专题训练(一) 二次函数的图象与性质
二次函数的图像和性质练习题(含答案)

1.下列函数中是二次函数的为 A .y =3x -1B .y =3x 2-1C .y =(x +1)2-x2D .y =x 3+2x -32.抛物线y =2x 2+1的的对称轴是 A .直线x =14B .直线x =14-C .x 轴D .y 轴3.抛物线y =-(x -4)2-5的顶点坐标和开口方向分别是 A .(4,-5),开口向上B .(4,-5),开口向下C .(-4,-5),开口向上D .(-4,-5),开口向下4.抛物线y =-x 2不具有的性质是 A .对称轴是y 轴B .开口向下C .当x <0时,y 随x 的增大而减小D .顶点坐标是(0,0)5.已知点(-1,2)在二次函数y =ax 2的图象上,那么a 的值是 A .1B .2C .12D .-126.已知抛物线y =ax 2(a >0)过A (-2,y 1)、B (1,y 2)两点,则下列关系式一定正确的是 A .y 1>0>y 2B .y 2>0>y 1C .y 1>y 2>0D .y 2>y 1>07.当函数y =(x -1)2-2的函数值y 随着x 的增大而减小时,x 的取值范围是 A .x >0B .x <1C .x >1D .x 为任意实数8.对于二次函数2(3)4y x =--的图象,给出下列结论:①开口向上;②对称轴是直线3x =-;③顶点坐标是34--(,);④与x 轴有两个交点.其中正确的结论是 A .①②B .③④C .②③D .①④9.一种函数21(1)53m y m x x +=-+-是二次函数,则m =__________.10.把二次函数y =x 2-4x +3化成y =a (x -h )2+k 的形式是__________.11.将抛物线y =2(x -1)2+2向左平移3个单位,那么得到的抛物线的表达式为__________. 12.如图,抛物线y =ax 2-5ax +4a 与x 轴相交于点A ,B ,且过点C (5,4).(1)求a 的值和该抛物线顶点P 的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的表达式.13.已知:抛物线2y x bx c =-++经过(30)B ,、(03)C ,两点,顶点为A . 求:(1)抛物线的表达式;(2)顶点A 的坐标.14.如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,-1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.15.在平面直角坐标系中,将抛物线y=-12x2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线的解析式是A.y=-12x2-x-32B.y=-12x2+x-12C.y=-12x2+x-32D.y=-12x2-x-1216.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+a的图象大致是A.B.C D.17.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列5个结论:①0abc >;②b a c <+;③420a b c ++>;④23c b <;⑤()(0)a b m am b m +>+≠,其中正确的结论有A .2个B .3个C .4个D .5个18.二次函数y =x 2-2x -3,当m -2≤x ≤m 时函数有最大值5,则m 的值可能为__________. 19.若直线y =ax -6与抛物线y =x 2-4x +3只有一个交点,则a 的值是__________.20.如图,已知二次函数y =ax 2+bx +8(a ≠0)的图象与x 轴交于点A (-2,0),B (4,0),与y 轴交于点C .(1)求抛物线的解析式及其顶点D 的坐标; (2)求△BCD 的面积;(3)若直线CD 交x 轴与点E ,过点B 作x 轴的垂线,交直线CD 与点F ,将抛物线沿其对称轴向上平移,使抛物线与线段EF 总有公共点.试探究抛物线最多可以向上平移多少个单位长度(直接写出结果,不写求解过程).21.(2018·四川成都)关于二次函数2241y x x =+-,下列说法正确的是A .图象与y 轴的交点坐标为(0,1)B .图象的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-322.(2018·湖北黄冈)当a ≤x ≤a +1时,函数y =x 2-2x +1的最小值为1,则a 的值为A .-1B .2C .0或2D .-1或223.(2018·江苏连云港)已知学校航模组设计制作的火箭的升空高度h (m )与飞行时间t(s )满足函数表达式h =-t 2+24t +1.则下列说法中正确的是 A .点火后9 s 和点火后13 s 的升空高度相同 B .点火后24 s 火箭落于地面 C .点火后10 s 的升空高度为139 m D .火箭升空的最大高度为145 m24.(2018·山东德州)如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的图象可能是A .B .C D .25.(2018·湖北恩施州)抛物线y =ax 2+bx +c 的对称轴为直线x =-1,部分图象如图所示,下列判断中:①abc >0;②b 2-4ac >0;③9a -3b +c =0;④若点(-0.5,y 1),(-2,y 2)均在抛物线上,则y 1>y 2;⑤5a -2b +c <0. 其中正确的个数有A.2 B.3 C.4 D.5 26.(2018·江苏淮安)将二次函数y=x2-1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是__________.27.(2018·山东淄博)已知抛物线y=x2+2x-3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位长度,平移后的抛物线与x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,则m的值为__________.1.【答案】B2.【答案】D【解析】∵抛物线y =2x 2+1中一次项系数为0,∴抛物线的对称轴是y 轴.故选D . 3.【答案】B【解析】∵抛物线的解析式为2(4)5y x =---, 10a =-<,∴抛物线的开口向下.抛物线2()y a x h k =-+的顶点坐标为(h ,k )∴抛物线2(4)5y x =---的顶点坐标为(4,-5).故选B . 4.【答案】C5.【答案】B【解析】∵点(-1,2)在二次函数2y ax =的图象上,∴2(1)2a ⋅-=,解得2a =.故选B . 6.【答案】C【解析】∵抛物线y =ax 2(a >0)的对称轴是y 轴,∴A (-2,y 1)关于对称轴的对称点的坐标为(2,y 1).又∵a >0,0<1<2,且当x =0时,y =0,∴0<y 2<y 1.故选C . 7.【答案】B【解析】对称轴是:x =1,且开口向上,如图所示,∴当x <1时,函数值y 随着x 的增大而减小.故选B . 8.【答案】D【解析】∵a =1>0,∴开口向上,①正确;∵x -3=0,∴对称轴为x =3,②错误;∵顶点坐标为:(3,-4),故③错误;∴在第四象限,所以与x 轴有两个交点,故④正确.故选D . 9.【答案】-1【解析】根据二次函数的二次项的次数是2,二次项的系数不等于零,可由21(1)53my m x x +=-+-是二次函数,得m 2+1=2且m −1≠0,解得m =-1,m =1(不符合题意要舍去).故答案为:-1. 10.【答案】y =(x -2)2-1【解析】y =x 2-4x +3=(x 2-4x +4)-4+3=(x -2)2-1,故答案为:y =(x -2)2-1. 11.【答案】y =2(x +2)2+2【解析】将抛物线y =2(x -1)2+2向左平移3个单位,那么得到的抛物线的表达式为y =2(x -1+3)2+2,即y =2(x +2)2+2.故答案为:y =2(x +2)2+2.13.【解析】(1)把(30)B ,、(03)C ,代入2y x bx c =-++,得9303b c c -++=⎧⎨=⎩,解得23b c =⎧⎨=⎩.故抛物线的解析式为223y x x =-++.(2)223y x x =-++=2(21)31x x --+++2(1)4x =--+, 所以顶点A 的坐标为(1,4).14.【解析】(1)∵二次函数y =ax 2+bx +c 的图象过A (2,0),B (0,-1)和C (4,5)三点,∴42011645a b c c a b c ++=⎧⎪=⎨⎪++=⎩, ∴a =12,b =-12,c =-1, ∴二次函数的解析式为y =12x 2-12x -1. (2)当y =0时,得12x 2-12x -1=0,解得x 1=2,x 2=-1, ∴点D 坐标为(-1,0). (3)图象如图,当一次函数的值大于二次函数的值时,x 的取值范围是-1<x <4. 15.【答案】A【解析】将抛物线y =-12x 2向下平移1个单位长度,得y =-12x 2-1,再向左平移1个单位长度,得到y =-12x +(1)2-1,即y =-12x 2-x -32.故选A .16.【答案】C【解析】∵二次函数图象开口向上,∴a >0,∵对称轴为直线x =-02ba,∴b <0,∴一次函数y =bx +a的图象经过一、二、四象限,故选C . 17.【答案】B18.【答案】0或4【解析】令y =5,可得x 2-2x -3=5,解得x =-2或x =4,所以m -2=-2或m =4,即m =0或4.故答案为:0或4. 19.【答案】2或-10【解析】由题意可知:x 2−4x +3=ax −6,整理得x 2−(4+a )x +9=0,∵只有一个交点,∴Δ=(4+a )2−4×1×9=0,解得a 1=2,a 2=−10.故答案为:2或-10.(3)如图,∵C(0,8),D(1,9),代入直线解析式y=kx+b,∴89bk b=⎧⎨+=⎩,解得18kb=⎧⎨=⎩,21.【答案】D【解析】∵y=2x2+4x-1=2(x+1)2-3,∴当x=0时,y=-1,故选项A错误;该函数的对称轴是直线x=-1,故选项B错误;当x<-1时,y随x的增大而减小,故选项C错误;当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D.22.【答案】D【解析】当y=1时,有x2-2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=-1,故选D.23.【答案】D【解析】A、当t=9时,h=136;当t=13时,h=144;所以点火后9 s和点火后13 s的升空高度不相同,此选项错误;B、当t=24时h=1≠0,所以点火后24 s火箭离地面的高度为1 m,此选项错误;C、当t=10时h=141 m,此选项错误;D、由h=-t2+24t+1=-(t-12)2+145知火箭升空的最大高度为145 m,此选项正确.故选D.24.【答案】B【解析】A.由一次函数y=ax-a的图象可得:a<0,此时二次函数y=ax2-2x+1的图象应该开口向下.故选项错误;B.由一次函数y=ax-a的图象可得:a>0,此时二次函数y=ax2-2x+1的图象应该开口向上,对称轴x=-22a->0.故选项正确;C.由一次函数y=ax-a的图象可得:a>0,此时二次函数y=ax2-2x+1的图象应该开口向上,对称轴x=-22a->0,和x轴的正半轴相交.故选项错误;D.由一次函数y=ax-a的图象可得:a>0,此时二次函数y=ax2-2x+1的图象应该开口向上.故选项错误.故选B.25.【答案】B26.【答案】y=x2+2【解析】二次函数y=x2-1的顶点坐标为(0,-1),把点(0,-1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为:y=x2+2.27.【答案】2【解析】如图,∵B,C是线段AD的三等分点,∴AC=BC=BD,由题意得:AC=BD=m,当y=0时,x2+2x-3=0,(x-1)(x+3)=0,x1=1,x2=-3,∴A(-3,0),B(1,0),∴AB=3+1=4,∴AC=BC=2,∴m=2,故答案为:2.。
初中数学二次函数的图象与性质基础练习题A1(附答案详解)

初中数学二次函数的图象与性质基础练习题1(附答案详解)1.将二次函数2y x 的图像向上平移1个单位,则所得的二次函数表达式为( ) A .2(1)y x =- B .21y x =+ C .2(1)y x =+ D .21y x =-2.如图,二次函数243y x x =-+的图象交x 轴于A ,B 两点,交y 轴于C ,则ABC的面积为( )A .6B .4C .3D .13.在平面直角坐标系中,二次函数y=2(x ﹣1)2+3的顶点坐标是( )A .(1,3)B .(1,﹣3)C .(﹣1,3)D .(﹣1,﹣3) 4.将二次函数y=x 2-4x+2化为顶点式,正确的是( )A .2y (x 2)2=--B .2y (x 2)3=-+C .2y (x 2)2=+-D .2y (x 2)2=-+5.二次函数2y 3x 4=-的图象是一条抛物线,下列关于该抛物线的说法正确的是( ) A .抛物线开口向下B .抛物线经过点()3,4C .抛物线的对称轴是直线x 1=D .抛物线与x 轴有两个交点6.抛物线y =-2x 2经过平移后得到抛物线y =-2x 2-4x -5,平移方法是( )A .向左平移1个单位,再向下平移3个单位B .向左平移1个单位,再向上平移3个单位C .向右平移1个单位,再向下平移3个单位D .向右平移1个单位,再向上平移3个单位7.二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =ax +b 与反比例函数y =c x的大致图象是( ) A . B . C . D .8.若点()111,P y -,()222,P y -,()331,P y ,都在函数223y x x =-+的图象上,则( )A .213y y y << B .123y y y << C .213y y y >>D .123y y y >>9.已知二次函数y=x 2﹣bx+2(﹣2≤b≤2),当b 从﹣2逐渐增加到2的过程中,它所对应的抛物线的位置也随之变动,下列关于抛物线的移动方向的描述中,正确的是( ) A .先往左上方移动,再往左下方移动B .先往左下方移动,再往左上方移动C .先往右上方移动,再往右下方移动D .先往右下方移动,再往右上方移动10.如图,抛物线与x 轴交于点()1,0-和()3,0,与y 轴交于点()0,3-则此抛物线对此函数的表达式为( )A .223y x x =++B .223y x x =--C .223y x x =-+D .223y x x =+- 11.在平面直角坐标系中,若将抛物线y=2x 2-4x+3先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是__________。
【中考一轮复习】二次函数的图象与性质课件(1)

当堂训练---二次函数的图象的变换
1.如图,在平面直角坐标系中,抛物线y=0.5x2经过平移得到抛物
线y=0.5x2-2x,其对称轴与两段抛物线弧所围成的阴影部分的面
积为( B )
A.2
B.4
C.8
D.16
2.将抛物线y=0.5x2-6x+21向左平移2个
单位后,得到抛物线的解析式为( D )
A.y=0.5(x-8)2+5 B.y=0.5(x-4)2+5
人教版中考数学第一轮总复习
第三单元 函数及其图象
•§3.6 二次函数图象与性质(2)
目录
01 二次函数的图象的变换
02 二次函数与一元二次方程
03 二次函数图象的最值问题
考点聚焦---二次函数的图象的变换
二次函数图 平 移 ①先求出原抛物线的顶点;
