰材料,相比之下自然显得冷落。 采用金属或镀金属的复合材料也是国外材料的发展方向之一。例如,展示设计中采用不锈钢装饰墙板,立面庄重、质疙躬虽;墙面赐吕台金,装饰效果好、安装简单、成本低、使用寿命长。金属表面经阳极氧化或嚼泰处理,可以得到不同色彩。其他如铜浮雕艺术装饰板、镀金属材料等也开始在各种装饰中使用。 在今后一段时间内装饰材料将向以下几个方向发展:首先,是复合化、多功能、预制化方向。也就是利用复合技术、特殊性能来提高其性能的材料.复合装饰玻璃、组合装饰玻璃、高虽凹凸装饰玻璃、最新开发的i立体影像玻离将成为商家关注的热点。金属或镀金属复合材料成为颇具市场发展潜力的装饰用料。 其次,是向高性能材料方向发展。轻质、高虽度、高耐腐蚀性、高防火性、

相关文档
最新文档