各种储能系统优缺点对比

各种储能系统优缺点对比
各种储能系统优缺点对比

史上最全储能系统优缺点梳理

谈到储能,人们很容易想到电池,但现有的电池技术很难满足电网级储能的要求。实际上,储能的市场潜力非常巨大,根据市场调研公司Pike Research的预测,从2011年到2021年的10年间,将有1220亿美元投入到全球储能项目中来。而在大规模储能系统中,最为广泛应用的抽水蓄能和压缩空气储能等传统的储能方式也在经历不断改进和创新。今天,无所不能(caixinenergy)为大家推荐一篇文章,该文章分析了目前全球的储能技术以及其对电网的影响和作用。

现有的储能系统主要分为五类:机械储能、电气储能、电化学储能、热储能和化学储能。目前世界占比最高的是抽水蓄能,其总装机容量规模达到了127GW,占总储能容量的99%,其次是压缩空气储能,总装机容量为440MW,排名第三的是钠硫电池,总容量规模为316MW。

全球现有的储能系统

1、机械储能

机械储能主要包括抽水蓄能、压缩空气储能和飞轮储能等。

(1)抽水蓄能:将电网低谷时利用过剩电力作为液态能量媒体的水从地势低的水库抽到地势高的水库,电网峰荷时高地势水库中的水回流到下水库推动水轮机发电机发电,效率一般为75%左右,俗称进4出3,具有日调节能力,用于调峰和备用。

不足之处:选址困难,及其依赖地势;投资周期较大,损耗较高,包括抽蓄损耗+线路损耗;现阶段也受中国电价政策的制约,去年中国80%以上的抽蓄都晒太阳,去年八月发改委出了个关于抽蓄电价的政策,以后可能会好些,但肯定不是储能的发展趋势。

(2)压缩空气储能(CAES):压缩空气蓄能是利用电力系统负荷低谷时的剩余电量,由电动机带动空气压缩机,将空气压入作为储气室的密闭大容量地下洞穴,当系统发电量不足时,将压缩空气经换热器与油或天然气混合燃烧,导入燃气轮机作功发电。国外研究较多,技术成熟,我国开始稍晚,好像卢强院士对这方面研究比较多,什么冷电联产之类的。

压缩空气储也有调峰功能,适合用于大规模风场,因为风能产生的机械功可以直接驱动压缩机旋转,减少了中间转换成电的环节,从而提高效率。

不足之处:一大缺陷在于效率较低。原因在于空气受到压缩时温度会升高,空气释放膨胀的过程中温度会降低。在压缩空气过程中一部分能量以热能的形式散失,在膨胀之前就必须要重新加热。通常以天然气作为加热空气的热源,这就导致蓄能效率降低。还有可以想到的不足就是需要大型储气装置、一定的地质条件和依赖燃烧化石燃料。

(3)飞轮储能:是利用高速旋转的飞轮将能量以动能的形式储存起来。需要能量时,飞轮减速运行,将存储的能量释放出来。飞轮储能其中的单项技术国内基本都有了(但和国外差距在10年以上),难点在于根据不同的用途开

发不同功能的新产品,因此飞轮储能电源是一种高技术产品但原始创新性并不足,这使得它较难获得国家的科研经费支持。

不足之处:能量密度不够高、自放电率高,如停止充电,能量在几到几

十个小时内就会自行耗尽。只适合于一些细分市场,比如高品质不间断电源等。

2、电气储能

(1)超级电容器储能:用活性炭多孔电极和电解质组成的双电层结构获得超大的电容量。与利用化学反应的蓄电池不同,超级电容器的充放电过程始终是物理过程。充电时间短、使用寿命长、温度特性好、节约能源和绿色环保。超级电容没有太复杂的东西,就是电容充电,其余就是材料的问题,目前研究的方向是能否做到面积很小,电容更大。超级电容器的发展还是很快的,目前石墨烯材料为基础的新型超级电容器,非常火。

