中职对口升学数学资料-上册1-5单元测试题+答案

合集下载

山西省中等职业学校对口升学考试数学试题

山西省中等职业学校对口升学考试数学试题

山西省中等职业学校对口升学考试数学试题本试卷分选择题和非选择题两部分。

满分100分,考试时间为90分钟。

选择题一、单项选择题(本大题共10小题,每小题3分,共计30分)1.设集合P={1、2、3、4},Q={x ||x |≤2,x ∈R }则P ∩Q 等于( ) A 、{1、2} B 、{3、4} C 、{1} D 、{-1、-2、0、1、2}2.已知数列 ,12,7,5,3,1-n 则53是它的( )A.第22项B. 第23项C. 第24项D. 第28项 3.[]0)(log log log 543=a ,则 =a ( ) 5 B.25 C. 125 D.625 4.设向量a =(2,-1),b=(x,3)且a⊥b则x=( )A.21B.3C.23D.-25.下列四组函数中,表示同一函数的是( ) A .2)1(与1-=-=x y x yB .11与1--=-=x x y x yC .2lg 2与lg 4x y x y ==D .100lg与2lg xx y =-=6.函数x x ycos 4sin 3+=的最小正周期为( )A. πB. π2C. 2πD.5π7.若函数2()32(1)f x x a x b =+-+在(,1]-∞上为减函数,则 ( )A .2-=aB .2=aC .2-≥aD .2-≤a8.在ABC ∆中,已知222c bc b a ++=,则A ∠的度数为( )3π B. 6π C. 32πD. 3π或32π9.已知直线b a ,是异面直线,直线c a//,那么c 与b 位置关系是( )A.一定相交B.一定异面C.平行或重合D.相交或异面10.顶点在原点,对换称轴是x 轴,焦点在直线3x-4y-12=0上的抛物线方程是( ) A.x y162= B. x y 122= C.x y 16-2= D. x y 12-2=非选择题二、填空题(本大题共8小题,每空4分,共计32分。

2023年广西中职对口数学高考真题 +参考答案

2023年广西中职对口数学高考真题 +参考答案

2023年广西壮族自治区中等职业教育对口升学考试真题数学注意事项:1.本试卷共4页,总分100分,考试时间60分钟,请使用黑色中性笔直接在试卷上作答.2.试卷前的项目填写清楚.一、单项选择题(本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一个是正确的,请将正确选项填入相应题号下) 1.下列关系成立的是( )A.0∈∅B.2∈NC.3∈{x |-1<x <3}D.3∈{x |-1<x ≤3} 2.过点(2,0)且与y =2x -1平行的直线方程为( ) A.y =2x -4 B.121+=x yC.y =2x +4D.1-21-x y=3.函数的定义域是( ) A.[2,3] B.[1,3) C.[2,3) D.[1,3] 4.下列函数中,偶函数的是( )A.f (x )=x 2-2xB.f (x )=x 2-3C.f (x )=|x -2|D.f (x )=x+cos x22)3ln(-+-=x x y5.下列各组值的大小正确的是( ) A.log 0.50.7<log 0.53B.0.32<0.33C.ln3<1D.40.8<21.86.已知直线l 和三个不重合的平面α,β,γ,下列说法正确的是( ) A.若α⊥ β,l ⊥β,那么l ⊥ αB.若l // α,l ⊥β,那么α // βC.若α // β,l ⊥α,那么l // βD.若α ⊥ β,β⊥γ,那么α ⊥ γ7.用4种不同的颜色对下图3个区域涂色,要求相连的区域不能使用同一个颜色,则不同的涂法有( ).A.24种B.36种C.48种D.64种8.从数字1,2,3,4中任取两个不同的数字构成一个两位数,则所取位数大于40的概率为( )A.51 B.31C.41D.21二、填空题(本大题共5小题,每小题6分,共30分) 9. 不等式3x 2+2x -1≤0的解集为 . 10.已知角α是锐角,且tan α=21,则sin α= .11.已知平面向量a=(2,-1),向量b =(m,2),则b +7a =(5,-5),则m= .12.已知圆的一般方程为x 2+2x +y 2-4y =0,则圆心坐标为 . 13.如图,在正方体ABCD-A 1B 1C 1D 1,AB=AC=1,则异面直线A 1B 与AD 1所成角大小为 .1 23三、解答题(本大题共2小题,共30分,答题时应写出文字说明、证明过程或验算步骤).(10分)14.已知数1+2,3+22,5+23,......,求数列前6项之和S615.(20分)某医药研发一种甲流新药,如果成年人按规定的剂量服用,据监测:服药后每亳升血液中含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.M(1,4)y=2a-t(1)结合图像,求k与a的值;(2)写出服药后y与t之间的函数关系式;(3)据进一步测定:每毫升血液中含药不少于0.5微克时治疗疾病有效,求服药一次治疗有效时间的范围.2023年广西壮族自治区中等职业教育对口升学考试真题数学(参考答案)一、选择题。

山西职业教育2024届中等职业学校6月对口升学模拟(数学)试题(答案解析)

山西职业教育2024届中等职业学校6月对口升学模拟(数学)试题(答案解析)

