例谈求动点轨迹方程的几种方法
轨迹方程的求法

5.动点M(x,y)满足 x - 12 y - 32 3 x 4 y - 1 则点M轨迹是
( D)
5
(A)圆
(B)双曲线
(C)椭圆
(D)抛物线
6. 函 数 y=x2+(2m+1)x+m2-1(m∈R) 的 图 象 的 顶 点 轨 迹 方程是____4_x_-_4_y_-_3_=_0_______.
3.与圆x2+y2-4x=0外切,且与y轴相切的动圆圆心的轨迹方 程是_y_2_=_8_x_(_x_>__0_)或__y_=_0_(_x_<__0_)_.
4.△ABC的顶点为A(0,-2),C(0,2),三边长a、b、c成等
差数列,公差d<0;则动点B的轨迹方程为_____________
__x_2_____y_2____1___y____0_,. x 0
7.已知线段AB的两个端点A、B分别在x轴、y轴上滑
动,|AB|=3,点P是AB上一点,且|AP|=1,则点P的
轨迹方程是________x_4_2___y_2___1________
89.,则过动原椭点圆的中动心椭的圆轨的迹一方个程焦为点_为_x_F_-(_112_,__20_)_,_y_长2__轴_49_长_ 为
AP∶PB= 2∶l两部分,当A点在y轴上运动时, B点在x轴上运动,求动点P的轨迹方程。
解:设动点P(x,y),AB和x轴的夹角为θ ,
|θ
|≤
2
,作PM⊥x于M,
PN⊥y轴于N
∵|AB|= a, | AP | 2
| PB | 1
∴|AP|=
2
3 a,
|PB|=
1 3
a
求轨迹方程的方法

如果动点的轨迹满足已知曲线的定义,可 先设定方程,再确定其中的基本量。
方法2:直接法(也称直译法)
如果动点满足的几何条件本身就是一些 几何量的等量关系,或这些几何条件简 单明了易于表达,我们只需把这种关系 “翻译”成含x,y的等式就得到曲线的轨 迹方程。
方法3:相关点法(也称代入法)
方法5:交轨法(参数法的一种特例)
在求动点轨迹时,有时会出现求两动曲线 交点的轨迹问题,这类问题常常通过解方 程组得出含参数的交点坐标,再消去参数 求出所求轨迹的方程,该法经常与参数法 并用。
有些问题中,其动点满足的条件不便用 等式列出,但动点随着另一动点(称之 为相关点)运动的.如果相关点所满足的 条件是明显的,这时我们可以用动点坐 标表示相关点坐标,根据相关点所满足 的方程即可求得动点的轨迹方程。
方法4:参பைடு நூலகம்法(也称中间量法)
当动点坐标x,y之间的直接关系难以找到 时,往往先寻找x,y与某一参变量(即中 间量)的关系,再消去该参变量得到动点 轨迹的普通方程,参变量的选取要注意它 的取值范围对坐标取值范围的影响。
高中数学求轨迹方程的六种常用技法

求轨迹方程六种常用技法轨迹方程探求是解析几何中根本问题之一,也是近几年来高考中常见题型之一。
学生解这类问题时,不善于提醒问题内部规律及知识之间相互联系,动辄就是罗列一大堆坐标关系,进展无目大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结与归纳探求轨迹方程常用技法,对提高学生解题能力、优化学生解题思路很有帮助。
本文通过典型例子阐述探求轨迹方程常用技法。
1.直接法根据条件及一些根本公式如两点间距离公式,点到直线距离公式,直线斜率公式等,直接列出动点满足等量关系式,从而求得轨迹方程。
例1.线段,直线相交于,且它们斜率之积是,求点轨迹方程。
解:以所在直线为轴,垂直平分线为轴建立坐标系,那么,设点坐标为,那么直线斜率,直线斜率由有化简,整理得点轨迹方程为练习:1.平面内动点到点距离与到直线距离之比为2,那么点轨迹方程是。
2.设动直线垂直于轴,且与椭圆交于、两点,是上满足点,求点轨迹方程。
3. 到两互相垂直异面直线距离相等点,在过其中一条直线且平行于另一条直线平面内轨迹是〔〕A.直线B.椭圆C.抛物线D.双曲线2.定义法通过图形几何性质判断动点轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹定义,如线段垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何一些性质定理。
例2.假设为两顶点,与两边上中线长之与是,那么重心轨迹方程是_______________。
解:设重心为,那么由与两边上中线长之与是可得,而点为定点,所以点轨迹为以为焦点椭圆。
所以由可得故重心轨迹方程是练习:4.方程表示曲线是〔〕A.椭圆 B.双曲线 C.线段 D.抛物线3.点差法圆锥曲线中与弦中点有关问题可用点差法,其根本方法是把弦两端点坐标代入圆锥曲线方程,然而相减,利用平方差公式可得,,,等关系式,由于弦中点坐标满足,且直线斜率为,由此可求得弦中点轨迹方程。
例3.椭圆中,过弦恰被点平分,那么该弦所在直线方程为_________________。
如何求动点的轨迹方程

的垂线P j , O _ 垂足为Q IP +P = Ⅳ , II M Nf 2 第四步是将几何条件坐标化, f J = m, I l P Io P Q 2 IⅣl Q ={Q t M = m,Q = c I J t P Q m 所以I N =肘Q — Z N =1 c _ 。 M I l J
解 析 首 先是 建 系 。 以直 线 Ⅳ为 轴 ,
以 Ⅳ的 垂 2 平 分 线 为y 建 立 平 面 2 角 - 轴 - 坐 标 系 ; 次是 设 P点 坐 标是 ( y ; 三 其 x,) 第
系.
②设 点——设立( 动点的坐标. 被)
③列式——列 出几何条 件的等量关
商 z 的轨迹是 ( , 则P
,
⑤化 简——将 上一步坐标化所得 的
曲线 方程 化 简
线. 选D.这 是 直 译 两 个 向量 的 数 量 积 公 式 而得 出轨迹 来 的.
⑥ 验 证—— 将 上一 步 所 得 的轨 迹
方 程 通 过 “ 漏 ” “ 掉 增 多 ” 点 而 补 和 去 的
倒 3 等 腰 三 角 形 的 顶 点 是 A( ,) 42 , 底 边 一 个 端 点 是B( , ) 求 另一 个 端 点 C 35 ,
,
IP +M : M I INI
条 件设 出关 于动 点 的几 何关 系 . 利 用解 再
2 ,/ 等 I 西=丁 +_ 6 3- 、
J
析 几 何 关 系 式 ( 两 点 距 离 公 式 , 个 向 如 两 量 的 数 量积 公 式 , 到 直 线距 离公 式 , 点 夹
/ Biblioteka 0 ) 倒 6 若 动 圆 恒 过 定 点 B( 2 0 , 一 , ) 且 和定 圆c: 一 ) ( 2
轨迹方程的求法及典型例题含答案

轨迹方程的求法一、知识复习轨迹方程的求法常见的有1直接法;2定义法;3待定系数法4参数法5交轨法;6相关点法注意:求轨迹方程时注意去杂点,找漏点.一、知识复习例1:点P-3,0是圆x2+y2-6x-55=0内的定点,动圆M与已知圆相切,且过点P,求圆心M的轨迹方程;例2、如图所示,已知P 4,0是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程.解:设AB 的中点为R ,坐标为x ,y ,则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-x 2+y 2 又|AR |=|PR |=22)4(y x +-所以有x -42+y 2=36-x 2+y 2,即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Qx ,y ,Rx 1,y 1,因为R 是PQ 的中点,所以x 1=2,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程.例3、如图, 直线L 1和L 2相交于点M, L 1⊥L 2, 点N ∈L 1. 以A, B 为端点的曲线段C 上的任一点到L 2的距离与到点N 的距离相等. 若∆AMN 为锐角三角形, |AM|= 错误!, |AN| = 3, 且|BN|=6. 建立适当的坐标系,求曲线段C 的方程.解法一:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点;依题意知:曲线段C 是以点N 为焦点,以l 2为准线的抛物线的一段,其中A ,B 分别为C 的端点;设曲线段C 的方程为)0,(),0(22>≤≤>=y x x x p px y B A ,其中x A,x B 分别为A ,B 的横坐标,P=|MN|;)2(92)2()1(172)2(3||,17||)0,2(),0,2(22=+-=++==-A A A A px px px px AN AM p N p M 得由所以 由①,②两式联立解得p x A 4=;再将其代入①式并由p>0解得⎩⎨⎧⎩⎨⎧====2214A A x p x p 或 因为△AMN 是锐角三角形,所以Ax p >2,故舍去⎩⎨⎧==22A x p∴p=4,x A =1由点B 在曲线段C 上,得42||=-=pBN x B ;综上得曲线段C 的方程为)0,41(82>≤≤=y x x y解法二:如图建立坐标系,分别以l 1、l 2为作AE ⊥l 1,AD ⊥l 2,BF ⊥l 2垂足分别为E 、D 、F 设Ax A , y A 、Bx B , y B 、Nx N , 0 依题意有)0,63)(2(8}0,,)(|),{(),(6||||4||||||||||22||||||3|||||22222222>≤≤-=>≤≤=+-====++=+=∆=+======y x x y C y x x x x y x x y x P C y x P NB BE x AE AM ME EN ME x AMN DA AM DM y AN DA ME x B A N B N A A 的方程故曲线段属于集合上任一点则由题意知是曲线段设点为锐角三角形故有由于例4、已知两点)2,0(),2,2(Q P -以及一条直线ι:y =x ,设长为2的线段AB 在直线λ上移动,求直线PA 和QB 交点M 的轨迹方程.