决胜考场高中物理模块六动量与动量守恒定律:考点2.2.5 连续碰撞问题 含答案
高考物理高考物理动量守恒定律解题技巧(超强)及练习题(含答案)

高考物理高考物理动量守恒定律解题技巧(超强)及练习题(含答案)一、高考物理精讲专题动量守恒定律1.28.如图所示,质量为m a=2kg的木块A静止在光滑水平面上。
一质量为m b= lkg的木块B以初速度v0=l0m/s沿水平方向向右运动,与A碰撞后都向右运动。
木块A与挡板碰撞后立即反弹(设木块A与挡板碰撞过程无机械能损失)。
后来木块A与B发生二次碰撞,碰后A、B同向运动,速度大小分别为1m/s、4m/s。
求:木块A、B第二次碰撞过程中系统损失的机械能。
【答案】9J【解析】试题分析:依题意,第二次碰撞后速度大的物体应该在前,由此可知第二次碰后A、B 速度方向都向左。
第一次碰撞,规定向右为正向 m B v0=m B v B+m A v A第二次碰撞,规定向左为正向 m A v A-m B v B= m B v B’+m A v A’得到v A=4m/s v B=2m/sΔE=9J考点:动量守恒定律;能量守恒定律.视频2.匀强电场的方向沿x轴正向,电场强度E随x的分布如图所示.图中E0和d均为已知量.将带正电的质点A在O点由能止释放.A离开电场足够远后,再将另一带正电的质点B放在O点也由静止释放,当B在电场中运动时,A、B间的相互作用力及相互作用能均为零;B离开电场后,A、B间的相作用视为静电作用.已知A的电荷量为Q,A和B的质量分别为m和.不计重力.(1)求A在电场中的运动时间t,(2)若B的电荷量q =Q,求两质点相互作用能的最大值E pm(3)为使B离开电场后不改变运动方向,求B所带电荷量的最大值q m【答案】(1)(2)145QE0d (3)Q【解析】【分析】【详解】解:(1)由牛顿第二定律得,A在电场中的加速度 a ==A在电场中做匀变速直线运动,由d =a得运动时间 t ==(2)设A、B离开电场时的速度分别为v A0、v B0,由动能定理得QE0d =mqE0d =A、B相互作用过程中,动量和能量守恒.A、B相互作用为斥力,A受力与其运动方向相同,B受的力与其运动方向相反,相互作用力对A做正功,对B做负功.A、B靠近的过程中,B的路程大于A的路程,由于作用力大小相等,作用力对B做功的绝对值大于对A做功的绝对值,因此相互作用力做功之和为负,相互作用能增加.所以,当A、B最接近时相互作用能最大,此时两者速度相同,设为v,,由动量守恒定律得:(m +)v,= mv A0 +v B0由能量守恒定律得:E Pm= (m+)—)且 q =Q解得相互作用能的最大值 E Pm=145QE0d(3)A、B在x>d区间的运动,在初始状态和末态均无相互作用根据动量守恒定律得:mv A+v B= mv A0 +v B0根据能量守恒定律得:m+=m+解得:v B = -+因为B不改变运动方向,所以v B = -+≥0解得: q≤Q则B 所带电荷量的最大值为:q m =Q3.(1)(6分)一质子束入射到静止靶核AI 2713上,产生如下核反应:p+AI 2713→x+n 式中p 代表质子,n 代表中子,x 代表核反应产生的新核。
高中物理动量定理解题技巧及练习题(含答案)

高中物理动量定理解题技巧及练习题(含答案)一、高考物理精讲专题动量定理1.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求:(i )C 与A 碰撞前的速度大小(ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是32mv 0. 【解析】 【分析】 【详解】试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032CA I mv =-即A 、C 碰过程中C 对A 的冲量大小为032mv . 方向为负.考点:动量守恒定律 【名师点睛】本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.2.如图所示,一质量m 1=0.45kg 的平顶小车静止在光滑的水平轨道上.车顶右端放一质量m 2=0.4 kg 的小物体,小物体可视为质点.现有一质量m 0=0.05 kg 的子弹以水平速度v 0=100 m/s 射中小车左端,并留在车中,已知子弹与车相互作用时间极短,小物体与车间的动摩擦因数为μ=0.5,最终小物体以5 m/s 的速度离开小车.g 取10 m/s 2.求:(1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小. (2)小车的长度.【答案】(1)4.5N s ⋅ (2)5.5m 【解析】①子弹进入小车的过程中,子弹与小车组成的系统动量守恒,有:0011()o m v m m v =+,可解得110/v m s =;对子弹由动量定理有:10I mv mv -=-, 4.5I N s =⋅ (或kgm/s); ②三物体组成的系统动量守恒,由动量守恒定律有:0110122()()m m v m m v m v +=++;设小车长为L ,由能量守恒有:22220110122111()()222m gL m m v m m v m v μ=+-+- 联立并代入数值得L =5.5m ;点睛:子弹击中小车过程子弹与小车组成的系统动量守恒,由动量守恒定律可以求出小车的速度,根据动量定理可求子弹对小车的冲量;对子弹、物块、小车组成的系统动量守恒,对系统应用动量守恒定律与能量守恒定律可以求出小车的长度.3.如图所示,在倾角θ=37°的足够长的固定光滑斜面的底端,有一质量m =1.0kg 、可视为质点的物体,以v 0=6.0m/s 的初速度沿斜面上滑。