山西职业教育2024届中等职业学校6月对口升学模拟(数学)试题一、单项选择题:本题共8小题,在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{M x y ==,{}220N x x x =-<,则M N ⋂=()A.{}01x x << B.{}01x x <≤ C.{}12x x << D.{}12x x ≤<2.已知复数z 满足1i21iz +-=-(i 为虚数单位),则z =()A. B.2 D.33.已知132a =,2log 0.3b =,b c a =,则()A.a b c<< B.b a c<< C.c a b<< D.b c a<<4.若圆P 的半径为1,且圆心为坐标原点,过圆P 上一点作圆22(4)(3)4x y -+-=的切线,切点为Q ,则PQ 的最小值为()A. B. C.2D.45.《九章算术》是我国古代的一本数学名著.全书为方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股九章,收有246个与生产、生活实践有联系的应用问题.在第六章“均输”中有这样一道题目:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为:“现有五个人分5钱,每人所得成等差数列,且较多的两份之和等于较少的三份之和,问五人各得多少?”在此题中,任意两人所得的最大差值为多少?()A.13B.23C.16D.566.函数π)()ex f x =的图象大致为()A. B.C. D.7.窗的运用是中式园林设计的重要组成部分,常常运用象征、隐喻、借景等手法,将民族文化与哲理融入其中,营造出广阔的审美意境.从窗的外形看,常见的有圆形、菱形、正六边形、正八边形等.如图,在平面直角坐标系xOy 中,O 为正八边形128PP P 的中心,18PP x ⊥轴,现用如下方法等可能地确定点M :点M 满足2i j OM OP OP ++=0 (其中1,8i j ≤≤且*,i j N ∈,i j ≠),则点M(异于点O )落在坐标轴上的概率为()A.35B.37C.38D.278.将函数()cos f x x =的图象向右平移2π3个单位长度,再将各点的横坐标变为原来的1(0)ωω>,得到函数()g x 的图象,若()g x 在π0,2⎡⎤⎢⎣⎦上的值域为1,12⎡⎤-⎢⎥⎣⎦,则ω范围为()A.48,33⎡⎤⎢⎥⎣⎦B.15,33⎡⎤⎢⎥⎣⎦C.4,3⎡⎫+∞⎪⎢⎣⎭ D.8,3⎡⎫+∞⎪⎢⎣⎭二、多项选择题:本题共4小题,在每小题给出的选项中,有多项符合要求.9.已知m ,n 为两条不重合的直线,α,β为两个不重合的平面,则()A.若//m α,βn//,//αβ,则//m nB.若m α⊥,n β⊥,αβ⊥,则m n ⊥C.若//m n ,m α⊥,n β⊥,则//αβD.若//m n ,n α⊥,αβ⊥,则//m β10.某校计划在课外活动中新増攀岩项目,为了解学生喜欢攀岩和性别是否有关,面向学生开展了一次随机调查,其中参加调查的男女生人数相同,并绘制如下等高条形图,则()参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++.()20P K k ≥0.050.010k 3.8416.635A.参与调查的学生中喜欢攀岩的男生人数比喜欢攀岩的女生人数多B.参与调查的女生中喜欢攀岩的人数比不喜欢攀岩的人数多C.若参与调查的男女生人数均为100人,则有99%的把握认为喜欢攀岩和性别有关D.无论参与调查的男女生人数为多少,都有99%的把握认为喜欢攀岩和性别有关11.已知1(F ,2F 是双曲线C :22221(0,0)x y a b a b -=>>的焦点,A 为左顶点,O 为坐标原点,P 是C 右支上一点,满足2222()()0F P F A F P F A +⋅-=,2222F P F A F P F A +=- ,则()A.C 的方程为2244139x y -=B.C 的渐近线方程为y =C.过1F 作斜率为33的直线与C 的渐近线交于M ,N 两点,则OMN 的面积为38D.若点Q 是2F 关于C 的渐近线的对称点,则1QOF 为正三角形12.已知()f x 是定义域为(,)-∞+∞的奇函数,()1f x +是偶函数,且当(]0,1x ∈时,()()2f x x x =--,则()A.()f x 是周期为2的函数B.()()201920201f f +=-C.()f x 的值域为[-1,1]D.()f x 的图象与曲线cos y x =在()0,2π上有4个交点三、填空题:13.6212x x ⎛⎫- ⎪⎝⎭展开式中的常数项是.14.已知向量(cos θ= a ,1,tan 3θ⎛⎫= ⎪⎝⎭b ,且// a b ,则cos 2θ=________.15.已知椭圆22221(0)x y a b a b+=>>的焦点分别为1(,0)F c -,2(,0)(0)F c c >,两条平行线1l :y x c =-,2l :y x c =+交椭圆于A ,B ,C ,D 四点,若以A ,B ,C ,D 为顶点的四边形面积为22b ,则椭圆的离心率为________.16.已知ABC 是边长为4的等边三角形,D ,E 分别是AB ,AC 的中点,将ADE 沿DE 折起,使平面ADE ⊥平面BCED ,则四棱锥A BCED -外接球的表面积为________,若P 为四棱锥A BCED -外接球表面上一点,则点P 到平面BCED 的最大距离为________.山西职业教育2024届中等职业学校6月对口升学模拟(数学)试题答案解析一、单项选择题:本题共8小题,在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{M x y ==,{}220N x x x =-<,则M N ⋂=()A.{}01x x << B.{}01x x <≤ C.{}12x x << D.{}12x x ≤<【答案】B 【解析】【分析】求出集合,M N 后可得它们的交集.【详解】{(],1M x y ===-∞,{}()2200,2N x x x =-<=,故(]0,1M N = .故选:B.【点睛】本题考查集合的交运算以及一元一次不等式、一元二次不等式的解,考虑集合运算时,要认清集合中元素的含义,如(){}|,x y f x x D =∈表示函数的定义域,而(){}|,y y f x x D =∈表示函数的值域,()(){},|,x y y f x x D =∈表示函数的图象.2.已知复数z 满足1i21iz +-=-(i 为虚数单位),则z =()A. B.2 D.3【答案】C 【解析】【分析】利用复数的除法计算可得z ,再利用复数的模的计算公式可得z .【详解】因为1i 21i z +-=-,故()()1i 1i 222z i ++=+=+,故z =故选:C.【点睛】本题考查复数的乘法和除法以及复数的模,注意复数的除法是分子、分母同乘以分母的共轭复数,本题属于基础题.3.已知132a =,2log 0.3b =,b c a =,则()A.a b c << B.b a c<< C.c a b<< D.b c a<<【答案】D 【解析】【分析】根据对数函数的单调性和指数函数的单调性可得三者之间的大小关系.【详解】因为2log y x =为增函数,且0.31<,故22log 0.30log 1b =<=,又2x y =为增函数,且103>,故103221a =>=,又x y a =为增函数,且0b <,故001b a a c =<=<,故b c a <<.故选:D .【点睛】本题考查指数幂、对数式的大小关系,此类问题的关键是根据底数的形式构建合理的单调函数,必要时还需利用中间数来传递大小关系.4.若圆P 的半径为1,且圆心为坐标原点,过圆P 上一点作圆22(4)(3)4x y -+-=的切线,切点为Q ,则PQ 的最小值为()A. B. C.2D.4【答案】B 【解析】【分析】根据题意,分析圆22(4)(3)4x y -+-=的圆心以及半径,由勾股定理分析可得||PQ =,当||PC 最小时,||PQ 最小,由点与圆的位置关系分析||PC 的最小值,计算可得答案.【详解】由题意可知,点P 在圆221x y +=上,圆22(4)(3)4x y -+-=的圆心(4,3)C ,半径2r =过点P 作圆22(4)(3)4x y -+-=的切线,切点为Q ,则||PQ =当||PC 最小时,||PQ 最小又由点P 在圆221x y +=上,则||PC 的最小值为||114OC -==则||PQ==;故选:B.【点睛】本题主要考查了直线与圆位置关系,涉及直线与圆相切的性质,属于中档题.5.《九章算术》是我国古代的一本数学名著.全书为方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股九章,收有246个与生产、生活实践有联系的应用问题.在第六章“均输”中有这样一道题目:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为:“现有五个人分5钱,每人所得成等差数列,且较多的两份之和等于较少的三份之和,问五人各得多少?”在此题中,任意两人所得的最大差值为多少?()A.13B.23C.16D.56【答案】B 【解析】【分析】设每人分到的钱数构成的等差数列为{}n a ,公差0d >,由题意可得,12345a a a a a ++=+,55S =,结合等差数列的通项公式及求和公式即可求解.【详解】解:设每人分到的钱数构成的等差数列为{}n a ,公差0d >,由题意可得,12345a a a a a ++=+,55S =,故113327a d a d +=+,15105a d +=,解可得,123a =,16d =,故任意两人所得的最大差值243d =.故选:B.【点睛】本题主要考查了等差数列的通项公式及求和公式在实际问题中的应用,属于基础题.6.函数π)()ex f x =的图象大致为()A. B.C. D.【答案】A 【解析】【分析】利用()10f <,结合选项运用排除法得解.【详解】解:1)(1)0ln f e=<,可排除选项BCD ;故选:A.【点睛】本题主要考查函数图象的识别和判断,利用特征值的符号是否与选项对应是解决本题的关键.7.窗的运用是中式园林设计的重要组成部分,常常运用象征、隐喻、借景等手法,将民族文化与哲理融入其中,营造出广阔的审美意境.从窗的外形看,常见的有圆形、菱形、正六边形、正八边形等.如图,在平面直角坐标系xOy 中,O 为正八边形128PP P 的中心,18PP x ⊥轴,现用如下方法等可能地确定点M :点M 满足2i j OM OP OP ++=0 (其中1,8i j ≤≤且*,i j N ∈,i j ≠),则点M(异于点O )落在坐标轴上的概率为()A.35B.37C.38D.27【答案】D 【解析】【分析】写出i j OP OP +所有可能结果,结合条件找到满足点M (异于点O )落在坐标轴上的结果,根据古典概率进行求解.【详解】由题意可知i j OP OP +所有可能结果有:12131415161718OP OP OP OP OP OP OP OP OP OP OP OP OP OP +++++++ ,,,,,,,232425262728OP OP OP OP OP OP OP OP OP OP OP OP ++++++ ,,,,,,3435363738OP OP OP OP OP OP OP OP OP OP +++++ ,,,,,45464748OP OP OP OP OP OP OP OP ++++ ,,,,565758OP OP OP OP OP OP +++ ,,,676878OP OP OP OP OP OP +++ ,,,共有28种;点M (异于点O )落在坐标轴上的结果有:23456718OP OP OP OP OP OP OP OP ++++,,,,14365827OP OP OP OP OP OP OP OP ++++,,,,共有8种;所以点M (异于点O )落在坐标轴上的概率为82287p ==.故选:D.【点睛】本题主要考查古典概率的求解,求出所有基本事件及符合题意的基本事件是解题关键,侧重考查数学建模的核心素养.8.将函数()cos f x x =的图象向右平移2π3个单位长度,再将各点的横坐标变为原来的1(0)ωω>,得到函数()g x 的图象,若()g x 在π0,2⎡⎤⎢⎣⎦上的值域为1,12⎡⎤-⎢⎥⎣⎦,则ω范围为()A.48,33⎡⎤⎢⎥⎣⎦B.15,33⎡⎤⎢⎥⎣⎦C.4,3⎡⎫+∞⎪⎢⎣⎭ D.8,3⎡⎫+∞⎪⎢⎣⎭【答案】A 【解析】【分析】由题意利用函数sin()y A x ωϕ=+的图象变换规律,余弦函数的单调性,得出结论.【详解】解:将函数()cos f x x =的图象向右平移23π个单位长度,可得2cos()3y x π=-的图象;再将各点的横坐标变为原来的1(0)ωω>,得到函数2()cos()3g x x πω=-的图象.若()g x 在[0,]2π上的值域为1[,1]2-,此时,22[33x ππω-∈-,2]23ωππ-,220233ωπππ∴-,求得4833ω ,故选:A.【点睛】本题主要考查函数sin()y A x ωϕ=+的图象变换规律,余弦函数的单调性,属于基础题.二、多项选择题:本题共4小题,在每小题给出的选项中,有多项符合要求.9.已知m ,n 为两条不重合的直线,α,β为两个不重合的平面,则()A.若//m α,βn//,//αβ,则//m nB.若m α⊥,n β⊥,αβ⊥,则m n ⊥C.若//m n ,m α⊥,n β⊥,则//αβD.若//m n ,n α⊥,αβ⊥,则//m β【答案】BC 【解析】【分析】根据直线和直线,直线和平面,平面和平面的位置关系,依次判断每个选项得到答案.【详解】若//m α,βn//,//αβ,则//m n 或,m n 异面,A 错误;若m α⊥,αβ⊥,则//m β或m β⊂,当//m β时,因为n β⊥,所以m n ⊥;当m β⊂时,由n β⊥结合线面垂直的性质得出m n ⊥,B 正确;若//m n ,m α⊥,则n α⊥,又n β⊥,则//αβ,C 正确;若//m n ,n α⊥,则m α⊥,又αβ⊥,则//m β或m β⊂,D 错误;故选:BC【点睛】本题考查了直线和直线,直线和平面,平面和平面的位置关系,意在考查学生的空间想象能力.10.某校计划在课外活动中新増攀岩项目,为了解学生喜欢攀岩和性别是否有关,面向学生开展了一次随机调查,其中参加调查的男女生人数相同,并绘制如下等高条形图,则()参考公式:22()()()()()n ad bcKa b c d a c b d-=++++,n a b c d=+++.()2P K k≥0.050.01k 3.841 6.635A.参与调查的学生中喜欢攀岩的男生人数比喜欢攀岩的女生人数多B.参与调查的女生中喜欢攀岩的人数比不喜欢攀岩的人数多C.若参与调查的男女生人数均为100人,则有99%的把握认为喜欢攀岩和性别有关D.无论参与调查的男女生人数为多少,都有99%的把握认为喜欢攀岩和性别有关【答案】AC【解析】【分析】由于参加调查的男女生人数相同,则设为m人,从而可求出男女生中喜欢攀岩的人数和不喜欢攀岩的人数,再代入2K公式中计算,可得结论.【详解】解:由题意设参加调查的男女生人数均为m 人,则喜欢攀岩不喜欢攀岩合计男生0.8m0.2m m 女生0.3m 0.7m m合计1.1m0.9m2m所以参与调查的学生中喜欢攀岩的男生人数比喜欢攀岩的女生人数多,A 对B 错;22222(0.560.06)501.10.999m m m m K m m m m -==⋅⋅⋅,当100m =时,2505010050.505 6.6359999m K ⨯==≈>,所以当参与调查的男女生人数均为100人,则有99%的把握认为喜欢攀岩和性别有关,C 对D 错,故选:AC【点睛】此题考查了独立性检验,考查了计算能力,属于基础题.11.已知1(F ,2F 是双曲线C :22221(0,0)x y a b a b -=>>的焦点,A 为左顶点,O 为坐标原点,P 是C 右支上一点,满足2222()()0F P F A F P F A +⋅-=,2222F P F A F P F A +=- ,则()A.C 的方程为2244139x y -=B.C 的渐近线方程为y =C.过1F 作斜率为3的直线与C 的渐近线交于M ,N 两点,则OMN 的面积为38D.若点Q 是2F 关于C 的渐近线的对称点,则1QOF 为正三角形【答案】ABD 【解析】【分析】由2222()()0F P F A F P F A +-= ,2222||||F P F A F P F A +=- ,可得22||||F A F P = ,22F A F P ⊥,及c =,再由a ,b ,c 之间的关系求出a ,b 的值,进而求出双曲线的方程及渐近线的方程,可得A ,B 正确;求过1F作斜率为3的直线方程,与C 的渐近线方程求出交点M ,N 的坐标,求出||MN 的值,再求O 到直线MN 的距离,进而求出OMN 的面积可得C 不正确;求出2F 关于渐近线的对称点Q 的坐标,进而求出||OQ ,1|OF |,1||QF 的值,可得1QOF 为正三角形,所以D 正确.【详解】解:由2222()()0F P F A F P F A +-= ,可得2222F P F A = ,即22||||F A F P = ,由2222||||F P F A F P F A +=- ,可得22F A F P ⊥,将x c ==代入双曲线的方程可得2||by a =,由题意可得2222b ac a c c a b ⎧=+⎪⎪⎪=⎨⎪=+⎪⎪⎩解得234a =,294b =,所以双曲线的方程为:2244139x y -=,渐近线的方程:b y x a =±=,所以A ,B 正确;C 中:过1F 作斜率为33的直线,则直线MN的方程为:x =,则x y ⎧=-⎪⎨=⎪⎩解得:2x =,32y =,即(2M ,32,则x y ⎧=-⎪⎨=⎪⎩,解得:4x =-,34y =,即(4N -,34,所以3||2MN ==,O 到直线MN的距离为2d ==,所以113||22228△=== MNO S MN d 所以C 不正确;D 中:渐近线方程为y =,设2F ,0)的关于渐近线的对称点(,)Q m n ,则32233n m ⎧+=⎪⎪⎨=-解得:m =,32n =,即(2Q -,32,所以||OQ ==,1||OF =,1||QF ==,所以1QOF 为正三角形,所以D 正确;故选:ABD.【点睛】本题考查由向量的关系线段的长度及位置关系,及点关于线的对称,和三角形的面积公式,属于中档题.12.已知()f x 是定义域为(,)-∞+∞的奇函数,()1f x +是偶函数,且当(]0,1x ∈时,()()2f x x x =--,则()A.()f x 是周期为2的函数B.()()201920201f f +=-C.()f x 的值域为[-1,1]D.()f x 的图象与曲线cos y x =在()0,2π上有4个交点【答案】BCD 【解析】【分析】对于A,由()f x 为R 上的奇函数,()1f x +为偶函数,得()()4f x f x =-,则()f x 是周期为4的周期函数,可判断A;对于B,由()f x 是周期为4的周期函数,则()()202000f f ==,()()()2019111f f f =-=-=-,可判断B.对于C,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C.对于D,构造函数()()cos g x f x x=-,利用导数法求出单调区间,结合零点存在性定理,即可判断D.【详解】根据题意,对于A,()f x 为R 上的奇函数,()1f x +为偶函数,所以()f x 图象关于1x =对称,(2)()()f x f x f x +=-=-即(4)(2)()f x f x f x +=-+=则()f x 是周期为4的周期函数,A 错误;对于B,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-,则()()201920201f f +=-;故B 正确.对于C,当(]01x ∈,时,()()2f x x x =--,此时有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,(0)0f =,函数关于1x =对称,所以函数()f x 的值域[11]-,.故C 正确.对于D,(0)0f = ,且(]0,1x ∈时,()()2f x x x =--,[0,1],()(2)x f x x x ∴∈=--,[1,2],2[0,1],()(2)(2)x x f x f x x x ∴∈-∈=-=--,[0,2],()(2)x f x x x ∴∈=--,()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+,()f x 的周期为4,[2,4],()(2)(4)x f x x x ∴∈=--,[4,6],()(4)(6)x f x x x ∴∈=---,[6,2],()(6)(8)x f x x x π∴∈=--,设()()cos g x f x x=-,当2[0,2],()2cos x g x x x x ∈=-+-,()22sin g x x x '=-++,设()(),()2cos 0h x g x h x x =''=-+<在[0,2]恒成立,()h x 在[0,2]单调递减,即()g x '在[0,2]单调递减,且(1)sin10,(2)2sin 20g g '=>'=-+<,存在00(1,2),()0x g x ∈'=,0(0,),()0,()x x g x g x ∈'>单调递增,0(,2),()0,()x x g x g x ∈'<单调递减,0(0)1,(1)1cos10,()(1)0,(2)cos20g g g x g g =-=->>>=->,所以()g x 在0(0,)x 有唯一零点,在0(,2)x 没有零点,即2(]0,x ∈,()f x 的图象与曲线cos y x =有1个交点,当[]24x ∈,时,,()()2cos 6+8cos x x g x f x x x =-=--,则()26+sin g x x x '=-,()()26+sin x x h x g x ='=-,则()2+cos >0h x x '=,所以()g x '在[]24,上单调递增,且()()3sin3>0,22+sin 20g g '='=-<,所以存在唯一的[][]12324x ∈⊂,,,使得()0g x '=,所以()12,x x ∈,()0g x '<,()g x 在()12,x 单调递减,()14x x ∈,,()>0g x ',()g x 在()14x ,单调递增,又()31cos30g =--<,所以()1(3)0g x g <<,又()()2cos 2>0,4cos 4>0g g =-=-,所以()g x 在()12,x 上有一个唯一的零点,在()14x ,上有唯一的零点,所以当[]24x ∈,时,()f x 的图象与曲线cos y x =有2个交点,,当[]46x ∈,时,同[0,2]x ∈,()f x 的图象与曲线cos y x =有1个交点,当[6,2],()(6)(8)0,cos 0x f x x x y x π∈=--<=>,()f x 的图象与曲线cos y x =没有交点,所以()f x 的图象与曲线cos y x =在()0,2π上有4个交点,故D 正确;故选:BCD.【点睛】本题考查抽象函数的奇偶性、周期性、两函数图像的交点,属于较难题.三、填空题:13.6212x x ⎛⎫- ⎪⎝⎭展开式中的常数项是.【答案】1516【解析】【详解】试题分析:通项为261231661()()(1)22r r rr r r r r T C x C x x---+=-=-,令1230r -=,得4r =,所以常数项为422456115()()216T C x x =-=.考点:二项展开式系数【方法点睛】求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r+1项,再由特定项的特点求出r 值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r+1项,由特定项得出r 值,最后求出其参数.14.已知向量(cos θ= a ,1,tan 3θ⎛⎫= ⎪⎝⎭b ,且// a b ,则cos 2θ=________.【答案】59-【解析】【分析】直接利用向量共线的充要条件列出方程求解,然后利用二倍角公式求解即可.【详解】解:向量(cos θ= a ,1,tan 3θ⎛⎫= ⎪⎝⎭ b ,且// a b ,∴可得tan cos 3θθ=,sin 3θ∴=,225cos 212sin 129θθ∴=-=-⨯=-.故答案为:59-.【点睛】本题考查向量共线的充要条件,二倍角的余弦函数的应用,考查计算能力,属于基础题.15.已知椭圆22221(0)x y a b a b+=>>的焦点分别为1(,0)F c -,2(,0)(0)F c c >,两条平行线1l :y x c =-,2l :y x c =+交椭圆于A ,B ,C ,D 四点,若以A ,B ,C ,D 为顶点的四边形面积为22b ,则椭圆的离心率为________.【答案】2【解析】【分析】直线CD 的方程与椭圆的方程联立求出两根之和及两根之积,进而求出弦长CD ,再求两条平行线间的距离,进而求出平行四边形的面积,再由题意可得a ,c 的关系,进而求出椭圆的离心率.【详解】解:设1(C x ,1)y ,2(D x ,2)y ,联立直线1l 与椭圆的方程:22221y x c x y ab =-⎧⎪⎨+=⎪⎩,整理可得:22222222()20a b x a cx a c a b +-+-=,212222a cx x a b +=+,22221222a c ab x x a b -=+,所以222||CD a b ==+,直线1l ,2l 间的距离d ==,所以平行四边形的面积2222||2S CD d b a b===+ ,整理可得:2220c a +-=,即220e +-=,解得:2e =±,由椭圆的性质可得,离心率2e =故答案为:2【点睛】本题考查椭圆的性质及直线与椭圆的综合,属于中档题.16.已知ABC 是边长为4的等边三角形,D ,E 分别是AB ,AC 的中点,将ADE 沿DE 折起,使平面ADE ⊥平面BCED ,则四棱锥A BCED -外接球的表面积为________,若P 为四棱锥A BCED -外接球表面上一点,则点P 到平面BCED 的最大距离为________.【答案】(1).52π3(2).3【解析】【分析】由题意画出图形,找出四棱锥外接球的球心,利用勾股定理求半径,代入球的表面积公式求球的表面积,再由球的对称性可知,球表面上的点到平面BCED 距离的最大值为半径加球心到面的距离.【详解】解:如图,取BC 的中点G ,连接,,DG EG AG ,AG 交DE 于K ,可知DG EG BG CG ===,则G 为等腰梯形BCED 的外接圆的圆心,过G 作平面BCED 的垂线,再过折起后的ADE 的外心作平面ADE 的垂线,设两垂线的交点为O ,则O 为四棱锥A BCED -外接球的球心,因为ADE 的边长为2,所以33OG HK ==,所以四棱锥A BCED -外接球的半径223392()33OB =+=,所以四棱锥A BCED -外接球的表面积为23952433ππ⎛⎫⨯= ⎪ ⎪⎝⎭,由对称性可知,四棱锥A BCED -外接球的表面上一点P 到平面BCED 的最大距离为:393393333++=故答案为:52π3;3933+【点睛】此题考查空间中点、线在、面间的距离计算,考查空间想象能力,属于中档题.。