Tesla首席执行官Elon Musk早在2011年就表示,传统电动汽车的电

池已经过时,未来以超级电容器为动力系统的新型汽车将取而代之。

不足之处:和电池相比,其能量密度导致同等重量下储能量相对较低,

直接导致的就是续航能力差,依赖于新材料的诞生,比如石墨烯。

(2)超导储能(SMES):利用超导体的电阻为零特性制成的储存电能的装置。超导储能系统大致包括超导线圈、低温系统、功率调节系统和监控系统4大部分。超导材料技术开发是超导储能技术的重中之重。超导材料大致可分为低温超导材料、高温超导材料和室温超导材料。

不足之处:超导储能的成本很高(材料和低温制冷系统),使得它的应用受到很大限制。可靠性和经济性的制约,商业化应用还比较远。

3、电化学储能

(1)铅酸电池:是一种电极主要由铅及其氧化物制成,电解液是硫酸溶液的蓄电池。目前在世界上应用广泛,循环寿命可达1000 次左右,效率能达到80%-90%,性价比高,常用于电力系统的事故电源或备用电源。

不足之处:如果深度、快速大功率放电时,可用容量会下降。其特点是能量密度低,寿命短。铅酸电池今年通过将具有超级活性的炭材料添加到铅酸电池的负极板上,将其循环寿命提高很多。

(2)锂离子电池:是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。主要应用于便携式的移动设备中,其效率可达95%以上,放电时间可达数小时,循环次数可达5000 次或更多,响应快速,是电池中能量最高的实用性电池,目前来说用的最多。近年来技术也在不断进行升级,正负极材料也有多种应用。

市场上主流的动力锂电池分为三大类:钴酸锂电池、锰酸锂电池和磷酸铁锂电池。前者能量密度高,但是安全性稍差,后者相反,国内电动汽车比如比亚迪,目前大多采用磷酸铁锂电池。但是好像老外都在玩三元锂电池和磷酸铁锂电池

锂硫电池也很火,是以硫元素作为正极、金属锂作为负极的一种电池,其理论比能量密度可达2600wh/kg,实际能量密度可达450wh/kg。但如何大幅提高该电池的充放电循环寿命、使用安全性也是很大的问题。

不足之处:存在价格高(4 元/wh)、过充导致发热、燃烧等安全性问题,需要进行充电保护。

(3)钠硫电池:是一种以金属钠为负极、硫为正极、陶瓷管为电解质隔膜的二次电池。循环周期可达到4500 次,放电时间6-7 小时,周期往返效率75%,能量密度高,响应时间快。目前在日本、德国、法国、美国等地已建有200 多处此类储能电站,主要用于负荷调平,移峰和改善电能质量。

不足之处:因为使用液态钠,运行于高温下,容易燃烧。而且万一电网没电了,还需要柴油发电机帮助维持高温,或者帮助满足电池降温的条件。

(4)液流电池:利用正负极电解液分开,各自循环的一种高性能蓄电池。电池的功率和能量是不相关的,储存的能量取决于储存罐的大小,因而可以储存长达数小时至数天的能量,容量可达MW 级。这个电池有多个体系,如铁铬体系,锌溴体系、多硫化钠溴体系以及全钒体系,其中钒电池最火吧。

不足之处:电池体积太大;电池对环境温度要求太高;价格贵(这个可能是短期现象吧);系统复杂(又是泵又是管路什么的,这不像锂电等非液流电池那么简单)。

电池储能都存在或多或少的环保问题。

4、热储能

热储能:热储能系统中,热能被储存在隔热容器的媒介中,需要的时候转化回电能,也可直接利用而不再转化回电能。热储能又分为显热储能和潜热储能。热储能储存的热量可以很大,所以可利用在可再生能源发电上。

不足之处:热储能要各种高温化学热工质,用用场合比较受限。

5、化学类储能

化学类储能:利用氢或合成天然气作为二次能源的载体,利用多余的电制氢,可以直接用氢作为能量的载体,也可以将其与二氧化碳反应成为合成天然气(甲烷),氢或者合成天然气除了可用于发电外,还有其他利用方式如交通等。德国热衷于推动此技术,并有示范项目投入运行。