高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)

(1)A、B 相碰后瞬间的共同速度的大小; (2)A、B 相碰前弹簧具有的弹性势能; (3)若在斜面顶端再连接一光滑的半径 R=x0 的半圆轨道 PQ,圆弧轨道与斜面相切 于最高点 P,现让物块 A 以初速度 v 从 P 点沿斜面下滑,与 B 碰后返回到 P 点还具有向上 的速度,则 v 至少为多大时物块 A 能沿圆弧轨道运动到 Q 点.(计算结果可用根式表示)
mv2 (m M )v mv2
解得:v=0.40m/s
对
P1、P2、M
为系统:
f2L
1 2
mv22
1 (m 2
M )v2
代入数值得:L=3.8m
滑板碰后,P1 向右滑行距离: s1
v2 2a1
0.08m
P2 向左滑行距离: s2
v22 2a2
2.25m
所以 P1、P2 静止后距离:△S=L-S1-S2=1.47m
根据能量守恒定律得: m + = m +
解得:vB = - +
因为 B 不改变运动方向,所以 vB = - + ≥0
解得: q≤ Q
则 B 所带电荷量的最大值为:qm = Q
5.如图所示,质量为 m 的由绝缘材料制成的球与质量为 M=19m 的金属球并排悬挂.现将 绝缘球拉至与竖直方向成 θ=600 的位置自由释放,下摆后在最低点与金属球发生弹性碰 撞.在平衡位置附近存在垂直于纸面的磁场.已知由于磁场的阻尼作用,金属球将于再次 碰撞前停在最低点处.求经过几次碰撞后绝缘球偏离竖直方向的最大角度将小于
450.
【答案】最多碰撞 3 次 【解析】 解:设小球 m 的摆线长度为 l
小球 m 在下落过程中与 M 相碰之前满足机械能守恒:
高考物理动量守恒定律题20套(带答案)含解析

高考物理动量守恒定律题20套(带答案)含解析一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。
已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。
求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:(1)A 球与B 球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B 球的最小速度. 【答案】(1);(2);(3)零.【解析】试题分析:(1)A 、B 发生完全非弹性碰撞,根据动量守恒定律有:碰后A 、B 的共同速度损失的机械能(2)A 、B 、C 系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A 、B 在前,C 在后.此后C 向左加速,A 、B 的加速度沿杆向右,直到弹簧恢复原长,故A 、B 继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A 、B 的速度,C 的速度可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的,故B的最小速度为零 .考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答3.如图所示,在倾角30°的斜面上放置一个凹撸B,B 与斜面间的动摩擦因数36μ=;槽内靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离d =0.1m ,A 、B 的质量都为m=2kg ,B 与斜面间的最大静摩擦力可认为等于滑动摩摞力,不计A 、B 之间的摩擦,斜面足够长.现同时由静止释放A 、B,经过一段时间,A 与B 的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短,g 取210/m s .求:(1)释放后物块A 和凹槽B 的加速度分别是多大?(2)物块A 与凹槽B 的左侧壁第一次碰撞后瞬间A 、B 的速度大小;(3)从初始位置到物块A 与凹糟B 的左侧壁发生第三次碰撞时B 的位移大小. 【答案】(1)(2)v An =(n-1)m∙s -1,v Bn ="n" m∙s -1(3)x n 总=0.2n 2m 【解析】 【分析】【详解】(1)设物块A 的加速度为a 1,则有m A gsin θ=ma 1, 解得a 1=5m/s 2凹槽B 运动时受到的摩擦力f=μ×3mgcos θ=mg 方向沿斜面向上; 凹槽B 所受重力沿斜面的分力G 1=2mgsin θ=mg 方向沿斜面向下; 因为G 1=f ,则凹槽B 受力平衡,保持静止,凹槽B 的加速度为a 2=0 (2)设A 与B 的左壁第一次碰撞前的速度为v A0,根据运动公式:v 2A0=2a 1d 解得v A0=3m/s ;AB 发生弹性碰撞,设A 与B 第一次碰撞后瞬间A 的速度大小为v A1,B 的速度为v B1,则由动量守恒定律:0112A A B mv mv mv =+ ;由能量关系:2220111112222A AB mv mv mv =+⨯ 解得v A1=-1m/s(负号表示方向),v B1=2m/s4.