解:PA 和QB 的交点Mx ,y 随A 、B 的移动而变化,故可设)1,1(),,(++t t B t t A , 则PA :),2)(2(222-≠++-=-t x t t y QB :).1(112-≠+-=-t x t t y 消去t ,得.082222=+-+-y x y x当t =-2,或t =-1时,PA 与QB 的交点坐标也满足上式,所以点M 的轨迹方程是.0822222=+--+-y x x y x例5、设点A 和B 为抛物线 y 2=4pxp >0上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.解法一:设Mx ,y ,直线AB 的方程为y =kx +b 由OM ⊥AB ,得k =-yx由y 2=4px 及y =kx +b ,消去y ,得k 2x 2+2kb -4px +b 2=0 所以x 1x 2=22kb , y 1y 2=kpb 4,由OA ⊥OB ,得y 1y 2=-x 1x 2所以k pk4=-22kb , b =-4kp故y =kx +b =kx -4p , 得x 2+y 2-4px =0x ≠0故动点M 的轨迹方程为x 2+y 2-4px =0x ≠0,它表示以2p ,0为圆心,以2p 为半径的圆,去掉坐标原点.解法二:设Ax 1,y 1,Bx 2,y 2,Mx ,y依题意,有⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧--=---=--⋅-=⋅==112121212122112221211144x x y y x x y y x x y y x y x yx y px y px y①-②得y 1-y 2y 1+y 2=4px 1-x 2 若x 1≠x 2,则有2121214y y px x y y +=-- ⑥ ①×②,得y 12·y 22=16p 2x 1x 2 ③代入上式有y 1y 2=-16p 2⑦⑥代入④,得yxy y p -=+214 ⑧ ⑥代入⑤,得py x y y x x y y y y p442111121--=--=+所以211214)(44y px y y p y y p --=+ 即4px -y 12=yy 1+y 2-y 12-y 1y 2 ⑦、⑧代入上式,得x 2+y 2-4px =0x ≠0 当x 1=x 2时,AB ⊥x 轴,易得M 4p ,0仍满足方程.故点M 的轨迹方程为x 2+y 2-4px =0x ≠0它表示以2p ,0为圆心,以2p 为半径的圆,去掉坐标原点.① ②③ ④ ⑤|轨 迹 方 程练习11.08、山东文22已知曲线1C :||||1(0)x y a b a b+=>>所围成的封闭图形的面积为 45,曲线1C 的内切圆半径为253,记2C 为以曲线1C 与坐标轴的交点为顶点的椭圆.1求椭圆2C 的标准方程; 2设AB 是过椭圆2C 中心的任意弦,L 是线段AB 的 垂直平分线,M 是L 上异于椭圆中心的点.①若||MO =λ||OA O 为坐标原点,当点A 在椭圆2C 上运动时,求点M 的轨迹方程;②若M 是L 与椭圆2C 的交点,求AMB ∆的面积的最小值.解:1由题意得22245253ab ab a b⎧=⎪⎨=⎪+⎩⇒4522==b a ,⇒椭圆方程:2254x y +=1.2若AB 所在的斜率存在且不为零,设 AB 所在直线方程为y =kxk≠0,A A A y x ,.①由22154,x y y kx ⎧+=⎪⎨⎪=⎩⇒2222220204545A A k x y k k ==++, ⇒2222220(1)||45AAk OA x y k+=+=+. 设Mx,y,由|MO|=λ|OA|λ≠0⇒|MO|2=λ2|OA|2⇒2222220(1)45k x y k λ++=+.因为L 是AB 的垂直平分线,所以直线L 的方程为y =1x k -⇒k =x y-,代入上式有:22222222222220(1)20()4545x x y y x y x y x yλλ+++==++⨯,由022≠+y x ⇒2225420x y λ+=, 当k =0或不存时,上式仍然成立.,综上所述,M 的轨迹方程为22245x y λ+=,λ≠0.②当k 存在且k ≠0时,2222220204545AA k x y k k ==++,⇒|OA|2=222220(1)45A A k x y k ++=+. 由221541x y y xk ⎧+=⎪⎪⎨⎪=-⎪⎩⇒2222220205454M M k x y k k ==++,⇒22220(1)||54k OM k +=+. ⇒222222111120(1)20(1)4554k k OAOMk k +=+++++=209. 222119||||20OA OB OA OM≤+=⨯⇒||||OB OA ⨯≥940.||||21OB OA S AMB ⨯⨯⨯=∆=||||OB OA ⨯≥40,当且仅当4+5k 2=5+4k 2时,即k =±1时等号成立.当1400229AMB k S ∆==⨯=>,; 当k 不存在时,140429AMB S ∆==>.综上所述,AMB ∆的面积的最小值为409.2.07、江西理21设动点P 到点(10)A -,和(10)B ,的距离分别为1d 和2d ,2APB θ∠=,且存在常数(01)λλ<<,使得212sin d d θλ=.1证明:动点P 的轨迹C 为双曲线,并求出C 的方程;2过点B 作直线与双曲线C 的右支于M N ,两点,试确定λ的范围,使OM ·ON =0,其中点O 为坐标原点.解:1在PAB △中,2AB =,即222121222cos 2d d d d θ=+-, 2212124()4sin d d d d θ=-+,即2121244sin 212d d d d θλ-=-=-<常数,点P 的轨迹C 是以A B ,为焦点,实轴长221a λ=-的双曲线,方程为:2211x y λλ-=-. 2设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即2111511012λλλλλ-±-=⇒+-=⇒=-, 因为01λ<<,所以512λ-=. ②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x λλ⎧-=⎪-⎨⎪=-⎩得: 2222(1)2(1)(1)()0k x k x k λλλλλ⎡⎤--+---+=⎣⎦,由题意知:2(1)0k λλ⎡⎤--≠⎣⎦ ⇒21222(1)(1)k x x k λλλ--+=--,2122(1)()(1)k x x kλλλλ--+=-- ⇒22212122(1)(1)(1)k y y k x x k λλλ=--=--. 由OM ·ON =0,且M N ,在双曲线右支上,所以2121222122212(1)0(1)5121011231001x x y y k x x k x x λλλλλλλλλλλλλλλ-⎧+=⎧-⎧=⎪>-⎪⎪⎪+-+>⇒⇒⇒<<+--⎨⎨⎨⎪⎪⎪>+->>⎩⎩⎪-⎩. 由①②知32215<≤-λ.3.09、海南已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.1求椭圆C 的方程;2若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,2OP e OMe 为椭圆C 的离心率,求点M 的轨迹方程,并说明轨迹是什么曲线.解:Ⅰ设椭圆长半轴长及分别为a,c .由已知得⎩⎨⎧=+=-71c a c a ⇒a =4,c =3⇒椭圆C 的方程为221167x y +=. 2设Mx,y,P 0x ,0y . 其中0x ∈-4,4,0x =x .有22001167x y +=……① 由OP e OM=得:2240022x y e x y +=+=169. 故22220016()9()x y x y +=+下面是寻找关系式0x =fx,y,0y =gx,y 的过程又⎪⎩⎪⎨⎧-==167112220220x y x x ……………………………………②②式代入①:22001167x y +=并整理得:47(44)3y x =±-≤≤,所以点M 的轨迹是两条平行于x 轴的线段.轨 迹 方 程练习24.09、重庆理已知以原点O 为中心的椭圆的一条准线方程为433y =,离心率32e =,M 是椭圆上的动点. 1若C 、D 的坐标分别是0,√3、0,-√3,求||MC ·||MD 的最大值;2如图,点A 的坐标为1,0,点B 是圆221x y +=上的点,点N 是点M 椭圆上的点在x 轴上的射影,点Q 满足条件:OQ =OM +ON ,QA ·BA =0.求线段QB 的中点P 的轨迹方程.解:1设椭圆方程为:22221x y a b +=a >b >0.准线方程3y ==c a 2,2e ==ac ⇒2=a ,32=c 1=⇒b ⇒椭圆方程为:2214y x +=.所以:C 、D 是椭圆2214y x +=的两个焦点⇒||MC +||MD =4.||MC ·||MD ≤4)2||||(2=+MD MC ,当且仅当||MC =||MD ,即点M 的坐标为(1,0)±时上式取等号⇒||MC ·||MD 的最大值为4.2设M(,),(,)m m B B x y B x y ,(,)Q Q Q x y ,N 0,m x ⇒4422=+m m y x ,122=+B B y x . 由OQ =OM +ON⇒m Q x x 2=,m Q y y =⇒4)2(2222=+=+m m Q Qy x y x ………①由QA ·BA =0 ⇒Q Q y x --,1·B B y x --,1=Q x -1B x -1+B Q y y =0 ⇒=+B Q B Q y y x x 1-+B Q x x …………②记P 点的坐标为P x ,P y ,因为P 是BQ 的中点⇒B Q P x x x +=2,B Q P y y y +=2⇒2222)2()2(BQ B Q P P y y x x y x +++=+=)22(412222B Q B Q B Q B Q y y x x y y x x +++++ =)]1(25[41-++B Q x x =)245(41-+P x ⇒P P P x y x +=+4322 ⇒动点P 的方程为:1)21(22=+-y x .5.09、安徽已知椭圆22a x +22by =1a >b >0的离心率为33.