高教版中职数学基础模块上册练习册答案

高教版中职数学基础模块上册练习册答案

参考答案第1章集合1.1 集合及其表示【要点梳理】1. 确定,整体,元素2.集合,元素3. 属于,a A∈,不属于,a A∉4.有限个,无限集,任何元素的集合,∅5. R,Q,Z,N6.略【闯关训练】1.1.1 集合的概念一、用符号“∈”或“∉”填空1. ∈提示:3.14是有限小数,有限小数是有理数;2.∉3. ∉提示:12是分数,分数不是自然数;4.∉提示:2−是负整数,不是自然数;5. ∈6. ∈提示:π是无理数,无理数都是实数.二、选择题1. B 提示:个子高没有具体标准,不是确定的对象,不能组成集合.2. C 提示:熟练掌握常用数集的符号表示.3. B提示:N∗表示正整数集,0既不是正数,也不是负数.4. C提示:小于2的正偶数不存在,0是偶数,但不是正数.5. C提示:大于0小于4的有理数有无穷多个.三、判断题1. × 提示:0表示元素,∅表示不含任何元素的集合,两者不是同一个概念.2. √ 提示:数轴上到原点O 的距离等于2的点有两个,因此该集合是有限集. 四、解答题1. 解方程2450x x −−=,利用求根公式x =462±=解得11x =−,25x =元素5−不是方程2450x x −−=的解,因此5−不属于方程2450x x −−=的解集.2.(1)解不等式360x −>,得2x >,不等式360x −>的解集是由大于2的所有实数组成的集合,因此是无限集;(2)解方程290x −=,得3x =±,因此方程的解集是有限集; (3)不大于5的整数有5,4,3,2,1,0,1,2,−− ,因此该集合为无限集.1.1.2 集合的表示方法一、 用符号“∈”或“∉”填空1. ∈ 提示:2是集合{1,2,3,4,5}中的元素;2. ∉ 提示:m 不是集合{,,,}a b c d 中的元素;3. ∉ 提示:方程21x =−无解,因此集合2{|1}x x =−为空集,不含任何元素;4. ∈ 提示:解方程||1x =,得1x =±,因此1−是{|||1}x x =中的元素;5. ∈ 提示:{|03}x x <<表示由大于0且小于3的实数组成的集合,12是其中的元素;6. ∉ 提示:{(0,5)}中只含有一个元素,是有序实数对(0,5),因此0不是其中的元素. 二、选择题1. B 提示:小于7的正整数有1,2,3,4,5,6,这些数组成的集合要用花括号{}括1. 解方程2320起来.2.D 提示:{0}中含有一个元素0,∅不含任何元素.3.A 提示:大于0小于10的所有实数有无穷多个,且没有规律,不能用列举法表示.4. D 提示:如果集合的元素是实数,那么“∈R ”一般略去不写.5.D 提示:第二象限的点的横坐标是负数,纵坐标是正数.三、用适当的方法表示下列集合x x ++=,得11x =−,22x =−,因此解集用列举法表示为{1,2}−−. 2. 大于0小于10的所有奇数有1,3,5,7,9,因此集合用列举法表示为{1,3,5,7,9}. 3. 绝对值小于9的实数有无穷多个,因此集合用描述法表示{|||9}x x <. 4. 在平面直角坐标系中,y 轴正半轴上所有的点有无穷多个,因此集合用描述法表示{(,)|0,0}x y x y =>.5. 解方程组5,21x y x y += −= ,得2,3x y = = ,因此解集可以用列举法表示为{(2,3)}.【学海探津】0表示元素;∅表示不含任何元素的集合;{0}表示集合,其中的元素是0;{}∅表示集合,其中的元素是∅.1.2 集合之间的关系【要点梳理】1.每一个,A B ⊆,B A ⊇,B 包含A2. 它本身,A A ⊆3. 完全相同,A B =4. A B ⊆,B A ⊆5. 子集,至少有一个元素,A B ,B A ,B 真包含A6. 任何,⊆,非空 【闯关训练】 一、判断题1.× 提示:若A B ⊆,则可能A B =.2. √3. √4. ×5. × 提示:空集是任何非空集合的真子集.二、用符号“∈”、“∉”、“ ”、“ ”、“=”填空1. 2. 3. ∉ 4. 5. 提示:锐角三角形都是三角形.6. = 提示:解||5x =,得5x =±;解225x =,得5x =±. 三、选择题1. B 提示:空集是它本身的子集.2. A3. C 提示:集合中的元素具有互异性.4. D 提示:小于2的实数都小于5,可画数轴表示. 四、解答题1.解:集合{|13}N A x x ∈−<<用列举法可表示为{0,1,2}A =,则集合A 的所有子集为∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}.集合A 的所有非空真子集为{0},{1},{2},{0,1},{0,2},{1,2}.2.解:集合{|3,}N M x x k k ==∈用列举法可表示为{0,3,6,9,12,}M = ,集合{|6,}P x x k k ==∈N 用列举法可表示{0,6,12,18,}P = ,集合P 中的元素都是集合M 中的元素,因此P M.【学海探津】(1)B A C A【要点梳理】1. 属于,属于,A B ,交, ,x A ∈且x B ∈2. 所有,A B ,并, ,x A ∈或x B ∈3. 子集,U4. 子集,不属于,所有,U A ,U A ,x A ∉5.(1)B A ,B A (2)A ,A (3)∅,A (4)⊆,⊇ (5)∅,U (6)A【闯关训练】1.3.1 交集一、判断题1.× 提示:{|A B x x A =∈ 且}x B ∈. 2. √ 3. × 提示:若A B ⊆,则A B A = . 4. √ 二、选择题1. D2. B 提示:解方程249x =,得7x =±,集合A 与集合B 的相同元素是7,故{7}A B = .3. B 提示:画数轴.4. C 提示:解方程组20,25x y x y −=+=− ,结果用点集表示.三、解答题1.解:{|04}{|12}A Bx x x x =<<−<< {|02}x x =<<.2.解:解方程2560x x −−=,得11x =−,26x =,则集合{1,6}A −;解方程21x =,得1x =±,则集合{1,1}B −,因此22{|560}{|1}A B x x x x x =−−=={1,6}{1,1}=−− {1}−.1.3 集合的运算1.3.2 并集一、判断题1. √2. √ 提示:求两个集合的并集时,重复的元素只写一次.3. √4. × 提示:{1,2,3}{1,2,3}∅=5. √ 提示:整数包括偶数和奇数 二、选择题1. B2. C 提示:在数轴上分别表示集合A 与集合B ,则A B = {|0x x <或1}x >.3. B 提示:画数轴. 三、解答题1.解:在数轴上分别表示集合A 与集合B ,则R A B = .2.解:解方程20x x −=,得10x =,21x =,则集合{0,1}A =;解方程235x −=,得4x =,则集合{4}B =,因此{0,1,4}A B = .1.3.3 补集一、填空题1. {0,2,4}2. {,,e}b d3. {|1}x x 提示:注意端点的归属,由于1{|1}x x ∉>,则1U A ∈ .4. Q 提示:实数包括有理数和无理数5. N (或者U )二、选择题1. C 提示:{N |6}{0,1,2,3,4,5,6}U x x =∈= 2. B 3. C 提示:全集U 表示整个实数轴,在数轴上表示集合A ,如下图示,则阴影部分表示U A ,注意端点的归属,3A ∉,则3U A ∈ ,因此{|310}U A x x =< .三、解答题1.解:将集合{|05}A x x =< 在数轴上表示出来,可以看出阴影部分为U A ,则{|0U A x x = 或5}x >. 2. 解:全集{|010}{1,2,3,4,5,6,7,8,9}N U x x =∈<<=,{2,3,5,7}{1,3,5,7,9}A B = {3,5,7}=,则(){1,2,4,6,8,9}U A B = . 【学海探津】因为A ={费俊龙,聂海胜},B ={聂海胜,张晓光,王亚平},集合C ={聂海胜,刘伯明,汤洪波},所以A B C = {聂海胜};又因为U ={杨利伟,费俊龙,聂海胜,翟志刚,刘伯明,景海鹏,刘旺,刘洋,张晓光,王亚平,陈冬,汤洪波},A B C = {费俊龙,聂海胜,张晓光,王亚平,刘伯明,汤洪波},所以()U A B C = {杨利伟,翟志刚,景海鹏,刘旺,刘洋,陈冬}.第1章 自我检测一、选择题3. 1.B 提示:集合是由确定的对象组成的. 2.A 提示:集合中元素是无序的.D4. C5. D 提示:由0xy >,可得0,0x y >> 或者0,0x y < < ,因此满足该条件的点在第一象限或第三象限. 6. B 提示:方程||3x =−无解,集合B 为空集,因此A B .7. C 提示:集合{0,4}的子集有∅,{0},{4},{0,4},非空真子集是{0},{4}. 8. A 提示:集合A 与集合B 没有相同元素. 9. B 提示:正方形是特殊的菱形.10. C 提示:从自然数中除去大于5的自然数,剩下的元素有0,1,2,3,4,5. 二、填空题 1.1{1,}2−− 提示:利用求根公式314x −±=.2. {|21,}N x x k k =+∈ .3. 无限 提示:集合{|04}A x x = 表示大于等于0且小于等于4的所有实数组成的集合.4. (1)∉ 提示:解方程29x =,得3x =±;(2) 提示:解方程(3)0x x −=,得0x =或3x =; (3) 提示:在数轴上表示集合{|3}x x >与集合{|1}x x >,由图可知,{|3}{|1}x x x x >> ; (4)∈ ; (5)=.5. {(3,4)}− 提示:解方程组7,1x y x y −+= += ,得3,4x y =− = ,因此{(3,4)}A B =− .6. {0,1,2} 提示:由{2}A B = ,知集合{1,}A a =与集合{2,0}B =的相同元素是2,因此2a =,{1,2}A =,则{0,1,2}A B = . 三、解答题1. {1,2,3,4,5}{3,5,7,9}A B = {1,2,3,4,5,7,9}=,2.解:在数轴上分别表示集合A 与集合B ,图中阴影部分表示A B ,即{|13}{|12}A B x x x x =<<−< {|12}x x =< .3.解方程210x x ++=,由224141130b ac ∆=−=−××=−<,可知方程无解,因此集合A =∅;解不等式9x <且12x >,不等式无解,因此集合B =∅;所以集合A B =.4.解:全集{1,2,3,4,5,6,7,8,9}U =,因为集合{1,2,3,6}A =,集合{3,4,5,6}B =,根据补集的概念,可求{4,5,7,8,9}U A = , {1,2,7,8,9}U B = 因此{7,8,9}U U A B = .5.由全集R U =,{|4}A x x = ,得{|4}U A x x =< ,将U A 与集合B 在数轴上表示出来,如图示则{|4}{|3}U A B x x x x =<< ={|4}x x <.第2章 不等式2.1 不等式的性质【要点梳理】1.a >b ,a <b ,a -b =0.2.两个实数的差,0.3.略4.> . 【闯关训练】2.1.1 实数的大小一、用符号><“”或“”填空1.<;2.>;3.>. 二、判断题1. ×;2. × 提示:若a b 、两数为负数则不成立;3. √ 提示:若1212−<−m n ,则22m n −<−,则m n >. 三、. 解答题1.(1)解:因为4316151054202020−−>,所以4354>; (2)解:因为008.083.175.183.1431<−=−=−,所以31 1.834<;(3)解:因为252516151()03838242424−−−=−+=−+=−<,所以2538−<−.2. 解:由a b >,得0a b −>,因此(32)(32)32323()0a b a b a b +−++−−−>所以3232a b +>+.3. 解:)(22b a ab ab b a −=−,由0<<b a ,可得0,0<−>b a ab ,则0)(<−b a ab ,所以22ab b a <.4. 解:由2>x 可得222(44)44(2)0x x x x x −−=−+=−>,所以244x x >−.2.1.2不等式的性质一、用符号><“”或“”填空1. <,>;2. >,>;3. <,>,>;4. <,提示:3a >−,所以30a +>,而2b <,所以20b −<,因此(3)(2)0a b +−<; 5. >,提示:a b <,所以0a b −<,那么()a a b −>()b a b −.二、选择题 1. B . 2. C .3. D .提示:A 、B 选项如果是负数则不成立,C 选项两边同时乘以-1,不等式要变号,不成立.4. B .提示:A 选项,由22am bm <可知20m >,所以成立,C 选项0a b +>0b <,,所以0a >,所以0a b −>是显然成立的,D 选项也是成立的,只有B 选项2a a >不一定1a >,0a <也成立,所以是错误的. 三、解答题1. 解:根据已知条件(23)(2)1x x +−−≤,解之得4x −≤,所以当4x −≤时,代数式23x +与2x −的差不大于1.2. 解:(1)原不等式可以化为2(21)13x x −−≥,即4213x x −−≥,73x ≥,37x ≥,所以3{|}7x x ≥; (2)原不等式可以化为6453x x −<−,解之得1x <,所以{|1}<x x . (3)证明:因为,b a >0>ab 且,所以a b ab b aba 11,11>⋅>⋅即,也就是b a 11<.另外,也可以用作差比较法来证明. 【学海探津】常用的还有作商比较法和取中间值间接比较法.此题用作商比较法即可,54455454⋅>⋅.2.2 区间【要点梳理】1.实数,不等式2.略3.书写方便、简单、直观 【闯关训练】 一、完成表表2-3.二、判断题1.× 提示:应该表示为(,1]−∞;2. × 提示:应该表示为(1,)+∞;3. √ 提示:因为B A ⊆,所以A B B = ;4. × 提示:应该是[0,)+∞. 三、填空题1. ]2,1[),3,1(−;2. ]4,1(),,3[−+∞−;3. ]1,(−−∞. 四、解答题1. 解:原不等式可化为352(51)x x −>+,即35102x x −>+,解得1x <−,所以不等式的解集为)1,(−−∞.2. 解:由52132x x +> − ≥ 得21x x >− ≤,即21x −<≤,所以不等式组的解集为(2,1]−.3. 解:①(,1)[5,),(,2]A B −∞−+∞−∞ ; ②[1,2]A B − . 【学海探津】第一档:[0,180],第二档:(180,280],第三档:(280,)+∞.2.3 一元二次不等式的解法【要点梳理】1.一个,二,ax 2+bx +c <0(0 )或ax 2+bx +c >0(0 )(a≠0) .2.略 【闯关训练】 一、填空题1.1x =或2x =−,[2,1]−,(,2)(1,)−∞−+∞ ;2.2x =或2x =−,(2,2)−,(,2][2,)−∞−+∞ ;3.1x =−或3x =,(1,3)−,(,1)(3,)−∞−+∞ ;4.2340x x +−<,1x =或4x =−,(4,1)−;5.(,2]−∞−,提示:{|23},{|}A x x B x x m ==< ,若A B =∅ ,画数轴可以看出2m ,所以实数m 的取值范围为(,2]−∞−. 二、选择题1.C2.C3.D 提示:方程2260x x ++=的0∆<,因此二次函数226y x x =++与x 轴没有交点,所以任意实数x 都满足2260x x ++ . 