如图所示,质量分别为m 1和m 2的两个小球在光滑水平面上分别以速度v 1、v 2同向运动,并发生对心碰撞,碰后m 2被右侧墙壁原速弹回,又与m 1碰撞,再一次碰撞后两球都静止.求第一次碰后m 1球速度的大小.【答案】【解析】设两个小球第一次碰后m 1和m 2速度的大小分别为和,由动量守恒定律得:(4分) 两个小球再一次碰撞,(4分)得:(4分)本题考查碰撞过程中动量守恒的应用,设小球碰撞后的速度,找到初末状态根据动量守恒的公式列式可得5.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m 、厚度为2d 的钢板静止在水平光滑桌面上.质量为m 的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d 、质量均为m 的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.【答案】【解析】设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)此过程中动能损失为:ΔE损=f·2d=12mv20-12×3mV2(2分)解得ΔE=13mv20分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)因为子弹在射穿第一块钢板的动能损失为ΔE损1=f·d=mv2(1分),由能量守恒得:1 2mv21+12mV21=12mv20-ΔE损1(2分)且考虑到v1必须大于V1,解得:v1=13(26v0设子弹射入第二块钢板并留在其中后两者的共同速度为V2,由动量守恒得:2mV2=mv1(1分)损失的动能为:ΔE′=12mv21-12×2mV22(2分)联立解得:ΔE′=13(1)2×mv20因为ΔE′=f·x(1分),可解得射入第二钢板的深度x为:(2分)子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解6.如图所示,静置于水平地面的三辆手推车沿一直线排列,质量均为m,人在极端的时间内给第一辆车一水平冲量使其运动,当车运动了距离L时与第二辆车相碰,两车以共同速度继续运动了距离L时与第三车相碰,三车以共同速度又运动了距离L时停止。
高考物理动量守恒定律的技巧及练习题及练习题(含答案)及解析

高考物理动量守恒定律的技巧及练习题及练习题(含答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,质量分别为m1和m2的两个小球在光滑水平面上分别以速度v1、v2同向运动,并发生对心碰撞,碰后m2被右侧墙壁原速弹回,又与m1碰撞,再一次碰撞后两球都静止.求第一次碰后m1球速度的大小.【答案】【解析】设两个小球第一次碰后m 1和m2速度的大小分别为和,由动量守恒定律得:(4分)两个小球再一次碰撞,(4分)得:(4分)本题考查碰撞过程中动量守恒的应用,设小球碰撞后的速度,找到初末状态根据动量守恒的公式列式可得2.如图,质量分别为m1=1.0kg和m2=2.0kg的弹性小球a、b,用轻绳紧紧的把它们捆在一起,使它们发生微小的形变.该系统以速度v0=0.10m/s沿光滑水平面向右做直线运动.某时刻轻绳突然自动断开,断开后两球仍沿原直线运动.经过时间t=5.0s后,测得两球相距s=4.5m,则刚分离时,a球、b球的速度大小分别为_____________、______________;两球分开过程中释放的弹性势能为_____________.【答案】①0.7m/s, -0.2m/s ②0.27J【解析】试题分析:①根据已知,由动量守恒定律得联立得②由能量守恒得代入数据得考点:考查了动量守恒,能量守恒定律的应用【名师点睛】关键是对过程分析清楚,搞清楚过程中初始量与末时量,然后根据动量守恒定律与能量守恒定律分析解题3.如图,水平面上相距为L=5m的P、Q两点分别固定一竖直挡板,一质量为M=2kg的小物块B静止在O点,OP段光滑,OQ段粗糙且长度为d=3m.一质量为m=1kg的小物块A 以v0=6m/s的初速度从OP段的某点向右运动,并与B发生弹性碰撞.两物块与OQ段的动摩擦因数均为μ=0.2,两物块与挡板的碰撞时间极短且均不损失机械能.重力加速度g=10m/s2,求(1)A与B在O点碰后瞬间各自的速度;(2)两物块各自停止运动时的时间间隔.【答案】(1),方向向左;,方向向右.(2)1s【解析】试题分析:(1)设A、B在O点碰后的速度分别为v1和v2,以向右为正方向由动量守恒:碰撞前后动能相等:解得:方向向左,方向向右)(2)碰后,两物块在OQ段减速时加速度大小均为:B经过t1时间与Q处挡板碰,由运动学公式:得:(舍去)与挡板碰后,B的速度大小,反弹后减速时间反弹后经过位移,B停止运动.物块A与P处挡板碰后,以v4=2m/s的速度滑上O点,经过停止.所以最终A、B的距离s=d-s1-s2=1m,两者不会碰第二次.在AB碰后,A运动总时间,整体法得B运动总时间,则时间间隔.