不足之处:全周期效率较低,制氢效率仅40%,合成天然气的效率不到35%。

引用前人的总结:

PHS- 抽水蓄能;CAES- 压缩空气;Lead-Acid:铅酸电池;NiCd:镍镉电池;NaS:钠硫电池;ZEBRA:镍氯电池;Li-ion:锂电池;Fuel cell:燃料电池;Metal-air:金属空气电池;VRB:液流电池;ZnbBr:液流电池;PSB:液流电池;Solar Fuel:太阳能燃料电池;SMES:超导储能;Flywheel:飞轮; Capacitor/Supercapcitor:电容/超级电容;AL-TES:水/冰储热/冷系统;CES:低温储能系统;HT-TES:储热系统。

总体来说,目前研究发展主要还是集中于超级电容和电池(锂电池、液流电池)上。材料领域的突破才是关键。

可靠储能后的电网会是什么样

1、支撑实现能源互联网,智能电网

储能是智能电网实现能量双向互动的重要设备。没有储能,完整的智能电网无从谈起。

2、利用储能技术面对新能源考验

主要就是平抑、稳定风能、太阳能等间歇式可再生能源发电的输出功率,提高电网接纳间歇式可再生能源能力。

3、减小峰谷差,提高设备利用率

电网企业在调峰和供电压力得到缓解的同时,可获取更多的高峰负荷收益。

4、提高电网安全可靠性和电能质量

提供应急电源;减少因各种暂态电能质量问题造成的损失。

储能电站能源管理合同

***********公司 *************公司储能电站项目合同能源管理合同 甲方(用能单位): 法定代表人: 住所: 联系人: 联系方式: 电子邮箱:开户银行:

账号: 乙方(节能服务公司): 法定代表人: 住所: 联系人: 联系方式: 电子邮箱: 开户银行: 账号: 2015年11月 鉴于,本合同甲、乙双方同意对**********公司储能电站项目按照“合同能源管理(分享型)”模式展开专项节能管理的合作。 双方经过平等协商,在真实、充分地表达各自意愿的基础上,根据《中华人民共和国合同法》及其他相关法律法规的规定,达成如下协议,并由双方共同恪守: 第1节术语和定义 双方确定:本合同及相关附件中所涉及的有关名词和技术术语,其定义和解释如下: 1.1 本项目,是指根据本合同项下的条款和条件,针对由乙方提供的供甲方使用的储能电站系统,甲乙双方之间采用“合同能源管理(分享型)”模

式开展的能源管理项目。 1.2 储能电站系统,是指乙方投资建设的,位于甲方****内部,总规模为()MW/()MWh,并利用甲方工业用电峰谷差价的特点实现收益的储能电站系统(以下简称“储能电站”,技术方案详见附件一《技术方案》)。 1.3 项目财产,是指本项目下的所有由乙方采购并安装的设备、设施和仪器等包括储能电站系统在内的财产(详见附件二《项目财产清单》)。 1.4 合同能源管理(分享型)是指在本项目合作期内,乙方为甲方提供能源管理服务,利用储能电站系统在谷/平时电价时段存储电力能源,在峰时电价时段向甲方的负载供电,利用峰谷、峰平时段的电价差特点产生节能效益,并由甲方和乙方按照约定的比例分享节能效益的能源管理模式。 1.5 合同能源管理服务,是指乙方按照“合同能源管理(分享型)”模式,根据本合同向甲方提供的可以产生节能效益的管理服务。 1.6 节能效益分享款是指甲方使用乙方投资建设的储能电站,接受乙方在本合同项下提供的合同能源管理服务而产生的经济效益,包括但不限于因此节约的能源成本、减少的维护更换费用和节约的备品备件费用等所有因此产生的经济效益。具体计算公式为: 1.7 电费通知单是指甲、乙双方用于节能效益分享款结算的依据,主要包括电表峰平谷各阶段的充、放电电量、电价等信息,以及甲、乙双方抄表员、复核人员信息等内容。