三、解答题1.(1)解:不等式可以化为23520x x −+>,解方程23520x x −+=得:23x =或1x =,所以不等式的解集为2(,)(1,)3−∞+∞ .(2)解:不等式可以化为260x x +− ,解方程260x x +−=得:3x =−或2x =,所以不等式的解集为[3,2]−.(3)解:解方程24410x x −+=,可得12x =,所以不等式的解集为1{|,}2x x R x ∈≠且.(4)解:不等式可以化为26100x x −+ ,解方程26100x x −+= ,0∆<,所以不等式的解集为∅.2.解:要使代数式322−−x x 有意义,需要2230x x −− ,解方程2230x x −−= 得32x =或1x =−,因此3(,1][,)2x ∈−∞−+∞ .3.解:若要方程有实根,需要0∆ ,即2(2)440m +−× ,可以化为24120m m +− 解之得62m m −或 ,因此(,6][2,)m ∈−∞−+∞ . 【学海探津】(1) (10005005001000)30(108)50+++÷÷−=,所以每天至少要销售51件商品.(2)设定价为x 元,则230(8)[5010(10)]1000200010230130001013x x x x x −−−−>−−+<<<,所以若想月利润超过2000元,每件定价应在10至13元之间.2.4 含绝对值的不等式的解法【要点梳理】1. 它本身,相反数,0.2.与原点之间的距离.3.(-a ,a ),(,)(,)a a −∞−+∞ ,大于,中间.4.变量替换,ax+b ,m c <和m c >(0c >). 【闯关训练】 一、填空题1.(3,3)−;2.(,2][2,)−∞−+∞ ;3.(,)−∞+∞提示:任何数的绝对值都大于负数;4.{4}−提示:任何数的绝对值都不会小于零,所以此题与40x +=同解. 二、选择题1.C 3.D 提示:不等式可以化为2||4,||2x x >>. 3.B 4.C 提示:不等式可以先化为|23|1x −<再求解. 三、解下列不等式1.解:不等式可以化为3||1x >,1||3x >解得:1133x x <−>或,所以不等式的解集为11(,)(,)33−∞−+∞ .2.解:不等式可以化为1114||1,||,444x x x −≤≤≤≤,所以不等式的解集为11[,]44−. 3.解:不等式可以化为2453153155x x x x −−−≤或≥,解得≤或≥,所以不等式的解集为24(,][,)55−∞+∞ .4.解:不等式可以化为13|21|2,2212,123,22x x x x −<−<−<−<<−<<,所以不等式的解集为13(,)22−.5.解:不等式可以化为15|33|2,|33|2,2332,33x x x x −−−−≤≤≤≤≤≤,所以不等式的解集为15[,]33.6.解:不等式可以化为|43|1,|34|3,3x x +>+>71343343,33x x x x +<−+><−>−或,解得或所以,不等式的解集为71(,)(,)33−∞−−+∞ .【学海探津】10,1,30,3x x x x −==−==,分1,13,3x x x <<<>三种情况对不等式进行去绝对值化简,再求解,解集为19(,)22−.2.5 不等式应用举例【闯关训练】 一、选择题 1.B 2.B3.D 提示:2760x x −−>,即2670x x −<+,(7)(1)0x x +−<,71x −<<.4.A 提示:22()4280,08n n n n n n ∆=−−⋅=−≥≤或≥. 二、填空题 1.v ≤40 km/h.2.根据题意可以列式|2|5x −≥,即2525x x −−−≤或≥,37x x −≤或≥,因此,实数x 的取值范围为(,3][7,)−∞−+∞ . 三、解答题 1.解:4%2007%5%6%200x x ⋅+⋅<<+,解得x 的范围是(100,400),所以需加入含盐4%的食盐水质量为100到400克之间.2.解:设草坪带的宽度为x m (0150x <<), 则中间花坛的长为(400-2x )m ,宽为(300-2x )m . 根据题意可得(400-2x )(300-2x )≥12×400×300,整理得2350150000x x −+≥即(50)(300)0x x −−≥, 所以0<x ≤50或x ≥300,x ≥300不符合题意,舍去. 故所求草坪带宽度的范围为(0,50]m .3.解:设销售价定为每件x 元,利润为y 元,则(8)[10010(10)]y x x =−−−, 依题意有,(8)[10010(10)]320x x −−−>, 即2281920x x −+<, 解得12<x <16,所以每件销售价应为12元到16元之间. 【学海探津】已知该班参加活动的学生有n 人(n ∈N *),全票价为a 元,坐甲车需花y 1元,坐乙车需花y 2元,则y 1=a +34a ·(n -1)=14a +34an ,y 2=45na . 所以y 1-y 2=14a +34an -45na =14a -120na=1(1)45n a −. 当n =5时,y 1=y 2;当n >5时,y 1<y 2;当n <5时,y 1>y 2.因此当去的人数为5人时,两车队收费相同;多于5人时,甲车队更优惠;少于5人时,乙车队更优惠.第2章 自我检测一、选择题 1.D 2.C 3.C4.C 提示:原不等式可以变形为21(1)02x −>,解得1102x −≠,即2x ≠.5.B 提示:原不等式可以变形为2||2x −−≤,解得||1x ≥,11x x −≤或≥.6.A7.A 提示:原不等式可以变形为|21|5x −<,5215,426,23x x x −<−<−<<−<<. 8.D 提示:一元二次方程无实数解,则0∆<,即 2(2)4(32)0m m −−<,解得12m <<. 9.D10.D 提示:设墙垂直的围栏长度为x 米,则花圃的面积(242)70S x x =⋅−≥,即22224700,12350x x x x −+−−+≥≤,解得 57x ≤≤. 二、填空题1.(1)> (2)> (3)>2.(,1][3,)−∞−+∞ 提示:要想使代数式322−−x x 有意义,实数x 需要满足2230,(3)(1)0,13x x x x x x −−−+−≥≥≤或≥.3.R 提示:原不等式可以化为22210,210x x x x −−−<++>即,方程2210x x ++=无实数解,所以根据函数221y x x =++的图像可知,不等式2210x x ++>的解集为R.4.(,1)(2,)−∞+∞5.[1,5]6.[4.29,4.31] 提示:由已知可得| 4.3|0.01,4.29 4.31.l l −≤≤≤ 三、解答题1.解:22(9)6(3)x x x +−=−,因为3x <,所以2(3)0x −>,因此296x x +>.2.解:解不等式23280,(4)(7)0,47x x x x x −−+−−≤≤≤≤,故[4,7]M −, 解不等式5|32|>−x ,可得14−<>x x 或,故(,1)(4,)N −∞−+∞ , 所以[4,1)(4,7].M N =−−3.解:根据二次函数的图像可知,00k > ∆<,即22000,,,11124010k k k k k k k k k >>> > <−>−⋅⋅<−>或,因此, k 的取值范围是(1,)+∞.[300(10.75)250(1)]2000(10.6)(01)4.解:(1)根据已知“年利润=(出厂价-投入成本)×年销售量”,可以列出本年度预计的年利润y 与投入成本增加的比例x 的关系式:y x x x x =⋅+−⋅+⋅⋅+<<, 整理得(5025)(20001200)(01)y x x x =−+<<.(2)要想使本年度的年利润比上年度有所增加,则需本年度的利润大于上年度的利润,即(5025)(20001200)(300250)2000y x x =−+>−×,化简整理得,230x x −<,解得103x <<,根据已知01x <<,故投入成本增加的比例x 应在1(0,)3范围内.第3章 函数3.1 函数的概念【要点梳理】1. 非空,每一个,唯一确定,y ,x ,(),y f x x D =∈,自变量,定义域, 0x ,0y ,0x ,00()y f x =,{}(),y y f x x D =∈,值域.2. 定义域,对应法则,定义域,对应法则.3. 有意义,自变量. 【闯关训练】 一、 填空题1.{}3≠x x . 提示:要使得函数有意义,需要满足30−≠x ,即3≠x .2.{}0y y . 提示:自变量x 取任意实数,都有20x ,所以函数的值域为{}0y y .3.{}3,1,1,3−−.提示:因为(0)3,(1)1,(2)1,(3)3f f f f =−=−==,所以函数值的集合为{}3,1,1,3−−.二、选择题1. C .提示:因为2(1)(1)12f −=−+=.2.D .提示:要使得函数有意义,需要满足10−x ,同时0x ≠,所以函数的定义域是{}{}{}10010−≠=≠ 且x x x x x x x .3. B .提示:由(0)02(3)34f a b f a b =⋅+=− + ,得22a b = =− ,所以(2)2222f =×−=.三、判断题1. 正确. 提示:由函数的概念可知:定义域与对应法则是函数的两个要素,它们一旦确定,函数的值域也就随之确定.2. 正确. 提示:由函数的概念可知:自变量x 的取值范围D 叫做函数的定义域,是一个非空数集.3. 错误. 提示:根据自变量与函数值的对应关系,函数的值域也是非空的数集. 四、解答题1.(1)解:要使得函数有意义,需要满足20x −≠,所以函数的定义域是{}2x x ≠. (2)解:要使得函数有意义,需要满足30−x ,同时10x −≠, 所以函数的定义域是{}{}{}301031−−≠=≠ 且x x x x x x x .2.(1)2(2)322216f =×+×=, 2(2)3(2)2(2)8f −=×−+×−=, (2)(2)24f f +−=. (2)22()3232f a a a a a =×+×=+,22()3()2()32f a a a a a −=×−+×−=−,2()()6f a f a a +−=.【学海探津】(1)y 是n 的函数;定义域是*N ,值域是{}0,1,2,3,4,5,6,7,8,9.3.2 函数的表示方法【要点梳理】1.解析法,列表法,图像法.2.利用解析式表示函数的方法称为解析法.3.通过列出自变量的值与对应函数值的相应表格来表示函数的方法称为列表法.4.利用图像表示函数的方法称为图像法.5.不同范围内,解析式,并集,并集,一个,取值范围,解析式,各段不同取值范围, 相应解析式. 【闯关训练】 一、 填空题1.{}5,10,15,20,25. 提示:将函数定义域中自变量x 的每一个值代入解析式即可求出对应的函数值.2.4. 提示:这是一个分段函数题,因为2x 时,()4f x =,所以(3)4f =.3.{}()1,4,9,16,25,36f x x =−∈.提示:因为(4)11,(9)12,f f =−===(25)13,f =−=(36)15f ==,所以{}()1,4,9,16,25,36f x x =∈.4. 3−或6. 提示:由题意得211=10x x < +或12210x x −= ,即3x =−或6x =.二、选择题1. A .提示:因为一次函数的图像是一条直线,D 选项中受定义域的限制,图像由几个孤立的点组成,所以A 选项正确.2. B .提示:将2(1,1)M 的坐标代入,满足函数解析式,所以该点在函数的图像上.3. B .提示:根据分段函数解析式可知B 选项正确.4. A .提示:观察函数图像,四个函数的定义域都是(,0)(0,)−∞+∞ ,所以A 选项正确. 三、解答题1. 解:由图像可得()1(0)f x x x =−≠. 2. 解:化简函数解析式得1,0()1,0x x f x x x −< = +>图像如右图所示.【学海探津】用x 表示记忆天数,用y 表示记忆的单词总量,那么5050y x =+,x A ∈,其中A ={1,2,3,4,5,6,7,8,9,10}.3.3 函数的性质【要点梳理】1. (1)任意,12()()f x f x <,增函数,增区间.(2)任意,12()()f x f x >,减函数,减区间. 单调性,单调区间 2. 定义法,图像法.3. (1)(),Q a b − (2)(),Q a b − (3)(),Q a b −−4. (1)任意,x D −∈,()()f x f x −=−,奇函数. (2)任意,x D −∈,()()f x f x −=,偶函数.5. 原点,y 轴,原点.6. 定义法,图像法.7. 一条直线(1)R ,()−∞+∞, (2)R ,()−∞+∞,(3)增,减 (4)0b =,0b ≠ (5)(,0)bk− ,(0,)b8. (1)()()00+−∞∞ ,, (2)()()00+−∞∞ ,, (3)0k >,(,0)−∞,(0,)+∞; 0k <, (,0)−∞,(0,)+∞ (4)原点,奇9.(1)()−∞+∞, (2)24[,)4ac b a −+∞ (3)(,]2ba −∞−,[,)2b a −+∞ (4)0b =,0b ≠ (5)(0,)c 想一想:略 【闯关训练】3.3.1 函数的单调性一、 填空题1.减. 提示:对于一次函数y =kx +b (k ≠0),当k <0时,函数在()−∞+∞,上是减函数.2.增. 提示:根据增函数的定义可知,已知函数()y f x =对于任意的()12,,x x a b ∈,当12x x <时,都有()()120f x f x −<,即()()12f x f x <成立,所以是增函数.3.(,0)−∞和(0,)+∞.提示:根据反比例函数的图像和减函数的定义可知,减区间有两个.4. (,1)−∞,(1,)+∞. 提示:二次函数开口朝下,对称轴是1x =,所以增区间(,1)−∞,减区间是(1,)+∞.5.0a <. 提示:反比例函数ky x=,当0k <时,在()(),0,0,−∞+∞上为增函数,可知0a <. 二、选择题1. C .提示:因为函数()y f x =在区间(2,7)−上是减函数,所以对任意的()12,2,7x x ∈−,当12x x <时,都有()()12f x f x >成立,那么,因为34<,则()()34f f >,所以C 选项正确.2. C .提示:对于二次函数2y ax bx c ++,当0a <时,在(,)2ba−∞−上为增函数,在(,)2ba−+∞上为减函数,所以C 选项正确. 3. A .提示:因为二次函数241y x bx =−+−在区间(),4−∞上是增函数,在(4)+∞,上是减函数,所以对称轴428bb x a=−==,解得32b =,所以A 选项正确. 4. C . 提示:因为函数7y x=在区间()0,+∞上是减函数,则在区间()2,+∞上也是减函数,所以C 选项正确. 三、解答题1.(1)解:增区间[]0,1,[]3,4;减区间[]1,3. (2)解:定义域[]0,4,值域[]1,1−.2. 解: 6f x x在(),5−∞−上是减函数.证明如下:任取()12,,5x x ∈−∞−,且12x x <,则()()()21121212666x x f x f x x x x x −−=−=,因为125x x <<−,所以211200x x x x −>>,, 所以()()()()12120f x f x f x f x −>>即.所以函数 6f x x在(),5−∞−上是减函数.3.3.2 函数的奇偶性一、 填空题1.(4,3)−. 