以原点为圆心,以椭圆短半轴长为半径的圆与直线y =x +2相切.1求a 与b 的值;2设该椭圆的左,右焦点分别为1F 和2F ,直线1L 过2F 且与x 轴垂直,动直线2L 与y 轴垂直,2L 交1L 于点p.求线段1PF 的垂直平分线与直线2L 的交点M 的轨迹方程,并指明曲线类型解:1e =33⇒22a b =32.又圆心0,0到直线y =x +2的距离d =半径b =22112+, ∴2b =2,2a =3.12322=+y x 21F -1,0、2F 1,0,由题意可设P 1,tt ≠0.那么线段1PF 的中点为N0,2t . 2L 的方程为:y =t,设M M M y x ,是所求轨迹上的任意点.下面求直线MN 的方程,然后与直线2L 的方程联立,求交点M 的轨迹方程直线1PF 的斜率k =2t ,∴线段1PF 的中垂线MN 的斜率=-t2. 所以:直线MN 的方程为:y -2t =-t 2x .由⎪⎩⎪⎨⎧+-==22t x t y t y ⇒⎪⎩⎪⎨⎧=-=t y t x MM 42, 消去参数t 得:M M x y 42-=,即: x y 42-=,其轨迹为抛物线除原点.又解:由于MN =-x,2t -y,1PF =-x,2t -y .∵MN ·1PF =0, ∴⎪⎩⎪⎨⎧==---ty y t x t x 0)2(·)2,(,,消参数t 得:x y 42-=x ≠0,其轨迹为抛物线除原点.6.07湖南理20已知双曲线222x y -=的左、右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点.直接法求轨迹1若动点M 满足1111F M F A F B FO =++其中O 为坐标原点,求点M 的轨迹方程;2在x 轴上是否存在定点C ,使CA ·CB 为常数 若存在,求出点C 的坐标;若不存在,请说明理由.解:1由条件知1(20)F -,,2(20)F ,,设11()A x y ,,22()B x y ,.设()M x y ,,则1(2)F M x y =+,,111(2)F A x y =+,,1221(2)(20)F B x y FO =+=,,,, 由1111F M F A F B FO =++⇒121226x x x y y y +=++⎧⎨=+⎩ ⇒12124x x x y y y+=-⎧⎨+=⎩⇒AB 的中点坐标为422x y -⎛⎫ ⎪⎝⎭,. 当AB 不与x 轴垂直时,1212024822y y y y x x x x --==----, 即1212()8y y y x x x -=--. 又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得12121212()()()()x x x x y y y y -+=-+,即1212()(4)()x x x y y y --=-.将1212()8y y y x x x -=--代入上式,化简得22(6)4x y --=. 当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程. 所以点M 的轨迹方程是22(6)4x y --=. 2假设在x 轴上存在定点(0)C m ,,使CA ·CB 为常数. 当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±.代入222x y -=有2222(1)4(42)0k x k x k -+-+=. 则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421k x x k +=-,于是CA ·CB 22221212(1)(2)()4k x x k m x x k m =+-++++22222222(1)(42)4(2)411k k k k m k m k k +++=-++-- 222222(12)2442(12)11m k m m m m k k -+-=+=-++--. 因为CA ·CB 是与k 无关的常数,所以440m -=,即1m =,此时CA ·CB =-1.当AB 与x 轴垂直时,点A B ,的坐标可分别设为(2,(2,此时CA ·CB =1,√2·1,-√2=-1.故在x 轴上存在定点(10)C ,,使CA ·CB 为常数.。
求动点轨迹方程的三种基本方法

求动点轨迹方程的三种基本方法梁关化,2015,6,16高考数学的解几题中有一类是求动点轨迹方程题。
有的复习资料归纳这类题的解法过细,其实从历届的高考题来看,主要是下面三种:一是直接法,二是消参法,三是定义法。
直接法就是根据题目提供的明的和暗的条件,把动点的坐标满足的等式直接写出。
消参法就是分析动点的变动是因什么变动而引起,是另一动点,还是动直线,还是动曲线?如是另一动点引起,就把动点的坐标设为参数。
如是动直线引起,就把动直线方程的有关参数设为参数。
如是动曲线引起,就把动曲线方程的有关参数设为参数,接着根据题目提供的明的和暗的条件,把动点的坐标和参数满足的等式列出,最后把参数消去。
理论上,n 个参数需要(n+1)个等式才能把参数消去。
消参方法很奇妙,要通过解题,总结消参的技巧。
定义法就是分析动点满足的条件是否就是某一轨迹满足的条件,符合某一轨迹的定义,如是,就可以用待定法求解。
三法当中,高考解几大题考得最多的是消参法,难度也较大。
我在一篇消参法的小文中说到消参的许多具体做法,如代入法,加减法,平方后加减法,两式相乘法,两式相除法等等。
下面以2015年广东高考数学的解几大题为例,详细述说这三种方法。
(2015年广东高考数学的解几大题,文理同题,本小题满分14分)已知过原点的动直线l 与圆C 1:05622=+-+x y x 相交于不同的两点A ,B .(1) 求圆C 1的圆心坐标;(解略,答案:(3,0)) (2) 求线段AB 的中点M 的轨迹C 的方程;(答案:492322=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫ ⎝⎛≤<335x ) (3) 是否存在实数k ,使得直线L :)4(-=x k y 与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由。
(解略,答案:存在,752752≤≤-k 或34±=k )12221112222211(,),,,333,1,)(),322,,334,)()225,03,3y y M x y C M x x y y C M y x x C A B C C M C y y x -⊥⋅=-+=-+<+=<≤解法一(直接法):设则动直线l 的斜率为直线的斜率为由图易知l 从而有化简变形得(x-但由于动直线l 与圆相交于两个不同的点故圆心到直线l 的距离(即线段的长度)小于圆的半径,因此有(x-3)与(x-联立解得x>同时由图易知所以222112222222253,,3335)()(3)223(:)(,),(,),(,),650)65093620()0,5x y x M x y A x y B x y y kx x y x y x x x <≤+=<≤=⎧⎨+-+=⎩-+=∆=->⇒<因此动点M 的轨迹方程为(x-说明此法中用到平面几何的垂径分弦定理解法二(消参法):设动直线l 的方程为y=kx(这里的k 与第三小题中的k不同).解方程组消后整理得(1+k 于是有1+k 1+k 12222222222263(1)3(2)33)()2295503,3533335)()(3)223(:(,),x x k y y x x y x y xM x y +=⎧=⎪⎪∴⎨⎪=⎪⎩+=<<≤∴<≤+=<≤∆1+k 1+k 1+k 消去k 后,再变形得(x-由1+k ,得x>,同时由图易知因此,动点M 的轨迹方程为(x-说明消k 是分两步进行,先(2)式除以(1)式,求出k=,再代入(1)即可)解法三(定义法):设由图易知OMC 12222223,0),233,,22335)()3,223335,)()(3)223(:MC y x y x =+=<≤+=<≤是一个直角三角形,其斜边中点C 的坐标为(所以动点M 的轨迹以C 为圆心,为半径的圆.因此动点M 的轨迹方程为(x-,用解法一的方法同样可以求出x 的取值范围:因此动点M 的轨迹方程为(x-说明此法中用到平面几何直角三角形斜边上的中线等于斜边的一半的性质) 虽然此题三法都可以解,但不是所有的题都是如此,我们要具体问题具体分析,选用最好的方法求解.此题还涉及到轨迹的完备性问题,如果考生不注意,肯定被扣分.。
求轨迹方程的常用方法
求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 定义法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。
2. 直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发 ______ 动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标x, y 与该参数t的函数关系x = f (t),y= g (t),进而通过消参化为轨迹的普通方程F (x, y)= 0。
4. 代入法(相关点法):如果动点P的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x, y),用(x , y)表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程。
5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