储能系统设计方案

110KWh储能系统 技术方案

微电网:储能系统独立或与其他能源配合,给负载供电,主要解决供电可靠性问题。 本系统主要包含: * 储能变流器:1台50kW 离并网型双向储能变流器,在0.4KV交流母线并网,实现能量的双向流动。 * 磷酸铁锂电池:125KWH * EMS&BMS:根据上级调度指令完成对储能系统的充放电控制、电池SOC 信息监测等功能。

1、系统特点 (1)本系统主要用于峰谷套利,同时可作为备用电源、避免电力增容及改善电能质量。 (2)储能系统具备完善的通讯、监测、管理、控制、预警和保护功能,长时间持续安全运行,可通过上位机对系统运行状态进行检测,具备丰富的数据分析功能。 (2)BMS系统即跟EMS系统通信汇报电池组信息,也跟PCS采用RS485总线直接通信,在PCS的配合下完成对电池组的各种监控、保护功能。 (3)常规0.2C充放电,可离网或并网工作。 2、系统运行策略 ◇储能系统接入电网运行,可通过储能变流器的PQ模式或下垂模式调度有功无功,满足并网充放电需求。 ◇电价峰时段或负荷用电高峰期时段由储能系统给负荷放电,既实现了对电网的削峰填谷作用,又完成了用电高峰期的能量补充。 ◇储能变流器接受上级电力调度,按照峰、谷、平时段的智能化控制,实现整个储能系统的充放电管理。 ◇储能系统检测到市电异常时控制储能变流器由并网运行模式切换到孤岛(离网)运行模式。 ◇储能变流器离网独立运行时,作为主电压源为本地负荷提供稳定电电压和频率,确保其不间断供电。 3、储能变流器(PCS) 先进的无通讯线电压源并联技术,支持多机无限制并联(数量、机型)。 ●支持多源并机,可与油机直接组网。 ●先进的下垂控制方法,电压源并联功率均分度可达99%。 ●支持三相100%不平衡带载运行。 ●支持并、离网运行模式在线无缝切换。 ●具有短路支撑和自恢复功能(离网运行时)。 ●具有有功、无功实时可调度和低电压穿越功能(并网运行时)。 ●采用双电源冗余供电方式,提升系统可靠性。 ●支持多类型负载单独或混合接入(阻性负载、感性负载、容性负载)。

飞轮储能技术的现状和发展前景

飞轮储能技术的现状和发展前景 飞轮储能系统(FESS)又称飞轮电池或机械电池,由于它与化学电池相比所具有 的巨大优势和未来市场的巨大潜力,引起了人们的密切关注。它结合了当今最新的磁悬浮技术、高速电机技术、电力电子技术和新材料技术,使得飞轮储存的能量有了质的飞跃,再加上真空技术的应用,使得各种损耗也非常小。 飞轮电池的发展开始于20 世纪70 年代,当时正处于石油禁运和天然气危机时期。此时,美国能量研究发展署(ERDA) 及其后的美国能源部(DoE) 资助飞轮系统的应用开发,包括电动汽车的超级飞轮的研究。 Lewis 研究中心(LeRC) 在ERDA 的 协助和美国航空航天局(NASA) 的资助下专门研究用于真空下的机械轴承和用于复合车辆的飞轮系统的传动系统。NASA 同时也资助Goddard 空间飞行中心(GSFC) 研究适用于飞行器动量飞轮的电磁轴承。80 年代,DoE 削减了飞轮储能研究的资助,但NASA 继续资助GSFC 研究卫星飞轮系统的电磁轴承,同时还资助了Langley 研 究中心(LaRC) 及Marshall 空间飞行中心(MSFC) 关于组合能量储存和姿态控制的动量飞轮构形的研究。 近10 年来,一大批新型复合材料和新技术的诞生和发展,如高强度的碳素纤维 复合材料(抗拉强度高达8. 27 GPa) 、磁悬浮技术和高温超导技术、高速电机/ 发电机技术以及电力电子技术等,使得飞轮能够储存大量的能量,给飞轮的应用带来了新的活力。它可应用于国防工业(如卫星、电磁炮和电热化学枪、作战侦察车辆等) 、汽车工业(电动汽车) 、电力行业(如电力质量和电力负载调节等) 、医疗和电信业(作UPS 用) 等1NASA 的应用有航天器(宇宙飞船) 、发射装置、飞行器动力系统、不间断电源(UPS) 和宇宙漫步者。