考点:弹性碰撞、匀变速直线运动4.在日常生活中,我们经常看到物体与物体间发生反复的多次碰撞.如图所示,一块表面水平的木板静止放在光滑的水平地面上,它的右端与墙之间的距离L =0.08 m .现有一小物块以初速度v 0=2 m/s 从左端滑上木板,已知木板和小物块的质量均为1 kg ,小物块与木板之间的动摩擦因数μ=0.1,木板足够长使得在以后的运动过程中小物块始终不与墙接触,木板与墙碰后木板以原速率反弹,碰撞时间极短可忽略,取重力加速度g =10 m/s 2.求:(1)木板第一次与墙碰撞时的速度大小;(2)从小物块滑上木板到二者达到共同速度时,木板与墙碰撞的总次数和所用的总时间; (3)小物块和木板达到共同速度时,木板右端与墙之间的距离. 【答案】(1)0.4 s 0.4 m/s (2)1.8 s. (3)0.06 m 【解析】试题分析:(1)物块滑上木板后,在摩擦力作用下,木板从静止开始做匀加速运动,设木板加速度为a ,经历时间T 后与墙第一次碰撞,碰撞时的速度为1v则mg ma μ=,解得21/a g m s μ==①212L at =②,1v at =③ 联立①②③解得0.4t s =,10.4/v m s =④(2)在物块与木板两者达到共同速度前,在每两次碰撞之间,木板受到物块对它的摩擦力作用而做加速度恒定的匀减速直线运动,因而木板与墙相碰后将返回至初态,所用时间也为T .设在物块与木板两者达到共同速度v 前木板共经历n 次碰撞,则有:()02v v nT t a a t =-+∆=∆⑤式中△t 是碰撞n 次后木板从起始位置至达到共同速度时所需要的时间.由于最终两个物体一起以相同的速度匀速前进,故⑤式可改写为022v v nTa =-⑥ 由于木板的速率只能处于0到1v 之间,故有()01022v nTa v ≤-≤⑦ 求解上式得1.5 2.5n ≤≤ 由于n 是整数,故有n=2⑧由①⑤⑧得:0.2t s ∆=⑨;0.2/v m s =⑩从开始到物块与木板两者达到共同速度所用的时间为:4 1.8t T t s =+∆=(11) 即从物块滑上木板到两者达到共同速度时,木板与墙共发生三次碰撞,所用的时间为1.8s .(3)物块与木板达到共同速度时,木板与墙之间的距离为212s L a t =-∆(12) 联立①与(12)式,并代入数据得0.06s m = 即达到共同速度时木板右端与墙之间的距离为0.06m . 考点:考查了牛顿第二定律,运动学公式【名师点睛】本题中开始小木块受到向后的摩擦力,做匀减速运动,长木板受到向前的摩擦力做匀加速运动;当长木板反弹后,小木块继续匀减速前进,长木板匀减速向左运动,一直回到原来位置才静止;之后长木板再次向右加速运动,小木块还是匀减速运动;长木板运动具有重复性,由于木板长度可保证物块在运动过程中不与墙接触,故直到两者速度相同,一起与墙壁碰撞后反弹;之后长木板向左减速,小木块向右减速,两者速度一起减为零.5.如图所示,质量为m A =3kg 的小车A 以v 0=4m/s 的速度沿光滑水平面匀速运动,小车左端固定的支架通过不可伸长的轻绳悬挂质量为m B =1kg 的小球B (可看作质点),小球距离车面h =0.8m .某一时刻,小车与静止在光滑水平面上的质量为m C =1kg 的物块C 发生碰撞并粘连在一起(碰撞时间可忽略),此时轻绳突然断裂.此后,小球刚好落入小车右端固定的砂桶中(小桶的尺寸可忽略),不计空气阻力,重力加速度g =10m/s 2.求:(1)小车系统的最终速度大小v 共; (2)绳未断前小球与砂桶的水平距离L ; (3)整个过程中系统损失的机械能△E 机损. 【答案】(1)3.2m/s (2)0.4m (3)14.4J 【解析】试题分析:根据动量守恒求出系统最终速度;小球做平抛运动,根据平抛运动公式和运动学公式求出水平距离;由功能关系即可求出系统损失的机械能. (1)设系统最终速度为v 共,由水平方向动量守恒: (m A +m B ) v 0=(m A +m B +m C ) v 共 带入数据解得:v 共=3.2m/s(2)A 与C 的碰撞动量守恒:m A v 0=(m A +m C )v 1 解得:v 1=3m/s设小球下落时间为t ,则: 212h gt = 带入数据解得:t =0.4s 所以距离为:01()L v v =- 带入数据解得:L =0.4m(3)由能量守恒得:()()2201122B A B A B E m gh m m v m m m v ∆=++-++共损 带入数据解得:14.4E J ∆=损点睛:本题主要考查了动量守恒和能量守恒定律的应用,要注意正确选择研究对象,并分析系统是否满足动量守恒以及机械能守恒;然后才能列式求解.6.如图所示,一轻质弹簧的一端固定在滑块B 上,另一端与滑块C 接触但未连接,该整体静止放在离地面高为H 的光滑水平桌面上.现有一滑块A 从光滑曲面上离桌面h 高处由静止开始滑下,与滑块B 发生碰撞并粘在一起压缩弹簧推动滑块C 向前运动,经一段时间,滑块C 脱离弹簧,继续在水平桌面上匀速运动一段后从桌面边缘飞出.已知,2,3A B C m m m m m m ===,求:(1)滑块A 与滑块B 碰撞结束瞬间的速度v ; (2)被压缩弹簧的最大弹性势能E Pmax ; (3)滑块C 落地点与桌面边缘的水平距离 s. 