提示:点(),P a b 关于x 轴对称的点的坐标是(),a b −.所以答案是(4,3)−.2.(1,6). 提示:点(),P a b 关于原点对称的点的坐标是(),a b −−.所以答案是(1,6).3.(1,9). 提示:因为偶函数的图像关于y 轴对称,点(1,9)−关于y 轴对称的点的坐标是(1,9).所以答案是(1,9)4. 偶 提示:对于任意的x R ∈,都有()()423==6f f x x x x −+−,所以函数()y f x =是偶函数.5.7− 提示:因为函数()y f x =是奇函数,所以()()=f x f x −−,所以(18)(18)7f f −=−=.所以答案是7−. 二、 选择题1.A .提示:对于一次函数()=f x kx b +,因为()=x b f x k −+−,()=x f x k b −−−,若为奇函数,则一定有=0b .而且二次函数不可能是奇函数,所以正确答案是A .2.B . 提示:根据偶函数定义()=()f x f x −可知,偶函数图像关于y 轴对称,所以正确答案是B .3.C .提示:对于一次函数()=f x kx b +,当=0b 时为奇函数,当0k >时在R 上为增函数,所以正确答案是C .4.D .提示:函数0y 的图像既关于x 轴对称也关于y 轴对称,所以既是奇函数也是偶函数,当然也可以用定义进行验证,所以正确答案是D .数既不是奇函数,也不是偶函数,所以正确答案是C . 三、 解答题1. 解:(1)由题可知函数的定义域是R ,对于任意的x ∈R ,都有x −∈R ,且()=2=()f x x f x −−−,所以函数()2f x x =在R 上是奇函数. (2)由题可知函数的定义域是R ,对于任意的x ∈R ,都有x −∈R ,且22()=3()+2=32()f x x x f x −−−−+=,所以函数2()32f x x =−+在R 上是偶函数.2. 解:(1)因为(1)5f =,所以32(1)1=51af =+,解得4a =. (2)由(1)可知函数的解析式为324()f x x x=+,因为分式分母不为零,所以函数的定义域为()()00+−∞∞ ,,,对于任意的()()00+x ∈−∞∞ ,,,都有()()00+x −∈−∞∞ ,,,且332244()()f x x x x x −=−+=−+−,324()f x x x −=−−,所以()()f x f x −≠且()()f x f x −≠−,函数324()f x x x =+在()()00+−∞∞ ,,上是非奇非偶函数.3.3.3 几种常见的函数一、 填空题1. (),0−∞. 提示:对于反比例函数=ky x,当0<k 时,函数在(,0)−∞上是增函数,所以k 的取值范围是(),0−∞.2. (),2−∞. 提示:由一次函数()(2)3f x m x =−−在定义域内是减函数,可得2m −<0,也就是m <2.3.224x x −+. 提示:设2()(1)2f x a x =−+,由于图像过原点(0,0),故02=+a ,由此得到2=−a .所以,2()2(1)2f x x =−−+,所以答案是224x x −+. 4.[)5,−+∞. 提示:因为二次函数图像开口向上,所以函数的最小值是2440548−=−=−ac b a .所以答案是[)5,−+∞. 5. 1. 提示:因为反比例函数1()=−f x x在()0−∞,上单调递增,所以函数[]1(),2,1=−∈−−f x x x 的最大值为1(1)11−=−=−f .所以答案是1. 二、 选择题1.A .提示:当0>k 时,一次函数=+y kx b 在R 上是增函数;当0<k 时,一次函数=+y kx b 在R 上是减函数;当0k =时,一次函数=+y kx b 在R 上没有单调性.所以A 选项正确.2.A .提示:当0<k 时,反比例函数图像在第二、四象限,并且在(0,)+∞上是增函数.所以A 选项正确.3.C .提示:二次函数的顶点坐标是24(,)24−−b ac b a a,因为1,2,0==−=a b c ,所以它的顶点坐标是(1,1)−.所以C 选项正确. 三、 解答题1. 解:∵()f x 为偶函数,∴()f x 的对称轴为y 轴,∴0=m ,2()3=−+f x x , 又∵()f x 的图像开口向下, ∴()f x 在(-5,-2)上是增函数.2. 解:函数2()(1)5=−−+f x x a x 的图像开口朝上,对称轴为x =a -12.∵函数在区间1(,1)2上是增函数,a -12≤12, ∴a ≤2.3.4 函数的应用【要点梳理】1.函数模型,函数,一次函数模型,二次函数模型,分段函数模型.2.分段函数. 4.定义域,取整. 【闯关训练】 一、 判断题1.错误. 提示:二次函数的图像关于直线2=−bx a对称,只有当0=b 时,函数图像才关于y 轴对称,所以表述错误.2.错误. 提示:分段函数在自变量的不同取值范围内,有不同的对应法则,需要用不同的解析式来表示,在整个定义域上仍然是一个函数,而不是几个函数,所以表述错误.3.正确. 提示:由函数解析式可知:当0<x 时,()1=−f x ,当0x 时,()1=f x ,所以(1)1f −=−,(1)1f =. 所以表述正确. 4. 错误. 提示:题意中的函数是一次函数y kx b =+,其中3k =,常数28b =,其中自变量年数x 的取值应该是正整数,所以表述错误. 二、选择题1. C . 提示:从内向外计算,因为0>x 时()1=−f x ,所以(2)1=−f ,又因为0<x 时()1=f x ,所以[](2)(1)1=−=f f f ,所以C 选项正确.2.D .提示:因为飞机从着陆到停下来的滑行距离是其函数的最大值,所以由2260 1.5 1.5(20)600S t t t =−=−−+知,当20t =时,max 600S =,即飞机着落后滑行600米才能停下来.所以D 选项正确. 3. C .提示:由图像知,甲的速度是2054=km/h ,乙的速度是20201=km/h ,乙比甲晚出发一个小时,甲比乙晚到两个小时,所以C 选项正确. 三、解答题1. 解:由题意得:当0<x ≤3时,10=y ;当3>x 时,10(3)224=+−×=+y x x .所以车费y 元与路程x km 之间的函数关系式为:10,03,24, 3.x y x x < =+> ≤ 2. 解:设产品的单价提高(0)x x >元时,月收入为y 元,则22(10)(1505)510015005(10)2000y x x x x x =+⋅−=−++=−−+ 所以,当10x =时,2000y =最大.第3章 自我检测一、 选择题1. C. 提示:因为{}{}{}10010+≠=−≠ 且x x x x x x x ,所以C 选项正确.2. B. 提示:此题考查一次函数、反比例函数、二次函数的奇偶性.结合这三种函数的图像特征,只有反比例函数3y x=是奇函数.所以B 选项正确. 3. B. 提示:因为()10,2∈,所以(1)1f =.所以B 选项正确.4. C. 提示:因为一次函数21(13)y x x +−< 是增函数,并且(1)1−=−f ,(3)7=f ,所以C 选项正确.5. B. 提示:在B 选项中,反比例函数3y x=−的图像在第二、四象限,关于原点对称,并且在()0,+∞单调递增.所以B 选项正确.6. C. 提示:因为()33()()()22x x x xf x f x −+−+−==−=−,所以函数()32x x f x +=为奇函数,因此图像关于原点对称.故C 选项正确.7. A . 提示:因为二次函数23y x mx =+−的图像关于直线1=−x 对称,所以12=−=−mx 得2=m .所以A 选项正确.上,并且在(),0−∞是减函数,由对称性知,(1)f =(1)8.C. 提示:因为该二次函数的对称轴是y 轴,又有最小值,所以其图像开口向f −<(2)f −.所以C 选项正确. 9. B. 提示:观察函数的图像,A 、C 的函数图像关于y 轴对称,它们是偶函数;D 的函数图像关于原点对称,它是奇函数;B 函数的图像不对称.10. D. 提示:因为函数()f x 为偶函数,所以()()f x f x −=,即()()22f f −=,()()33f f −=.又因为函数()f x 在(),0−∞上是减函数,而3<2−−,所以()()()()33 > 22f f f f =−−=,也就是()()2 < 3f f −.所以D 选项正确.二、填空题1. 3−. 提示:因为(2)2(2)13−=×−+=−f .2. (),1−∞−. 提示:对于二次函数2y ax bx c ++,当0a >时,在(,)2ba∞−-上为减函数,对于函数2()=361f x x x +−,=12ba−−,则减区间为(),1−∞−. 3. 41()33f x x =−+. 提示:已知b kx y +=,由于图像过点(1,-1),(-2,3),故b k +=−1,b k +−=23,由此得到31,34=−=b k .所以,函数解析式为41()33f x x =−+.4. 2133−+x . 提示:因为偶函数的定义域关于原点对称,所以120++=a a ,计算得13=−a .所以()=f x 2133−+x . 5. 0. 提示:函数()f x ax b =+的图像关于y 轴对称,说明函数是偶函数,由()()=f x f x −可得ax b ax b −+=+,解得0a =.6.(,1]−∞. 提示:二次函数顶点式()2y a x h k =−+,当0a <时,函数在区间(),h −∞上为增函数,函数()2()+5f x x m =−+在区间(),1−∞−上为增函数,则需1m −−≥,得1m .三、解答题1. 解:(1)要使得函数有意义,需要满足30+x ,同时20x −≠所以函数的定义域是{}{}{}302032+−≠=−≠ 且x x x x x x x .(2)(1)f −3(6)4f . 2. 解:(1)函数的定义域为R ,对于任意的x ∈R ,都有x −∈R ,即定义域关于原点对称.而且()()()3322−=−=−=−f x x x f x ,所以()32=f x x 是奇函数.(2)函数的定义域为R ,对于任意的x ∈R ,都有x −∈R ,即定义域关于原点对称.而且()()()()2424−=−−−=−=f x x x x x f x ,所以()24=−f x x x 是偶函数.(3)函数的定义域为R ,对于任意的x ∈R ,都有x −∈R ,即定义域关于原点对称.但是()()1−=−−≠−f x x f x ,且()()1−=−−≠f x x f x ,所以()1=−f x x 是非奇非偶函数.3. 解:任取1x ,2(0)x ∈−∞,,且12x x <,即120x x <<,12()()f x f x −221122(3)(3)=−++−−++x x x x222112=−+−x x x x212112()()=−++−x x x x x x []2121()()1=−+−x x x x由于210x x −>,120+<x x , 所以2110+−<x x ,故12()()f x f x −[]2121()()10=−+−<x x x x ,即()()12<f x f x .故2()3=−++f x x x 在区间(0)−∞,上是增函数.4. 解:设长为x 米,则宽为2423x−米,面积为y 平方米,由题意得, 22242228(6)24333x y x x x x −=⋅=−+=−−+所以,当长为6米,宽为4米时,窗户的透光面积最大,最大面积为24平方米.第4章 三角函数4.1 角的概念推广【要点梳理】1.绕着端点从一个位置旋转到另一位置 顶点 始边 终边 逆时针 顺时针 没有做任何旋转2.原点 x 轴的非负半轴 终边3.{}=+360k k ββα⋅∈Z,【闯关训练】4.1.1 任意角的概念一、填空题1. 360− ,30− 提示:时钟表针顺时针转动,转过的角是负角.2.一,三,二3.四4. 180 ,180− ,540 (答案不唯一) 二、选择题1. B2. D 提示:270− 角终边落在y 轴的非负半轴3.D4.C 三、解答题1.解 (1)210− 角的终边在第二象限.(2)1080=3603× ,所以1080 角的终边在x 轴的非负半轴.(3)450=360+90 ,所以450 角的终边在y 轴的非负半轴. (4)370− 角的终边在第四象限.2.解 因为090α<< ,90180β<< ,所以90+270αβ<< ,即+αβ是第二或第三象限的角或终边在x 轴的非正半轴的角.4.1.2 终边相同的角一、填空题1. {}=100+360k k αα⋅∈Z ,2. 330− 提示:30360=330−−3.3204. {}36090+360k k k αα⋅−<<⋅∈Z ,(答案不唯一) 二、选择题1. C2. D3. D 提示:因为角α是锐角,所以090α<< ,即900α−<−< ,因此角α−是第四象限的角,即角+360k k α−⋅∈Z()也是第四象限的角4.B 提示:当()=4k m m ∈Z 时,角α的终边在x 轴的非负半轴;当()=4+1k m m ∈Z 时,角α的终边在y 轴的非负半轴;当()=4+2k m m ∈Z 时,角α的终边在x 轴的非正半轴;当()=4+3k m m ∈Z 时,角α的终边在y 轴的非正半轴. 三、解答题1.解 (1)与450 角终边相同的角的集合是{}=450+360k k αα⋅∈Z ,,其中在0~360 范围内的角是90 角(2)与220− 角终边相同的角的集合是{}=22+360k k αα⋅∈Z -0,,其中在0~360 范围内的角是140 角(3)与510− 角终边相同的角的集合是{}=51+360k k αα⋅∈Z -0,,其中在0~360范围内的角是210 角(4)与900 角终边相同的角的集合是{}=90+360k k αα⋅∈Z 0,,其中在0~360 范围内的角是180 角2. 解 如果角α是第三象限的角,则有180+360270+360k k k α⋅<<⋅∈Z ,,不等式两边同时除以2,得到90+180135+1802k k k α⋅<<⋅∈Z ,,因此,当k 取奇数时,角2α是第四象限的角;当k 取偶数时,角2α是第二象限的角.【学海探津】提示:上午8点整时,分针与时针相差240− ,分针每分钟转6− ,时针每分钟转0.5− .设从早上8点整开始,经过x 分钟后分针与时针重合,即()()60.5=240x −−−⋅− ,解得4807==431111x ,所以分针与时针第一次重合时间是8点74311分,此时分针转动48028806=1111 −×−,时针转动4802400.5=1111 −×−.4.2 弧度制【要点梳理】1.弧长等于半径 1rad 弧度制2.正数 负数 零3.lr4. r α 12lr 或212r α5.【闯关训练】 一、填空题1.(1)π8(2)7π6 (3)7π4− (4)25π3(5)5π2− (6)π12− 2.(1)12 (2)420− (3)5 (4)36− (5)150 (6)543.π=+π,2k k αα∈Z 4. π4,50π 二、选择题1.D2.B3.B4.A 提示:点(1,在第四象限 三、解答题1.解 与5π3−弧度的角终边相同的角的集合为:5π=+2π,3k k αα−∈Z ,5π3−弧度的角是第一象限的角.2.解(1)飞轮每分钟转过弧度数为:2π120=240π×(2)此点每秒钟转过弧度数为:240π=4π60,由2d =,可知1r =,所以此点经过弧长为4π1=4π×cm . 【学海探津】提示:由于扇形的周长为20 m ,所以当扇形的半径为r m 时,圆心角所对的弧长为()202m r −,此时花坛面积为。