储能电站成本与效益比较分析哪种电池更为经济

储能电站成本与效益比较分析哪种电池更为经济? 2017-02-07 09:25:44 关键词:储能电站电池技术储能市场 现以三种不同电池,按照500kW-8h(4000kWh)储能电站,分别比较储能电站成本与效益。见下表1~表2。

表1 三种不同电池储能电站参数表 对表1的参数说明如下: 铅碳电池使用放电深度为60%DOD,所以4000kWh储能电站电池容量需要按照4000kWh/0.6=6667kWh配置; 锂电池使用放电深度为90%DOD,电池容量按照4000kWh/0.9=4445kWh 配置; 动力电容电池使用放电深度为90%DOD,但电池容量有约11.6%裕度,故电池容量按照4000kWh配置。 需要更换电池次数,是按照储能系统每天充放电1次,电池循环次数10000次计算,累计折合运行27年;锂电池和铅碳电池循环次数3000次,需要更换电池3次。

表2 储能电站投资成本与效益比较表 上表2用以下参数计算储能电站投资成本与效益: 商业峰谷电价差,按照以北京1.01元/KWh计算; 储能系统每年电价差收益按照365天计算; 储能系统累计收益年份按照电池使用循环次数10000次计算,为27年。从上表2看,以全寿命使用周期27年计算,有如下结论: 动力电容电池每度电储能成本最低,其次是铅碳电池和锂电池; 动力电容电池储能系统累计总收益高于铅碳电池储能系统; 动力电容电池系统设备累计投资最低,其次是铅碳电池和锂电池。

动力电容电池系统设备初始投资最高,其次是锂电池和铅碳电池。 4000kWh不同电池所建成的储能电站主要存在一下几点差异: 1.由于动力电容电池的充放电效率高, 所以在相同的功率下动力电容电池的配置容量是最小的,起到了节约资源的作用。 2.铅碳电池的每千瓦时电池价格最低,其次是锂电池;动力电容电池每千瓦价格最高。动力电容电池比铅碳电池高5倍多。 3.动力电容电池的循环次数是铅碳电池和锂电池的3倍多。所以在储能电站的27年的使用时间内动力电容电池不需要更换电池,而铅碳电池和锂电池需要更换至少3次以上的电池。 4.动力电容电池的全寿命周期每度电储能成本比铅碳电池、锂电池低很多。 基于以上优势,动力电容电池一定会在储能领域得到广泛应用。 现在常用的化学储能电站主要以锂电池储能电站和铅碳电池储能电站为主。近几年由于国家对与化学储能电站的重视虽然取得了一些进展,但是也暴露出了一系列问题,其中主要阻碍化学储能电站的推广的原因则是没有一种符合人们要求的电池。于是在社会的热切期盼之下动力电容电池应运而生。 西安德源纳米储能技术有限公司是电力储能电站、储能电源、后备电源、纯电动汽车与混合动力汽车动力电容电池集成设备、不间断电源、应急电源、充电设备、动力电容电池集成设备、电池管理系统的研究开发、生产、销售为一体的高新技术企业。其推出的动力电容电池具有:安全性好、寿命超长、适温性宽、优化设计、充电快速、环保高效、电池回收等七大优势。 安全性好优势:动力电容电池通过了挤压、针刺、短路、加热、震动等安全测试,电池不燃烧、不爆炸。