象的平移
规
律
②后求出变换后的抛物线的顶点; ③写出变换的抛物线的解析式。
【例1】将抛物线y=x2+2x-3,化成顶点式为_y_=_(_x_+_1_)_2_-_4__; (1)该抛物线是由y=x2_向__左__1_个__单__位__,_再__向__下__4_个___单__位__平移得到的;
(2)写出该抛物线关于x轴,y轴,原点和(1,1)对称的抛物线解析式: 关于 x 轴对称:_y_=_-_x_2_-_2_x_+_3___;_y_=_-_(_x_+_1_)_2_+_4___。 关于 y 轴对称:_y_=__x_2_-_2_x_-_3___;_y_=__(_x_-_1_)_2_-_4___。 关于 x=2 对称:_y_=_x_2_-_1_0_x_+_2_1__;_y_=_(_x_-_5_)_2_-_4____。 关于原 点对称:_y_=_-_x_2_+_2_x_+_3___;_y_=_-_(_x_-_1_)_2_+_4___。 关于(1,1)对称:_y_=_-_x_2_+_6_x_-_9___;_y_=_-_(_x_-_3_)_2_+_6___。
专题1.3 二次函数的图象与性质(二)【八大题型】(举一反三)(浙教版)(解析版)

专题1.3 二次函数的图象与性质(二)【八大题型】【浙教版】【题型1 利用二次函数的图象与性质比较函数值的大小】 (1)【题型2 利用二次函数的图象特征求参数的值或取值范围】 (4)【题型3 根据规定范围内二次函数函数的最值求参数的值】 (6)【题型4 根据规定范围内二次函数函数的最值求参数取值范围】 (9)【题型5 根据二次函数的性质求最值】 (11)【题型6 二次函数的对称性的运用】 (13)【题型7 二次函数的图象与一次函数图象共存问题】 (16)【题型8 利用二次函数的图象与系数的关系判断结论】 (19)【题型1利用二次函数的图象与性质比较函数值的大小】【例1】(2023春·天津滨海新·九年级校考期中)已知点A(−2,y1),B(1,y2),C(5,y3)在二次函数y=−3x2+k 的图象上,则y1,y2,y3的大小关系是( )A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y1<y3<y2【答案】C【分析】根据题意可得二次函数y=−3x2+k的图象的对称轴为y轴,从而得到点A(−2,y1)关于对称轴的对称点为(2,y1),再由当x>0时,y随x的增大而减小,即可求解.【详解】解:∵二次函数y=−3x2+k的图象的对称轴为y轴,∴点A(−2,y1)关于对称轴的对称点为(2,y1),∵−3<0,∴当x>0时,y随x的增大而减小,∵1<2<5,∴y3<y1<y2.故选:C【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.【变式1-1】(2023春·九年级单元测试)若点C(x1,m)、D(x2,n)在抛物线y=−2(x−3)2的图象上,且x1>x2 >3,则m与n的大小关系为______.【答案】m<n【分析】根据二次函数解析式,求得二次函数的对称轴,开口方向,再根据二次函数的性质求解即可.【详解】解:由抛物线y=−2(x−3)2可得,a<0,开口向下,对称轴为x=3,∴当x>3时,y随x的增大而减小,又∵x1>x2>3,∴m<n故答案为:m<n【点睛】此题考查了二次函数的图象与性质,解题的关键是熟练掌握二次函数的有关性质.【变式1-2】(2023春·福建漳州·九年级统考期末)已知点(x1,y1),(x2,y2),(x3,y3)都在二次函数y=ax2−2ax−3a(a≠0)的图像上,若−1<x1<0,1<x2<2,x3>3,则下列关于y1,y2,y3三者的大小关系判断一定正确的是()A.y1可能最大,不可能最小B.y3可能最大,也可能最小C.y3可能最大,不可能最小D.y2不可能最大,可能最小【答案】B【分析】求出函数图像的对称轴,与x轴的交点,分a>0和a<0两种情况,根据已知三点与对称轴的距离,结合开口方向分析即可.【详解】解:在y=ax2−2ax−3a(a≠0)中,=1,对称轴为直线x=−−2a2a令ax2−2ax−3a=0,解得:x1=−1,x2=3,∴函数图像与x轴交于(−1,0),(3,0),∵−1<x1<0,1<x2<2,x3>3,∴(x3,y3)离对称轴最远,(x2,y2)离对称轴最近,当a>0时,开口向上,∴y3>y1>y2;当a<0时,开口向下,∴y3<y1<y2;∴y2和y3可能最大,也可能最小,故选B.【点睛】本题考查了二次函数的图像与性质,解题的关键是根据表达式求出对称轴和与x轴交点,利用性质进行分析.【变式1-3】(2023·浙江温州·校考三模)已知二次函数y =x 2−2x 的图象过A (a,y 1),B (2a,y 2)两点,下列选项正确的是( )A .若a <0,则y 1>y 2B .若0<a <23,则y 1<y 2C .若23<a <1,则y 1<y 2D .若a >1,则y 1>y 2【答案】C【分析】根据根据二次函数的解析式得到对称轴为直线x =1,再利用二次函数的性质对各项判断即可解答.【详解】解:∵二次函数y =x 2−2x 的图象过A (a,y 1),B (2a,y 2)两点,∴二次函数的顶点式为:y =x 2−2x =(x−1)2−1,∴当x <1时,y 随x 的增大而减小,当x >1时,y 随x 的增大而增大;∵a <0,∴2a <0,∴a >2a ,∴y 1<y 2,故A 错误;∵二次函数的顶点式为:y =x 2−2x =(x−1)2−1,∴抛物线的对称轴为直线x =1,若a 2a 2=1,∴解得:a =23,∴当a =23时,a 和2a 关于x =1对称,∴当0<a <23时,y 1>y 2;当23<a <1时,y 1<y 2,故B 错误,C 正确;当a >1时,y 随x 的增大而增大,∵a <2a ,∴y 1<y 2,故D 错误;故选C.【点睛】本题考查了二次函数的性质,二次函数的对称轴,掌握二次函数的性质是解题的关键.【题型2利用二次函数的图象特征求参数的值或取值范围】【例2】(2023·江苏苏州·模拟预测)若二次函数y=x2−2x−3的图象上有且只有三个点到x轴的距离等于m,则m的值为___________.【答案】4【分析】由抛物线解析式可得抛物线对称轴为直线x=1,顶点为(1,−4),由图象上恰好只有三个点到x轴的距离为m可得m=4.【详解】解:∵y=x2−2x−3=(x−1)2−4,∴抛物线开口向上,抛物线对称轴为直线x=1,顶点为(1,−4),∴顶点到x轴的距离为4,∵函数图象有三个点到x轴的距离为m,∴m=4,故答案为:4.【点睛】本题考查了二次函数图象上点的坐标特征,能够理解题意,掌握求二次函数对称轴和顶点坐标的方法是解题的关键.【变式2-1】(2023·江苏南通·统考二模)若抛物线y=−x2+4x−n的顶点在x轴的下方,则实数n的取值范围是______.【答案】n>4【分析】先将抛物线解析式化为顶点式,再利用顶点在x轴下方,即可求出n的范围.【详解】解:y=−x2+4x−n,化为顶点式为:y=−(x−2)2+4−n,∵4−n<0,∴n>4,故答案为:n>4.【点睛】本题考查了抛物线的顶点式解析式,解题关键是理解当顶点纵坐标小于0时,顶点位于x轴下方.【变式2-2】(2023·黑龙江大庆·大庆一中校考模拟预测)二次函数y=kx2−x−4k(k为常数且k≠0)的图象始终经过第二象限内的定点A.设点A的纵坐标为m,若该函数图象与y=m在1<x<3内没有交点,则k 的取值范围是______.【答案】0<k<1或−1<k<0【分析】先计算二次函数过两个定点,确定m=2,根据函数图象与y=m在1<x<3内没有交点,分k>0和k<0两种情况列不等式即可解答.【详解】解:∵y=kx2−x−4k=k(x2−4)−x,∴x2−4=0,∴x=±2,当x=2时,y=−2,当x=−2时,y=2,∴二次函数y=kx2−x−4k(k为常数且k≠0)的图象始终经过定点−2,2,2,−2,∴m=2,∵函数y=kx2−x−4k的图象与y=2在1<x<3内没有交点,∴分两种情况:①当k>0时,x=3时,y<2,即9k−3−4k<2,∴k<1,∴0<k<1,②当k<0时,当x=1时,y<2,即k−1−4k<2,∴k>−1,∴−1<k<0,综上所述,k的取值范围是0<k<1或−1<k<0,故答案为:0<k<1或−1<k<0.【点睛】本题主要考查了二次函数图象上点的坐标特征,解题的关键是理解题意,计算定点A的坐标.【变式2-3】(2023·陕西西安·陕西师大附中校考模拟预测)如图,抛物线y=ax2+bx+c的图象过点(−1,0)和(0,−1),则a+b+c的取值范围是()A .−2<a +b +c <0B .−2<a +b +c <−1C .−32<a +b +c <0D .−32<a +b +c <−1【答案】A【分析】由函数图象的开口方向可知a >0,由抛物线与y 轴的交点判断c 的值,当x =1时,二次函数的值小于零,由此可求出a 的取值范围,将a +b +c 用a 表示即可得出答案.【详解】由图象开口向上,可得a >0,∵图象过点(0,−1),∴c =−1,∵图象过点(−1,0),∴a−b−1=0,∴b =a−1,∵对称轴在y 轴的右侧,∴当x =1时,y =a +b +c =a +a−1−1=2a−2<0,∴a <1,∴0<a <1,∴−2<2a−2<0,即−2<a +b +c <0,故选:A .【点睛】本题考查了二次函数图象和性质,二次函表达式系数符号的确定,熟练掌握知识点是解题的关键.【题型3 根据规定范围内二次函数函数的最值求参数的值】【例3】(2023春·九年级单元测试)二次函数y =ax 2−4x +1有最小值−3,则 a 的值为( )A .1B .−1C .±1D .2【答案】A【分析】把二次函数y =ax 2−4x +1变成顶点式,根据二次函数的图象性质,得出结论.【详解】∵y=ax2−4x+1∴y=ax2−4x+1=ax−−4a+1∵二次函数y=ax2−4x+1有最小值−3,∴a>0−4a+1=−3∴a=1故选:A【点睛】本题主要考查了二次函数图象的性质,把二次函数的一般式变成顶点式,求二次函数的最值,熟练掌握二次函数图象的相关性质是解本题的关键.【变式3-1】(2023春·浙江·九年级校联考期中)已知函数y=−x2+bx−3(b为常数)的图象经过点(−6,−3).当m≤x≤0时,若y的最大值与最小值之和为2,则m的值为()A.−2或−3+B.−2或−4C.−2或D.【答案】C【分析】将点(−6,−3)代入y=−x2+bx−3即可求得b的值,进而求得抛物线的最大值,结合二次函数图象的性质,分类讨论得出m的取值范围即可.【详解】把(−6,−3)代入y=−x2+bx−3,得b=−6,∴y=−x2−6x−3,∵y=−x2−6x−3=−(x+3)2+6∴当x=−3时,y有最大值为6;①当−3<x≤0时,当x=0时,y有最小值为−3,当x=m时,y有最大值为y=−m2−6m−3∵y的最大值与最小值之和为2,∴−m2−6m−3+(−3)=2,∴m=−2或m=−4(舍去)。
二次函数的图象和性质(解析版)

第04讲 二次函数的图象和性质(重点题型方法与技巧)目录类型一:二次函数的定义 类型二:二次函数的图象与性质 类型三:二次函数的解析式 类型四:二次函数的平移问题类型一:二次函数的定义函数y =ax 2+bx +c 为二次函数的前提条件是a ≠0.在解二次函数的相关问题时,一定不能忽视“二次项系数不为0”这一隐含条件,尤其是二次项系数含字母的二次函数,应特别注意.典型例题例题1.(2022·浙江丽水·九年级期中)下列函数中,是二次函数的是( ) A .y =21x +x +1 B .y =x 2-(x +1)2C .y =-12x 2+3x +1 D .y =3x +1【答案】C 【详解】A. y =21x +x +1,不是二次函数,故该选项不正确,不符合题意; B. y =x 2-(x +1)221x ,不是二次函数,故该选项不正确,不符合题意;C. y =-12x 2+3x +1,是二次函数,故该选项正确,符合题意;D. y =3x +1,不是二次函数,故该选项不正确,不符合题意; 故选C点评:例题1考查了二次函数的定义,掌握二次函数的定义是解题的关键.根据二次函数的定义逐项分析即可,二次函数的定义:一般地,形如2y ax bx c =++(a b c 、、是常数,0a ≠)的函数,叫做二次函数.例题2.(2022·安徽宿州·九年级期末)如果()()221y m x m x =-+-是关于x 的二次函数,则m 的取值范围是( )A .1m ≠B .2m ≠C .2m ≠且1m ≠D .全体实数【答案】B【详解】∵()()221y m x m x =-+-是关于x 的二次函数,∴20m -≠, ∴2m ≠, 故选B .点评:例题2主要考查了二次函数的定义,正确把握二次函数的定义是解题的关键.例题3.(2022·全国·九年级课时练习)下列实际问题中的y 与x 之间的函数表达式是二次函数的是( ) A .正方体集装箱的体积3m y ,棱长x mB .小莉驾车以108km h 的速度从南京出发到上海,行驶x h ,距上海y kmC .妈妈买烤鸭花费86元,烤鸭的重量y 斤,单价为x 元/斤D .高为14m 的圆柱形储油罐的体积3m y ,底面圆半径x m 【答案】D【详解】A.由题得:3y x =,不是二次函数,故此选项不符合题意; B.由题得:108y x =,不是二次函数,故此选项不符合题意; C.由题得:86y x=,不是二次函数,故此选项不符合题意; D.由题得:214y x π=,是二次函数,故此选项符合题意. 故选:D .点评:例题3考查二次函数的定义,形如2(0)y ax bx c a =++≠的形式为二次函数,掌握二次函数的定义是解题的关键.根据题意,列出关系式,即可判断是否是二次函数.例题4.(2021·广西南宁·九年级期中)若12m y x x -=+是关于x 的二次函数,则m =_______ 【答案】3【详解】解:∵函数12m y x x -=+是关于x 的二次函数, ∴12m -=, 解得:3m =. 故答案为:3.点评:例题4考查了二次函数的定义,一般地,形如y=ax2+bx+c (a 、b 、c 是常数,a≠0)的函数,叫做二次函数.例题5.(2021·北京市宣武外国语实验学校九年级期中)某工厂今年八月份医用防护服的产量是50万件,计划九月份和十月份增加产量,如果月平均增长率为x ,那么十月份医用防护服的产量y (万件)与x 之间的函数表达式为______. 【答案】()2501=+y x【详解】解:十月份医用防护服的产量y (万件)与x 之间的函数表达式为 ()2501=+y x故答案为:()2501=+y x点评:例题5考查的是列二次函数关系式,掌握“两次变化后的量=原来量⨯(1+增长率)2”是解本题的关键.某工厂今年八月份医用防护服的产量是50万件,月平均增长率为x ,则九月份的产量为()501x +万件,十月份医用防护服的产量为()2501x +万件,从而可得答案.例题6.(2021·全国·九年级专题练习)已知函数()()221y m m x mx m =-+++,m 是常数.()1若这个函数是一次函数,求m 的值;()2若这个函数是二次函数,求m 的值.【答案】(1)1m =;()20m ≠且1m ≠.【详解】(1)依题意得200m m m ⎧-=⎨≠⎩∴010m m m ==⎧⎨≠⎩或 ∴1m =;()2依题意得20m m -≠,∴0m ≠且1m ≠.点评:例题6主要考查了一次函数及二次函数的定义,关键是掌握一次函数y=kx+b 的定义条件是:k 、b 为常数,k≠0,自变量次数为1;二次函数y=ax2+bx+c 的定义条件是a≠0,b 、c 为常数,自变量的最高次数是2.同类题型演练1.(2022·全国·九年级单元测试)下列函数中,是二次函数的是( )A .2832y x x =++B .81y x =+C .8y x=D .28y x =【答案】A【详解】A 、2832y x x =++是二次函数,符合题意; B 、81y x =+是一次函数,不合题意; C 、8y x=是反比例函数,不合题意; D 、28y x =不是二次函数,不合题意; 故选A .2.