机械原理实验周转轮系传动效率测定

合集下载

《机械原理》课程思政的教学设计——以周转轮系的传动

《机械原理》课程思政的教学设计——以周转轮系的传动
学生的这些特点给教师授课带来了极大的挑战,需
要教师仔细考虑如何有效管理课堂、如何取舍课堂教学
内容、如何讲授课堂教学内容、如何有技巧地融入思政
内容。比如,需要对知识点进行深入梳理,采用合适方
法将知识点贯穿在知识创新的骨架上;需要以具体教学
内容为载体,采用合适方法引导学生发现问题、分析问
题,增强创新意识,激发探究新知识的兴趣;可以尝试结
动比。
结合以上重难点,在授课过程中要时刻观察学生掌
握程度,据此调整讲解速度;要经常设问,加强与学生互
动,必要时就所提问题要求学生分小组讨论;同时周转
轮系的运动要通过播放动画或者实物演示,加深学生的
理解。
5 “周转轮系的传动比”的思政点融入
在学习“周转轮系的传动比”之前,学生已经学会了
定轴轮系传动比的计算方法,以此为前提,
Copyright©博看网. All Rights Reserved.
· 131 ·
2023 年第 08 期
总第 315 期
《机械原理》课程具备理论性和实践性的特点。理
论性的特点要求学生在学习过程中要充分借鉴前面学
习过的《高等数学》《机械制图》《理论力学》等理论知识。
实践性的特点指本课程实验较多,要求学生独立完成以
之渗入教学内容中,对培养学生“思政”素质,实现全过
程育人具有重要意义。
2 机械原理课程简介
于课时少等原因,基本上只是知识点的讲授,很少涉及
《机械原理》课程的内容包括两部分:机构学部分和
思政内容。即便有些教师在课堂教学过程中设计了思
机械动力学部分[7]。机构学部分由机构的结构和运动
政元素,如果思政内容不能与课程内容很好的结合,由
的掌握似是而非,甚至对有些基本概念(机械学科中的

带传动及齿轮传动效率实验

带传动及齿轮传动效率实验

实验三带传动及齿轮传动效率实验一、实验目的1、观察带传动弹性滑动与打滑现象;2、了解带的初拉力、带速等参数的改变对带传动能力的影响;3、掌握摆动式电机的转矩、扭矩、转速差及带传动效率的基本测量方法。

4、了解封闭功率流式齿轮试验台的基本原理、特点及测定齿轮传动效率的方法。

5、通过改变载荷,测出不同载荷下的传动效率和功率。

二、实验内容1、测定不同初拉力下实验带的弹性滑动曲线(ε-F曲线)和效率曲线(η-F曲线)。

2、测定齿轮传动效率,输出T1-T9关系曲线及η-T9曲线。

其中:T1为轮系输入扭矩(即电机输出扭矩);T9为封闭扭矩(即载荷扭矩);η为齿轮传动效率。

三、实验仪器DCSⅡ型带传动测试系统CLS-II型齿轮传动效率测试系统四、实验原理1、带传动测试系统原理(1)调速和加载主动电机的直流电源由可控硅整流装置供给,转动电位器可改变可控硅控制角,提供给主动电机电枢不同的端电压,以实现无级调节电机转速。

本实验台中设计了粗调和细调两个电位器。

可精确的调节主动电机的转速值。

加载是通过改变发电机激磁电压实现的。

逐个按动实验台操作面上的“加载”按扭(即逐个并上发电机负载电阻),使发电机激磁电压加大,电枢电流增大,随之电磁转矩增大。

由于电动机与发电机产生相反的电磁转矩,发电机的电磁转矩对电动机而言,即为负载转矩。

所以改变发电机的激磁电压,也就实现了负载的改变。

本实验台由两台直流电机组成,左边一台是直流电动机,产生主动转矩,通过皮带,带动右边的直流发电机。

直流发电机的输出电压通过面板的“加载”按键控制电子开关,逐级接通并联的负载电阻(采用电烙铁的内芯电阻),使发电机的输出功率逐级增加,也即改变了皮带传送的功率大小,使主动直流电动机的负载功率逐级增加。