【答案】(1)111233v v gh ==(2)6mgh (323Hh 【解析】 【详解】解:(1)滑块A 从光滑曲面上h 高处由静止开始滑下的过程,机械能守恒,设其滑到底面的速度为1v ,由机械能守恒定律有:2112=A A m gh m v 解之得:12v gh =滑块A 与B 碰撞的过程,A 、B 系统的动量守恒,碰撞结束瞬间具有共同速度设为v ,由动量守恒定律有:()1A A B m v m m v =+ 解之得:111233v v gh ==(2)滑块A 、B 发生碰撞后与滑块C 一起压缩弹簧,压缩的过程机械能守恒,被压缩弹簧的弹性势能最大时,滑块A 、B 、C 速度相等,设为速度2v 由动量守恒定律有: ()12A A B C m v m m m v =++ 由机械能守恒定律有: ()22max 21()2A A CB B P m v m m m m E v -++=+ 解得被压缩弹簧的最大弹性势能:max 16P E mgh =(3)被压缩弹簧再次恢复自然长度时,滑块C 脱离弹簧,设滑块A 、B 的速度为3v ,滑块C 的速度为4v ,分别由动量守恒定律和机械能守恒定律有:()()34A B A B C m m v m m v m v +=++()()22234111222A B A B C m m v m m v m v +=++ 解之得:30=v ,4123v gh =滑块C 从桌面边缘飞出后做平抛运动:4 s v t =212H gt =解之得滑块C 落地点与桌面边缘的水平距离:23s Hh =7.如图所示,光滑固定斜面的倾角Θ=30°,一轻质弹簧一端固定,另一端与质量M=3kg 的物体B 相连,初始时B 静止.质量m=1kg 的A 物体在斜面上距B 物体处s1=10cm 静止释放,A 物体下滑过程中与B 发生碰撞,碰撞时间极短,碰撞后与B 粘在一起,已知碰后整体经t=0.2s 下滑s2=5cm 至最低点. 弹簧始终处于弹性限度内,A 、B 可视为质点,g 取10m/s 2.(1)从碰后到最低点的过程中,求弹簧最大的弹性势能; (2)碰后至返回到碰撞点的过程中,求弹簧对物体B 的冲量大小.【答案】(1)1.125J ;(2)10Ns 【解析】 【分析】(1)A 物体下滑过程,A 物体机械能守恒,求得A 与B 碰前的速度;A 与B 碰撞是完全非弹性碰撞,A 、B 组成系统动量守恒,求得碰后AB 的共同速度;从碰后到最低点的过程中,A 、B 和弹簧组成的系统机械能守恒,可求得从碰后到最低点的过程中弹性势能的增加量. (2)从碰后至返回到碰撞点的过程中,A 、B 和弹簧组成的系统机械能守恒,可求得返回碰撞点时AB 的速度;对AB 从碰后至返回到碰撞点的过程应用动量定理,可得此过程中弹簧对物体B 冲量的大小. 【详解】(1)A 物体下滑过程,A 物体机械能守恒,则:02101302mgS sin mv = 解得:0012302100.10.51m m v gS sin s s==⨯⨯⨯=A 与B 碰撞是完全非弹性碰撞,据动量守恒定律得:01()mv m M v =+解得:10.25m v s =从碰后到最低点的过程中,A 、B 和弹簧组成的系统机械能守恒,则:20121()()302PT E m M v m M gS sin =+++增 解得: 1.125PT E J =增(2)从碰后至返回到碰撞点的过程中,A 、B 和弹簧组成的系统机械能守恒,可求得返回碰撞点时AB 的速度大小210.25m v v s == 以沿斜面向上为正,由动量定理可得:[]021()302()()T I m M gsin t m M v m M v -+⨯=+--+解得:10T I N s =⋅8.如图所示,内壁粗糙、半径R =0.4 m 的四分之一圆弧轨道AB 在最低点B 与光滑水平轨道BC 相切。
高中物理动量守恒定律题答案解析

高中物理动量守恒定律题答案解析关键信息1、题目类型2、涉及知识点3、解题思路4、详细步骤5、易错点分析6、拓展应用11 题目类型本次所解析的高中物理动量守恒定律题目主要包括以下几种类型:111 碰撞类问题,包括完全弹性碰撞、非完全弹性碰撞和完全非弹性碰撞。
112 爆炸类问题,研究爆炸前后系统的动量变化。
113 反冲类问题,如火箭发射等。
12 涉及知识点121 动量的定义:物体的质量与速度的乘积,即 p = mv。
122 动量守恒定律的表达式:m1v1 + m2v2 = m1v1' + m2v2'(在一个系统中,相互作用前的总动量等于相互作用后的总动量)123 守恒条件:系统不受外力或所受外力之和为零。
13 解题思路131 确定研究对象:明确所研究的系统由哪些物体组成。
132 分析受力情况:判断系统是否满足动量守恒的条件。
133 选取正方向:通常选取初速度方向为正方向。
134 列出动量守恒方程:根据已知条件和所选正方向,列出动量守恒方程。
14 详细步骤以一个典型的碰撞问题为例:两物体质量分别为 m1 和 m2,速度分别为 v1 和 v2,碰撞后速度变为 v1' 和 v2'。
首先,确定研究对象为这两个相互碰撞的物体组成的系统。
然后,分析受力,若在碰撞过程中没有外力作用或外力可忽略不计,则系统动量守恒。
选取初速度 v1 的方向为正方向。
根据动量守恒定律可得:m1v1 + m2v2 = m1v1' + m2v2'接下来,结合题目中的其他条件,如动能损失情况等,进一步求解未知量。