(2021·河南·油田十中九年级阶段练习)若函数()1334m y m x x -=++-是二次函数,则m 的值为( )A .-3B .3或-3C .3D .2或-2【答案】C【详解】解:∵函数()1334m y m x x -=++-是二次函数,∴12m -=且m +3≠0, 解得:m =3, 故选:C .3.(2022·全国·九年级课时练习)下列实际问题中,可以看作二次函数模型的有( )①正常情况下,一个人在运动时所能承受的每分钟心跳的最高次数b 与这个人的年龄a 之间的关系为b =0.8(220-a );②圆锥的高为h ,它的体积V 与底面半径r 之间的关系为V =13πr 2h (h 为定值);③物体自由下落时,下落高度h 与下落时间t 之间的关系为h =12gt 2(g 为定值);④导线的电阻为R ,当导线中有电流通过时,单位时间所产生的热量Q 与电流I 之间的关系为Q =RI 2(R 为定值). A .1个 B .2个C .3个D .4个【答案】C【详解】形如y=ax 2+bx+c (a 、b 、c 是常数且a≠0)的函数是二次函数,由二次函数的定义可得②③④是二次函数,故选C .4.(2022·全国·九年级课时练习)已知函数y =(m ﹣2)x 2+mx ﹣3(m 为常数). (1)当m _______时,该函数为二次函数; (2)当m _______时,该函数为一次函数. 【答案】 ≠2 =2【详解】解:(1)∵函数y =(m ﹣2)x 2+mx ﹣3为二次函数, ∴m ﹣2≠0, ∴m ≠2.( 2 )∵函数y =(m ﹣2)x 2+mx ﹣3为一次函数, ∴m ﹣2=0,m ≠0, ∴m =2.故答案为:(1)≠2;(2)=25.(2021·山东滨州·九年级期中)某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价,若每件商品的售价为x 元,则可卖出()35010x -件,那么卖出商品所赚钱y 元与售价x 元之间的函数关系为________.【答案】2105607350y x x =-+-【详解】解:由题意得:每件商品的盈利为:()21x -元, 所以:()()2135010y x x =--2102103507350x x x =-++-2105607350x x =-+-故答案为:2105607350y x x =-+-6.(2022·全国·九年级课时练习)根据下面的条件列出函数解析式,并判断列出的函数是否为二次函数: (1)如果两个数中,一个比另一个大5,那么,这两个数的乘积p 是较大的数m 的函数;(2)一个半径为10cm 的圆上,挖掉4个大小相同的正方形孔,剩余的面积S (cm 2)是方孔边长x (cm )的函数;(3)有一块长为60m 、宽为40m 的矩形绿地,计划在它的四周相同的宽度内种植阔叶草,中间种郁金香,那么郁金香的种植面积S (cm 2)是草坪宽度a (m )的函数. 【答案】(1)p = m 2﹣5m ,是二次函数 (2)S =100π﹣4x 2,是二次函数(3)S =4a 2﹣200a +2400;是二次函数【详解】(1)解:这两个数的乘积p 与较大的数m 的函数关系为:p =m (m ﹣5)=m 2﹣5m ,是二次函数; (2)解:剩余的面积S (cm 2)与方孔边长x (cm )的函数关系为:S =100π﹣4x 2,是二次函数;(3)解:郁金香的种植面积S (cm 2)与草坪宽度a (m )的函数关系为:S =(60﹣2a )(40﹣2a )=4a 2﹣200a +2400,是二次函数;7.(2019·湖北·黄州区宝塔中学九年级阶段练习)已知函数()()24323mm y m x m x +-=++++(其中0x ≠).()1当m 为何值时,y 是x 的二次函数?()2当m 为何值时,y 是x 的一次函数?【答案】()1当m 为2时,y 是x 的二次函数;()2当m 为3-117-±121-±y 是x 的一次函数.【详解】()1根据题意得30m +≠且242m m +-=,解得2m =, 即当m 为2时,y 是x 的二次函数;()2当30m +=时,即3m =-时,y 是x 的一次函数;当240m m +-=且20m +≠时,y 是x 的一次函数,解得117m -±=; 当241m m +-=且320m m +++≠时,y 是x 的一次函数,解得121m -±=; 即当m 为3-117-±121-±时,y 是x 的一次函数. 类型二:二次函数的图象与性质二次函数的解析式中,a 决定抛物线的形状和开口方向,h 、k 仅决定抛物线的位置.若两个二次函数的图象形状完全相同且开口方向相同,则它们的二次项系数a 必相等.典型例题例题1.(2022·浙江湖州·九年级期末)对于二次函数y =x 2-4x -1的图象,下列叙述正确的是( ) A .开口向下B .对称轴为直线x =2C .顶点坐标为(-2,-5)D .当x ≥2时,y 随x 增大而减小【答案】B【详解】解:∵224125y x x x =--=--(), ∴该函数图象开口向上,对称轴为直线2x =,顶点坐标为(2,-5), ∴当2x ≥时,y 随x 的增大而增大,故选项B 符合题意, 故选:B .点评:例题1考查二次函数的图象和性质,解答本题的关键是明确题意,利用二次函数的性质解答. 例题2.(2021·天津市晟楷中学九年级阶段练习)抛物线()2235y x =--的顶点坐标是( ) A .(3,5)-- B .(3,5)- C .(3,5)- D .(3,5)【答案】C【详解】解:抛物线()2235y x =--的顶点坐标是()3,5-,故选:C .点评:例题2考查了求抛物线的顶点坐标,解题的关键是熟练掌握抛物线的顶点坐标的求法.例题3.(2022·甘肃·张掖市第一中学九年级期末)如图所示的二次函数2y ax bx c =++的图象中,刘星同学观察得出了下面四条信息:(1)240b ac ->;(2)c >1;(3)20a b -<;(4)0a b c ++<.你认为其中错误的有( )A .2个B .3个C .4个D .1个【答案】D【详解】解:(1)根据图示知,该函数图象与x 轴有两个交点, ∴240b ac ∆=->; 故本选项正确;(2)由图象知,该函数图象与y 轴的交点在点(0,1)以下, ∴1c <;故本选项错误; (3)由图示,知对称轴12bx a=->-;又函数图象的开口方向向下, ∴0a <,∴2b a -<-,即20a b -<, 故本选项正确;(4)根据图示可知,当x =1,即0y a b c =++<,∴0a b c ++<;故本选项正确;综上所述,其中错误的是(2),共有1个; 故选:D .点评:例题3主要考查二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用是解题的关键.由抛物线与x 轴交点情况判断24b ac -与0的关系,由抛物线与y 轴的交点判断c 与1的关系,然后根据对称轴及a 的范围推理2a b -的符号,根据当x =1的函数值判断a b c ++的符号.例题4.(2022·全国·九年级专题练习)若点A (﹣1,y 1)、B (1,y 2)、C (4,y 3)为二次函数y =﹣x 2+4x +5的图象上的三点,则y 1,y 2,y 3的大小关系是____(用“>”号连接). 【答案】y 2>y 3>y 1【详解】解:∵二次函数y =﹣x 2+4x +5中a =﹣1, ∴函数图象开口向下,∵y =﹣x 2+4x +5=﹣(x ﹣2)2+9, ∴函数的对称轴为直线x =2,∵A (﹣1,y 1)、B (1,y 2)、C (4,y 3),∴A 点到对称轴的距离为3,B 点到对称轴的距离为1,C 点到对称轴的距离为2, ∴y 2>y 3>y 1, 故答案为:y 2>y 3>y 1.点评:例题4考查了二次函数的图象性质,由解析式求出对称轴是解题关键.求出函数的对称轴为直线x =2,由于函数开口向下,则函数图象上的点离对称轴越远所对应的函数值越小,由此即可求解. 例题5.(2021·福建漳州·模拟预测)已知抛物线25y x bx =-++与x 轴交于A ,B 两点. (1)若抛物线的对称轴是直线x =2. ①求抛物线的解析式;②对称轴上是否存在一点P ,使点B 关于直线OP 的对称点B '恰好落在对称轴上.若存在,请求出点P 的坐标;若不存在,请说明理由.(2)当b ≥4,0≤x ≤2时,函数y 的最大值满足5≤y ≤13,求b 的取值范围. 【答案】(1)①245y x x =-++;②存在,点P (2,217)或P (2,2217-) (2)4≤b ≤6【详解】(1)解:①抛物线25y x bx =-++的对称轴为直线()212b bx =-=⨯-,抛物线的对称轴是直线x =2, ∴22b=,解得b =4, ∴抛物线的解析式为245y x x =-++; ②存在.理由如下:抛物线的对称轴与x 轴交于点C ,若点P 在x 轴上方,点B 关于OP 对称的点B '在对称轴上,连结OB ′、PB ,则OB '=OB ,PB '=PB ,如图所示:对于245y x x =-++,令y =0,则2450x x -++=,即2450x x --=, 解得125,1x x ==-, ∴A (﹣1,0),B (5,0), ∴OB '=OB =5,∴在Rt B OC '∆中,90B CO '∠=︒,5,2OB OC '==,则22225221B C B O OC ''--= ∴(21B ',设点P (2,m ),由22BP B P '=,得()2222921mm +=-,即(22921m m +=,解得217m =, ∴P (2221), 同理,当点P 在x 轴下方时,P (2,221, 综上所述,点P (2,2217)或P (2,217-; (2)解:∵抛物线25y x bx =-++的对称轴为直线2bx =, ∴当b ≥4时,22bx =≥, ∵抛物线开口向下,在对称轴左边,y 随x 的增大而增大, ∴当0≤x ≤2时,取x =2,y 有最大值,即y =﹣4+2b +5=2b +1,∵5≤y≤13,∴5≤2b+1≤13,解得2≤b≤6,又∵b≥4,∴4≤b≤6.点评:例题5考查二次函数的综合应用,涉及到二次函数的图像与性质,勾股定理的应用,轴对称性质,二次函数最值问题,二次函数增减性应用等知识点,解题的关键是熟练掌握二次函数的图像与性质、轴对称性质等相关知识,灵活运用数形结合思想、分类讨论思想解决问题.(1)①根据抛物线的对称轴公式即可求出解析式;②如图,若点P在x轴上方,点B关于OP对称的点B'在对称轴上,连接OB′、PB,根据轴对称的性质得到OB'=OB,PB'=PB,求出点B的坐标,利用勾股定理得到B′(2,21),再根据PB'=PB,列出方程解答,同理得到点P在x轴下方时的坐标即可;(2)当b≥4时,确定对称轴的位置,再结合开口方向,确定当0≤x≤2时,函数的增减性,从而得到当x=2时,函数取最大值,再根据函数值y的最大值满足5≤y≤13,列出不等式解答即可.同类题型演练1.(2022·全国·九年级课时练习)下列关于二次函数y=2x2的说法正确的是()A.它的图象经过点(-1,-2)B.它的图象的对称轴是直线x=2C.当x<0时,y随x的增大而增大≤≤2时,y有最大值为8,最小值为0D.当-1x【答案】D【详解】解:二次函数y=2x2,当x=-1时,y=2,故它的图象不经过点(-1,-2),故选项A不合题意;二次函数y=2x2的图象的对称轴是直线y轴,故选项B不合题意;当x<0时,y随x的增大而减小,故选项C不合题意;二次函数y=2x2,在-1≤x≤2的取值范围内,当x=2时,有最大值8;当x=0时,y有最小值为0,故选项D 符合题意;故选:D.2.(2021·江苏·南通市八一中学九年级阶段练习)抛物线2314y x的顶点坐标是()A.(1,4)B.(1,﹣4)C.(﹣1,4)D.(﹣1,﹣4)【详解】解:根据题意得:抛物线2314y x 的顶点坐标是(﹣1,﹣4).故选:D3.(2021·福建·平潭翰英中学九年级期中)二次函数y =ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a +c <2b ;③3b +2c <0;④m (am +b )+b <a (m ≠﹣1),其中正确结论的个数是( )A .①②B .①③④C .②③④D .①④【答案】B【详解】解:∵函数图象与x 轴有两个交点, ∴方程ax 2+bx +c =0有两个不相等的实数根, ∴b 2−4ac >0, ∴4ac −b 2<0, 故①正确;∵函数图象与x 轴的一个交点的横坐标在0至1之间, ∴函数图象与x 轴的另一个交点的横坐标在-2至-3之间, 由图象可知:当x =−2时,y >0, ∴4a −2b +c >0, ∴4a +c >2b , 故②错误; ∵12ba-=-, ∴b =2a ,∵当x =1时,y <0, ∴a +b +c <0,∴102b bc ++<,3b +2c <0,∵由函数图象可知x =−1时,该二次函数取得最大值, ∴a −b +c >am 2+bm +c (m ≠−1), ∴m (am +b )<a −b , 故④正确;∴正确的有①③④三个, 故选:B .4.(2021·黑龙江·肇源县第五中学九年级期中)已知抛物线21y x x =--与经过点(m ,1),则代数式m ²-m +2019的值为_____. 【答案】2021【详解】解:∵抛物线2=1y x x +-经过点(,1)P m ∴21=1m m --,即22m m -=∴²2019m m -+=2+2019=2021. 故答案为:2021.5.(2022·全国·九年级课时练习)已知点A (-1,y 1),B (2 ,y 2),C (5,y 3)在二次函数y =x 2﹣6x +c 的图象上,则y 1, y 2, y 3的大小关系是_____________ (按照从小到大用<连接). 【答案】231y y y <<【详解】解:∵二次函数y =x 2-6x +c 中a =1>0, ∴抛物线开口向上,有最小值. ∵63221b x a -=-=-=⨯, ∴离对称轴水平距离越远,函数值越大, ∵3(1)5332-->->-, ∴231y y y <<; 故答案为:231y y y <<.6.(2022·福建三明·九年级期末)平面直角坐标系中,抛物线221y x ax a -++-=(a 为常数)的顶点为A . (1)当抛物线经过点(1,2),求抛物线的函数表达式;(2)求顶点A 的坐标(用含字母a 的代数式表示),判断顶点A 是在x 轴上方还是下方,并说明理由; (3)当x ≥0时,抛物线221y x ax a -++-=(a 为常数)的最高点到直线y =3a 的距离为5,求a 的值. 【答案】(1)241y x x =-+-(2)()2,1a a a -+,顶点A 在x 轴上方,理由见解析(3)222+-1【详解】(1)解:当抛物线221y x ax a -++-=(a 为常数)经过点(1,2), ∴2121a a =-++-, 整理得2a =.将2a =代入221y x ax a -++-=中, ∴抛物线的函数表达式为241y x x =-+-;(2)解:∵抛物线221y x ax a -++-=(a 为常数)的顶点为A , ∴()2221b ax a a =-=-=⨯-, 将x a =代入221y x ax a -++-=中, 得到222211y a a a a a =-++-=-+,∴顶点为A 的坐标为()2,1a a a -+;顶点A 在x 轴上方,理由如下:∵2213124a a a ⎛⎫-+=-+ ⎪⎝⎭,2102a ⎛⎫-≥ ⎪⎝⎭,∴2314a a -+≥, ∴顶点A 在x 轴上方.