飞轮储能关键技术

飞轮储能系统关键技术分析及应用现状 摘要:本文从飞轮储能系统的结构原理入手,首先介绍了飞轮储能系统的结构组成、工作原理及其工作模式,然后对飞轮转子、支承轴承、真空室、电动/发电机及电力电子装置等关键技术进行了全面的分析,并介绍了关键技术的国内外研究现状,在此基础上对飞轮储能的应用现状进行了阐述。 关键词:飞轮储能;关键技术;应用现状 中图分类号:TK02 文献标识码:A 文章编号: 0、前言 随着中国经济的快速发展,能源和环境问题成为了中国快速发展主要阻碍。然而,在能源如此短缺的情况下,使用目前的耗能设备和耗能方式却使得世界上总能量的50%~70%白白的浪费了[1]。因此在开发新能源的同时,研究如何回收存储被白白浪费的能量也是非常重要的。目前的储能方式主要有:化学储能、物理储能和超导储能,在这几种储能方式中化学储能技术比较成熟,并已得到广泛的应用,但是它使用寿命短、受外界条件影响显著、对环境污染严重。超导储能对技术要求高、对环境要求苛刻暂时还不适合大规模应用。由于物理储能是利用物理方法将能量春初起来,所以不存在对环境污染问题比较适合当今的发展要求。物理储能方式主要有抽水储能、压缩空气储能和飞轮储能。在这几种物理储能方式中飞轮储能以其在使用寿命、充电时间、效率方面的突出特点得到了广泛的关注。 1、飞轮储能系统的结构及工作原理 1.1飞轮储能系统基本的结构 飞轮储能系统又称飞轮电池其基本结构是由飞轮、轴承、电动机/发电机、电力电子控制装置、真空室等五个部分组成[2]。其中飞轮是飞轮电池的关键部件,一般选用强度高密度相对较小的复合材料制作;轴承是支撑飞轮的装置,由于磁悬浮支承可以降低摩擦损耗提高系统效率而成为了支撑技术的研究热点;飞轮电池的电机是一个集成部件,可以在电动和发电两种模式下自由切换,以实现机械能和电能的相互转换;电力电子控制装置主要是对输出和回馈的电能进行控制,通过对电力电子控制装置的操作可以实现对飞轮电机的各种工作要求的控制;真空室的功用有两个即为飞轮提供真空环境降低风阻损耗和在飞轮高速旋转破裂时起到保护周围人员和设备的作用。图1给出了一种飞轮储能系统结构简图。 图1 飞轮储能系统结构简图 1.2飞轮储能系统的工作原理 飞轮储能系统是利用高速旋转的飞轮将能量以动能的形式存储起来的装置。它有三种工作模式即充电模式、保持模式、放电模式。充电模式即飞轮转子从外界吸收能量使飞轮转速升高将能量以动能的形式存储起来;放电模式即飞轮转子将动能传递给发电机,发电机将动能转化为电能在经过电力控制装置输出适合于用电设备的电流和电压,实现了机械能到电能的转化;

创新电网储能技术解决方案

创新电网储能 技术解决方案

高速发展的工业化、信息化社会,需要现代 电网的支持。电网不断吸纳工业化、信息化成 果,各种先进技术在电网中得到集成应用,极 大的提升了电力系统的功能。 引言

智能电网(smart power grids)是社会经济发展的必然选择。 ---为实现清洁能源的开发、输送和使用,电网必须提高其灵活性和兼容性。 ---为抵御日益频繁的自然灾害和干扰,电网必须依靠智能手段提高其安全防御能力和自愈能力。 ---为降低运营成本,节能减排,电网必须更为经济高效,进行智能控制,尽可能减少用电消耗。 引言

---分布式发电、储能技术和电动汽车的快速发展,也改变了传统的供用电模式,促使电力系统、信息化建设、经营方式不断融合,以满足日益多样化的用户需求。 电力技术的发展,使电网逐渐呈现出诸多新的特征,如自愈、兼容、集成、优化,电力市场的变革,又对电网的自动化、信息化水平提出了更高要求, ------使智能电网成为电网发展的必然趋势。