图1直流发电机加载示意图(2)转速测量两台电机的转速,分别由安装在实验台两电机带轮背后环形槽中的红外交电传感器上测出。

带轮上开有光栅槽,由光电传感器将其角位移信号转换为电脉冲输入单片计算机中计数,计算得到两电机的动态转速值,并由实验台上的LED 显示器显示上来也可通过微机接口送往PC机进一步处理。

实验七 机械传动系统性能测试实验

实验七 机械传动系统性能测试实验

实验七机械传动系统性能测试实验一、实验目的1、掌握常用机械传动装置的参数测试方法和原理,加深对常见机械传动性能的认识理解;2、设计机械传动系统并进行系统参数的测试,掌握机械传动系统合理设计的基本要求;3、认识工程中机械传动系统的常见驱动和控制方式,掌握计算机辅助实验的新方法,培养进行设计实验与创新实验的能力。

二、基本要求1、认识熟悉实验台学习机械传动综合测试实验台基本组成和工作原理,认识工程中机械传动系统的常见驱动和控制方式,认识各类测试传感器的功能,了解机械系统参数测试的基本方法和原理。

2、典型机械传动性能测试3 、通过测试典型机械传动装置在工作过程中的运动动力参数曲线(速度曲线、转矩曲线、功率曲线、效率曲线等),了解熟悉常用机械传动装置的参数测试方法和原理,加深对常见机械传动性能的认识理解。

三、机械系统参数测试在机械综合测试实验台上对所设计搭接完成的机械系统进行运动和动力参数的测试;根据测试结果,分析所搭接传动装置的性能特点,对所设计机械传动系统的优劣作出评判,从而掌握机械系统合理设计的基本要求。

四、实验设备与实验原理1、实验台基本结构()传动综合实验台基本布局2、主要部件及工作原理实验台主、副台体:支承安装实验各部件。

动力输入装置:电机及驱动器,四个实验台分别采用交流伺服电机、步进电机、无刷电机、交流变频电机四种电机及驱动。

传动装置:包括多种典型机械传动装置和创新组合搭接完成的传动系统装置。

检测装置:输入、输出转矩传感器,可以检测传动装置的速度、转矩;执行机构传感器可以检测执行机构的运动参数。

控制和数据处理装置:控制电机的运动,对传感器的测试信号进行采样和处理。

加载装置:采用磁粉制动器对传动系统进行加载。

执行机构:四台实验台分别安装滞回送料机构、选料机构、牛头刨床机构和压盖机构,完成不同的工作。

计算机和控制及测试软件:对系统进行控制,测试;软件可对测试结果进行计算分析,得到被测装置的传动比,传动功率,传动效率等参数并输出测试结果。

齿轮传动效率测定实验

齿轮传动效率测定实验

齿轮传动效率测定实验2.1实验目的1.了解封闭功率式齿轮实验台的基本原理及特点。

2.了解齿轮传动效率的测试方法。

2.2实验台基本构造及工作原理2.2.1实验台的结构实验设备:CLS —II 型试验台(小型台式封闭功率流式齿轮试验台)。

实验台的结构如图1(a )所示,由定轴齿轮副、悬挂齿轮箱、扭力轴、双万向联轴器等组成一个封闭机械系统。

电机采用外壳悬挂结构,通过浮动联轴器和齿轮轴相联,与电机悬臂相连的转矩传感器把电机转矩信号送入实验台电测箱,在数码显示器上直接读出。

电机转速由测速传感器测出,同时送往电测箱中显示。

(a )(b )1—悬挂电机2—转矩传感器3—浮动联轴器4—转速传感器5—定轴齿轮副6—刚性联轴器7—悬挂齿轮箱8—砝码9—悬挂齿轮副10—万向联轴器11—脉冲发生器图1齿轮实验台结构简图2.2.2主要技术参数1)实验齿轮模数mmm 2=2)齿数381234====z z z z 3)中心距mma 76=9ˊ105ˊ11W987654321扭力轴功率流4)速比1=i 5)直流电机额定功率W P 300=电6)直流电机转速min /1100~0r n =电7)最大封闭扭矩m N T B .15=8)最大封闭功率KWP B 5.1=2.2.3效率计算(1)封闭功率流方向的确定由图1(b )可知,实验台空载时,悬臂齿轮箱的杠杆通常处于水平位置,当加上一定载荷之后(通常加载法码是0.5以上),悬臂齿轮箱会产生一定角度的翻转,这时扭力轴将有一力矩T 9作用于齿轮9(其方向为顺时针),万向节轴也有一力矩9'T 作用于齿轮9',(其方向也为顺时针,如忽略磨擦,99T T =')。