(3)解:由(2)可知,抛物线221y x ax a -++-=的对称轴为x a =,顶点坐标为()2,1a a a -+,①当0a >时,对称轴在y 轴右侧,如图所示,∵x ≥0时图象的最高点是顶点()2,1a a a -+,且最高点到直线y =3a 的距离为5,∴2135a a a -+-=,即2415a a -+=,若2415a a -+=,解得12222,222a a =+=-(不合题意,舍去), 若2415a a -+=-,()222a -=-,原方程无解; ②当0a =时,对称轴是y 轴,如图所示,∵x ≥0时图象的最高点是顶点0,1,最高点到直线y =3a 的距离不可能为5, ∴此种情况不存在;③当0a <时,对称轴在y 轴左侧,如图所示,∵x ≥0时图象的最高点是()0,1a -,且最高点到直线y =3a 的距离为5, ∴135a a --=,解得1a =-. 综上所述,a 的值为222+或-1.类型三:二次函数的解析式用待定系数法可求出二次函数的解析式,确定二次函数一般需要三个独立条件,根据不同条件选择不同的设法:(1)设一般式:y =ax 2+bx +c (a ≠0),若已知条件是图象上的三个点,则设所求二次函数为y =ax 2+bx +c ,将已知条件代入解析式,得到关于a ,b ,c 的三元一次方程组,解方程组求出a ,b ,c 的值,解析式便可得出. (2)设顶点式:y =a (x -h )2+k ,若已知二次函数图象的顶点坐标或对称轴方程与最大值(或最小值),设所求二次函数为y =a (x -h )2+k ,将已知条件代入,求出待定系数,最后将解析式化为一般形式.(3)设交点式:y =a (x -x 1)(x -x 2)(a ≠0),若已知二次函数图象与x 轴的两个交点的坐标为(x 1,0),(x 2,0),设所求二次函数为y =a (x -x 1)(x -x 2),将第三个点的坐标(m ,n )(其中m ,n 为已知数)或其他已翻条件代入,求出待定系数a ,最后将解析式化为一般形式.典型例题例题1.(2021·江苏·九年级专题练习)已知二次函数的图象的顶点是(1,2)-,且经过点(0,5)-,则二次函数的解析式是( ). A .23(1)2y x =-+- B .23(1)2y x =+- C .23(1)2y x =--- D .23(1)2=--y x【答案】C【详解】解:设该抛物线解析式是:y =a (x -1)2﹣2(a ≠0). 把点(0,-5)代入,得 a (0-1)2﹣2=-5, 解得a=-3.故该抛物线解析式是23(1)2y x =---. 故答案选:C点评:例题1主要考查了待定系数法求抛物线的解析式,难度不大,需要掌握抛物线的顶点式. 例题2.(2020·内蒙古·乌海市海南区教育局教研室九年级期中)若抛物线的顶点为点(2,3)且抛物线经过点(3,1),那么抛物线解析式是( ) A .y=4(x -2)2 -3 B .y=-2(x -2)2+3C .y=-2(x -2)2-3D .y= -225(x -2)2+3 【答案】B【详解】∵抛物线的顶点为(2,3), ∴设抛物线的解析式为y=a (x -2)2+3, ∵经过点(3,1), ∴代入得:1=a (3-2)2+3, 解得:a=-2, 即y=-2(x -2)2+3, 故选B .点评:例题2考查了求抛物线的解析式的应用,解题的关键是注意抛物线解析式的设法.设抛物线的解析式为y=a (x-2)2+3,把点(3,1)代入得出1=a (3-2)2+3,求出a 即可.例题3.(2020·吉林·九年级阶段练习)将二次函数2y x x =+的图象沿x 轴翻折后,所得图象的函数解析式是( ) A .2y x x =+ B .2y x xC .2y x x =-+D .2y x x =--【答案】D【详解】∵2211()24y x x x =+=+-,∴二次函数2y x x =+的图象顶点坐标为(-12,-14),∴将二次函数2y x x =+的图象沿x 轴翻折后,所得图象的顶点坐标为(-12,14),且图形开口方向相反,开口大小相等,故a=1,∴翻折后图象的函数解析式为2211()24x y x x =-++=--,故选:D.点评:例题3考查翻折的性质,求函数解析式,将二次函数的一般形式化为顶点式.先求出二次函数2y x x =+的图象顶点坐标,利用翻折得到所得函数的顶点坐标为(-12,14),a=1,由此得到函数的解析式. 例题4.(2022·湖北襄阳·九年级期末)已知一个二次函数的图象开口向上,顶点坐标为()0,5-,那么这个二次函数的解析式可以是________.(只需写一个). 【答案】25y x =-(答案不唯一)【详解】解:∵二次函数的图象开口向上, ∴二次函数()()20=-+≠y a x h k a 中0a >, ∵顶点坐标为()0,5-,∴这个二次函数的解析式可以是25y x =- 故答案为:25y x =-(答案不唯一)点评:例题4主要考查了待定系数法求函数解析式,熟练掌握抛物线的顶点式是解题的关键.根据二次函数的图象开口向上,可得0a >,再由顶点坐标为()0,5-,即可求解例题5.(2022·河南新乡·九年级期末)小刚在用描点法画抛物线C 1:2y ax bx c =++时,列出了下面的表格:x … 0 1 2 3 4 … y…36763…请根据表格中的信息,写出抛物线C 1的解析式:______. 【答案】243y x x =-++【详解】解:把(0,3)(1,6)(2,7)代入y =ax 2+bx +c 中得: 36427c a b c a b c ⎧⎪++⎨⎪++⎩===, 解得:143a b c -⎧⎪⎨⎪⎩===,∴抛物线C 1的解析式为:y =-x 2+4x +3, 故答案为:y =-x 2+4x +3.点评:例题5考查了二次函数的性质,待定系数法求二次函数解析式,解题的关键是准确熟练地进行计算. 例题6.(2022·河北·保定市清苑区北王力中学九年级期末)在下图的平面直角坐标系中,已知抛物线22y x mx =-与x 轴的一个交点为A (4,0).(1)求抛物线的表达式及顶点B 的坐标;(2)将05x ≤≤时函数的图象记为G ,点P 为G 上一动点,求P 点纵坐标的取值范围;(3)在(2)的条件下,若经过点C (4,-4)的直线0y kx b k =+≠()与图象G 有两个公共点,结合图象直接写出b 的取值范围.【答案】(1)24y x x =-,B (2,-4) (2)45P y -≤≤ (3)40b -<≤【详解】(1)解:∵A (4,0)在抛物线22y x mx =-上 ∴1680m -=,解得2m =.∴24y x x =-,即()224y x =-- ∴顶点坐标为B (2,-4). (2)解:如图所示, 当2x =时,y 有最小值-4; 当5x =时,y 有最大值5∴点P 纵坐标的P y 的取值范围是45P y -≤≤.(3)解:如图所示: b 的取值范围为−4<b ≤0,直线0y kx b k =+≠()与图象G 有两个公共点.点评:例题6主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.关键是利用数形结合的思想把代数和几何图形结合起来.(1)根据待定系数法可求抛物线的表达式及顶点D 的坐标;(2)根据二次函数的增减性和对称性可求P 点纵坐标P y 的取值范围; (3)先画出函数图象,再结合图象写出b 的取值范围.同类题型演练1.(2022·全国·九年级专题练习)已知抛物线与二次函数y =2x 2的图象的开口大小相同,开口方向相反,且顶点坐标为(﹣1,2021),则该抛物线对应的函数表达式为( ) A .y =﹣2(x ﹣1)2 +2021B .y =2(x ﹣1)2 +2021C .y =﹣2(x +1)2+2021D .y =2(x +1)2+2021【答案】C【详解】解:∵抛物线的顶点坐标为(﹣1,2021), ∴设抛物线的解析式为y =a (x +1)2+2021,∵抛物线y =a (x +1)2+2021与二次函数y =2x 2的图象的开口大小相同,开口方向相反, ∴a =﹣2,∴抛物线的解析式为y =﹣2(x +1)2+2021. 故选:C .2.(2022·全国·九年级专题练习)抛物线()()213y x x =+-关于y 轴对称后所得到的抛物线解析式为( ) A .()()213y x x =-+- B .()()213y x x =-- C .()()213y x x =-+ D .()()213y x x =--+【答案】C【详解】∵拋物线()()()2213=2-1-8y x x x =+-,∴顶点坐标为(1,-8),关于y 轴对称后顶点坐标为(-1,-8),且开口向上, ∴该抛物线的解析式为()()()221-823-1y x x x =+=+; 故选:C .3.(2021·江苏·九年级专题练习)已知点()2,3在抛物线22y ax ax c =-+上,则下列四个点中,一定也在该抛物线上的是( ) A .()0,3 B .()0,3-C .()3,2D .()2,3--【答案】A【详解】解:将点(2,3)代入抛物线22y ax ax c =-+, 可得y=c=3, ∴223y ax ax =-+. 当x=0时,y=c=3;当x=3时,y=9a -6a+3=3a+3; 当x=-2时,y=4a+4a+3=8a+3;故(0,3)一定在该抛物线上, 故选:A .4.(2021·山东·威海市实验中学九年级期末)抛物线2y ax bx =+经过点A (2,0),该抛物线顶点在直线2y x =-+上,则该抛物线解析式为______. 【答案】22y x x =-+【详解】∵抛物线2y ax bx =+经过点()0,0 ,A (2,0), ∴顶点横坐标为1, ∵顶点在直线y =-x +2上, ∴y =-1+2=1, ∴顶点坐标(1,1),∵y =ax 2+bx 过点A (2,0),(1,1),∴1420a b a b +=⎧⎨+=⎩,∴12a b =-⎧⎨=⎩,∴22y x x =-+. 故答案为:22y x x =-+.5.(2022·全国·九年级专题练习)如图1,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c 与x 轴分别相交于A 、B 两点,与y 轴相交于点C ,下表给出了这条抛物线上部分点(x ,y )的坐标值:x … ﹣1 0 1 2 3 … y…343…则这条抛物线的解析式为_______. 【答案】2y x 2x 3=-++【详解】根据表格可得到点(-1,0)、(0,3)、(3,0) 设抛物线的解析式为(1)(3)y a x x =+- 将(0,3)代入解析式得33a =- 解得1a =-∴解析式为2(1)(3)23y x x x x =-+-=-++故答案为:2y x 2x 3=-++.6.(2021·黑龙江·肇源县第五中学九年级期中)如图,抛物线2y ax bx c =++(a ≠0)与直线y =x +1相交于A (-1,0),B (4,n )两点,且抛物线经过点C (5,0).(1)求抛物线的解析式;(2)点P 是直线AB 上方抛物线上的一个动点(不与点A 、点B 重合),过点P 作直线PD ⊥x 轴于点D ,交直线AB 于点E ,设点P 的横坐标为m .①求线段PE 长的最大值,并求此时P 点坐标;②是否存在点P 使BEC △为等腰三角形?若存在,请直接写出m 的值;若不存在,请说明理由. 【答案】(1)245y x x =-++ (2)①PE 有最大值254,点P 的坐标为335,24⎛⎫⎪⎝⎭;②存在,413或0或34 【详解】(1)解:由题意,抛物线2y ax bx c =++的解析式可化为(1)(5)y a x x =+-, 将点()4,B n 代入直线1y x =+ 得:415n =+=,将点(4,5)B 代入(1)(5)y a x x =+- 得:(41)(45)5a +⨯-=, 解得1a =-,则抛物线的解析式为2(1)(5)45y x x x x =-+-=-++, 即245y x x =-++;(2)①由题意:设2(,45)P m m m -++,(,1)E m m +, 点P 在点E 的上方,则()2223254513424PE m m m m m m =-++-+=-++=-⎫ ⎪⎭+⎛⎝-∵ -1<0∴当m =32时,PE 有最大值,最大值为254当m =32时,235454m m -++=,此时点P 的坐标为(32,354);②存在,m 的值为4130或34.(4,5),(5,0),(,1)B C E m m +,222(54)(05)26BC ∴=-+-=,2222(4)(15)2(4)BE m m m =-++-=-,22222(5)(10)(5)(1)CE m m m m =-++-=-++,由等腰三角形的定义,分以下三种情况:(ⅰ)当BC BE =时,BEC △为等腰三角形,则22BC BE =,即22(4)26m -=, 解得413m =413m =(ⅰ)当BC CE =时,BEC △为等腰三角形,则22BC CE =,即22(5)(1)26m m -++=, 解得0m =或4m =(舍去);(ⅰ)当BE CE =时,BEC △为等腰三角形,则22BE CE =,即2222(4)(5)(1)m m m -=-++,解得34m =;综上,m 的值为4130或34.类型四:二次函数的平移问题(1)抛物线在平移的过程中,a 的值不发生变化,变化的只是顶点的位置,且与平移方向有关. (2)涉及抛物线的平移时,首先将表达式转化为顶点式y =a (x -h )2+k 的形式.(3)抛物线的移动主要看顶点的移动,y =ax 2的顶点是(0,0),y =ax 2+k 的顶点是(0,k ),y =a (x -h )2的顶点是(h ,0),y =a (x -h )2+k 的顶点是(h ,k ).我们只需在坐标系中画出这几个顶点,即可轻松地看出平移的方向.(4)抛物线的平移口诀:自变量加减左右移,函数值加减上下移.典型例题例题1.(2021·黑龙江·兰西县第三中学九年级期中)将抛物线2y x 向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是( )A .2(2)1y x =++B .2(2)1y x =+-C .22()1y x =-+D .2(2)1y x =--【答案】C 【详解】∵抛物线2y x 的顶点坐标为(0,0),∴2yx 向右平移2个单位,再向上平移1个单位后的图象的顶点坐标为(2,1),∴得到新抛物线的解析式是22()1y x =-+, 故选:C .点评:例题1考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.例题2.(2022·内蒙古赤峰·九年级期末)将抛物线()2325y x =++向下平移1个单位,再向右平移两个单位后的顶点坐标是( ) A .(-4,4) B .(0,4) C .(0,6) D .(-4,-6)【答案】B【详解】解:将抛物线()2325y x =++向下平移1个单位,再向右平移两个单位后的解析式为: ()232251,y x =+-+- 即234,y x =+∴抛物线的顶点坐标为:()0,4, 故选:B点评:例题2考查二次函数图象的平移,解题关键是掌握二次函数图象的平移规律,掌握二次函数的顶点式.例题3.(2021·湖北·襄阳市樊城区青泥湾中学九年级阶段练习)要得到抛物线22(4)1y x =-+,可以将抛物线22y x =( )A .向左平移4个单位长度,再向上平移1个单位长度B .向左平移4个单位长度,再向下平移1个单位长度C .向右平移4个单位长度,再向上平移1个单位长度D .向右平移4个单位长度,再向下平移1个单位长度 【答案】C【详解】解:∵y =2(x -4)2+1的顶点坐标为(4,1),y =2x 2的顶点坐标为(0,0), ∴将抛物线y =2x 2向右平移4个单位,再向上平移1个单位,可得到抛物线y =2(x -4)2+1.故选:B .点评:例题3考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标. 例题4.(2022·天津滨海新·九年级期末)抛物线()223y x =+-可以由抛物线2y x 先向左平移2个单位,再向下平移___________个单位得到的. 【答案】3 【详解】解:抛物线2y x 向左平移2个单位,向下平移3个单位得到的函数图象的解析式为:()223y x =+-. 故答案为:3.点评:例题4考查的是二次函数的图象平移变换,熟知函数图象平移变换的法则是解答此题的关键. 例题5.(2022·江苏·九年级专题练习)已知抛物线2(1)y a x h =-+,经过点(0,3)-和(3,0). (1)求a 、h 的值;(2)将该抛物线向上平移2个单位长度,再向右平移1个单位长度,得到新的抛物线,直接写出新的抛物线相应的函数表达式. 【答案】(1)14a h =⎧⎨=-⎩;(2)242y x x =-+【详解】(1)解:将点(0,3)-和(3,0)代入抛物线2(1)y a x h =-+得:22(01)3(31)0a h a h ⎧-+=-⎨-+=⎩解得:14a h =⎧⎨=-⎩,∴1a =,4h =-;(2)解:∵原函数的表达式为:2(1)4y x =--,向上平移2个单位长度,再向右平移1个单位长度,得∴平移后的新函数表达式为:22(11)42=42y x x x =---+-+即242y x x =-+;点评:例题5考查了待定系数法确定解析式,顶点式的函数平移,口诀:“左加右减,上加下减”,正确的计算和牢记口诀是解题的关键同类题型演练1.(2021·福建·平潭翰英中学九年级期中)将抛物线y = x 2先向左平移5个单位,再向下平移4个单位,得到新抛物线的解析式是( ) A . y =()25x +-4 B . y =()25x ++4 C . y =()25x --4 D . y =()25x -+4【答案】A。