对于爆炸问题,系统在爆炸瞬间内力远大于外力,可近似认为动量守恒。
以一个爆炸问题为例:一个物体在爆炸前速度为 v,爆炸后分裂为两块,质量分别为 m1 和 m2,速度分别为 v1 和 v2。
确定研究对象为爆炸前的物体和爆炸后的两块。
分析受力,爆炸瞬间内力巨大,外力可忽略。
选取爆炸前速度方向为正方向。
高考物理考点《动量守恒定律》真题练习含答案
高考物理考点《动量守恒定律》真题练习含答案1.[2024·全国甲卷](多选)蹦床运动中,体重为60 kg的运动员在t=0时刚好落到蹦床上,对蹦床作用力大小F与时间t的关系如图所示.假设运动过程中运动员身体始终保持竖直,在其不与蹦床接触时蹦床水平.忽略空气阻力,重力加速度大小取10 m/s2.下列说法正确的是()A.t=0.15 s时,运动员的重力势能最大B.t=0.30 s时,运动员的速度大小为10 m/sC.t=1.00 s时,运动员恰好运动到最大高度处D.运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N答案:BD解析:根据牛顿第三定律结合题图可知,t=0.15 s时,蹦床对运动员的弹力最大,蹦床的形变量最大,此时运动员处于最低点,运动员的重力势能最小,故A错误;根据题图可知运动员从t=0.30 s离开蹦床到t=2.3 s再次落到蹦床上经历的时间为2 s,根据竖直上抛运动的对称性可知,运动员上升时间为1 s,则在t=1.3 s时,运动员恰好运动到最大高度处,t=0.30 s时运动员的速度大小v=10×1 m/s=10 m/s,故B正确,C错误;同理可知运动员落到蹦床时的速度大小为10 m/s,以竖直向上为正方向,根据动量定理F·Δt-mg·Δt=mv-(-mv),其中Δt=0.3 s,代入数据可得F=4 600 N,根据牛顿第三定律可知运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N,故D正确.故选BD.2.[2022·山东卷]我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭.如图所示,发射仓内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空.从火箭开始运动到点火的过程中()A.火箭的加速度为零时,动能最大B.高压气体释放的能量全部转化为火箭的动能C.高压气体对火箭推力的冲量等于火箭动量的增加量D.高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量答案:A解析:从火箭开始运动到点火的过程中,火箭先加速运动后减速运动,当加速度为零时,动能最大,A项正确;高压气体释放的能量转化为火箭的动能和重力势能及火箭与空气间因摩擦产生的热量,B项错误;根据动量定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f的冲量矢量和等于火箭动量的变化量,C项错误;根据动能定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f对火箭做的功之和等于火箭动能的变化量,D项错误.3.[2022·湖南卷]1932年,查德威克用未知射线轰击氢核,发现这种射线是由质量与质子大致相等的中性粒子(即中子)组成.如图,中子以速度v0分别碰撞静止的氢核和氮核,碰撞后氢核和氮核的速度分别为v1和v2.设碰撞为弹性正碰,不考虑相对论效应,下列说法正确的是()A.碰撞后氮核的动量比氢核的小B.碰撞后氮核的动能比氢核的小C.v2大于v1D.v2大于v0答案:B解析:设中子质量为m0,被碰粒子质量为m,碰后中子速度为v′0,被碰粒子速度为v,二者发生弹性正碰,由动量守恒定律和能量守恒定律有m 0v 0=m 0v ′0+m v ,12 m 0v 20 =12m 0v ′20 +12 m v 2,解得v ′0=m 0-m m 0+m v 0,v =2m 0m 0+mv 0,因为当被碰粒子分别为氢核(m 0)和氮核(14m 0)时,有v 1=v 0,v 2=215 v 0,故C 、D 项错误;碰撞后氮核的动量为p 氮=14m 0·v 2=2815m 0v 0,氢核的动量为p 氢=m 0·v 1=m 0v 0,p 氮>p 氢,故A 错误;碰撞后氮核的动能为E k 氮=12·14m 0v 22 =28225 m 0v 20 ,氢核的动能为E k 氢=12 ·m 0·v 21 =12m 0v 20 ,E k 氮<E k 氢,故B 正确. 4.[2021·全国乙卷]如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦.用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动.在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )A .动量守恒,机械能守恒B .动量守恒,机械能不守恒C .动量不守恒,机械能守恒D .动量不守恒,机械能不守恒答案:B解析:撤去推力后,小车、弹簧和滑块组成的系统所受合外力为零,满足系统动量守恒的条件,故系统动量守恒;由于撤去推力时滑块在车厢底板上有相对滑动,存在摩擦力做功的情况,故系统机械能不守恒,所以选项B 正确.5.