当电机顺时针方向以角速度ω转动时,T 9与ω方向相同,9'T 与ω方向相反,故这时齿轮9为主动轮,齿轮9'为从动轮,同理齿轮5'为主动轮,齿轮5为从动轮,封闭功率流方向如图1(a)所示,其大小为:9999550P n T P a '==(KW )该功率流的大小决定于加载力矩和扭力轴的转速,而不是决定于电机。

【免费下载】机械传动性能综合测试实验

【免费下载】机械传动性能综合测试实验

机械传动性能综合测试实验指导书一、实验目的1.了解机械传动效率测试的工程试验方法及常用测试设备及其精度;2. 分析传动系统效率损失的主要原因,掌握常用传动系统的特点及其效率范围;3. .认识智能化机械设计综合实验台的工作原理,掌握计算机辅助实验的新方法, 培养进行设计性实验与创新性实验的能力。

二、实验原理及设备.本实验台采用模块化结构,由不同种类的机械传动装置、联轴器、变频电机、加载装置和工控机等模块组成,学生可以根据选择或设计的实验类型、方案和内容,自己动手进行传动连接、安装调试和测试,进行设计性实验、综合性实验或创新性实验。

机械设计综合实验台的工作原理如图1所示。

图1 实验台的工作原理机械设计综合实验台各硬件组成部件的结构布局如图2所示。

1-变频调速电机2-联轴器3-转矩转速传感器4-试件5-加载与制动装置6-工控机7-变频器8电器控制柜9-台座实验台组成部件的主要技术参数如表1所示。

表1序号组 成 部件技 术 参 数备 注1变频调速电机550WYP-50-0.55-4-B32ZJ 型转矩转速传感器Ⅰ.规格 5N.m ;输出讯号幅度不小于100mV Ⅱ.规格 50N.m;输出讯号幅度不小于100mV3机械传动装置(试件)直齿圆柱齿轮减速器 i=5蜗杆减速器 i=10V 型带传动齿形带传动 P b =9.525 Z b =80套筒滚子链传动 Z 1=17 Z 2=25WPA50-1/10O 型带3根08A 型3根4磁粉制动器额定转矩: 50 N.m 激磁电流: 2A允许滑差功率: 1.1Kw5工控机PC-500机械设计综合实验台采用自动控制测试技术设计,所有电机程控起停,转速程控调节,负载程控调节,用扭矩测量卡替代扭矩测量仪,整台设备能够自动进行数据采集处理,自动输出实验结果。

其控制系统主界面如图2所示,软件操作指南见附件二。

图2 实验台控制系统主界面运用“机械设计综合实验台”能完成多类实验项目(表2),可根据专业特点和实验教学改革需要指定,也可以让学生自主选择设计实验类型与实验内容。