中职数学基础模块上册第一二章《集合不等式》测试题及参考答案

中职数学基础模块上册第一二章《集合不等式》测试题及参考答案

1 中职数学基础模块《集合与不等式》测试题(满分150分,时间:90分钟)一、选择题:(每小题5分,共10小题50分) 题号1 2 3 4 5 6 7 8 9 10 答案1、已知集合{}{}8,4,2,5,4,3,2,1==N M 。

则=ÇN M ()A 、{}2B 、{}5,2C 、{}4,2D 、{}8,4,22、不等式21££x 用区间表示为用区间表示为: ( ) : ( ) A (1,2)B (1,2]C [1,2)D [1,2] 3、设{}|7M x x =£,4=x ,则下列关系中正确的是()A 、Mx ÎB 、x MÏC 、{}x MÎD 、{}Mx Ï4、设集合{}{}1,1,1,0,1-=-=N M ,则()A 、NM ÍB 、NM ÌC 、NM =D 、MN Ì5、若a >b, c >d ,则()。

A 、a -c >b -d B 、a +c >b + d C 、a c >bd D 、dbc a >6、不等式22--x x <0的解集是( ) A .(-2,1) B .(-∞,-2)∪(1,+∞) C .(-1,2) D .(-∞,-1)∪(2,+∞) 7、设U={0,1,2,3,4},A={0,1,2,3},B={2,3,4},则(A C u )È(B C u )= ()A 、{0} B 、{0,1} C 、{0,1,4} D 、{0,1,2,3,4} 8、设甲是乙的充分不必要条件,乙是丙的充要条件,丁是丙的必要非充分条件,则甲是丁的()A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要9、已知全集U = {0,1,2,3,4},集合M= {1,3}, P= {2,4}则下列真命题的是( ) A .M ∩P={1,2,3,4} B .P MC U = C .=ÈP C M C U U φD .=ÇP C M C U U {0} 10、10.设集合M = {x │x+1>0},N = {x │-│-x+3>0},则M ∩N =( )。

中职2021届对口升学考试数学模拟试题(一)含答案

中职2021届对口升学考试数学模拟试题(一)含答案

中职2021届对口升学考试模拟试题(一)一、单项选择题(本大题共10小题,每小题3分,共计30分)1.已知集合M={直线},N={圆},则N M ⋂中的元素个数是( )A.0B.0或1或2C.无数个D.无法确定2.下列函数既是奇函数又是增函数的是( )A.33y x -=B.R x nx ∈=si yC.1y +=xD.3x 2y =3.不等式044x 2≥++x 的解集是( )A.{-1}B.RC.空集D.),(),(∞+⋃∞1-1-- 4.偶函数f(x)在),(0-∞上是减函数,那么( ) A.f(-1)<f(3)<f(2) B.f(-1)<f(2)<f(3) C.f(2)<f(3)<f(-1) D.f(3)<f(2)<f(-1)5.将函数)32sin(y π-=x 的图象左移3π,再将图像上各点横坐标压缩到原来的21,则得到的图象解析式为( )A.x sin y =B.)324sin(y π-=xC.)34sin(y π+=xD.)3sin(y π+=x 6.在等差数列{a n }中,若a 3-a 4+a 5-a 6+a 7=90,则a 2+a 8的值为( )A.45B.75C.180D.3007.向量)2,1(=→a 与向量)3,x 2(-=→b 垂直,则x 的值是( )A.3B.43- C.0 D.438.已知椭圆12516x 22=+y 上的一点P 到椭圆一个焦点的距离为3,P 到另一个焦点的距离为( ) A.5 B.7C.1D.29.由数字1,2,3,4,5组成无重复数字的二位奇数个数是( )A.5B.8C.10D.1210.过平面外一点,可以作( )条直线与已知平面平行A.1B.2C.3D.无数二、填空题(本大题共8小题每空4分,共计32分,请把正确答案填写在横上)1.点A(5,-3)到直线3x-4y-1=0的距离为_________________2.函数y=log 2(6-5x-x 2)的定义域为_________________3.若y=log 3(log 2x)=1,那么=21x _______4.若f(x)=2x 2+1且}1,0,1{x -∈,则f(x)的值域是_________________5.函数x x cos 3sin y -=的最小正周期为_______________________6.lgx+lgy=1,则y5x 2+ 的最小值是_________________ 7.二项式(1-2x )6展开式中x 4的系数是______8.(11)16转化为十进制数是_____________三、解答题(本大题共6小题,共计38分)1.(6分)在ABC ∆中,a=3,b=5,c=7,求三角形的最大角.2.(8分)已知二次函数c bx ax x f ++=2)(的图像C 与x 轴有两个交点,它们之间的距离为6,C 的对称轴为x=2,且f(x)的最小值为-9.3.(6分)已知b ,a 均为单位向量,它们的夹角为︒60,求||b a +的值。

中职对口升学数学-全册单元测试卷-2-新

中等职业学校基础模块数学单元测试卷第一章单元测试一、选择题:(6*5分=35分)1.下列元素中属于集合{x| x=2k,k∈N}的是()。

A.-2 B.3 C.π D.102. 下列正确的是().A.∅∈{0}B.∅⫋{0}C.0∈∅D.{0}=∅3.集合A={x|1<x<9},B={2,3,4},那么A与B的关系是().A.B⫋A B.B=A C.A⫋B D.A⊆B4.设全集U={a,b,c,d,e,f},A={a,c,e},那么C U A=().A.{a,c,e} B.{b,d,f} C. ∅ D.{a,b,c,d,e,f} 5.设A={x|x>1},B={ x|x≥5},那么A∪B=().A.{x|x>5}B.{x|x>1}C.{x|x≥5}D.{x|x≥1}6.下列对象不能组成集合的是().A.不等式x+2>0的解的全体 B.本班数学成绩较好的同学C.直线y=2x-1上所有的点 D.不小于0的所有偶数二、填空题:(7*5分=35分)7. p:a是整数;q:a是自然数。