一:用定义法求轨迹方程例1:已知ABC 的顶点A , B 的坐标分别为(-4 , 0), (4, 0), C 为 动点,且满足5sin B sin A sin C, 求点C 的轨迹。
4【变式】:已知圆(呂+知°4■护=2于的圆心为M ,圆価一4尸斗尸=1的圆心为M ,—动圆与 这两个圆外切,求动圆圆心 P 的轨迹方程。
的比等于2(即储2)'求动点P 的轨迹方程? 三:用参数法求轨迹方程 此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为 普通方程。
高三高考数学中求轨迹方程的常见方法
高考数学中求轨迹方程的常见方法一、直接法当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.例1 已知点)0,2(-A 、).0,3(B 动点),(y x P 满足2x PB PA =⋅,则点P 的轨迹为( ) A .圆 B .椭圆 C .双曲线 D .抛物线解:),3(),,2(y x y x --=---= ,2)3)(2(y x x +---=⋅∴226y x x +--=. 由条件,2226x y x x =+--,整理得62+=x y ,此即点P 的轨迹方程,所以P 的轨迹为抛物线,选D.二、定义法定义法是指先分析、说明动点的轨迹满足某种特殊曲线(如圆、椭圆、双曲线、抛物线等)的定义或特征,再求出该曲线的相关参量,从而得到轨迹方程.例2 已知ABC ∆中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程.解:如右图,以直线AB 为x 轴,线段AB 的中点为原 点建立直角坐标系. 由题意,b c a ,,构成等差数列,∴b a c +=2, 即4||2||||==+AB CB CA ,又CA CB >,∴C 的轨迹为椭圆的左半部分.在此椭圆中,1,2='='c a ,3='b ,故C 的轨迹方程为)2,0(13422-≠<=+x x y x . 三、代入法当题目中有多个动点时,将其他动点的坐标用所求动点P 的坐标y x ,来表示,再代入到其他动点要满足的条件或轨迹方程中,整理即得到动点P 的轨迹方程,称之代入法,也称相关点法、转移法.例3 如图,从双曲线1:22=-y x C 上一点Q 引直线2:=+y x l 的垂线,垂足为N ,求线段QN 的中点P 的轨迹方程.解:设),(),(11y x ,Q y x P ,则)2,2(11y y x x N --.ΘN 在直线上,.22211=-+-∴y y x x ① 又l PN ⊥得,111=--x x y y 即011=-+-x y y x .②联解①②得⎪⎪⎩⎪⎪⎨⎧-+=-+=22322311x y y y x x .又点Q 在双曲线C 上,1)223()223(22=-+--+∴x y y x ,化简整理得:01222222=-+--y x y x ,此即动点P 的轨迹方程.四、几何法几何法是指利用平面几何或解析几何知识分析图形性质,发现动点的运动规律和要满足的条件,从而得到动点的轨迹方程.例4 已知点)2,3(-A 、)4,1(-B ,过A 、B 作两条互相垂直的直线1l 和2l ,求1l 和2l 的交点M 的轨迹方程.解:由平面几何知识可知,当ABM ∆为直角三角形时,点M 的轨迹是以AB 为直径的圆.此圆的圆心即为AB 的中点)1,1(--,半径为25221=AB ,方程为13)1()1(22=+++y x . 故M 的轨迹方程为13)1()1(22=+++y x .五、参数法参数法是指先引入一个中间变量(参数),使所求动点的横、纵坐标y x ,间建立起联系,然后再从所求式子中消去参数,得到y x ,间的直接关系式,即得到所求轨迹方程.例5 过抛物线px y 22=(0>p )的顶点O 作两条互相垂直的弦OA 、OB ,求弦AB 的中点M 的轨迹方程.解:设),(y x M ,直线OA 的斜率为)0(≠kk ,则直线OB 的斜率为k1-.直线OA 的方程为kx y =,由⎩⎨⎧==px y kx y 22解得⎪⎪⎩⎪⎪⎨⎧==kp y k px 222,即)2,2(2k p k p A ,同理可得)2,2(2pk pk B -. 由中点坐标公式,得⎪⎪⎩⎪⎪⎨⎧-=+=pk kpy pk k px 22,消去k ,得)2(2p x p y -=,此即点M 的轨迹方程. 六、交轨法求两曲线的交点轨迹时,可由方程直接消去参数,或者先引入参数来建立这些动曲线的联系,然后消去参数来得到轨迹方程,称之交轨法.例6 如右图,垂直于x 轴的直线交双曲线12222=-by a x 于M 、N 两点,21,A A 为双曲线的左、右顶点,求直线M A 1与N A 2的交点P 的轨迹方程,并指出轨迹的形状.解:设),(y x P 及),(),,(1111y x N y x M -,又)0,(),0,(21a A a A -,可得直线M A 1的方程为)(11a x a x y y ++=①;直线N A 2的方程为)(11a x ax y y -+-=②. ①×②得)(22221212a x ax y y ---=③. 又,1221221=-b y a x Θ)(2122221x a a b y -=-∴,代入③得)(22222a x ab y --=,化简得12222=+by a x ,此即点P 的轨迹方程. 当b a =时,点P 的轨迹是以原点为圆心、a 为半径的圆;当b a ≠时,点P 的轨迹是椭圆.高考动点轨迹问题专题讲解(一)选择、填空题1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段2.( )设(0,5)M ,(0,5)N -,MNP ∆的周长为36,则MNP ∆的顶点P 的轨迹方程是(A )22125169x y +=(0x ≠) (B )221144169x y +=(0x ≠) (C )22116925x y +=(0y ≠) (D )221169144x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ;4.P 在以1F 、2F 为焦点的双曲线221169x y -=上运动,则12F F P ∆的重心G 的轨迹方程是 ; 5.已知圆C:22(16x y ++=内一点()A ,圆C 上一动点Q , AQ 的垂直平分线交CQ 于P 点,则P 点的轨迹方程为 .2214x y += 6.△ABC 的顶点为(5, 0)A -、(5, 0)B ,△ABC 的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是 ;221916x y -=(3x >) 变式:若点P 为双曲线221916x y -=的右支上一点,1F 、2F 分别是左、右焦点,则△12PF F 的内切圆圆心的轨迹方程是 ;推广:若点P 为椭圆221259x y +=上任一点,1F 、2F 分别是左、右焦点,圆M 与线段1F P 的延长线、线段2PF 及x 轴分别相切,则圆心M 的轨迹是 ;7.已知动点M 到定点(3,0)A 的距离比到直线40x +=的距离少1,则点M 的轨迹方程是 .212y x =8.抛物线22y x =的一组斜率为k 的平行弦的中点的轨迹方程是 .4kx =(28k y >) 9.过抛物线24y x =的焦点F 作直线与抛物线交于P 、Q 两点,当此直线绕焦点F 旋转时, 弦PQ 中点的轨迹方程为 . 解法分析:解法1 当直线PQ 的斜率存在时, 设PQ 所在直线方程为(1)y k x =-与抛物线方程联立,2(1),4y k x y x=-⎧⎨=⎩ 消去y 得 2222(24)0k x k x k -++=. 设11(,)P x y ,22(,)Q x y ,PQ 中点为(,)M x y ,则有21222,22(1).x x k x k y k x k ⎧++==⎪⎪⎨⎪=-=⎪⎩消k 得22(1)y x =-. 当直线PQ 的斜率不存在时,易得弦PQ 的中点为(1,0)F ,也满足所求方程.故所求轨迹方程为22(1)y x =-. 解法2 设11(,)P x y ,22(,)Q x y ,由2112224,4.y x y x ⎧=⎪⎨=⎪⎩ 得121212()()4()y y y y x x -+=-,设PQ 中点为(,)M x y ,当12x x ≠时,有121224y y y x x -⋅=-,又1PQ MF yk k x ==-,所以,21yy x ⋅=-,即22(1)y x =-. 当12x x =时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-.10.过定点(1, 4)P 作直线交抛物线:C 22y x =于A 、B 两点, 过A 、B 分别作抛物线C 的切线交于点M, 则点M 的轨迹方程为_________.44yx =-(二)解答题1.一动圆过点(0, 3)P ,且与圆22(3)100x y ++=相内切,求该动圆圆心C 的轨迹方程. (定义法)2.过椭圆221369x y +=的左顶点1A 作任意弦1A E 并延长到F ,使1||||EF A E =,2A 为椭圆另一顶点,连结OF 交2A E 于点P , 求动点P 的轨迹方程.3.已知1A 、2A 是椭圆22221x y a b+=的长轴端点,P 、Q 是椭圆上关于长轴12A A 对称的两点,求直线1PA 和2QA 的交点M 的轨迹.(交轨法)4.已知点G 是△ABC 的重心,(0,1), (0,1)A B -,在x 轴上有一点M ,满足||||MA MC =u u u r u u u u r , GM AB R λλ=(∈)u u u u r u u u r.(1)求点C 的轨迹方程;(2)若斜率为k 的直线l 与点C 的轨迹交于不同两点P 、Q ,且满足||||AP AQ =u u u r u u u r,试求k 的取值范围.解:(1)设(,)C x y ,则由重心坐标公式可得(,)33x y G . ∵ GM AB λ=u u u u r u u u r ,点M 在x 轴上,∴ (,0)3xM .