测量滑轮组的机械效率实验原理

测量滑轮组的机械效率实验原理

测量滑轮组的机械效率实验原理实验原理:机械效率是指机械能输出和输入之比。

在测量滑轮组的机械效率实验中,可以通过测量轮组的负荷和速度,来计算轮组的输入和输出机械能,从而得到机械效率。

要测量滑轮组的机械效率,最基本的方法是采用牛顿定律,利用重力势能和动能转化的原理进行实验。

具体步骤如下:1. 准备实验装置:选定一个质量较大的滑轮,其轮轴平行于桌面,滑轮的辊筒之间放置一段粗绳,绕过滑轮。

在滑轮上方的绳上,用许多小铅块做拉力,使得系统保持稳定。

2. 测量滑轮的负荷:将质量为m的物体与薄绳相连,沿绳的自由端放下,使其抵达土地。

为了保证负荷的准确,可以对负荷进行多次测量、取平均值的方法。

将负荷的重量用登录钩测量。

3. 测量滑轮的速度:为了能够测量滑轮的速度,需要在绳下方放一个定点,以便观察绳的运动状态。

在绳的下方,放置一个指环,指环由一根细绳固定,细绳长度为2m,细绳固定在试验台的上方。

指环上方通过固定点,细绳与胶皮带相连。

在实验时,将物体从指针处放下,并用计时器记录物体从指针到达指环的时间,同时观察细绳运动状态。

通过记录所消耗的时间以及物体位置变化的情况,可以得到滑轮的速度。

4. 计算机械效率:将测得的滑轮负荷和速度代入公式P=Fvt,计算出滑轮输出能量。

用输入能量除以输出能量,即可得到滑轮的机械效率。

机械效率计算公式如下:η = (F/d) / (mgh/t)F为滑轮的负荷(N),d为滑轮的直径(m),m为物块的质量(kg),g为重力加速度(m/s^2),h为滑轮高度(m),t为物块下落时间(s)。