则p是q的。

8. 已知U=R,A={x|x>1} ,则C U A = 。

9. {x|x>1} {x|x>2};∅ {0}。

(∈,∉,⫋,,=)10. {3,5} {5};2 {x| x<1}。

(∈,∉,⫋,,=)11.小于5的自然数组成的集合用列举法表示为.1 Q; 3.14 Q。

12.313. 方程x+2=0的解集用列举法表示为.三、解答题:(3*10分=30分)14.用列举法表示下列集合:(1)绝对值小于3的所有整数组成的集合;(2){x| x2-2x-3=0}.15. 写出集合{0,1,-1}的所有子集,并指出其中哪些是它的真子集.16.已知U={0,1,2,3,4,5,6},A={1,3,5},B={3,4,5,6},求:A∩B,A∪B,C U A,C U(A∩B).第二章单元测试一、选择题:(6*5分=30分)1.下列不等式中一定成立的是( ).A .x >0B .x 2≥0C .x 2>0D .|x |>0 2. 若x >y ,则ax <ay ,那么a 一定 是( ). A .a >0 B .a <0 C.a ≥0 D .a ≤0 3. 区间(- ,2]用集合描述法可表示为( )。

2020届中职数学对口升学复习测试题含答案(集合不等式函数指数对数数列)

2020届中职数学对口升学总复习测试题(集合不等式函数指数对数数列测试题)一、选择:1.已知{|5},5M x x a =≤=则下列关系中正解的是( )A.a M ⊆B.a M ∈C.{}a M ∈D.{}M a ∈ 2.21x 0x x >->是的( )条件A.充分不必要B.必要不充分C.充要条件D.以上都不对3.下列函数在(,)-∞+∞上是增函数的是( )A.21y x =+B.y =C.y=3xD.y=sinx 4.二次函数y=215322y x x =---的顶点坐标是( )A.(3,2)B.(-3,-2)C.(-3,2)D.(3,-2)5.下列函数是偶函数的是( )A.3y x =B.42y x x =+C.y=sinxD.y=x+16.函数f(x)=sinxcosx 是( )A.2T π=的奇函数B.2T π=的偶函数C.T π=的奇函数D.T π=的偶函数7.已知a,b,c 成等差数列且a+b+c=18,则b=( )A.6B.8C.9D.188.已知集合U={1,2,3,4,5},M={1,2,3},N={3,4},则()U M C N ⋂=( )A.{2,4}B.{1,2}C.{0,1}D.{0,1,2,3} 9.若12()log (3)f x x =-,则f(7)=( )A.1B.-2C.0D.510.等差数列1,5,9...,前10项的和是( )A.170B.180C.190D.200二、填空(每小题4分,共32分)11.cos 225︒=_____________12.数学2lg(43)y x x =+-的定义域为_______________ 13.sin80cos 20cos80sin 20︒︒︒︒-=________14.若2()log (3)f x x =-,则f(5)=_________15.比较大小:2330.2___2.3-- 16.在等比数列中,已知1352,8,a ___a a ===则17.在ABC ∆中,2,45,___a b A C ︒===∠=则 18.3322log log _____927-= 三、解答题(共38分)19. (1)求值.222222650(93)-︒-⨯++⨯(4分)(2)求解不等式2321()22x x -->(4分)20.(6分)已知等差数列{}n a 的公差d=1,若131,,a a 成等比数列,求1a .21.(6分)已知函数22y x x =-+,求值域.22.(6分)如果集合A=2{|20}x x ax -+=只有一个元素,求a 的值.23.(6分)求函数sin(2)3y x π=-的单调递增区间. 24.(6分)已知 1sin cos 5θθ-=,求sin cos θθ的值.姓名__________________总分______________一、选择题(本大题共10个小题,每小题4分,共40分)二、填空题:(本大题共8小题,每小题4分,共32分)11、12、13、14、15、16、17、18、三、解答题:(本大题共28分)19、(1)(2)20、21、22、23、24、参考答案:1-10 BACCB CABBC11.; 12. (-1,4) ; 13. 14. 1;15. >; 16. 32 ; 17. 105︒18.119.(1)43;(2)(-1,3);20.112a=-或;21.7 [,)4+∞;22.a=±23.5[,] 1212k kππππ-++;24.12 25 -。

中职对口升学数学-全册单元测试卷-2-新

中职对⼝升学数学-全册单元测试卷-2-新中等职业学校基础模块数学单元测试卷第⼀章单元测试⼀、选择题:(6*5分=35分)1.下列元素中属于集合{x| x=2k,k∈N}的是()。

A.-2 B.3 C.π D.102. 下列正确的是().A.?∈{0}B.??{0}C.0∈?D.{0}=?3.集合A={x|14.设全集U={a,b,c,d,e,f},A={a,c,e},那么C U A=().A.{a,c,e} B.{b,d,f} C. ? D.{a,b,c,d,e,f} 5.设A={x|x>1},B={ x|x≥5},那么A∪B=().A.{x|x>5}B.{x|x>1}C.{x|x≥5}D.{x|x≥1}6.下列对象不能组成集合的是().A.不等式x+2>0的解的全体 B.本班数学成绩较好的同学C.直线y=2x-1上所有的点 D.不⼩于0的所有偶数⼆、填空题:(7*5分=35分)7. p:a是整数;q:a是⾃然数。

则p是q的。

8. 已知U=R,A={x|x>1} ,则C U A = 。

9. {x|x>1} {x|x>2};? {0}。

(∈,?,?,,=)10. {3,5} {5};2 {x| x<1}。

(∈,?,?,,=)11.⼩于5的⾃然数组成的集合⽤列举法表⽰为.1 Q; 3.14 Q。

12.313. ⽅程x+2=0的解集⽤列举法表⽰为.三、解答题:(3*10分=30分)14.⽤列举法表⽰下列集合:(1)绝对值⼩于3的所有整数组成的集合;(2){x| x2-2x-3=0}.15. 写出集合{0,1,-1}的所有⼦集,并指出其中哪些是它的真⼦集.16.已知U={0,1,2,3,4,5,6},A={1,3,5},B={3,4,5,6},求:A∩B,A∪B,C U A,C U(A∩B).第⼆章单元测试⼀、选择题:(6*5分=30分)1.下列不等式中⼀定成⽴的是().A .x >0B .x 2≥0C .x 2>0D .|x |>0 2. 若x >y ,则ax 0 B .a <0 C.a ≥0 D .a ≤0 3. 区间(- ,2]⽤集合描述法可表⽰为()。

中职对口升学数学综合题六套

中职生对口升学考试模拟《数学》试卷(一)一、单项选择题(每小题3分,共21分)1.一元二次方程09)2(2=+-+x k x 有两个不相等的实数解的条件是)(∈k )8,4.(-A )8,4.[-B ),8[]4.(+∞--∞ C ),8()4.(+∞--∞ D2.设集合)3,1(),1,5(-=-=B A ,则)(=B A )3,5.(-A )1,1.(-B )1,5.(--C )3,1.(D3.下列各函数中,在区间),0(+∞上为减函数的是( )x y A 2.= x y B 3log .= 1.--=x y C xy D 21log .=4. )(54cos 53cos 52cos5cos =+++ππππA.-1B.0C.1D.2 5. )(=++BD CB AC AB A . BC B . AD C . DA D .6.已知平面γβα,,和直线l ,则下列可以推出βα//的是( )γβγα//,//.A βα//,//.l l B βα//.l l C 内,在 βγα//.l l D ,相交于直线和7.圆6)7()2(22=-++y x 的圆心和半径分别为( )6),7,2(.-A 6),7,2(.-B 6),7,2(.-C 6),7,2(.-D二、填空题(每空3分,共12分)1.设集合)7,4[],4,2(=-=B A ,则._______________=B A2.在等差数列}{n a 中,,827,81,835-=-==n S d a 则._____________=n 3.设向量)1,4(),,2(-==b m a ,且b a ⊥,则m 的值为__________________. 4.一个玩具下半部分是半径为3的半球,上半部分是圆锥,如果圆锥母线长为5,圆锥底面与半球截面密合,则该玩具的全面积是_________. 三、解答题(第1题5分,第2、第3小题各6分,共17分)1.已知54sin -=α,且α是第四象限的角,求αcos 和αtan .2.一个直径为32cm 的圆柱形水桶,将一个球全部放入水中,水桶的水面升高9cm ,求这个球的半径.3.为了参加国际马拉松比赛,某同学给自己制订了10天的训练计划.第一天跑2000米,以后每天比前一天多跑500米,这位同学第7天跑了多少米?10天共跑了多长的距离?中职生对口升学考试模拟《数学》试卷(二)一、单项选择题(每小题3分,共21分)1.若A ,B 为互斥事件,则( )1)()(.<+B P A P A 1)()(.≤+B P A P B 1)()(.=+B P A P C 1)()(.>+B P A P D2.不等式0)4)(2(<-+x x 的解集为( ))4,2.(-A ),4()2,.(+∞--∞ B )8,1.(-C )4,2.(-D3.下列各函数中,图像经过点)1,2(-π的是( )x y A sin .= x y B cos .= x y C sin .-= x y D cos .-=4.已知函数 ⎪⎩⎪⎨⎧<=>=0,20,10,0)(x x x x x f ,则)6(f 的值等于( ) A.0 B.1 C.-1 D.115. 已知数列}{n a 中,,3,111+==+n n a a a 则这个数列的一个通项公式为( ) 23.-=n a A n 12.-=n a B n 2.+=n a C n 34.-=n a D n6.平行于同一平面的两条直线的位置关系,以下说法正确的是( ) A.平行 B.相交 C.异面 D.以上都有可能7.房间有5本不同的科幻书,4本不同的故事书,从中任取一本的取法共有( )A.5种B.4种C.9种D.20种 二、填空题(每空3分,共12分)1.与01360-角终边相同的角的集合为_____________.2.若,043log <a则a 的取值范围是_____________. 3.已知点M(3,b)到直线0927=+-y x 的距离为4,则b=_____________.4. ._________________=++AB BC CD三、解答题(第1题5分,第2、第3小题各6分,共17分)1.已知)8,(x P 是角α终边上的点,且53cos =α,求点P 的横坐标x 和αtan 的值.2.设有按顺序排好的四个数,前三个数成等差数列,后三个数成等比数列,第一、四两个数的和为16,第二、三两个数的和为8,求这四个数.3.已知点M (2,7),N (3,-4),现将线段MN 分成四等份,试求出各分点的坐标.中职生对口升学考试模拟《数学》试卷(三)一、单项选择题(每小题3分,共21分)1.设全集为R ,集合}72|{<≤-=x x A ,则=A C ( )}2|{.-<x x A }7|{.≥x x B }72|{.≥-<x x x C 或 }72|{.>-<x x x D 或2.已知0>a ,且1≠a ,直列式子中错误的是( )3443243431.21log .01log ..aaD aC B aa A a a =-===-3.若函数)(x f y =的图像关于原点O 中心对称,且5)3(=f ,则=-)3(f ( )3.5.3.5.--D C B A4.若)1320cos(0-的值为( )23.23.21.21.D C B A --5.已知点)3,1(),3,1(-B A ,则下列各式正确的是( )||||..)6,0(..OA AB D OAAB C AB B OBOA A ==-==6.将正方形ABCD 沿对角线BD 折起,使平面ABD ⊥平面CBD ,E 是CD 的中点,则∠AED 的大小为( )0090.60.30.45.D C B A7.从1,2,3,4这四个数中任取两个数,则取到的数都是奇数的概率为( )65.61.51.41.D C B A 二、填空题(每空3分,共12分)1.已知集合}2{},2,0{},9,1{==-+B A B a A =,则=a _____________.2..______________)271(125)21(31322=-+--3.在等差数列}{n a 中,,207-=S 则.______________71=+a a4.用数字2,4,5,8可以组成________个没有重复数字的三位数. 三、解答题(第1题5分,第2、第3小题各6分,共17分)1.已知α终边上点P(3,-4),求.tan ,cos ,sin ααα2. 如图所示,有一个倾角为030的山坡(即山坡与地面所成的二面角为030),山坡上有一条和斜坡底线AB 成060角的直路EF.如果沿EF 上行,行走100米,问约升高多少米?3.设直线l 平行于直线0523=+-y x ,并经过点P(1,2),求直线的一般式方程.1 E中职生对口升学考试模拟《数学》试卷(四)一、单项选择题(每小题3分,共21分)1.不等式0122<--x x 的解集为( )}43|{.<<-x x A }43|{.>-<x x x B 或 }34|{.<<-x x C }34|{.>-<x x x D 或2.一元二次方程有实数解的条件是∈m ( )),10[]10,(.),10()10,(.]10,10[.)10,10(.+∞--∞+∞--∞-- D C B A3.下列计算正确的是( ))0()(.01ln .42.0)2(.53220>====-a a a D C B A4.下列函数既是奇函数又是增函数的是( )x y D x y C xy B xy A 31.2.1.3.2-====5.下列函数中,为偶函数的是( )1.1.4.2.2-=-=+==y D xy C xx y B xy A6.已知||||OB OA =,且060=∠AOB ,则下列各式中正确的是( )||||....OA AB D OAAB C OBAB B OBOA A ====7.某校关注学生的用眼健康,从八年级400名学生中随机抽取了20名学生进行视力检查,发现有10名学生近视眼,据此估计这400名学生中,近视的学生人数约是( )300.200.150.100.D C B A二、填空题(每空3分,共12分) 1. ._____________55563=÷⨯2.已知正四棱柱底面边长为3cm ,高为4cm ,则其体积为_________.3cm3. 互斥事件的加法概率公式为____________.4. 在如图4-1所示的长方体中,AB 与1CC 所在 直线的位置关系为________.三、解答题(第1题5分,第2、第3小题各6分, 共17分)1.讨论函数xx y 1+=在区间),1(+∞上的单调性.2. 在等差数列}{n a 中,,20,271==a a 求.13S3.已知)3,4(),5,7(==b a ,求).42()3(),()(b a b a b a b a +•-+•-中职生对口升学考试模拟《数学》试卷(五)一、单项选择题(每小题3分,共21分) 1.函数0122<--x x 的定义域为( )R D C B A .),1()1,(.]2,1()1,2[.]22[.+∞--∞ ,-2.若3log 2=a ,则=-6log 29log 22( )2.2.22.2.D a C a B A ---3.已知向量n m NK n m MN -=+=2,23,则KM 等于( )n m D n m C nm B nm A 3.3.5.5.--+--+4.数列的通项公式为4cos πn a n =,则数列的第四项为( )22.1.0.1.-=-y D C B A 5.在空间中,下列哪些命题是正确的( ) ①平行于同一条直线的两条直线互相平行; ②垂直于同一条直线的两条直线互相平行; ③平行于同一个平面的两条直线互相平行; ④垂直于同一个平面的两条直线互相平行.A.仅①正确B.仅②正确C.仅③正确D.四个命题都正确 6.直线052=+-y x 的斜率和y 轴上的截距分别是( )25,21.2,5.5,2.52.D C B A --, 7.已知向量)5,(x a =的模为13,则x 等于( )5.12.12.21.D C B A ±-二、填空题(每空3分,共12分)1.方程组⎩⎨⎧=-=+46723y x y x 的解集可用列举法表示为 _____________.2.若a x =-1sin 3,则a 的取值范围是 _________.3. ._____________)2()(34=+--+-c b a b a a4.某校电子商务班有男生16人,女生10人,若要选男、女生各1人作为代表参加学校的拔河比赛,共有_______种不同的选法.三、解答题(第1题5分,第2、第3小题各6分,共17分) 1.如图5-1所示,正四面体(四个面是全等的等边三角形)P -ABC 的棱长为a,求相邻两个面所成二面角的余弦值.2.化简:.sin 1cos sin )2(;100sin 1)1(202ααα--3.空间四边形ABCD 中,对角线AC 与BD 所成的角为030,H G F E cm BD cm AC ,,,,4,2==分别为AB ,BC ,CD ,DA 的中点,求四边形EFGH的面积.CABD中职生对口升学考试模拟《数学》试卷(六)一、单项选择题(每小题3分,共21分)1.设全集U ={0,1,2,3,4,5,6,7,8},集合A ={2,3,4,5},则A 补集为( )A.{0,1,2,6,7,8}B.{0,1,6,7,8}C.{1,6,7,8}D.{6,7,8}2.不等式x x -≤+122的解集为( )}0{....D Z C B R A φ3.使得函数x y sin =为增函数,且值为负数的区间是( ))2,23(.)23,(.),2(.)2,0(.πππππππD C B A 4.若3271log -=a,底数=a ( ) 31.3.3.31.D C B A -- 5.下列函数中,图像经过点(1,1)和点(-1,1)的是( )32..1.||.x y D x y C x y B x y A ====6.已知数列1)2(-=n n a ,则此数列的第8项8a 等于( )A.4B.7C.15D.107.书架上层有4本不同的数学书,中层有5本不同的英语书,下层有3本不同物理书,若要从中任取3本,数学、英语、物理各一本,则不同取法的种数是( )A.3B.60C.12D.9二、填空题(每空3分,共12分)1.函数12+=x y 的定义域为(用区间表示)________________.2.函数122+-=x y 在区间),0(+∞上的单调性为________________.3.向量b a ,的坐标分别为(2,-1),(-1,2),则b a 32+的坐标为_____________.4.一圆锥的轴截面是边长等于2的等边三角形,则圆锥的体积为______________.三、解答题(第1题5分,第2、第3小题各6分,共17分)1.求等差数列-1,2,5,……的第8项.2.求过直线0434=++y x 与065=-+y x 的交点,且与直线052=+-y x 垂直的直线方程.3.已知A (4,3),B (6,1),求以AB 为直径的圆的方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中职数学基础模块上册1-5章试题第一单元测试题一 选择题:本大题共12小题,每小题4分,共48分。