∵ ||||MA MC =u u u r u u u u r,(0,1)A -,∴= 2213x y +=. 故点C 的轨迹方程为2213x y +=(1y ≠±).(直接法) (2)设直线l 的方程为y kx b =+(1b ≠±),11(,)P x y 、22(,)Q x y ,PQ 的中点为N .由22,3 3.y kx b x y =+⎧⎨+=⎩消y ,得222(13)63(1)0k x kbx b +++-=.∴ 22223612(13)(1)0k b k b ∆=-+->,即22130k b +->. ①又122613kbx x k+=-+,∴212122262()221313k b b y y k x x b b k k -+=++=+=++, ∴223(,)1313kb bN k k-++. ∵ ||||AP AQ =u u u r u u u r,∴ AN PQ ⊥,∴ 1ANk k =-,即 221113313bk kb k k ++=--+, ∴2132k b +=,又由①式可得 220b b ->,∴ 02b <<且1b ≠.∴ 20134k <+<且2132k +≠,解得11k -<<且k ≠. 故k 的取值范围是11k -<<且3k ≠±. 5.已知平面上两定点(0,2)M -、(0,2)N ,P 为一动点,满足MP MN PN MN ⋅=⋅u u u r u u u u r u u u r u u u u r.(Ⅰ)求动点P 的轨迹C 的方程;(直接法)(Ⅱ)若A 、B 是轨迹C 上的两动点,且AN NB λ=u u u r u u u r.过A 、B 两点分别作轨迹C 的切线,设其交点为Q ,证明NQ AB ⋅u u u r u u u r为定值.解:(Ⅰ)设(,)P x y .由已知(,2)MP x y =+u u u r ,(0,4)MN =u u u u r ,(,2)PN x y =--u u u r, 48MP MN y ⋅=+u u u r u u u u r.PN MN ⋅=u u u r u u u u r……………………………………………3分∵MP MN PN MN ⋅=⋅u u u r u u u u r u u u r u u u u r ,∴48y+= 整理,得 28x y =.即动点P 的轨迹C 为抛物线,其方程为28x y =.6.已知O 为坐标原点,点(1,0)E -、(1,0)F ,动点A 、M 、N 满足||||AE m EF =u u u r u u u r(1m >),0MN AF =⋅u u u u r u u u r ,1()2ON OA OF =+u u u r u u u r u u u r,//AM ME u u u u r u u u r .求点M 的轨迹W 的方程.解:∵0MN AF ⋅=u u u u r u u u r ,1()2ON OA OF =+u u u r u u u r u u u r,∴ MN 垂直平分AF .又//AM ME u u u u r u u u r,∴ 点M 在AE 上,∴ ||||||||2AM ME AE m EF m +===u u u u r u u u r u u u r u u u r ,||||MA MF =u u u r u u u r ,∴ ||||2||ME MF m EF +=>u u u r u u u r u u u r ,∴ 点M 的轨迹W 是以E 、F 为焦点的椭圆,且半长轴a m =,半焦距1c =, ∴ 22221b a c m =-=-.∴ 点M 的轨迹W 的方程为222211x y m m +=-(1m >). 7.设,x y R ∈,,i j 为直角坐标系内,x y 轴正方向上的单位向量,若向量(2)a xi y j =++r,(2)b xi y j =+-r , 且||||8a b +=r r.(1)求点(,)M x y 的轨迹C 的方程;(定义法)(2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB =+u u u r u u u r u u u r,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程,若不存在,试说明理由.解:(1)2211216x y +=; (2)因为l 过y 轴上的点(0,3).若直线l 是y 轴,则,A B 两点是椭圆的顶点.Q 0OP OA OB =+=u u u r u u u r u u u r,所以P 与O 重合,与四边形OAPB 是矩形矛盾.故直线l 的斜率存在,设l 方程为3y kx =+,1122(,),(,)A x y B x y .由223,1,1216y kx x y =+⎧⎪⎨+=⎪⎩ 消y 得22(43)18210,k x kx ++-=此时22(18)4(43)(21)k k ∆=-+->0恒成立,且1221843k x x k +=-+,1222143x x k=-+, Q OP OA OB =+u u u r u u u r u u u r,所以四边形OAPB 是平行四边形.若存在直线l ,使得四边形OAPB 是矩形,则OA OB ⊥,即0OA OB ⋅=u u u r u u u r.1122(,),(,)OA x y OB x y ==u u u r u u u rQ , ∴ 12120OA OB x x y y ⋅=+=u u u r u u u r.即21212(1)3()90k x x k x x ++++=.2222118(1)()3()4343k k k k k +⋅-+⋅-++ 90+=.2516k =,得5k =. 故存在直线l :53y x =+,使得四边形OAPB 是矩形. 8.如图,平面内的定点F 到定直线l 的距离为2,定点E 满足:||EF uuu r =2,且EF l ⊥于G ,点Q 是直线l 上一动点,点M 满足:FM MQ =u u u u r u u u u r ,点P 满足://PQ EF u u u r u u u r ,0PM FQ ⋅=u u u u r u u u r.(I )建立适当的直角坐标系,求动点P 的轨迹方程;(II )若经过点E 的直线1l 与点P 的轨迹交于相异两点A 、B ,令AFB θ∠=, 当34πθπ≤<时,求直线1l 的斜率k 的取值范围. 解:(1)以FG 的中点O 为原点,以EF 所在直线为y 轴,建立平面直角坐标系xoy ,设点(,)P x y ,则(0, 1)F ,(0, 3)E ,:1l y=-.∵ FM MQ =u u u u r u u u u r ,//PQ EF u u u r u u u r ,∴(,1)Q x -,(, 0)2xM .∵0PM FQ ⋅=u u u u r u u u r ,∴ ()()(2)02xx y -⨯+-⨯-=,即所求点P 的轨迹方程为24x y =. (2)设点))(,(),,(212211x x y x B y x A ≠设AF 的斜率为1k ,BF 的斜率为2k ,直线1l 的方程为3+=kx y由⎩⎨⎧=+=yx kx y 432…………6分 01242=--kx x 得1242121-==+∴x x k x x …………7分 9)4(44221222121==⋅=∴xx x x y y646)(22121+=++=+k x x k y y …………8分4216484||||cos 2222++-=+--=⋅=∴k k k k FB FA θ…………10分由于πθπ<≤43 2242122cos 122-≤++-<--≤<-∴k k 即θ…………11分 222242222≥∴≥++∴k k k解得4488-≤≥k k 或…………13分∴直线1l 斜率k 的取值范围是}8,8|{44-≥≥k k k 或9.如图所示,已知定点(1, 0)F ,动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且0PM PF ⋅=u u u u r u u u r ,||||PM PN =u u u u r u u u r.(1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A 、B 两点,若4OAOB ⋅=-u u u r u u u r,且||AB ≤l的斜率k 的取值范围.解:(1)设(,)N x y ,由||||PM PN =u u u u r u u u r得(,0)M x -,(0, )2y P ,(,)2y PM x =--u u u u r ,(1,)2yPF =-u u u r ,又0PM PF ⋅=u u u u r u u u r ,∴204yx -+=,即动点N 的轨迹方程为24y x =. 10.已知点(0, 1)F ,点M 在x 轴上,点N 在y 轴上,P 为动点,满足0MN MF ⋅=u u u,0MN MP +=u u u u r u u u r r .(1)求P 点轨迹E 的方程; (2)将(1)中轨迹E 按向量(0, 1)a=r平移后得曲线E ',设Q 是E '上任一点,过Q 作圆22(1)1x y ++=的两条切线,分别交x 轴与A 、B 两点,求||AB 的取值范围. 解:(1)设(, 0)M a 、(0, )N b 、(,)P x y ,则(,)MN a b =-u u u u r 、(, 1)MF a =-u u u r、(, )MP x a y =-u u u r.由题意得(, )(, 1)0,(, )(,)(0, 0).a b a a b x a y -⋅-=⎧⎨-+-=⎩ ∴ 20,, ,2a b xa b y ⎧+=⎪⎨==-⎪⎩ ∴ 214y x =, 故动点P 的轨迹方程为214y x =. 11.如图()A m 和(,)B n 两点分别在射线OS 、OT 上移动,且12OA OB ⋅=-u u u r u u u r ,O 为坐标原点,动点P 满足OP OA OB =+u u u r u u u r u u u r.