通过测量滑轮组的机械效率实验,可以通过测量轮组的负荷和速度来计算轮组的输入和输出机械能,从而得到机械效率。

这个实验不仅对于物理学习者提高对于运动学、动力学等深度物理概念的理解,也在实际生活中有一定的应用。

滑轮组在现代工业生产中有着广泛的应用。

在机械和电力工业中,滑轮组是重要的传动组件,其主要作用之一是传递力量。

封闭功率流式齿轮传动效率测定实验

实验三 封闭功率流式齿轮传动效率测定实验一实验目的1、了解封闭功率流式齿轮试验台的基本原理、特点和测定齿轮传动效率的方法.2、测定齿轮传动功率和效率.二试验台结构及工作原理.1、试验台结构图1如图1所示,齿轮固连于刚性轴A 的两端,齿轮b 套在弹性轴B 外,齿轮C固连于弹性轴B 的左端,电机采用外壳悬挂装置,并通过齿轮、齿条机构和传感器6获得电机输出力矩, 其结构见图4.封闭力矩的施加通过手轮7和螺旋槽加载器5获取. 加载器件5的结构见图2 所示,加载时,转动手轮7,使端头螺杆7’旋转,推动加载器的螺母套5直线左移并通过推力轴承4,使加载套3同样左移, 加载套的左移,一方面使固定于其上的销轴滚轮组2沿固定于齿轮b 上的螺旋槽套1中的槽滑移,另一方面, 加载套3弹性轴端头上的键滑移,滑移结果使得弹性轴产生相对扭转变形,从而对齿轮产生了加载力.加载力的情况如图例 3所示. F=轴向力N 由加载手轮7的螺杆7’产生.R=圆周力 β=斜槽螺旋角=15;r=d/2=16mm 螺旋槽套1的半径由图知 βtg F R =则所施加的封闭力矩为).(1000mm N tg rF T B ⋅⨯=βF 值的确定,通过传感器6的位移量转换成电量确定电机的输出力矩:).(10008.91m N T L T ⨯⨯=式中L---电机外壳齿轮的节圆半径=mm, T---弹簧反力kg本装置通过应用电机转角变化的机械量转换成电量的变化,再经放大整形电路直接由数码显示、电机的输出为力矩;其结构见图4;2、封闭加载原理封闭功率流式齿轮试验台,主要是通过装置系统中的一个特殊部件来加载,用以获得为平衡此弹性件的变形而产生的内力矩封闭力矩,运转时,这内力矩相应作功而成为封闭功率,并在此封闭回路中按一定方向流动;a 与b 和c 与d 为两对具有相同速比和中心距A 的圆柱齿轮传动,并如图1所示构成了一个封闭的机械系统;系统中当螺旋槽加载器不加载时处在松开的位置,此时控制箱中的转矩显示在“0000”位置;当加载时,加载套左移,使得弹性轴产生相对扭转变形-即内力矩封闭力矩,从而对左右两对齿轮产生了加载力,各传动元件运转时相应作功,此功率在封闭系统中按一定的方向流动,并在流动过程中不断循环;在这种情况下,由于载荷已体现为系统的内力,因此电机提供的动力,主要用于克服此系统中各传动件的摩擦阻力,其能耗远远小于开式的实验装置,因而可大大减小电机容量;3.效率的测定先判明齿轮的主动、从动关系,以及功率的流动方向;根据图2的加载方向,以及齿轮的啮合情况和电机的转动方向,由图5可看出,齿轮a 为主动,a 推动b,c 推动d,其功率按a d c b →→→方向流动;而当电动机的回转方向相反时,齿轮d 为主动,c 为从动,功率流向也相反,因而,对于封闭试验台,可以根据加载力矩的方向和电动机转向来判明齿轮是主动或从动;图5中,①、②、③分别表示电动机的功率在循环过程中消耗于齿轮、轴承、联轴节等的损耗;在测定及计算效率时,常将功率转化为扭矩,并取:1电机的输出功率时P 1 ,完全消耗于克服封闭系统的摩擦损耗,即P 1=P 5; 2取两对齿轮的效率ηηηη,==--d c b a 为平均效率当齿轮a 主动时,功率由a 流向d,由于轮d 为封闭功率流的末端输出端,则 :B i P P = ---封闭功率对于齿轮:或dc Bc T T -=η对于齿轮:a d c B a c ab b a T T T T T T --===∴ηη或dc b a Ba T T --=ηη 由于封闭功率的始端与末端的功率之差即为该系统的摩擦损耗,也就是电动机的输出功率P 1,因此从平衡电机可直接测出输出扭矩T 1,则:或1T T T B Bd c b a +=--ηη 则平均效率为1T T T B Bd c b a +==--ηηη 当齿轮d 为主动时,功率流反向,变为a b c d →→→,齿轮a 为功率流的末端,b a T T =,此时,封闭功率大于传出功率,则电机供给的摩擦功率为:或)1(21η-=B T T 则BB T T T 1-=η 由效率公式看出,只要能实际测出电机的输出扭矩及施加的封闭力矩即能测定该封闭传动装置的效率;三实验步骤:1、开启电源前先用手检查齿轮传动是否轻松,力矩输出电位器是否在原始位置;2、开启电源,指示灯亮,检查数码管是否是在“0000”位置;3、顺时针缓慢调节调速旋扭,使齿轮转速达到一适当值;一般小于1000 rpm ;4、记录第一组T 1、T B 值,T 1、T B 值通过控制箱显示面板按扭得到;5、反时针转动加载手轮7一次,施加封闭力矩后,记录第二组T 1、T B 值;6、重复转动手轮,再记录第三组,第四组….第十组T 1、T B 值,施加封闭力矩m ax B T 不宜过大,以免负荷过重损坏元件,一般m ax B T =7、顺时针转动手轮卸去载荷,使转矩T B 显示码处在最小位置; 8、降低转速至齿轮停止转动,转速显示码处在“0000”值; 9、关闭电源; 10.根据1+=B BT T η即可绘制出该齿轮传动的效率曲线. 11、如果时间有余,选做下列两种情况下的一种,并绘制曲线; 1、保持一定转速n 基本一致改变T B ,可绘制效率曲线T B --η曲线;2、在一定的T B 情况下,从低速到高速约300rpm —1100rpm 改变n,可绘制n-η曲 线;四注意事项1、 由于齿轮传动敞开,务必注意安全,当心衣帽发辨轧入齿轮;2、 调节转速时,必须缓慢进行,逐渐提高转速,以免形成冲进损坏传动元件及传感器;3、试验完后,须先卸载后停止转动;。

什么叫机械传动效率

什么叫机械传动效率什么叫机械传动效率什么叫机械传动效率机械传动效率就是输出功率除以输入功率,都小于1,1减去机械效率就是机械功率的损耗,机械传动发热就是由于功率损耗产生的.传动效率等于输出功率与输入功率之比.实验六机械传动效率测定与分析实验项目性质:验证性实验计划学时:1一、实验目的1.了解机械传动实验机的结构特点和工作原理。

2.了解在机械传动实验机上测定传动效率的方法。

3.介绍机械功率、效率测定开式实验台,了解一般机械功率、效率的测试方法。

二、实验设备及工作原理1.封闭(闭式)传动系统(以齿轮传动为例)封闭齿轮实验机具有2个完全相同的齿轮箱(悬挂齿轮箱7和定轴齿轮箱4),每个齿轮箱内都有2个相同的齿轮相互啮合传动(齿轮9与9',齿轮5与5'),两个实验齿轮箱之间由两根轴(一根是用于储能的弹性扭力轴6,另一根为万向节轴10)相联,组成一个封闭的齿轮传动系统。