在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中。

1.给出 四个结论:①{1,2,3,1}是由4个元素组成的集合 ② 集合{1}表示仅由一个“1”组成的集合 ③{2,4,6}与{6,4,2}是两个不同的集合 ④ 集合{大于3的无理数}是一个有限集 其中正确的是 ( );A.只有③④B.只有②③④C.只有①②D.只有② 2.下列对象能组成集合的是( );A.最大的正数B.最小的整数C. 平方等于1的数D.最接近1的数3.I ={0,1,2,3,4},M ={0,1,2,3} ,N ={0,3,4},)(N C M I =( ); A.{2,4} B.{1,2} C.{0,1} D.{0,1,2,3}4.I ={a,b,c,d,e } ,M={a,b,d },N={b },则N M C I )(=( );A.{b }B.{a,d }C.{a,b,d }D.{b,c,e } 5.A ={0,3} ,B={0,3,4},C={1,2,3}则 A C B )(( ); A.{0,1,2,3,4} B. C.{0,3} D.{0} 6.设集合M ={-2,0,2},N ={0},则( );A. NB.M NC.M ND.N M7.设集合 0),( xy y x A ,,00),( y x y x B 且则正确的是( ); A.B B A B. B A C.B A D.B A 8.设集合,52,41 x x N x x M 则 B A ( );A. 51 x xB. 42 x xC.42 x x D. 4,3,2 9.设集合,6,4 x x N x x M 则 N M ( );A.RB. 64 x xC.D.64 x x 10.设集合B A x x x B x x A 则,02,22( ); A. B.A C. 1 A D.B11.下列命题中的真命题共有( ); ① x =2是022x x 的充分条件② x≠2是022x x 的必要条件③y x 是x=y 的必要条件④ x =1且y =2是0)2(12y x 的充要条件A.1个B.2个C.3个D.4个12.设共有则满足条件的集合M M ,4,3,2,12,1 ( ). A.1个 B.2个 C.3个 D.4个二 填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 1.用列举法表示集合42x Z x ; 2.用描述法表示集合 10,8,6,4,2 ; 3.{m,n }的真子集共3个,它们是 ;4.如果一个集合恰由5个元素组成,它的真子集中有两个分别是B ={a,b,c },C ={a,d,e },那么集合A = ;5.,13),(,3),( y x y x B y x y x A 那么 B A ; 6.042x 是x +2=0的 条件.三 解答题:本大题共4小题,每小题7分,共28分. 解答应写出推理、演算步骤. 1.已知集合A=B A B A x x B x x ,,71,40求 .2.已知全集I=R ,集合A C x x A I 求,31 .3.设全集I=,2,3,1,3,4,322a a M C M a I 求a 值.4.设集合,,02,0232A B A ax x B x x x A 且求实数a 组成的集合M.第二单元测试题一 选择题:本大题共8小题,每小题6分,共48分. 在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中.1.若m >4,则下列不等式中成立的是( ); A .m +4>4 B.m -4<0 C.m -2>4 D.m -7<-32.若m >0,n <0,则下列不等式中成立的是( ); A.0 m n B.m-n >0 C. mn >0 D.mn 11 3.下列不等式中正确的是 ( );A.5a >3aB.5+a >3+aC.3+a >3-aD.aa 35 4.不等式6 x 的解集是( );A. ,6B. 6,6C. 6,D. ,66, 5.不等式(x -2)(x +3) >0的解集是( ); A.(-2,3) B.(-3,2) C.),2()3,( D.),3()2,( 6.与不等式121 x 同解的是( );A .1-2x >1 B.-1<1-2x <1 C.2x -1>1或2x -1<-1 D.1-2x >1 7.不等式0232x x 的解集是( );A.(1,2)B.),2()1,(C.(-2,-1)D. ,1()2,( ) 8.不等式155 x 的解集是( ). A. 20 x x B.2010 x x C. 10 x x D.2010 x x x 或二 填空题:本大题共6小题,每小题6分,共36分。

把答案填在题中横线上。

1.设mn <0,若m >0,则n .2.比较大小(x-1)(x +3) 2)1( x . 3.若a <b,b <c,则a c.4.集合用区间表示为7 x x . 5.21 x 的解集是 . 6.162x 的解集是 .三 解答题:本大题共2小题,每小题8分,共16分. 解答应写出推理、演算步骤. 1.解不等式02732x x .2.解不等式12131 x .第三单元测试题一 选择题:本大题共12小题,每小题4分,共48分. 在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中.1.函数的定义域是562x x y ( );A. ,,51B. ),(, 51C. ),(, 51D.,),(51 2.函数12)( x xx f 的定义域是( ); A. 2,( B. ,2 C. ,2)1,( D. 2,1)1,(3.设,2)(2x x x f 则 )21()2(f f ( ); A.1 B.3 C. 5 D.104.若 10,1,12)(2,且 x x x f ,则的值域是)(x f ( ); A. 101,, B.(1,3) C. 31, D. 31, 5.函数32x y 的值域是( );A.(0,+)B.(-),3C. ,3D.R6.已知函数,11)( x x x f 则)(x f 等于( ); A.)(1x f B.)(x f C.)(1x f D. )(x f7.函数22x y 的单调递减区间是( );A. )1,(B.(-)0,C. ),0(D.(-1,+ )8.下列函数中既是奇函数又是增函数的是( ); A.x y 3 B.xy 1C.22x y D.x y 319.函数34)(2x x x f ( );A .在上是减函数),( B.在(-)4, 是减函数 C. 在)0,( 上是减函数 D.在(-)2, 上是减函数 10.奇函数y=f(x)(x R )的图像必定经过的点是( ); A .(-a,-f(a)) B.(-a,f(a)) C.(a,-f(a )) D.))(1,(a f a 11.已知y=f (x )是偶函数,当x >0时,f (x )=x (1+x ),当x <0时,f (x )应该是( ); A.-x (1-x ) B.x (1-x ) C.-x (1+x ) D.x (1+x ) 12.x x x f )(是( ).A.偶函数,增函数B.偶函数,减函数C.奇函数,增函数D.奇函数,减函数二 填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 1.函数x x x f22)(的图像是 .2.函数12112x x y 的定义域是 . 3.设,45)(2x x f 则f (2)= ,f (x +1)= . 4.已知y=f (x )是奇函数,且f (3)=7,则f (-3)= . 5.已知y=f (x )是偶函数,且f (-2)=10,则f (2)= .6.已知y=f (x )是偶函数,且x >0时,y=f (x )是增函数,则f (-3)与f (2.5)中较大一个是 .三 解答题:本大题共4小题,每小题7分,共28分. 解答应写出推理、演算步骤. 1.证明函数y =-2x +3在),( 上是减函数。

2..0,23,01,2,1,2)(x x x x x x f 设 求f (-2), f (3),)21(f 的值.3.已知函数f (x )是奇函数,且f (3)=6,求f (-3)的值;若f (-5)=8,求f (5)的值.4.某工厂生产一种产品的总利润L (元)是产量x (件)的二次函数.19000,1000020002 x x x L试问:产量是多少时总利润最大?最大利润是多少?第四单元测试题一 选择题:本大题共12小题,每小题4分,共48分. 在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中.1.若a >0,则下列计算正确的是( ); A. a a 3443)( B.a a a 3443C. a a a 3443D. 04343 a a2.已知a >0,下列式子中正确的是( ); A.2)1(2B.2332a a C. 35531aaD. 53531aa3.已知)10(4 a a a y x且的图像经过点P ,则点P 的坐标是( ); A.(0,1) B.(1,0) C. (0,5) D.(5,0) 4.函数)10( a a a y x且在(-), 内是减函数,则a 的取值范围是( ); A.a >1 B.0<a <1 C.a >1或0<a <1 D.a R5.“以a 为底的x 的对数等于y ”记做( );A.x y a logB.y x a logC.a x y logD.a y x log 6.已知x >0,y >0,下列式子正确的是( ); A.y x y x ln ln )ln( B.y x xy ln ln ln C.y x xy ln ln ln D. yxy x ln ln ln7.下列函数中是偶函数的是( );A.x y 2logB.x y 21log C.22log x y D.x y 22log8.下列对数中是正数的是( );A. 3.0log 2.0B.3.0log 2 C 3log 2.0. D. 21log9.函数xy 3 与xy )31( 的图像关于( );A .原点对称B .x 轴对称 C. 直线y =1对称 D.y 轴对称 10.函数xxx f 1010)(是( );A.偶函数B.奇函数C.非奇非偶函数D.既是奇函数又是偶函数 11.如果x >y >0且0<a <1,那么下列结论中正确的是( ); A.yxa a B. 1 xa C.1 xaD.y x a a12.设3<27)31( x,则下列结论正确的是( )。

相关文档
最新文档