(1)求m n ⋅的值; (2)求P 点的轨迹C 的方程,并说明它表示怎样的曲线?(3)若直线l 过点(2, 0)E 交(2)中曲线C 于M 、N 两点,且3ME EN =u u u r u u u r,求l 的方程. 解:(1)由已知得1()(,)22OA OB m n mn ⋅=⋅=-=-u u u r u u u r, ∴14mn =.(2)设P 点坐标为(,)x y (0x >),由OP OA OB =+u u u r u u u r u u u r得(,)()(,)x y m n =+())m n m n =+-,∴,)x m n y m n =+⎧⎪⎨=-⎪⎩ 消去m ,n 可得2243y x mn -=,又因14mn =,∴ P 点的轨迹方程为221(0)3y x x -=>.它表示以坐标原点为中心,焦点在x 轴上,且实轴长为2,焦距为4的双曲线2213y x -=的右支.(3)设直线l 的方程为2x ty =+,将其代入C 的方程得 223(2)3ty y +-= 即 22(31)1290t y ty -++=,易知2(31)0t -≠(否则,直线l的斜率为 又22214436(31)36(1)0t t t ∆=--=+>, 设1122(,),(,)M x y N x y ,则121222129,3131t y y y y t t -+==-- ∵ l 与C 的两个交点,M N 在y 轴的右侧212121212(2)(2)2()4x x ty ty t y y t y y =++=+++2222291234240313131t t t t t t t -+=⋅+⋅+=->---,∴ 2310t -<,即2103t <<,又由120x x +>同理可得 2103t <<,由3ME EN =u u u r u u u r 得 1122(2,)3(2,)x y x y --=-, ∴ 121223(2)3x x y y -=-⎧⎨-=⎩由122222123231t y y y y y t +=-+=-=--得22631t y t =-, 由21222229(3)331y y y y y t =-=-=-得222331y t =--, 消去2y 得2222363(31)31t t t =--- 解之得:2115t = ,满足2103t <<. 故所求直线l0y --=0y +-=.12.设A ,B分别是直线y x =和y x =上的两个动点,并且||AB =u u u r P 满足OP OA OB =+u u u r u u u r u u u r.记动点P 的轨迹为C .(I ) 求轨迹C 的方程;(II )若点D 的坐标为(0,16),M 、N 是曲线C 上的两个动点,且DM DN λ=u u u u r u u u r,求实数λ的取值范围.解:(I )设(,)P x y ,因为A 、B分别为直线y x =和y x =上的点,故可设11(,)5A x x,22(,)5B x x -. ∵OP OA OB =+u u u r u u u r u u u r ,∴1212,)x x x y x x =+⎧⎪⎨=-⎪⎩.∴1212,x x x x x y +=⎧⎪⎨-=⎪⎩.又AB =u u u r ∴2212124()()205x x x x -++=.∴22542045y x +=. 即曲线C 的方程为2212516x y +=. (II ) 设N (s ,t ),M (x ,y ),则由λ=,可得(x ,y-16)=λ (s ,t-16).故x s λ=,16(16)y t λ=+-.∵ M 、N 在曲线C 上, ∴⎪⎪⎩⎪⎪⎨⎧=+-+=+ 1.16)1616t (25s 1,16t 25s 22222λλλ消去s 得116)1616t (16)t 16(222=+-+-λλλ.由题意知0≠λ,且1≠λ,解得 17152t λλ-=. 又4t ≤, ∴421517≤-λλ. 解得 3553≤≤λ(1≠λ).故实数λ的取值范围是3553≤≤λ(1≠λ). 13.设双曲线22213y x a -=的两个焦点分别为1F 、2F ,离心率为2. (1)求此双曲线的渐近线1l 、2l的方程;(y x =)(2)若A 、B 分别为1l 、2l 上的动点,且122||5||AB F F =,求线段AB 的中点M 的轨迹方程,并说明是什么曲线.(22317525xy +=) 提示:||1010AB =⇒=,又11y x =,22y x =, 则1221)yy x x +=-,2112)y y x x -=+. 又 122x x x =+,122y y y =+代入距离公式即可.(3)过点(1, 0)N 是否存在直线l ,使l 与双曲线交于P 、Q 两点,且0OP OQ ⋅=u u u r u u u r,若存在,求出直线l 的方程;若不存在,说明理由.(不存在)14.已知点(1, 0)F ,直线:2l x =,设动点P 到直线l 的距离为d ,已知||PF =,且2332d ≤≤. (1)求动点P 的轨迹方程;15.如图,直线:1l ykx =+与椭圆22:2C ax y +=(1a >)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点). (1)若1k=,且四边形OAPB 为矩形,求a 的值;(3a =)(2)若2a =,当k 变化时(k R ∈),求点P 的轨迹方程.(22220x y y +-=(0y ≠))16.双曲线C :22221x y a b-=(0a >,0b >)的离心率为2,其中(0,)A b -,(, 0)B a ,且22224||||||||3OA OB OA OB +=⋅u u u r u u u r u u u r u u u r .(1)求双曲线C 的方程;(2)若双曲线C 上存在关于直线l :4y kx =+对称的点,求实数k 的取值范围.解:(I )依题意有:2222222c 2,a 4a b a b ,3a b c .⎧=⎪⎪⎪+=⎨⎪⎪+=⎪⎩解得:.2,3,1===c b a所求双曲线的方程为.1322=-y x ………………………………………6分 (Ⅱ)当k=0时,显然不存在.………………………………………7分当k≠0时,设双曲线上两点M 、N 关于直线l 对称.由l ⊥MN ,直线MN 的方程为1y x b k=-+.则M 、N 两点的坐标满足方程组由221y x b,k3x y 3.⎧=-+⎪⎨⎪-=⎩消去y 得2222(3k 1)x 2kbx (b 3)k 0-+-+=.…………………9分 显然23k10-≠,∴2222(2kb)4(3k 1)(b 3)k 0∆⎡⎤=---+>⎣⎦.即222k b 3k 10+->. ①设线段MN 中点D (00x ,y )则02202kb x ,3k 13k b y .3k 1-⎧=⎪⎪-⎨⎪=⎪-⎩∵D (00x ,y )在直线l 上,∴22223k b k b 43k 13k 1-=+--.即22k b=3k 1- ② 把②带入①中得 222k b +bk 0>,解得b 0>或b 1<-.∴223k 10k ->或223k 1<-1k -.即k >或1k 2<,且k≠0. ∴k的取值范围是11(,(,0)(0,))22-∞-+∞U U U .…………………14分 17.已知向量OA u u u r=(2,0),OC u u u r =AB =(0,1),动点M 到定直线y =1的距离等于d ,并且满足OM u u u u r ·AM u u u u r =K(CM u u u u r ·BM u u u u r -d 2),其中O 为坐标原点,K 为参数.(Ⅰ)求动点M 的轨迹方程,并判断曲线类型;(Ⅱ)如果动点M 的轨迹是一条圆锥曲线,其离心率e 满足33≤e ≤22,求实数K 的取值范围. 18.过抛物线24y x =的焦点作两条弦AB 、CD ,若0AB CD ⋅=u u u r u u u r ,1()2OM OA OB =+u u u u r u u u r u u u r ,1()2ON OC OD =+u u u r u u u r u u u r .(1)求证:直线MN 过定点;(2)记(1)中的定点为Q ,求证AQB ∠为钝角;(3)分别以AB 、CD 为直径作圆,两圆公共弦的中点为H ,求H 的轨迹方程,并指出轨迹是什么曲线.19.(05年江西)如图,M 是抛物线上2y x =上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA MB =.(1)若M 为定点,证明:直线EF 的斜率为定值;xyOA BEF M(2)若M 为动点,且90EMF∠=o ,求△EMF 的重心G 的轨迹.思路分析:(1)由直线MF (或ME )方程与抛物线方程组成的方程组解出点F 和点E 的坐标,利用斜率公式来证明;(2)用M 点的坐标将E 、F 点的坐标表示出来,进而表示出G 点坐标,消去0y 即得到G 的轨迹方程(参数法).解:(1)法一:设200(,)M y y ,直线ME 的斜率为k (0k >),则直线MF 的斜率为k -,方程为200()y y k x y -=-.∴由2002()y y k x y y x⎧-=-⎪⎨=⎪⎩,消x 得200(1)0ky y y ky -+-=,解得01F ky y k-=,∴ 202(1)F ky x k -=, ∴0022000022211214(1)(1)2E F EFE F ky ky y y k k k k ky ky ky x x y k k k -+---====---+--(定值).所以直线EF 的斜率为定值. 法二:设定点00(,)M x y ,11(,)E x y 、22(,)F x y ,由200211,y x y x ⎧=⎪⎨=⎪⎩ 得 010101()()y y y y x x -+=-,即011ME k y y =+;同理 021MF k y y =+.∵MA MB =,∴ ME MF k k =-,即010211y y y y =-++,∴ 1202y y y +=-.