当由电动机1驱动该传动系统运转起来后,电动机传递给系统的功率被封闭在齿轮传动系统内,既两对齿轮相互自相传动,此时若在动态下脱开电动机,如果不存在各种摩擦力(这是不可能的),且不考虑搅油及其它能量损失,该齿轮传动系统将成为永动系统;由于存在摩擦力及其它能量损耗,在系统运转起来后,为使系统连续运转下去,由电动机继续提供系统能耗损失的能量,此时电动机输出的功率仅为系统传动功率的20%左右。

对于实验时间较长的情况,封闭式实验机是有利于节能的。

1.悬挂电动机2.转矩传感器3.转速传感器4.定轴齿轮箱5.定轴齿轮副6.弹性扭力轴7.悬挂齿轮箱8.加载砝码9.悬挂齿轮副10.万向节轴11.转速脉冲发生器2.电动机的输出功率电动机1为直流调速电机,电动机转子与定轴齿轮箱输入轴相联,电动机采用外壳悬挂支承结构(既电机外壳可绕支承轴线转动);电动机的输出转矩等于电动机转子与定子之间相互作用的电磁力矩,与电动机外壳(定子)相联的转矩传感器2提供的外力矩与作用于定子的电磁力矩相平衡,故转矩传感器测得的力矩即为电动机的输出转矩T0;电动机转速为n,电动机输出功率为P0=nT0/9550(KW)。

齿轮效率测试分析实验报告

齿轮效率测试分析实验报告学号 PB10009018 姓名 王瑾琨 成绩________ 一、 实验目的1) 理解定轴轮系、差动轮系、周转轮系的传动特点; 2) 掌握定轴轮系、差动轮系、周转轮系传动比的计算;掌握三种轮系传动中的转速、转矩、功率、效率测量方法和原理。

二、 实验结果1) 计算定轴轮系和差动轮系的传动比并将其与实验结果比较,计算复合轮系传动比(电动机1、2转速与负载转速关系)定轴轮系:计算:i 23=n 2/n 3=1.77 实验结果:变转速时转速2 转速3 传动比r/min r/min40.1 22.81.759 41.5 23.71.751 94.3 53.51.763 138.4 78.81.756 182 103.41.760 229.9 130.51.762 277.6 157.61.761 313.2 177.81.761 变载荷时转速2 转速3 传动比r/min r/min279 158.51.760 279.3 158.41.763 279.3 158.51.762 279.4 158.71.761 279.4 158.71.761 279.5 158.81.760 279.7 158.81.761 279.8 1591.760结论: 综上可知,传动比为1.760,与理论值相比误差为310*6.577.1760.177.1-=-,可见误差很小,在允许的范围内,理论得到验证行星轮系:计算:i 13=n 1/n 3=4.37 实验结果:变转速时转速2 转速3 传动比r/min r/min 82.4 19.1 4.314 131.9 30.3 4.353 180.3 41.5 4.345 215.5 49.6 4.354 266.9 61.5 4.340 304.6 70.2 4.339 344.7 79.5 4.336 387.6 89.4 4.336变负载时转速2 转速3 传动比 r/min r/min 78.6 18.2 4.319 135.9 31.3 4.342 171.9 39.6 4.341 191.8 44.2 4.339 224.4 51.6 4.349 245.8 56.7 4.335 262.1 60.4 4.339 272.2 62.74.341结论: 综上可知,传动比为4.339,与理论值相比误差为310*1.737.4339.437.4-=-,可见误差很小,在允许的范围内,理论得到验证 复合轮系: i=(n 1+n 2)/n 3=2.002) 绘制三种工作情况下转速功率曲线及负载功率曲线并对曲线进行分析定轴轮系:变转速100200300400500600700406080100120140160180200220 B DLinear Fit of Data1_B Linear Fit of Data1_B Linear Fit of Data1_DY A x i s T i t l eX Axis Title12345678102030405060708090100110120 B DLinear Fit of Data1_B Linear Fit of Data1_DY A x i s T i t l eX Axis Title行星轮系 变转速501001502002503003504005101520253035B DLinear Fit of Data1_B Linear Fit of Data1_DY A x i s T i t l eX Axis Title变负载246810121410203040506070B DLinear Fit of Data1_B Linear Fit of Data1_DY A x i s T i t l eX Axis Title变11001502002503003502030405060708090100110120130 B D FLinear Fit of Data1_B Linear Fit of Data1_D Linear Fit of Data1_FY A x i s T i t l eX Axis Title变250100150200250300406080100120140160B D FLinear Fit of Data1_B Linear Fit of Data1_D Linear Fit of Data1_FY A x i s T i t l eX Axis Title变负载实验结果分析:1)三种轮系下,负载一定时,电机功率与转速近似成正比。