2021年河北省数学中考《二次函数的图象及性质》专题复习(人教版)(Word版附答案)

二次函数的图象及性质二次函数的图象及性质1.(2020·河北中考)如图,现要在抛物线y=x(4-x)上找点P(a,b),针对b 的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对 B.甲和乙都错C.乙对,丙错 D.甲错,丙对2.(2018·河北中考)对于题目“一段抛物线L:y=-x(x-3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点.若c为整数,确定所有c的值.”甲的结果是c =1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确3.(2017·河北中考)如图,若抛物线y=-x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=kx(x>0)的图象是()二次函数图象与性质的综合4.(2019·河北中考)如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x-b与y轴交于点B;抛物线L:y=-x2+bx的顶点为C,且L与x 轴右交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2 019和b=2 019.5时“美点”的个数.考点解析二次函数的概念及表达式1.已知二次函数图象经过原点,对称轴是y轴,且经过点(-2,-8),则这个二次函数的表达式为y=;2.已知抛物线的顶点坐标为点M(1,-2),且经过点N(2,3),则此二次函数的表达式为y=;3.已知二次函数图象经过点P(3,4)且与x轴两个交点的横坐标为1和-2,则这个二次函数的表达式为y=.二次函数的图象及性质4.(2020·秦皇岛市一模)二次函数y=x2+2x+2的图象是一条抛物线,则下列说法不正确的是()A.抛物线开口向上B.抛物线的顶点坐标是(1,1)C.抛物线与x轴没有交点D.当x>-1时,y随x的增大而增大5.(2020·石家庄市模拟)已知点A(1,y1),B(2,y2)在抛物线y=-(x+1)2+2上,则下列结论正确的是()A.2>y1>y2 B.2>y2>y1C.y1>y2>2 D.y2>y1>26.若二次函数y=kx2+2x-1的图象与x轴仅有一个公共点,则常数k的值为( )A .1B .±1C .-1D .-12 二次函数图象的平移7.将抛物线y =12 x 2+1绕顶点旋转180°,则旋转后的抛物线的解析式为( )A .y =-2x 2+1B .y =-2x 2-1C .y =-12 x 2+1D .y =-12 x 2-18.(2020·河北一模)在平面直角坐标系中,有两条抛物线关于x 轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y =-x 2+4x +2m ,则m 的值是( )A .-72B .-12C .1D .-12 或-72二次函数与一元二次方程、不等式的关系9.若二次函数y =x 2+bx 的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程x 2+bx =5的解为x 1= ,x 2= .10.(2020·石家庄市模拟)二次函数y =ax 2+bx +c (a ≠0)的部分对应值如下表:x -3 -2 -1 0 1 2y -12 -5 0 3 4 3利用二次函数的图象可知,当函数值y >0时,x 的取值范围是 .考点专练1.(2020·河北模拟)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx+b2a与反比例函数y=abx在同一坐标系内的大致图象是()2.(2020·石家庄市模拟)如图,抛物线y=ax2+bx+c的顶点为B(-1,3),与x轴的交点A在点(-3,0)和(-2,0)之间,以下结论:①b2-4ac=0;②a+b+c>0;③2a-b=0;④c-a=3.其中正确的是()A.①② B.③④ C.②③ D.①③3..(2020·石家庄市模拟)二次函数y=x2-2的图象是一条抛物线,下列关于该抛物线的说法正确的是()A.抛物线开口向下B.当x=0时,函数的最大值是-2C.抛物线的对称轴是直线x=2D.抛物线与x轴有两个交点4.一次函数y=ax+b与反比例函数y=cx的图象如图所示,则二次函数y=ax2+bx+c的大致图象是()5.(2020·唐山路北区一模)已知二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc>0;②2a+b=0;③b2-4ac<0;④4a+2b+c>0.其中正确的是()A.①③ B.② C.②④ D.③④6.(2020·石家庄长安区模拟)已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,且过点(3,0),则下列结论:①abc<0;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③2a+b=0;④4a+2b+c<0.其中正确结论的序号是.5.(2020·秦皇岛市一模)如图,将抛物线y=12 x2平移得到抛物线m,抛物线m经过点A(-6,0)和点O(0,0),它的顶点为P,它的对称轴与抛物线y=1 2x2交于点Q.(1)点P的坐标为;(2)图中阴影部分的面积为.7.(2020·石家庄28中一模)如图,已知二次函数y=x2+ax+3的图象经过点P(-2,3).(1)求a的值和图象的顶点坐标;(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围;③直接写出点Q与直线y=x+5的距离小于2时m的取值范围.8.将抛物线y=x2-2x+3先沿水平方向向右平移1个单位,再沿竖直方向向上平移3个单位,则得到的新抛物线的解析式为()A.y=(x-2)2+3 B.y=(x-2)2+5C.y=x2-1 D.y=x2+49.(2020·唐山市一模)如图,已知二次函数L:y=mx2+2mx+k(其中m,k 是常数,k为正整数).(1)若L经过点(1,k+6),求m的值.(2)当m=2时,若L与x轴有公共点且公共点的横坐标为非零的整数,确定k的值;(3)在(2)的条件下将L:y=mx2+2mx+k的图象向下平移8个单位,得到函数图象M,求M的解析式;(4)将M的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象N,请结合新的图象解答问题,若直线y=12 x+b与N有两个公共点时,请直接写出b的取值范围.二次函数的图象及性质二次函数的图象及性质1.(2020·河北中考)如图,现要在抛物线y=x(4-x)上找点P(a,b),针对b 的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是(C)A.乙错,丙对 B.甲和乙都错C.乙对,丙错 D.甲错,丙对2.(2018·河北中考)对于题目“一段抛物线L:y=-x(x-3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点.若c为整数,确定所有c的值.”甲的结果是c =1,乙的结果是c=3或4,则(D)A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确3.(2017·河北中考)如图,若抛物线y=-x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=kx(x>0)的图象是(D)二次函数图象与性质的综合4.(2019·河北中考)如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x-b与y轴交于点B;抛物线L:y=-x2+bx的顶点为C,且L与x 轴右交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2 019和b=2 019.5时“美点”的个数.解:(1)当x=0时,y=x-b=-b,∴B(0,-b).又∵AB=8,A(0,b),∴b-(-b)=8.∴b=4.∴L的表达式为y=-x2+4x,a的表达式为y=x-4.∴L 的对称轴为x =2. 当x =2时,y =x -4=-2.∴L 的对称轴与a 的交点坐标为(2,-2);(2)∵y =-x 2+bx =-⎝ ⎛⎭⎪⎫x -b 2 2 +b24 ,∴L 的顶点为C ⎝ ⎛⎭⎪⎫b 2,b 24 . ∵点C 在l 下方,∴点C 与l 的距离为b -b 24 =-14 (b -2)2+1≤1. ∴点C 与l 距离的最大值为1;(3)由题意,得y 3=y 1+y 22 ,即y 1+y 2=2y 3,得b +x 0-b =2(-x 20 +bx 0). 解得x 0=0或x 0=b -12 .又x 0≠0,∴x 0=b -12 . 对于L ,当y =0时,即0=-x 2+bx ,∴0=-x (x -b ). 解得x 1=0,x 2=b .∵b >0,∴右交点D 为(b ,0). ∴点(x 0,0)与点D 的距离为b -⎝ ⎛⎭⎪⎫b -12 =12 ;(4)4 040;1 010.考点解析二次函数的概念及表达式 例如,(1)已知二次函数图象经过原点,对称轴是y 轴,且经过点(-2,-8),则这个二次函数的表达式为y =-2x 2;(2)已知抛物线的顶点坐标为点M(1,-2),且经过点N(2,3),则此二次函数的表达式为y=5(x-1)2-2;(3)已知二次函数图象经过点P(3,4)且与x轴两个交点的横坐标为1和-2,则这个二次函数的表达式为y=25 x2+25 x-45.二次函数的图象及性质例如,(1)(2020·秦皇岛市一模)二次函数y=x2+2x+2的图象是一条抛物线,则下列说法不正确的是(B)A.抛物线开口向上B.抛物线的顶点坐标是(1,1)C.抛物线与x轴没有交点D.当x>-1时,y随x的增大而增大(2)(2020·石家庄市模拟)已知点A(1,y1),B(2,y2)在抛物线y=-(x+1)2+2上,则下列结论正确的是(A)A.2>y1>y2 B.2>y2>y1C.y1>y2>2 D.y2>y1>2例如,(1)根据二次函数的大致图象得出结论:a>0,a<0,a>0,a<0,(2)若二次函数y =kx 2+2x -1的图象与x 轴仅有一个公共点,则常数k 的值为(C )A .1B .±1C .-1D .-12 二次函数图象的平移(5)将抛物线y =12 x 2+1绕顶点旋转180°,则旋转后的抛物线的解析式为(C )A .y =-2x 2+1B .y =-2x 2-1C .y =-12 x 2+1D .y =-12 x 2-1(6)(2020·河北一模)在平面直角坐标系中,有两条抛物线关于x 轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y =-x 2+4x +2m ,则m 的值是(D )A .-72B .-12C .1D .-12 或-72二次函数与一元二次方程、不等式的关系 例如,(1)若二次函数y =x 2+bx 的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程x 2+bx =5的解为x 1=-1,x 2=5.(2)(2020·石家庄市模拟)二次函数y =ax 2+bx +c (a ≠0)的部分对应值如下表:利用二次函数的图象可知,当函数值y>0时,x的取值范围是-1<x<3.二次函数的综合考点专练二次函数的图象与性质及与各项系数的关系【例1】(2020·河北模拟)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx+b2a与反比例函数y=abx在同一坐标系内的大致图象是(B)【解析】根据二次函数图象与系数的关系,由抛物线对称轴的位置(在y轴右侧)确定ab<0,由抛物线与y轴的交点位置(在x轴下方)确定c<0.对于一次函数y=cx+b2a,由于c<0,图象必经过第二、四象限,又0<-b2a<1,即b2a<0,图象与y轴的交点在x轴下方;对于反比例函数y=abx,ab<0,图象分布在第二、四象限.【例2】(2020·石家庄市模拟)如图,抛物线y=ax2+bx+c的顶点为B(-1,3),与x轴的交点A在点(-3,0)和(-2,0)之间,以下结论:①b2-4ac=0;②a+b+c>0;③2a-b=0;④c-a=3.其中正确的是(B)A.①② B.③④ C.②③ D.①③【解析】∵抛物线y=ax2+bx+c的顶点为B(-1,3),与x轴的交点A在点(-3,0)和(-2,0)之间,∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间.∴b2-4ac>0,故①错误;当x=1时,y=a+b+c<0,故②错误;由-b2a=-1,得b=2a,2a-b=0,故③正确;当x=-1时,y=a-b+c=a-2a +c=-a+c=3,即c-a=3,故④正确.1.(2020·石家庄市模拟)二次函数y=x2-2的图象是一条抛物线,下列关于该抛物线的说法正确的是(D)A.抛物线开口向下B.当x=0时,函数的最大值是-2C.抛物线的对称轴是直线x=2D.抛物线与x轴有两个交点2.一次函数y=ax+b与反比例函数y=cx的图象如图所示,则二次函数y=ax2+bx+c的大致图象是(A)3.(2020·唐山路北区一模)已知二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc>0;②2a+b=0;③b2-4ac<0;④4a+2b+c>0.其中正确的是(C)A.①③ B.② C.②④ D.③④4.(2020·石家庄长安区模拟)已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,且过点(3,0),则下列结论:①abc<0;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③2a+b=0;④4a+2b+c<0.其中正确结论的序号是①②③.5.(2020·秦皇岛市一模)如图,将抛物线y=12 x2平移得到抛物线m,抛物线m经过点A(-6,0)和点O(0,0),它的顶点为P,它的对称轴与抛物线y=1 2x2交于点Q.(1)点P 的坐标为⎝ ⎛⎭⎪⎫-3,-92 ;(2)图中阴影部分的面积为272 . 