[2023·新课标卷](多选)使甲、乙两条形磁铁隔开一段距离,静止于水平桌面上,甲的N 极正对着乙的S 极,甲的质量大于乙的质量,两者与桌面之间的动摩擦因数相等.现同时释放甲和乙,在它们相互接近过程中的任一时刻( )A .甲的速度大小比乙的大B .甲的动量大小比乙的小C .甲的动量大小与乙的相等D .甲和乙的动量之和不为零答案:BD解析:对甲、乙两条形磁铁分别做受力分析,如图所示对于整个系统,由于μm 甲g >μm 乙g ,合力方向向左,合冲量方向向左,所以合动量方向向左,甲的动量大小比乙的小,m 甲v 甲<m 乙v 乙,又m 甲>m 乙,故v 甲<v 乙,B 、D 正确,A 、C 错误.故选BD.6.[2021·全国乙卷](多选)水平桌面上,一质量为m 的物体在水平恒力F 拉动下从静止开始运动.物体通过的路程等于s 0时,速度的大小为v 0,此时撤去F ,物体继续滑行2s 0的路程后停止运动.重力加速度大小为g .则( )A .在此过程中F 所做的功为12m v 20 B .在此过程中F 的冲量大小等于32m v 0 C .物体与桌面间的动摩擦因数等于v 20 4s 0gD .F 的大小等于物体所受滑动摩擦力大小的2倍答案:BC解析:设物体与桌面间的动摩擦因数为μ,根据功的定义,可知在此过程中,F 做的功为W F =Fs 0=12m v 20 +μmgs 0,选项A 错误;物体通过路程s 0时,速度大小为v 0,撤去F 后,由牛顿第二定律有μmg =ma 2,根据匀变速直线运动规律有v 20 =2a 2·2s 0,联立解得μ=v 20 4s 0g ,选项C 正确;水平桌面上质量为m 的物体在恒力F 作用下从静止开始做匀加速直线运动,有F -μmg =ma 1,又v 20 =2a 1s 0,可得a 1=2a 2,可得F =3μmg ,即F 的大小等于物体所受滑动摩擦力大小的3倍,选项D 错误;对F 作用下物体运动的过程,由动量定理有Ft -μmgt=m v 0,联立解得F 的冲量大小为I F =Ft =32m v 0,选项B 正确.。
高中物理动量守恒定律解题技巧(超强)及练习题(含答案) (2).docx
高中物理动量守恒定律解题技巧( 超强 ) 及练习题 ( 含答案 )一、高考物理精讲专题动量守恒定律1.如图所示,质量分别为m1和 m2的两个小球在光滑水平面上分别以速度v1、 v2同向运动,并发生对心碰撞,碰后 m2被右侧墙壁原速弹回,又与 m1碰撞,再一次碰撞后两球都静止.求第一次碰后 m1球速度的大小 .【答案】【解析】设两个小球第一次碰后m1和 m2速度的大小分别为和,由动量守恒定律得:( 4 分)两个小球再一次碰撞,(4 分)得:( 4 分)本题考查碰撞过程中动量守恒的应用,设小球碰撞后的速度,找到初末状态根据动量守恒的公式列式可得2.如图所示,光滑水平直导轨上有三个质量均为m的物块 A、 B、 C,物块 B、 C 静止,物块 B 的左侧固定一轻弹簧(弹簧左侧的挡板质量不计);让物块 A 以速度 v0朝 B 运动,压缩弹簧;当A、 B 速度相等时, B 与 C 恰好相碰并粘接在一起,然后继续运动.假设 B 和 C 碰撞过程时间极短.那么从 A 开始压缩弹簧直至与弹簧分离的过程中,求.(1) A、 B 第一次速度相同时的速度大小;(2) A、 B 第二次速度相同时的速度大小;(3)弹簧被压缩到最短时的弹性势能大小【答案】( 1) v0( 2) v0(3)【解析】试题分析:( 1)对 A、B 接触的过程中,当第一次速度相同时,由动量守恒定律得,mv0=2mv 1,解得 v1=v0(2)设 AB 第二次速度相同时的速度大小v2,对 ABC 系统,根据动量守恒定律:mv0=3mv2解得 v2= v0(3) B 与 C接触的瞬间, B、 C 组成的系统动量守恒,有:解得 v3= v0系统损失的机械能为当 A、 B、C 速度相同时,弹簧的弹性势能最大.此时v2= v0根据能量守恒定律得,弹簧的最大弹性势能考点:动量守恒定律及能量守恒定律【名师点睛】本题综合考查了动量守恒定律和能量守恒定律,综合性较强,关键合理地选择研究的系统,运用动量守恒进行求解。
2025年高考物理总复习配套课件第六章动量动量守恒定律第2讲动量守恒定律
B.小球在弧形槽B上滑过程中,小球的机械能不守恒
C.小球和弧形槽A组成的系统满足动量守恒
D.小球不能上升到弧形槽B的顶端
解析:由于A是不固定的,小球下滑的过程中,一部分动能转移给了A,所以小球 的机械能不守恒,A正确;由于B是固定的,小球在上滑的过程中,动能转化为重 力势能,机械能守恒,B错误;小球最初和A的合动量为零,而当小球上升到静止 时,小球的动量为零,A的动量不为零,所以小球和弧形槽A组成的系统动量不守 恒,C错误;由于小球的一部分动能给了A,所以小球最终到达不了B的顶端,D 正确。 答案:AD
()
解析:P对Q有弹力的作用,并且在力的方向上有位移,在运动中,P会向左移动, P对Q的弹力方向垂直于接触面向上,与Q移动位移方向的夹角大于90°,所以P对 Q做功不为0,故A错误;因为P、Q之间的力属于系统内力,并且等大反向,两者 在力的方向上发生的位移相等,所以做功之和为0,故B正确;因为系统除重力外, 其他力做功代数和为零,所以P、Q组成的系统机械能守恒,系统水平方向上不受 外力的作用,水平方向上动量守恒,但是在竖直方向上Q有加速度,即竖直方向 上动量不守恒,故C、D错误。 答案:B