实验3带传动的弹性滑动和效率测定实验

实验3 带传动的弹性滑动和效率测定实验指导书一、 概述带传动的设计准则是保证带传动在工作中不打滑,同时又有足够的疲劳强度和一定的寿命。

传动带不出现打滑的临界条件取决于带传动的滑动与承载能力(有效拉力、转矩或传递功率)之间的关系。

在传动条件、初拉力一定的情况下带传动的滑动与有效拉力F 之间的关系曲线如图3-1所示。

图中ε-F 曲线称为带传动滑动曲线,η-F 曲线为带传动效率曲线。

其中:ε-滑动系数,F -带的工作拉力,η-带传动的效率,K -打滑临界点。

图3-1带传动滑动曲线和效率曲线%100)1(1212121⨯⨯-=-n nD D v v v =ε (3-1) 其中:21v v 、和21n n 、分别为主动轮、、从动轮的线速度和转速,单位为m/s 和r/min ;D 1、D 2分别为主动轮、、从动轮的计算直径,单位为mm 。

由图可知,滑动曲线在开始一段,滑动系数随有效拉力的增加而呈线性增加,这时传动带处于弹性滑动范围内工作,属于弹性滑动区。

当拉力增加至超过某一值后,滑动系数增加很快,带处于弹性滑动与打滑同时存在的范围内工作,属于打滑区。

当拉力继续增加,增加到一定值时,带在带轮上处于完全打滑工作状态,此时滑动系数ε近于直线上升。

为了保证传动带在工作中不打滑,又能发挥带的最大工作能力,临界条件应取在k 点,在这一临界条件下,滑动系数ε=1%~2%,且传动效率η处于较高值。

为测定带传动的弹性滑动率,须测定带传动输入和输出轴的转速。

由于带传动时弹性滑动量较小(1~2%),两轮的转速相差不大,如采用接触式的机械法测量,由于测试精度低,测试结果误差大,甚至测量不到弹性滑动的现象,因而对转速的测量应采用测试精度高的转速测试设备,如光电测试法或闪频法(见第2章转速的测试)。

为了测量带传动出现打滑的临界点,在选用实验负载时应合理选用负载。

如采用制动器负载,则达到最大传动功率时传动打滑,负载抱死,这样就往往不能给出打滑的临界点;而采用电机作负载时,带传动打滑时负载不会抱死,容易得到图3-1所示的实验曲线,但传动打滑时的极限功率测量不到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械原理实验周转轮系传动效率测定
机械原理实验中,周转轮系传动效率测定可以通过以下步骤进行:
1. 实验准备:选择一组适当的周转轮系传动装置,包括主动轮、从动轮和传动带或链条等。

2. 测量主动轮和从动轮的直径,记录下来。

3. 安装传动装置:根据实验要求,将主动轮和从动轮以及传动带或链条等正确装配到实验装置中。

4. 测量主动轮的转速:使用合适的测速仪器(如测速计或转速传感器)测量主动轮的转速,并记录下来。

5. 测量从动轮的转速:同样地,使用测速仪器测量从动轮的转速,并记录下来。

6. 计算传动比:根据主动轮和从动轮的直径,计算出传动比,即从动轮转速与主动轮转速之比。

7. 测量传动轴功率:使用功率测量仪器测量传动轴上的功率,并记录下来。

8. 计算传动效率:根据传动比和传动轴功率,计算出传动效率。

传动效率等于
实际输出功率与输入功率之比。

9. 分析和讨论结果:根据实验数据,分析传动效率的高低,并讨论可能影响传动效率的因素。

请注意,以上步骤仅为一般性的测定方法,具体的实验步骤和要求可能会因实验设计和设备不同而有所差异。

因此,在进行实验之前,应仔细阅读实验指导书,并按照实验要求进行操作。

相关文档
最新文档