二次函数表达式的确定及综合【例3】(2020·石家庄28中一模)如图,已知二次函数y =x 2+ax +3的图象经过点P (-2,3).(1)求a 的值和图象的顶点坐标; (2)点Q (m ,n )在该二次函数图象上. ①当m =2时,求n 的值;②若点Q 到y 轴的距离小于2,请根据图象直接写出n 的取值范围; ③直接写出点Q 与直线y =x +5的距离小于2 时m 的取值范围.【解答】解:(1)将P (-2,3)代入y =x 2+ax +3,得 3=(-2)2-2a +3,解得a =2.∴y =x 2+2x +3=(x +1)2+2. ∴顶点坐标为(-1,2);(2)①将x =2代入y =x 2+2x +3,解得y =11. ∴当m =2时,n =11;②2≤n <11;③-1-72 <m <-1或0<m <-1+72. 6.将抛物线y =x 2-2x +3先沿水平方向向右平移1个单位,再沿竖直方向向上平移3个单位,则得到的新抛物线的解析式为(B )A.y=(x-2)2+3 B.y=(x-2)2+5C.y=x2-1 D.y=x2+47.(2020·唐山市一模)如图,已知二次函数L:y=mx2+2mx+k(其中m,k 是常数,k为正整数).(1)若L经过点(1,k+6),求m的值.(2)当m=2时,若L与x轴有公共点且公共点的横坐标为非零的整数,确定k的值;(3)在(2)的条件下将L:y=mx2+2mx+k的图象向下平移8个单位,得到函数图象M,求M的解析式;(4)将M的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象N,请结合新的图象解答问题,若直线y=12 x+b与N有两个公共点时,请直接写出b的取值范围.解:(1)将点(1,k+6)代入y=mx2+2mx+k,解得m=2;(2)当m=2时,y=mx2+2mx+k=2x2+4x+k.令y=0,即2x2+4x+k=0.由题意,得Δ=b2-4ac=16-8k≥0.解得k≤2.又k为正整数,且k=1时,方程没有整数解,故舍去.∴k=2;(3)在m=2,k=2时,y=2x2+4x+2,向下平移8个单位,平移后M的表达式为y =2x 2+4x +2-8=2x 2+4x -6;(4)-12 <b <32 或b >27332 .[由(3)知,M 的表达式为y =2x 2+4x -6.① 则翻折后抛物线的表达式为y ′=-2x 2-4x +6.② 设直线m 为y =12 x +b .③Ⅰ)当直线m 与翻折后的图象有一个交点(点H )时,如图,联立②③并整理得2x 2+92 x +b -6=0.则Δ=814 -8(b -6)=0.解得b =27332 ;Ⅱ)当直线m 过点A (-3,0)时,将点A 的坐标代入③,得0=12 ×(-3)+b .解得b =32 ;Ⅲ)当直线m 过点B (1,0)时,同理可得,b =-12 .综上所述,直线y =12 x +b 与N 有两个公共点时,b 的取值范围为-12 <b <32 或b >27332 .]。
人教版 九年级数学上册 22.1 二次函数的图象和性质 同步训练(含答案)
人教版九年级数学上册22.1 二次函数的图象和性质同步训练一、选择题1. 二次函数y=2x2,y=-2x2,y=12x2的共同性质是()A.其图象开口都向上B.其图象的对称轴都是y轴C.其图象都有最高点D.y随x的增大而增大2. 若y=ax2+bx+c,则由表格中的信息可知y与x之间的函数解析式是()A.y=x2-4x+3 B.y=x2-3x+4C.y=x2-3x+3 D.y=x2-4x+83. 若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()A. x1=0,x2=6B. x1=1,x2=7C. x1=1,x2=-7D. x1=-1,x2=74. 已知二次函数y=-x2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是()A.b≥-1 B.b≤-1C.b≥1 D.b≤15. 二次函数y=2x2-3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A. 抛物线开口向下B. 抛物线经过点(2,3)C. 抛物线的对称轴是直线x=1D. 抛物线与x轴有两个交点6. 将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的是() A.向左平移1个单位长度B.向右平移3个单位长度C.向上平移3个单位长度D.向下平移1个单位长度7. 已知抛物线y=2x2+bx+c的顶点坐标是(-1,-2),则b与c的值分别为() A.-1,-2 B.4,-2C.-4,0 D.4,08. 已知二次函数y=x2+bx+c与x轴只有一个交点,且图象过A(x1,m)、B(x1+n,m)两点,则m、n的关系为()A. m=12n B. m=14n C. m=12n2 D. m=14n2二、填空题9. 某抛物线的形状、开口方向与抛物线y=12x2-4x+3相同,顶点坐标为(-2,1),则该抛物线的函数解析式为________________.10. 已知抛物线y=2(x-1)2上有两点(x1,y1),(x2,y2),且1<x1<x2,则y1与y2的大小关系是________.11. 抛物线y=-8x2的开口向________,对称轴是________,顶点坐标是________;当x>0时,y随x的增大而________,当x<0时,y随x的增大而________.12. 已知二次函数的图象经过原点及点(-12,-14),且图象与x轴的另一交点到原点的距离为1,则该二次函数的解析式为________________.13. 如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a-2b+c的值为________.14. 顶点坐标是(2,0),且与抛物线y=-3x2的形状、开口方向都相同的抛物线的解析式为________.15. 如图,抛物线y=ax2+bx+c与x轴相交于点A,B(m+2,0),与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是________.16. 如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是________.三、解答题17. 已知抛物线y=ax2经过点A(-2,-8).(1)求此抛物线的解析式;(2)判断点B(-1,-4)是否在此抛物线上;(3)求出抛物线上纵坐标为-6的点的坐标.18. 在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(-2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=-12x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.19. 如图,等腰直角三角形ABC的直角边与正方形MNPQ的边长均为10 cm,边CA与边MN在同一直线上,开始时点A与点M重合,△ABC沿MN方向以1 cm/s 的速度匀速运动,当点A与点N重合时,停止运动.设运动的时间为t s,运动过程中△ABC与正方形MNPQ重叠部分的面积为S cm2.(1)试写出S关于t的函数关系式,并指出自变量t的取值范围;(2)当MA=2 cm时,重叠部分的面积是多少?20. 设函数y=(x-1)[(k-1)x+(k-3)](k是常数).(1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k取0时函数的图象;(2)根据图象,写出你发现的一条结论;(3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到函数y3的图象,求函数y3的最小值.人教版九年级数学上册22.1 二次函数的图象和性质同步训练-答案一、选择题1. 【答案】B2. 【答案】A[解析] ∵x =1时,ax 2=1,∴a =1.将(-1,8),(0,3)分别代入y =x 2+bx +c ,得⎩⎨⎧1-b +c =8,c =3,解得⎩⎨⎧b =-4,c =3.∴y 与x 之间的函数解析式是y =x 2-4x +3.故选A.3. 【答案】D【解析】∵二次函数y =x 2+mx 的对称轴为x =-m2=3,解得m =-6,则关于x 的方程为x 2-6x =7,解得,x 1=-1,x 2=7.4. 【答案】D [解析] 先根据抛物线的性质得到其对称轴为直线x =b ,且当x >b 时,y 的值随x 值的增大而减小.因为当x >1时,y 的值随x 值的增大而减小,所以b≤1.5. 【答案】D【解析】本题考查了二次函数的性质,由于2>0,所以抛物线的开口向上,所以A 选项错误;由于当x =2时,y =8-3=5,所以B 选项错误;由于y =2x 2-3的对称轴是y 轴,所以C 选项错误;由2x 2-3=0得b 2-4ac =24>0,则该抛物线与x 轴有两个交点,所以D 选项正确.6. 【答案】D [解析] A .将函数y =x 2的图象向左平移1个单位长度得到函数y =(x +1)2的图象,它经过点(1,4);B.将函数y =x 2的图象向右平移3个单位长度得到函数y =(x -3)2的图象,它经过点(1,4);C.将函数y =x 2的图象向上平移3个单位长度得到函数y =x 2+3的图象,它经过点(1,4);D.将函数y =x 2的图象向下平移1个单位长度得到函数y =x 2-1的图象,它不经过点(1,4).故选D.7. 【答案】D8. 【答案】D【解析】因为二次函数y =x 2+bx +c 的图象与x 轴只有一个交点,∴b 2-4c =0,即c =b 24,由题意知,点A ,B 关于抛物线的对称轴对称,∴12AB=|n|2=-b 2-x 1,b =-|n|-2x 1, ∴c =(-|n|-2x 1)24=|n|2+4|n|x 1+4x 214,∵A(x 1,m)在y =x 2+bx +c 上,∴m =x 21+bx 1+c ,∴ m =x 21+(-|n|-2x 1)· x 1+|n|2+4|n|x 1+4x 214,化简整理得m =14n 2,故选D .二、填空题9. 【答案】y =12(x +2)2+1 [解析] 已知抛物线的顶点坐标,可以设顶点式y =a(x -h)2+k.又因为该抛物线的形状、开口方向与抛物线y =12x 2-4x +3相同,所以a =12,所以该抛物线的函数解析式是y =12(x +2)2+1.10. 【答案】y 1<y 2[解析] ∵抛物线的解析式是y =2(x -1)2,∴其对称轴是直线x =1,抛物线的开口向上, ∴在对称轴右侧,y 随x 的增大而增大.又∵抛物线y =2(x -1)2上有两点(x 1,y 1),(x 2,y 2),且1<x 1<x 2,∴y 1<y 2.11. 【答案】下y 轴 (0,0) 减小 增大12. 【答案】y =x 2+x 或y =-13x 2+13x 【解析】依题意,所求函数有可能经过(-1,0),(-12,-14) 或(1,0),(-12,-14) .设所求函数解析式为y =ax 2+bx +c ,图象经过原点,则c =0,当图象经过(-1,0),(-12,-14)时,代入可求得a =b =1,即所求解析式为y =x 2+x ; 当图象经过(1,0),(-12,-14)时,代入可求得a =-13,b =13,即所求解析式为y =-13x 2+13x .综上所述,所求函数的解析式为y=x 2+x 或y =-13x 2+13x .13. 【答案】0 【解析】设抛物线与x 轴的另一个交点是Q ,∵抛物线的对称轴是过点(1,0)的直线,与x 轴的一个交点是P(4,0),∴与x 轴的另一个交点Q(-2,0),把(-2,0)代入解析式得:0=4a -2b +c ,∴4a -2b +c =0.14. 【答案】y =-3(x -2)215. 【答案】(-2,0)【解析】如解图,过D 作DM ⊥x 轴于点M ,∴M(m ,0),又B(m +2,0),∴MB =2,由C(0,c),D(m ,c)知:OC =DM ,即点C 、D 关于对称轴对称,故点O 、M 也关于对称轴对称,∴OA =MB =2,∴A(-2,0).16. 【答案】-2 [解析] 抛物线y =ax 2+bx 的顶点C 的坐标为(-b 2a ,-b 24a).把x =-b 2a 代入y =ax 2,得点B 的坐标为(-b 2a ,b 24a ).在y =ax 2+bx 中,令y =0,则ax 2+bx =0,解得x 1=0,x 2=-b a ,∴A(-ba ,0).∵四边形ABOC 为正方形,∴BC =OA ,∴2·b 24a =-b a ,即b 2+2b =0.解得b =-2或b =0(不符合题意,舍去).三、解答题17. 【答案】解:(1)∵抛物线y =ax 2经过点A(-2,-8),∴4a =-8,解得a =-2,∴此抛物线的解析式为y =-2x 2.(2)当x =-1时,y =-2,∴点B(-1,-4)不在此抛物线上.(3)把y =-6代入y =-2x 2,得-2x 2=-6,解得x =±3,∴抛物线上纵坐标为-6的点的坐标为(3,-6),(-3,-6).18. 【答案】解:(1)把B(-2,6),C(2,2)代入抛物线的解析式得: ⎩⎨⎧6=a·(-2)2+b·(-2)+22=a·22+b·2+2,(1分)解得⎩⎪⎨⎪⎧a =12b =-1,(2分)∴抛物线的解析式为y =12x 2-x +2.(3分)(2)抛物线解析式化为顶点式:y =12(x -1)2+32,则抛物线顶点D(1,32),(4分) 如解图①所示,过点B 、D 、C 分别向x 轴作垂线,垂足分别为点M 、N 、H ,则有:S △BCD =S 梯形BMHC -S 梯形BMND -S 梯形DNHC =12(6+2) ×4-12(6+32)×3-12(32+2) ×1 =3.(6分)解图①解图② (3)如解图②所示,连接BC ,∵直线BC 斜率k BC =2-62-(-2)=-1<-12,∴过点C 作直线MN 与直线y =-12x 平行,设直线MN 的解析式为y =-12x +b 1,代入C(2,2), ∴b 1=3.(7分)作直线EF 与抛物线相切,且与直线y =-12x 平行, 设直线EF 的解析式为y =-12x +b 2,联立抛物线解析式得, ⎩⎪⎨⎪⎧y =12x 2-x +2y =-12x +b 2, ∴x 2-x +4-2b 2= 0, ∵直线EF 与抛物线相切,∴b 2-4ac =0,即(-1)2-4(4-2b 2)=0,(9分)∴b 2=158,(11分) ∴158<b ≤3.(12分)注:斜率知识为高中知识,但常渗透于中考压轴题,与二次函数相结合考查,做题时注意其性质的应用.19. 【答案】解:(1)设AB 与MQ 交于点R.∵△ABC 是等腰直角三角形,四边形MNPQ 是正方形, ∴△AMR 是等腰直角三角形. 由题意知,AM =MR =t ,∴S =S △AMR =12t·t =12t 2(0≤t≤10).(2)当MA =2 cm ,即t =2时,重叠部分的面积是12×2×2=2(cm 2).20. 【答案】解:(1)当k =0时,y =-(x -1)(x +3),所画图象如解图所示.(2分)(2)①k 取0和2时的函数图象关于点(0,2)中心对称,②函数y =(x -1)[(k -1)x +(k -3)](k 是常数)的图象都经过(1,0)和(-1,4).(5分)(3)由题意可得y 2=(x -1)[(2-1)x +(2-3)]=(x -1)2,平移后的函数y 3的表达式为y 3=(x -1+4)2-2=(x +3)2-2, 所以当x =-3时,函数y 3的最小值是-2.(8分)。
人教版 九年级数学 22.1 二次函数的图象和性质 针对训练 (含答案)