所以,1212221212120112EF y y y y k x x y y y y y --====---+(定值). 第一问的变式:过点M 作倾斜角互补的直线ME 、MF ,则直线EF 的斜率为定值;根据不同的倾斜角,可得出一组平行弦.(2)90,45,1,EMF MAB k ∠=∠==o o当时所以直线ME 的方程为200()y y k x y -=-由2002y y x y y x⎧-=-⎪⎨=⎪⎩得200((1),1)E y y --同理可得200((1),(1)).F y y +-+设重心G (x , y ),则有222200000000(1)(1)23333(1)(1)333M E F M E F y y y y x x x x y y y y x x x y ⎧+-+++++===⎪⎪⎨+--+++⎪===-⎪⎩消去参数0y 得2122()9273y x x =->. 20.如图,ABCD 是边长为2的正方形纸片,沿某动直线l 为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B 都落在边AD 上,记为B ',折痕l 与AB 交于点E ,点M 满足关系式EM EB EB '=+u u u u r u u u r u u u r.(1)建立适当的直角坐标系,求点M 的轨迹方程; (2)若曲线C 是由点M 的轨迹及其关于边AB 对称的曲线组成的,F 是AB 边上的一点,4BA BF =u u u r u u u r,过点F 的直线交曲线C 于P 、Q 两点,且PF FQ λ=u u u r u u u r ,求实数λ的取值范围.。
高考动点轨迹方程的常用求法(含练习题及答案)资料
高考动点轨迹方程的用求法〔含练习题及答案〕轨迹方程的经典求法一、定义法:运用有关曲线的定义求轨迹方程.例2:在4ABC 中,BC 24, AC, AB 上的两条中线长度之和为 39,求4ABC 的重心的轨迹方 程.:P 点轨迹为抛物线.应选D.、代入法:此方法适用于动点随曲线上点的变化而变化的轨迹问题 例3:△ ABC 的顶点B( 3,0) C(1,0),顶点A 在抛物线y轨迹方程.3 1 X O,一 、一 一 x一; 一,x 3x 2,①解:设G(x, y) , A(x 0, y o ),由重心公式,得3:,y 弛,V .3y.②3又「 A(x .,y .)在抛物线y x 2上,「. y .x 2 .③将①,②代入③,得3y (3x 2)2(y .),即所求曲线方程是y 3x 2 4x -(y 0).3解:以线段BC 所在直线为x 轴,线段BC 的中垂线为 y 轴建立直角坐标系,如图1, M 为重2 心,那么有 BM CM — 3926 . 3「.M 点的轨迹是以B, C 为焦点的椭圆, 其中 c 12, a 13 . b ,a 2 c 2 5.2:所求^ABC 的重心的轨迹方程为 — 169 2y—i(y 0) . 25、直接法:直接根据等量关系式建立方程.例 1 :点 A( 2,0) B(3,0),动点 P(x,y)满足P A PBx 2 ,那么点P 的轨迹是(A.圆B.椭圆C,双曲线D.抛物线解析:由题知PA ( 2 x y) , PB(3x, y),由 PA PB x 2 ,得(2 x)(3x) y 2x 2,即x 2上运动,求 4ABC 的重心G 的6四、待定系数法:当曲线的形状时,一般可用待定系数法解决(1)求E 点轨迹方程;(2)过A 作直线交以A, B 为焦点的椭圆于M, N 两点,线段MN 的中点到y 轴的距离为公,5且直线MN 与E 点的轨迹相切,求椭圆方程.解:(1)设 E(x, y),由 AE -(AB AD)知 E 为 BD 中点,易知 D(2x 2,2y). 2又 AD 2 ,那么(2x 2 2)2 (2 y)2 4.即 E 点轨迹方程为 x 2 y 2 1(y 0); (2)设 M(x, y i ), N(x 2, v2 ,中点(x 0, y (o ). 22由题意设椭圆方程为xr1 ,直线MN 方程为y k(x 2).a a 4••・直线MN 与E 点的轨迹相切,,/k L 1,解得k 眄.k 1 3将yX3(x 2)代入椭圆方程并整理,得4(a 2 3)x 2 4a 2x 16a 2 3a 4 0, 3 2x 〔 x 2a一 x o ------------------- -2——,2 2(a 3)222又由题意知x o4,即 T-解得a 2 8.故所求的椭圆方程为 上 £ 1.5 2(a 3) 58 4五、参数法:如果不易直接找出动点坐标之间的关系,可考虑借助中间变量(参数),把例4:线段AA 2a ,直线l 垂直平分AA 于O ,在l 上取两点P, P ,使其满足解:如图2,以线段AA 所在直线为x 轴,以线段AA 的中垂线为y 轴建 立直角坐标系. 设点 P(0, t)(t 0), 那么由题意,得P 0彳.由点斜式得直线AP, A P 的方程分别为y -(x a), y —(x a).ata例5:A, B, D 三点不在一条直线上,且A( 2,0) , B(2,0) , A D 2, A E ^(A B A D).4,求直线AP 与AP 的交点M 的轨迹方程.两式相乘,消去t,得4x 2 a 2y 2 4a 2(y 0).这就是所求点M 的轨迹方程.评析:参数法求轨迹方程,关键有两点:一是选参,容易表示出动点;二是消参,消参的途 径灵活多变.配套练习、选择题1.椭圆的焦点是 F i 、F 2, P 是椭圆上的一个动点,如果延长 F i P 到Q,使得|PQ|二|PF 2|,那么动点 Q的轨迹是()二、填空题迹方程为4.高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距 10 m ,如果把两旗杆底部的坐标分别确定为 A(- 5,0)、B(5, 0),那么地面观测两旗杆顶端仰角相等的点的轨迹方程是三、解做题5.A 、B 、C 是直线l 上的三点,且|AB|=|BC|=6,.0'切直线l 于点A,又过B 、C 作.O'异于l 的 两切线,设这两切线交于点P,求点P 的轨迹方程.A.圆B.椭圆C.双曲线的一支D.抛物线2一 .一 X 2.设A 1、A 2是椭圆一 92匕=1 的长轴两个端点,P i 、P 2是垂直于 A 1A 2的弦的端点,那么直线A i P i 与A 2P 2交点的轨迹方程为22A.L 工9 42 B.—92 C.—92D.—93. △ ABC 中,A 为动点,B 、B(-2a 1,0),C (2,0),且满足条件 sinC —sinB=^sinA,那么动点 A 的轨的交点为Q,求Q点的轨迹方程.. ..x2=1的实轴为A1A2,点P是双曲线上的一个动点,弓I A i QXA l P, A2QLA2P, A1Q与A2Q6.双曲线—ab22 2.「一 x y8.椭圆 - q=1(a>b>0),点P为其上一点,F i、F2为椭圆的焦点,/ F1PF2的外角平分线为1,点a bF2关于1的对称点为Q, F2Q交1于点R(1)当P点在椭圆上运动时,求R形成的轨迹方程;(2)设点R形成的曲线为C,直线1: y=k(x+J2a)与曲线C相交于A、B两点,当^ AOB的面积取得最大值时,求k的值.参考答案配套练习一、1.解析:|PF i|+|PF2|=2a,|PQ|=|PF2|,,|PF i|+|PF2|=|PF i|+|PQ|=2a,即|F i Q|=2a,.••动点Q到定点F i的距离等于定长2a,故动点Q的轨迹是圆答案:A2.解析:设交点P(x,y) ,A i(—3,0),A2(3,0),P i(X0,y o),P2(X0, —y o)A i、P i、P 共线,-一应—y—A2、P2、P 共线,x x0 x 3y Vo yx x0x 3解得x o=9,y o 型,代入得冬- 久-i,即止亡 i x x 9 49 4仅供学习与交流,如有侵权请联系网站删除谢谢6答案:C二、3.解析:由 sinC —sinB=』sinA,得 c — b=- a, 2 2・•・应为双曲线一支,且实轴长为 a ,故方程为285x+100=0.答案:4x 2+4y 2—85x+1..=.三、5.解:设过 B 、C 异于l 的两切线分别切..’于D 、E |BA|=|BD|, |PD|=|PE|, |CA|=|CE|,故 |PB|+|PC|=|BD |+|PD|+FC|=|BA|+|PE|+FC| 二|BA|+|CE|=|AB|+|CA|=6+I2=I8>6=|BC|,故由椭圆定义知,点P 的轨迹是以 B 、C 为两焦点的椭圆,以 l所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为 6.解:设 P(x o ,y o) (xw ± a),Q(x,y).「A i (—a,0),A 2(a,0).22 b 2x .2—aVJa 为2,即 b 2(-x 2)-a 2(---)2=a 2b 2yQ 点坐标为(x i , —y i ),又有 A i ( — m,0),A 2(m,0),22 2 答案:竽崇i(xJ)4.解析:设 P(x,y),依题意有 5 ,(x 5)2 y 2(x 5)2=,化简彳导P 点轨迹方程为4x 2+4y 2 -yy一八 x a由条件yx a y . x . ax . y . x . ay .x(x . a)22x a那么A i P 的方程为:y= -y I (xx i mm)A 2Q 的方程为:y=-必/-------- (x x i mm)m 2)i6x 2 * 2~ a i6y ar i(x ).3a 2 4两点,两切线交于点 P.由切线的性质知:2 2x y一 一 二i(yw0)8i 72而点P(x o ,y o )在双曲线上,化简得Q 点的轨迹方程为:a 2x 2—b 2y 2=a 4(xw ± a).7.解:⑴设P 点的坐标为(x i ,y i ),那么2n 八,2 〜2、 2 (x 1 m ). m21=1.此即为M 的轨迹方程. n(2)当mwn 时,M 的轨迹方程是椭圆.2 m 一 一 2 2e =lm__.e= ----------- , m8.解:(1)二.