考法2 系统在某方向上动量守恒与机械能守恒的综合
2.如图所示,在光滑水平面上放置一个质量为 M 的滑块,滑块
的一侧是一个14弧形槽,凹槽半径为 R,A 点切线水平。另有一
个质量为 m 的小球以速度 v0 从 A 点冲上滑块,重力加速度大小为 g,不计摩擦。
下列说法中正确的是
()
A.当 v0= 2gR时,小球能到达 B 点 B.如果小球的速度足够大,小球将从滑块的左侧离开滑块后直接落到水平面上
系)中,从撤去推力开始,小车、弹簧和滑块组成的系统
()
2022年高考物理总复习第一部分常考考点复习第六章动量守恒定律第2讲动量守恒定律及其应用
第2讲动量守恒定律及其应用【课程标准】1.通过实验和理论推导,理解动量守恒定律,能用其解释生活中的有关现象。
知道动量守恒定律的普适性。
2.探究并了解物体弹性碰撞和非弹性碰撞的特点。
定量分析一维碰撞问题并能解释生产生活中的弹性碰撞和非弹性碰撞现象。
3.体会用动量守恒定律分析物理问题的方法,体会自然界的和谐与统一。
【素养目标】物理观念:能正确区分内力与外力。
科学思维:理解动量守恒定律的确切含义和表达式,知道定律的适用条件。
会用动量守恒定律解决碰撞、爆炸等问题。
一、动量守恒定律1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变,这就是动量守恒定律。
2.表达式:(1)p=p′,系统相互作用前的总动量p等于相互作用后的总动量p′。
(2)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和。
(3)Δp1=-Δp2,相互作用的两个物体动量的变化量等大反向。
3.适用条件:(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒。
(2)近似守恒:系统受到的合外力不为零,但当内力远大于外力时,系统的动量可近似看成守恒。
(3)某方向守恒:系统在某个方向上所受合外力为零时,系统在该方向上动量守恒。
二、弹性碰撞和非弹性碰撞1.碰撞:碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的现象。
2.特点:在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒。
3.分类:动量是否守恒机械能有无损失弹性碰撞守恒无损失非弹性碰撞守恒有损失完全非弹性碰撞守恒有损失且损失最大命题·传统文化情境如图是《三国演义》中的“草船借箭”,若草船的质量为m1,每支箭的质量为m,草船以速度v1返回时,对岸士兵万箭齐发,n支箭同时射中草船,箭的速度皆为v,方向与船行方向相同。
由此,草船的速度会增加多少?(不计水的阻力)提示:船与箭的作用过程系统动量守恒:m 1v1+nmv=(m1+nm)(v1+Δv)得Δv=nmm1+nm(v-v1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点2。
2.5 连续碰撞问题
1.如图所示,光滑的水平面上停着一只木球和载人小车,木球质量为m,人和车的总质量为M,已知M∶m=16∶1,人以速率v沿水平面将木球推向正前方的固定墙壁,木球被墙壁弹回之后,人接住球可以以同样的对地速度将球推向墙壁。
设木球与墙壁相碰时无动能损失,求:人经过几次推木球之后,再也不能接住木球?
2.如图所示,质量为m的由绝缘材料制成的球与质量为M=19m的金属球并排悬挂.现将绝缘球拉至与竖直方向成θ=60°的位置自由释放,下摆后在最低点处与金属球发生弹性碰撞。
在平衡位置附近存在垂直于纸面的磁场,已知由于磁场的阻尼作用,金属球将于再次碰撞前停在最低点处,求经过几次碰撞后绝缘球偏离竖直方向的最大角度将小于45°。
【答案】3次
3.某兴趣小组设计了一种实验装置,用来研究碰撞问题,其模型如右图所示。
用完全相同的轻绳将N个大小相同、质量不等的小球并列悬挂于一水平杆,球间有微小间隔,从左到右,球的编号依次为1、2、3…….N,球的质量依次递减,每个球的质量与其相邻左球质量之比为k(k<1。
将1号球向左拉起,然后由静止释放,使其与2号球碰撞,2号球再与3号球碰撞……所有碰撞皆为无机械能损失的正碰。
(不计空气阻力,忽略绳的伸长,g取10 m/s2)
(1)设与n+1号球碰撞前,n号球的速度为v n,求n+1
号球碰撞后的速度。
(2)若N=5,在1号球向左拉高h的情况下,要使5号球
碰撞后升高16h(16h小于绳长),问k值为多少?
(3)在第(2)问的条件下,悬挂哪个球的绳最容易断,为什么?
【答案】(1)2
1n
v
k
+
(2)0。
414 (3)悬挂1号球的绳最容易断,原因见解
4.
5.如图所示,一倾角为θ=45°的斜面固定于地面,斜面顶端离地面的高度h0=1 m,斜面底端有一垂直于斜面的固定挡板,在斜面顶端自由释放一质量m=0.09 kg的小物块(视为质点),小物块与斜面之间的动摩擦因数μ=0.2。
当小物块与挡板碰撞后,将以原速返回,重力加速度g取10 m/s2,在小物块与挡板的前4次碰撞过程中,挡板给予小物块的总冲量是多少
【答案】2(36)
5
+。