人教版九年级数学22.1 二次函数的图象和性质针对训练一、选择题1. 关于二次函数y=3x2的图象,下列说法错误的是()A.它的形状是一条抛物线B.它的开口向上,且关于y轴对称C.它的顶点是抛物线的最高点D.它的顶点在原点处,坐标为(0,0)2. 用一根长为50 cm的铁丝围成一个长方形,设这个长方形的一边长为x cm,面积为y cm2,则y与x之间的函数解析式为()A.y=-x2+50x B.y=x2-50xC.y=-x2+25x D.y=-2x2+253. 如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A. y=(x-1)2+2B. y=(x+1)2+2C. y=x2+1D. y=x2+34. 下列函数关系中,是二次函数的是()A.在弹性限度内,弹簧的长度y与所挂物体质量x之间的关系B.当距离一定时,火车行驶的时间t与速度v之间的关系C.等边三角形的周长C与边长a之间的关系D.半圆的面积S与半径R之间的关系5. 将抛物线y=-3x2平移,得到抛物线y=-3(x-1)2-2,下列平移方式中,正确的是()A.先向左平移1个单位长度,再向上平移2个单位长度B.先向左平移1个单位长度,再向下平移2个单位长度C.先向右平移1个单位长度,再向上平移2个单位长度D.先向右平移1个单位长度,再向下平移2个单位长度6. 将抛物线y=x2-6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线的解析式是( ) A .y =(x -4)2-6B .y =(x -1)2-3C .y =(x -2)2-2D .y =(x -4)2-27. 在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点旋转180°得到抛物线y =x 2+5x +6,则原抛物线的解析式是( )A. y =-(x -52)2-114B. y =-(x +52)2-114C. y =-(x -52)2-14D. y =-(x +52)2+148. 如图,△ABC 是等腰直角三角形,∠A =90°,BC =4,点P 是△ABC 边上一动点,沿B →A →C 的路径移动.过点P 作PD ⊥BC 于点D ,设BD =x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )9. (2019•随州)如图所示,已知二次函数2y ax bx c =++的图象与x 轴交于,A B 两点,与y 轴交于点C ,OA OC =,对称轴为直线1x =,则下列结论:①0abc <;②11024a b c ++=;③10ac b -+=;④2c +是关于x 的一元二次方程20ax bx c ++=的一个根.其中正确的有A .1个B .2个C .3个D .4个10. 2018·潍坊 已知二次函数y =-(x -h )2(h 为常数),当自变量x 的值满足2≤x ≤5时,与其对应的函数值y 的最大值为-1,则h 的值为( )A .3或6B .1或6C .1或3D .4或6二、填空题11. 将抛物线y =-(x +2)2向________平移________个单位长度,得到抛物线y =-(x -1)2.12. 若物体运动的路程s (m)与时间t (s)之间的关系式为s =5t 2+2t ,则当物体运动时间为4 s 时,该物体所经过的路程为________.13. (2019•荆州)二次函数2245y x x =--+的最大值是__________.14. 某厂今年一月份新产品的研发资金为a 元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂今年三月份新产品的研发资金y (元)关于x 的函数解析式为y =__________.15. (2019•徐州)已知二次函数的图象经过点(2,2)P ,顶点为(0,0)O 将该图象向右平移,当它再次经过点P 时,所得抛物线的函数表达式为__________.三、解答题16. 为了美化校园,学校准备利用一面墙(墙足够长)和20米的篱笆围成一个如图所示的等腰梯形的花圃,设腰长AB =CD =x 米,∠B =120°,花圃的面积为S 平方米.(1)求S 与x 之间的函数关系式(不要求写x 的取值范围);(2)若梯形ABCD 的面积为1254 3平方米,且AB <BC ,求此时AB 的长.17. 已知二次函数y 1=ax 2+bx +c (ab ≠0)的图象经过点(0,-1),顶点为A (-2,-5).(1)求该二次函数的解析式;(2)把二次函数在第三象限内的部分图象记为图象G ,若直线y 2=n 与图象G 有且仅有1个交点,求n的取值范围.18. 在平面直角坐标系中,设二次函数y1=(x+a)(x-a-1),其中a≠0.(1)若函数y1的图象经过点(1,-2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b 满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上.若m<n,求x0的取值范围.19. 如图,已知抛物线经过A(-3,0),B(0,3)两点,且其对称轴为直线x=-1.(1)求此抛物线的解析式;(2)若P是抛物线上点A与点B之间的动点(不包括点A,B),求△P AB的面积的最大值,并求出此时点P的坐标.20. 如图,顶点为A(3,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.人教版 九年级数学 22.1 二次函数的图象和性质 针对训练 -答案一、选择题1. 【答案】C [解析] ∵二次函数y =3x 2中二次项系数为3,∴函数的图象为抛物线,开口向上,顶点坐标为(0,0),顶点是抛物线的最低点.2. 【答案】C3. 【答案】C 【解析】根据图象平移变换口诀“左加右减,上加下减”进行解答.把抛物线y =x 2+2向下平移1个单位得y =x 2+2-1=x 2+1.4. 【答案】D5. 【答案】D [解析] ∵抛物线y =-3x 2的顶点坐标为(0,0),抛物线y =-3(x -1)2-2的顶点坐标为(1,-2),∴将抛物线y =-3x 2向右平移1个单位长度,再向下平移2个单位长度,可得到抛物线y =-3(x -1)2-2.6. 【答案】D [解析] y =x 2-6x +5=(x -3)2-4,将其向上平移2个单位长度,再向右平移1个单位长度后,得y =(x -3-1)2-4+2,即y =(x -4)2-2.7. 【答案】A【解析】∵抛物线的解析式为:y =x 2+5x +6,∴绕原点旋转180°变为y =-x 2+5x -6,即y =-(x -52)2+14,∴再向下平移3个单位长度得到的抛物线解析式为y =-(x -52)2+14-3=-(x -52)2-114.8. 【答案】B 【解析】∵△ABC 是等腰直角三角形,∴∠A =90°,∠B =∠C =45°.(1)当0≤x ≤2时,点P 在AB 边上,△BDP 是等腰直角三角形,∴PD =BD =x ,y =12x 2 (0≤x ≤2),其图象是抛物线的一部分; (2)当2<x ≤4时,点P 在AC 边上,△CDP 是等腰直角三角形,∴PD =CD =4-x ,∴y =12BD ·PD =12x (4-x ) (2<x ≤4),其图象也是抛物线的一部分.综上所述,两段图象均是抛物线的一部分,因此选项B 的图象能大致反映y 与x 之间的函数关系.9. 【答案】B 【解析】∵抛物线开口向下,∴0a ,∵抛物线的对称轴为直线12b x a=-=,∴20b a =->, ∵抛物线与y 轴的交点在x 轴上方,∴0c >,∴0abc <,所以①正确;∵2b a =-,∴102a b a a +=-=, ∵0c >,∴11024a b c ++>,所以②错误; ∵(0,)C c ,OA OC =,∴(,0)A c -,把(,0)A c -代入2y ax bx c =++得20ac bc c -+=,∴10ac b -+=,所以③错误; ∵(,0)A c -,对称轴为直线1x =,∴(2,0)B c +,∴2c +是关于x 的一元二次方程20ax bx c ++=的一个根,所以④正确, 综上正确的有2个,故选B .10. 【答案】B[解析] 当h <2时,有-(2-h )2=-1,解得h 1=1,h 2=3(舍去);当2≤h ≤5时,y =-(x -h )2的最大值为0,不符合题意;当h >5时,有-(5-h )2=-1,解得h 3=4(舍去),h 4=6.综上所述,h 的值为1或6.二、填空题11. 【答案】右 312. 【答案】88 m [解析] 把t =4代入函数解析式,得s =5×16+2×4=88.故填88 m.13. 【答案】7【解析】222452(1)7y x x x =--+=-++,即二次函数245y x x =--+的最大值是7,故答案为:7.14. 【答案】a(1+x)215. 【答案】21(4)2y x =- 【解析】设原来的抛物线解析式为:2y ax =(0)a ≠,把(2,2)P 代入,得24a =, 解得12a =, 故原来的抛物线解析式是:212y x =, 设平移后的抛物线解析式为:21()2y x b =-, 把(2,2)P 代入,得212(2)2b =-, 解得0b =(舍去)或4b =, 所以平移后抛物线的解析式是:21(4)2y x =-, 故答案为:21(4)2y x =-.三、解答题16. 【答案】解:(1)过点B 作BE ⊥AD 于点E.∵AD ∥BC ,∠ABC =120°,∴∠BAE =60°,∴∠ABE =30°.在Rt △ABE 中,AE =12AB =12x ,BE =AB 2-AE 2=x 2-(12x )2=32x.易知BC =20-2x ,AD =BC +2AE =20-2x +x ,∴S =12(BC +AD)·BE =12[(20-2x)+(20-2x +x)]×32x =-34 3x 2+10 3x.(2)依题意,得-34 3x 2+10 3x =1254 3,解得x 1=5,x 2=253.当x =5时,BC =20-2x =20-2×5=10>AB ,符合题意;当x =253时,BC =20-2x =20-253×2=103<AB ,不合题意,舍去.∴AB 的长为5米.17. 【答案】解:(1)∵二次函数y 1=ax 2+bx +c(ab≠0)的图象的顶点为A(-2,-5), ∴y 1=a(x +2)2-5.又∵图象经过点(0,-1),∴-1=a(0+2)2-5,解得a =1,∴y 1=(x +2)2-5=x 2+4x -1.(2)结合图象,知直线y =n 与图象G 有且仅有1个交点时,n =-5或-1≤n <0.18. 【答案】【思维教练】由图象过点(1,-2),将其带入y 1的函数表达式中,解方程即可;(2)由y 1=(x +a )(x -a -1)可得出y 1过x 轴上的两点的坐标,然后分两种情况讨论即可;(3)先求出y 1=(x +a )(x -a -1)的对称轴,根据开口向上的二次函数,离对称轴越近,函数值越小即可得解.解:(1)∵函数y 1=(x +a )(x -a -1)图象经过点(1,-2),∴把x =1,y =-2代入y 1=(x +a )(x -a -1)得,-2=(1+a )(-a ),(2分) 化简得,a 2+a -2=0,解得,a 1=-2,a 2=1,∴y 1=x 2+x -2;(4分)(2)函数y 1=(x +a )(x -a -1)图象在x 轴的交点为(-a ,0),(a +1,0),①当函数y 2=ax +b 的图象经过点(-a ,0)时,把x =-a ,y =0代入y 2=ax +b 中,得a 2=b ;(6分)②当函数y 2=ax +b 的图象经过点(a +1,0)时,把x =a +1,y =0代入y 2=ax +b 中,得a 2+a =-b ;(8分)(3)∵抛物线y 1=(x +a )(x -a -1)的对称轴是直线x =-a +a +12=12,m <n , ∵二次项系数为1,∴抛物线的开口向上,∴抛物线上的点离对称轴的距离越大,它的纵坐标也越大,∵m <n ,∴点Q 离对称轴x =12的距离比P 离对称轴x =12的距离大,(10分)∴|x 0-12|<1-12,∴0<x 0<1.(12分)19. 【答案】解:(1)设抛物线的解析式为y =ax 2+bx +c.根据题意,得⎩⎪⎨⎪⎧9a -3b +c =0,c =3,-b 2a =-1,解得⎩⎨⎧a =-1,b =-2,c =3. 所以抛物线的解析式为y =-x 2-2x +3.(2)易知直线AB 的表达式为y =x +3,设P(m ,-m 2-2m +3),过点P 作PC ∥y 轴交AB 于点C ,则C(m ,m +3),PC =(-m 2-2m +3)-(m +3)=-m 2-3m ,所以S △PAB =12×(-m 2-3m)×3=-32(m 2+3m)=-32(m +32)2+278,所以当m =-32时,S △PAB 有最大值278,此时点P 的坐标为(-32,154).20. 【答案】(1)解:∵抛物线顶点为A(3,1),设抛物线解析式为y =a(x -3)2+1,(1分)∵原点(0,0)在抛物线上,∴0=a(3)2+1,∴a =-13,∴抛物线的表达式为y =-13x 2+233x.(3分)(2)证明:令y =0,得0=-13x 2+233x ,∴x 1=0,x 2=23,∴B 点坐标为(23,0),设直线OA 的表达式为y =kx ,∵A(3,1)在直线OA 上,∴3k =1,∴k =33,∴直线OA 对应的一次函数的表达式为y =33x.(5分)∵BD ∥AO ,设直线BD 对应的一次函数的表达式为y =33x +b , ∵B(23,0)在直线BD 上,∴0=33×23+b ,∴b =-2,∴直线BD 的表达式为y =33x -2.(7分)联立得⎩⎪⎨⎪⎧y =33x -2,y =-13x 2+233x,解得x 1=-3,x 2=23, ∵点D 在第三象限, ∴交点D 的坐标为(-3,-3),在y =33x 2中,令x =0得,y =33x -2=-2,∴C 点的坐标为(0,-2),根据A(3,1)可得OA =3+1=2,根据二次函数对称性知AB =AO =2,∵CD =[-3-(-2)]2+(-3)2]=2,∴CD =AB ,OC =OA ,又∵OD =(-3)2+(-3)2=23,∴OD =OB ,∴△OAB ≌△OCD(SSS ).(8分)(3)解:如解图,作点C 关于x 轴的对称点C′(0,2),连接C′D , ∴C ′D 与x 轴的交点即为点P ,此时△PCD 的周长最小, 过点D 作DQ ⊥y ,垂足为Q ,∴PO ∥DQ ,∴△C ′PO ∽△C′DQ ,(10分)∴PO DQ =C′O C′Q ,∴PO 3=25. ∴PO =235,解图∴点P 的坐标为(-235,0).(12分)。
《二次函数图像和性质》专题