点F 2关于l 的对称点为Q,连接PQ,,/F 2PR=/QPR, |F 2R|=|QR|, |PQ|=|PF 2|又由于l 为/ F 1PF 2外角的平分线,故点 F i 、P 、Q 在同一直线上,设存在R(X 0,y o) ,Q(x i ,y i ),F i(— c,0),F 2(c,0).|F 1Q|=|F 2P|+|PQ|=|F 1P|+|PF 2|=2a,那么(x 1+c)2+y 12=(2a)2x 〔 c 2y 1 2得 x 1二2x .一 c,y 1=2y o .(2x o )2+(2y o )2=(2a)2, •1- x o 2+y o 2=a 2 故R 的轨迹方程为:x 2+y 2=a 2(yw 0)(2)如右图,••• S AAOB =1|QA| |OB| - sinAOB= a- sinAOB , 一 , .... 1c 当/AOB=90 时,S AAOB 最大值为-a 2. 此时弦心距|OC|二 I"2ak|1 k2 ,在 RtAAOC 中,/ AOC=45° ,|OC | | . 2ak |2 1 .3cos45 ——,k ——.22,离心率m n(ii)当mvn 时,焦点坐标为(0, 土 Jm ―n 7,准线方程为y= ±2n 2,n —2 ,离心率 m 2 2n m e= ------------- n又因点P 在双曲线上,2代入③并整理得 Jm(i )当m>n 时,焦点坐标为(土 J m ―n 2 ,0),准线方程为x=±xo又V .|OA| a1 k2 2 32 2x y7.双曲线—今=1(m>0,n>0)的顶点为A i、A2,与y轴平行的直线l交双曲线于点P、Q. m n(1)求直线A1P与A2Q交点M的轨迹方程;(2)当mwn时,求所得圆锥曲线的焦点坐标、准线方程和离心率① X ②得:y2=_ 2yi2(x2x i m。
高考数学知识点:动点的轨迹方程_知识点总结
高考数学知识点:动点的轨迹方程_知识点总结高考数学知识点:动点的轨迹方程动点的轨迹方程:在直角坐标系中,动点所经过的轨迹用一个二元方程f(x,y)=0表示出来。
求动点的轨迹方程的基本方法:直接法、定义法、相关点法、参数法、交轨法等。
1、直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直接法;用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。
求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。
2、定义法:利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,高考生物,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件。
定义法的关键是条件的转化??转化成某一基本轨迹的定义条件;3、相关点法:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x′,y′)的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x′,y′表示为x,y 的式子,再代入Q的轨迹方程,然而整理得P的轨迹方程,代入法也称相关点法。
一般地:定比分点问题,对称问题或能转化为这两类的轨迹问题,都可用相关点法。
4、参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。
用什么变量为参数,要看动点随什么量的变化而变化,常见的参数有:斜率、截距、定比、角、点的坐标等。
要特别注意消参前后保持范围的等价性。
多参问题中,根据方程的观点,引入n 个参数,需建立n+1个方程,才能消参(特殊情况下,能整体处理时,方程个数可减少)。
5、交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例谈求动点轨迹方程的几种方法
求动点的轨迹方程问题是高考的热点问题,难度较大,根据近几年全国卷的
相关题目的得分情况开看,得分率普遍较低.求动点轨迹方程的关键是要仔细审题,分析已知条件和动点轨迹的特点,然后将动点满足的条件用动点坐标来表示,化简要注意等价变形,并要考虑一些特殊点是否适合方程.
求动点的轨迹方程的一般步骤:在平面直角坐标系中,设动点,根据
题目条件,得出横坐标x与纵坐标y的关系式,即为动点的轨迹方程.简化来说,核心步骤是建系、设点、列式、代人、化简、检验.
一、待定系数法
当已知曲线的形状时,利用待定系数法,设出曲线方程,根据已知条件,求
出未知数.此类题目一般比较简单.
例1.与椭圆共焦点,且过点的双曲线方程为()
A. B. C. D.
【解析】由题得椭圆的焦点为,所以双曲线的焦点为,设双曲线的方程为,所以,解之得
所以双曲线的方程为 .故选:B.
【答案】B.
二、定义法
定义法往往是根据课本中椭圆、双曲线与抛物线的定义,需要利用数形结合
思想,挖掘位置关系,研究动点满足的几何特征,从题目的已知条件中提取出相
关定义进行求解.
例2.动圆M与圆外切,与圆内切,则动圆圆
心M的轨迹方程是__________.
【来源】安徽省淮南市2019-2020学年高二上学期期末数学(文)试题
【解析】设动圆的圆心为:,半径为,
动圆与圆外切,与圆内切,
所以,,
,因此该动圆是以原点为中心,焦
点在轴上的椭圆,且,,解得,∴,椭圆的方程为: .
【答案】.
名师点拨:如果动圆与两个相互内含的定圆的位置关系为一个内切,一个外切,那么动圆圆心的轨迹为椭圆.同样可得:
1.如果动圆与两个相离的定圆(圆M、圆N)的位置关系为与某一个外切,
某一个内切,那么动圆的圆心的轨迹为双曲线;
2.如果动圆与两个相离的定圆(圆M、圆N)的位置关系为与圆M外切,与
圆N内切(与圆M内切,与圆N外切),那么动圆的圆心的轨迹为双曲线的一支;
3.如果动圆与两个相离的定圆的位置关系为同时外切或内切,那么动圆的圆
心的轨迹为双曲线的一支.
4.如果动圆与一个定圆和一条直线同时相切(直线与定圆不相切),那么动
圆的圆心的轨迹为抛物线;
5.如果动圆与一个定圆和一条直线同时相切(直线与定圆相切),那么动圆
的圆心的轨迹为抛物线或一条射线.
三、直译法
根据题意中动点的几何关系,将其转化为动点坐标的关系式,化简后即为动点P的轨迹方程,在将关系式进行变形和化简的过程中,一定要注意是否等价.
例3..动点与定点的距离和它到定直线的距离的比是,则
动点的轨迹方程是___________.
【来源】广东省阳江市第三中学2019-2020学年高二上学期第二次月考试题【解析】设,则,化简得: .
【答案】 .
名师点拨:已知平面内某动点P到定点F的距离与到定直线l的距离之比为e,当时,动点P的轨迹为椭圆;当时,动点P的轨迹为双曲线;当时,动点P的轨迹为抛物线.此为圆锥曲线的第二定义.
例4.已知两点、,直线、相交于点,且这两条直
线的斜率之积为,则点的轨迹方程为________.
【来源】河南省南阳市第一中学2019-2020学年高二上学期第四次月考数学(理)试题
【解析】设点,由直线、的斜率之积为,
整理得,即,
因此,点的轨迹方程为 .
【答案】 .
名师点拨:已知平面内某动点P到两定点,的斜率的乘积等
于常数,则该动点的轨迹为椭圆;动点P到两定点,的
斜率的乘积等于常数,则该动点的轨迹为抛物线.此为圆锥曲线的第三定义.
四、相关点法(涉及点差)
根据题目中的条件,无法直接列出动点的相关关系式,但是所研究的动点本
身不是主动
运动,而是受另一动点运动的牵制,即动点是随着另一相关点的运动而运动,一般需要将两个点的坐标都设出来,用动点的坐标表示相关点的坐标,代入相关
点所满足的等式,便可得到动点的轨迹方程.
例5.已知椭圆的左右焦点为、,点为椭圆上任意一点,
过作的外角平分线的垂线,垂足为点,过点作轴的垂线,垂足为,线段的中点为,则点的轨迹方程为___________.
【来源】邯郸市大名一中2020-2021学年高二上学期
10月月考题
【解析】如图,延长交的延长线于,连接
.
因为为的平分线且,
故为等腰三角形且,,
所以 .
在中,因为,所以,
故的轨迹方程为: .令,,则,
因为线段的中点为,所以,所以,即 .
【答案】 .
五、参数法
有些题目很难直接找出动点的横、纵坐标,如果中间借助中间参数,如斜率、变角等,可以很容易地使动点的横、纵坐标之间建立联系,消去参数,即得动点
的轨迹方程.消参时一定要注意参数的取值范围对方程中的x和y的范围的影响.
例6.平面直角坐标系中,已知两点,,若点满足
(为原点),其中,且,则点的轨迹是()A.直线 B.椭圆 C.圆 D.双曲线
【来源】陕西省渭南市临渭区2019-2020学年高一下学期期末数学试题
【解析】设,则
,解得:,,
,整理得:,点的轨迹是直线.
【答案】A.
六、交轨法
如果动点是两条动曲线的交点,即动点的坐标同时满足两条曲线方程,选出一个适当的参数,求出两条动曲线的方程或动点坐标适合的含参数的等式,再消去参数,即得所求动点轨迹的方程,需注意动点的取值范围.
例7.已知过点的直线与相交于点,过点的直线与
相交于点,若直线与圆相切,则直线与的交点的轨迹方程为__________.
【来源】江苏省南通市如皋中学2020届高三创新班下学期高考冲刺模拟(三)数学试题
【解析】设直线AC,BD的斜率分别为,则直线AC,BD的方程分别为:
,据此可得:,
则:,直线CD的方程为:,
整理可得:,直线与圆相切,则:,
据此可得:,由于:,
两式相乘可得:,
即直线与的交点的轨迹方程为 .
名师点拨:求轨迹方程,要注意曲线上的点与方程的解是一一对应关系,检验应从两个方面进行:一是方程的化简是否是同解变形,消参的途径灵活多变;二是是否符合实际意义,注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.
注明:本文系2021年度河南省基础教育教学研究项目《新课标下数学思想
方法在高中物理中的应用与研究》(课题编号JCJYB210609028)的研究成果。