《二次函数图像和性质》专题班级 姓名人生就像一杯茶,不会苦一辈子,但总会苦一阵子!我们知道:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=, ∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=.当a b x 2-=,即x 是对称轴时,函数y 有最值ab ac y 442-=【类型一】a ,b ,c 的符号的判定1、已知a <0,b >0,c >0,那么抛物线y =ax 2+bx +c 的顶点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2、已知二次函数y =ax 2+bx +c 的图象如图1所示,则a ,b ,c 满足( ) A .a <0,b <0,c >0 B .a <0,b <0,c <0 C .a <0,b >0,c >0 D .a >0,b <0,c >03、二次函数y =ax 2+bx +c (a ≠0)的图象如图2所示,则点c M b a ⎛⎫ ⎪⎝⎭,在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4、已知二次函数2y ax bx c =++(其中000a b c >><,,),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x 轴的交点至少有一个在y 轴的右侧. 以上说法正确的个数为( ) A .0 B .1 C .2 D .3【类型二】∆的符号的判定 1、下图中∆0<的是( )2、不论x 为何值,函数y=ax 2+bx+c(a ≠0)的值恒大于0的条件是( )A. a>0,△>0;B. a>0, △<0;C. a<0, △<0;D. a<0, △<0 【类型三】含a 、b 的代数式符号的判定1、抛物线y=x 2+2x-4的对称轴是直线( ).A. x=-2B. x=2C. x=-1D. x=12、二次函数)1)(3(2-+-=x x y 的图象的对称轴是直线________________.3、二次函数2(0)y ax bx c a =++≠的图象如左图①所示,则①20a b +>②20a b +< ③02ba-<④20a b -<⑤20a b ->中正确的有_________________.(请写出序号即可) 4、二次函数2(0)y ax bx c a =++≠的图象如右图②所示,则下列说法不正确的是( ) A .240b ac -> B .0a > C .0c > D .02ba-<图① 图②【类型四】含a 、b 、c 的代数式符号的判定 图③1、如图③,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为 ( ) A. 0 B. -1 C. 1 D. 22、已知a -b +c=0 9a +3b +c=0,则二次函数y=ax 2+bx +c 的图像的顶点可能在( )..(A )第一或第二象限; (B )第三或第四象限; (C )第一或第四象限; (D )第二或第三象限3、已知二次函数c bx ax y ++=2的图象如图所示,那么下列判断不正确的是( )(A)abc >0 (B )ac b 42->0(C)2a+b >0 (D )c b a +-24<04、已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列4个结论:①0abc >;②b a c <+;③420a b c ++>;④240b ac ->;其中正确的结论有( )A .1个B .2个C .3个D .4个5、抛物线y=ax 2+bx+c 的图象如图,OA=OC ,则( )(A ) ac+1=b; (B ) ab+1=c; (C )bc+1=a; (D )以上都不是 【当堂训练】1、若二次函数c bx ax y ++=2中,a <0,b >0,c <0,042>-ac b ,则此二次函数图像不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 2、当a>0, b<0,c>0时,下列图象有可能是抛物线y=ax 2+bx+c 的是( )3、二次函数c bx ax y ++=2的图象如图1所示,则下列结论中,正确的个数是( ) ①0<++c b a ;②0>+-c b a ;③0>abc ;④a b 2= (A )4 (B )3 (C )2 (D )1x(C ) (D )4、已知二次函数c bx ax y ++=2的图象如图2所示,那么下列判断不正确的是( ) (A)abc >0; (B )ac b 42->0; (C)2a+b >0; (D )c b a +-24<05、二次函数y =ax 2+bx +c 的图象如图3所示,则下列关于a ,b ,c 间关系的判断正确的是 A .ab <0B .bc <0C .a +b +c >0D .a -b +c <06、二次函数c bx ax y ++=2的图象如图所示,则abc ,ac b 42-,b a +2,c b a ++这四个式子中,值为正数的有( )A .4个 B .3个 C .2个 D .1个7、如图为二次函数y=ax 2+b x +c 的图象,在下列说法中:①ac <0;②方程ax 2+b x +c=0的根是x 1= -1, x 2= 3 ③a +b +c >0 ④当x >1时,y 随x 的增大而增大。
人教版数学九年级上册《二次函数的图像和性质》综合练习(附答案)
22.1二次函数图像性质 综合练习题(附答案)1、函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有最 值 。
2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标。
(1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位。
3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个)。
4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式。
5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积。
6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6。
求:(1)求出此函数关系式。
(2)说明函数值y 随x 值的变化情况。
7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值。
2、()k h x a y +-=2的图象与性质 1、请写出一个以(2, 3)为顶点,且开口向上的二次函数: 。
2、二次函数 y =(x -1)2+2,当 x = 时,y 有最小值。
3、函数 y =12 (x -1)2+3,当 x 时,函数值 y 随 x 的增大而增大。
4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到。
5、已知抛物线的顶点坐标为()2,1,且抛物线过点()3,0,则抛物线的关系式是6、如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( )A 、x>3B 、x<3C 、x>1D 、x<17、已知函数()9232+--=x y 。
(1)确定下列抛物线的开口方向、对称轴和顶点坐标;(2)当x= 时,抛物线有最 值,是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 专题训练(一) 二次函数的图象与性质 著名数学家华罗庚在谈到数形结合时指出:“数与形,本是相倚依,焉能分作两边飞.数缺形时少直观,形少数时难入微.数形结合百般好,隔离分家万事非.切莫忘,几何代数统一体,永远联系,切莫分离.”二次函数的图象与性质的应用实际就是数形结合的应用,主要分为三类: ► 类型之一 “由形到数”的应用 1.二次函数y=ax2+bx+c的图象如图1-ZT-1所示,下列结论:①b<0;②c>0;③a+c④b2-4ac>0.其中正确的个数是( ) 图1-ZT-1 A.1 B.2 C.3 D.4 2.二次函数y=-x2+bx+c的图象如图1-ZT-2所示,若点A(x1,y1),B(x2,y2)在此函数图象上,且x1<x2<1,则y1与y2的大小关系是( ) 图1-ZT-2 A.y1≤y2 B.y1<y2 C.y1≥y2 D.y1>y2 3.设b>0,二次函数y=ax2+bx+a2-1的图象为下列之一,则a的值为( ) 图1-ZT-3 A.-1 B.1
C.-1-52 D.-1+52 4.二次函数y=ax2+bx+c的图象如图1-ZT-4所示,对称轴是直线x=-1.有以下结论:①abc>0;②4ac2.其中正确结论的个数是( ) 图1-ZT-4 A.1 B.2 C.3 D.4
5.如图1-ZT-5,反比例函数y=kx的图象经过二次函数y=ax2+bx图象的顶点(-12,m)(m>0),则( ) 图1-ZT-5 A.a=b+2k B.a=b-2k C.k<b<0 D.a<k<0 6.如图1-ZT-6,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为直线________. 图1-ZT-6 ► 类型之二 “由数到形”的应用 7.对于二次函数y=(x-1)2+2的图象,下列说法正确的是( ) A.开口向下 B.对称轴是直线x=-1 C.顶点坐标是(1,2) D.与x轴有两个交点
8.2019·广州若a≠0,函数y=ax与y=-ax2+a在同一直角坐标系中的大致图象可能是( ) 图1-ZT-7 9.对于二次函数y=2(x+1)(x-3),下列说法正确的是( ) A.图象开口向下 B.图象的对称轴是直线x=-1 第 2 页
C.当x>1时,y随x的增大而减小 D.当x<1时,y随x的增大而减小 10.已知一个函数图象经过(1,-4),(2,-2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是( ) A.正比例函数 B.一次函数 C.反比例函数 D.二次函数 11.设二次函数y=(x-3)2-4的图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是( ) A.(1,0) B.(3,0) C.(-3,0) D.(0,-4) 12.已知二次函数y=2(x-3)2+1.下列说法: ①其图象的开口向下;②其图象的对称轴为直线x=-3;③其图象的顶点坐标为(3,-1);④当x<3时,y随x的增大而减小. 其中正确的有( ) A.1个 B.2个 C.3个 D.4个 13.对于二次函数y=2(x-3)2+4,当x________时,图象从左到右是上升的. 14.已知抛物线y=-x2-2x+3,当-2≤x≤2时,对应的函数值y的取值范围为________. ► 类型之三 “数形结合”的应用 15.若一次函数y=ax+b的图象经过第一、二、四象限,则函数y=ax2+bx的图象只可能是( ) 图1-ZT-8 16.2019·鄂州已知二次函数y=(x+m)2-n的图象如图1-ZT-9所示,则一次函数y=mx
+n与反比例函数y=mnx的图象可能是( ) 图1-ZT-9 图1-ZT-10 17.如图1-ZT-11,在Rt△AOB中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的( ) 图1-ZT-11 图1-ZT-12 18.抛物线y=-2x2+4kx+2向右平移2个单位后,顶点的横坐标是4,则k的值为________. 19.已知抛物线y=ax2+bx+c与x轴交于A,B两点,若点A的坐标为(-2,0),抛物线的对称轴为直线x=2,则线段AB的长为________. 20.我们定义:关于x的函数y=ax2+bx与y=bx2+ax(其中a≠b≠0)叫做互为交换函数.如y=3x2+4x与y=4x2+3x是互为交换函数.如果函数y=2x2+bx的图象的顶点与它的交换
函数图象的顶点关于x轴对称,那么b=________. 21.已知二次函数y=x2-4x+6. (1)通过配方,求其图象的顶点坐标; (2)在平面直角坐标系中画出二次函数y=x2-4x+6的图象; (3)若A(3,y1),B(3+m,y2)为其图象上的两点,且y1<y2,根据图象求实数m的取值范围. 图1-ZT-13
教师详解详析 第 3 页
1.[解析] C 二次函数的图象开口向下,a<0,抛物线的对称轴在y轴的右侧,-b2a>0,由a<0得b>0,∴结论①错误.抛物线与y轴的交点在y轴的正半轴上,c>0,∴结论②正确.当
x=-1时,y<0,即a-b+c<0,则a+c轴有两个不同的交
点,∴b2-4ac>0,∴结论④正确.故选C. 2.[解析] B 由图象可知抛物线的对称轴为直线x=1. ∵点A(x1,y1),B(x2,y2)在此抛物线上,且x1<x2<1, ∴点A,B都在该抛物线的对称轴的左侧. ∵抛物线y=-x2+bx+c的开口向下,在对称轴的左侧,y随x的增大而增大, ∴y1<y2.
3.[解析] A ∵b>0,对称轴为直线x=-b2a,∴可排除①②.又∵③④图象的对称轴是直
线x=-b2a>0,∴a<0,∴抛物线的开口向下,∴③符合题意.∵抛物线过原点(0,0),∴a2-1=0,∴a=±1.又∵a<0,∴a=-1.
4.[解析] C 根据抛物线的开口向下可知a<0;根据抛物线的对称轴在y轴左侧可知a,b
同号,则b<0,且-b2a=-1;根据抛物线与y轴的交点在y轴的正半轴上可知c>0. ①∵a<0,b<0,c>0,∴abc>0正确; ②∵抛物线与x轴有两个交点,∴b2-4ac>0,∴4ac
③∵抛物线的对称轴是直线x=-1,∴-b2a=-1, ∴2a-b=0,∴2a+b=0错误; ④由图象可知,当x=-1时,y>2,∴a-b+c>2正确.故选C. 5.[解析] D ∵二次函数y=ax2+bx的图象的顶点坐标为(-12,m),
∴-b2a=-12,即b=a,∴m=-b24a=-a4, ∴顶点坐标为(-12,-a4). 把x=-12,y=-a4代入反比例函数表达式,得k=a8. 由图知抛物线的开口向下, ∴a<0,∴a<k<0.故选D. 6.[答案] x=2 [解析] ∵点(1,0)与(3,0)是一对对称点,其对称中心是(2,0), ∴抛物线的对称轴是直线x=2. 7.[答案] C 8.[解析] D 由下表可知,选项D符合题意. 函数 a>0 a<0
y=ax 图象位于第一、三象限 图象位于第二、四象限
y=-ax2+a 图象开口向下,与y轴的交点(0,a)在y轴的正半轴 图象开口向上,与y轴的交点(0,a)在y轴的负半轴
9.[解析] D 二次函数y=2(x+1)(x-3)可化为y=2(x-1)2-8的形式,∵此二次函数中a第 4 页
=2>0,∴图象开口向上,对称轴为直线x=1,∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,故选D. 10.[解析] D 若该函数为一次函数,设一次函数的关系式为y=kx+b.
由题意得k+b=-4,2k+b=-2,解得k=2,b=-6. ∵k>0,∴y随x的增大而增大, ∴A,B选项错误.
若该函数为反比例函数,设反比例函数的关系式为y=mx.由题意,得m=-4<0, ∴在每个象限内,y随x的增大而增大, ∴C选项错误. ∴该函数可能为二次函数,且在自变量x的某个取值范围内,都有函数值y随x的增大而减小.故选D. 11.[解析] B ∵二次函数y=(x-3)2-4的图象的对称轴为直线x=3, ∴直线l上所有点的横坐标都是3. ∵点M在直线l上, ∴点M的横坐标为3. 故选B. 12.[解析] A ①∵a=2>0,∴图象的开口向上,故错误; ②图象的对称轴为直线x=3,故错误; ③图象的顶点坐标为(3,1),故错误; ④当x<3时,y随x的增大而减小,故正确. 综上所述,说法正确的仅有④,共1个. 故选A. 13.[答案] >3 [解析] ∵a=2>0,∴抛物线开口向上, ∴在抛物线对称轴右侧即x>3时,y随x的增大而增大,图象从左到右是上升的.故答案为>3. 14.[答案] -5≤y≤4 [解析] y=-x2-2x+3=-(x+1)2+4, 则当x=-1时,y取得最大值4;当x=2时,y取得最小值为-4-4+3=-5, ∴当-2≤x≤2时,-5≤y≤4. 故答案为-5≤y≤4. 15.[解析] D ∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴函数y=ax2+bx的图象只可能是D,故选D.
16.[解析] C ∵二次函数y=(x+m)2-n图象的顶点坐标为(-m,-n),且顶点在第二象限,∴-m<0且-n>0,∴m>0,n<0,∴mn<0,∴一次函数y=mx+n的图象经过第一、三、
四象限,反比例函数y=mnx的图象经过第二、四象限.故选C. 17.[解析] D ∵在Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°. ∵CD⊥OB,∴CD∥AB, ∴∠OCD=∠A,∴∠AOD=∠OCD=45°,