智能变电站(smart substation) 采用了先进、可靠、集成、低碳、环保的智能设备, 以全站信息数字化、通信平台网络化、信息共享标准化为基本要求, 自动完成信息采集、测量、控制、保护、计量和监测等基本功能, 并可根据需要支持电网实时自动控制、智能调节、在线分析决策、协同互动等高级功能,并实现与相邻变电站、电网调度等的互动。

南方电网公司“十三五”智能电网发展规划 打造安全、可靠、绿色、高效的智能电网 涵盖清洁友好的发电、安全高效的输变电、灵活可靠的配电、友好互动的用电、综合能源与能源互联网等关键环节,以及通信网络、调控体系、信息平台等支撑体系, 根本目的是要推进能源转型升级,促进电网 发展更加安全、可靠、绿色、高效。要实现 这个目标,就必须推进电力行业发输配用全 过程的智能化

飞轮储能技术的发展现状

飞轮储能技术的发展现状 摘要: 飞轮储能技术已成为国际能源界研究的热点之一。从飞轮储能技术的技术进展(包括飞轮本体、转子支承系统、电动/发电机、电力转换器与真空室)角度出发,系统地介绍了该技术国内外的发展现状。 关键词: 飞轮储能系统,电动机/发电机,电力转换器,真空室 近年来,飞轮储能技术发展非常迅速。国内外都积极地投入大量资金和人力在这项储能技术上,目前已经有了可喜成果,以飞轮储能五大关键技术为出发点,分别对其技术发展现状进行阐述。 1飞轮转子技术现状 美国休斯顿大学的德克萨斯超导中心致力于纺锤形飞轮开发,这是一种等应力设计,形状系数等于或接近1,材质同样为玻璃纤维复合材料,储能1kWh、重19kg、飞轮外径30.48cm。美国Beacon 电力公司推出的Beacon 智能化储能系统,其飞轮转子以一种强度高、重量轻的石墨和玻璃纤维复合材料制成,用树脂胶合。美国Satcon 技术公司开发的伞状飞轮,这种结构有利于电机的位置安放,对系统稳定性十分有利,转动惯量大,节省材料,轮毂强度设计合理。 NASA Glenn 中心和美国宾州州立大学高级复合材料制造中心等单位均采用湿法缠绕工艺制备了复合材料飞轮。 2飞轮储能的轴承支承系统技术现状 2.1机械轴承 美国TSI 公司应用高级的润滑剂、先进的轴承材料及设计方法和计算机动态分析,成功地开发出内部含有固体润滑剂的陶瓷轴承,最新又研制的基于真空罩的超低损耗轴承,其摩擦系数只有0.000 01。 2.2被动磁轴承(PMB) 目前对永磁轴承的研究较少,目前主要集中在对超导磁轴承(SMB)的研究上。 西南交通大学超导技术研究所从20 世纪90 年代初期开始,就一直致力于高温超导磁悬浮技术的应用基础研究,2000 年研制成功了世界首辆载人的高温超导磁悬浮实验车。 日本ISTEC 正在对10kWh/400kW 等级飞轮系统中的SMB 进行组装实验,同时加工设计100kWh等级飞轮定子。 德国ATZ 公司则从2005 年开始对5kWh/250kW 等级的飞轮进行研究。ATZ 公司与 L-3MM 合作生产高温超导储能,并即将进行工程应用电性能测试。并且两家机构还达成共

储能系统在太阳能光伏发电中的应用分析

储能系统在太阳能光伏发电中的应用分析 发表时间:2018-05-09T17:27:14.723Z 来源:《电力设备》2017年第36期作者:刘翠娜1 韩云海2 [导读] 摘要:尽管太阳能光伏发电已逐渐在我国乃至全球能源供应中起到重要作用,但其受环境、气候影响较大,电力输出存在间歇性和不稳定性。 (1协鑫电力设计研究有限公司 210009;2南京国电南自电网自动化有限公司 211106)摘要:尽管太阳能光伏发电已逐渐在我国乃至全球能源供应中起到重要作用,但其受环境、气候影响较大,电力输出存在间歇性和不稳定性。同时,由于电网调峰能力不足阻碍光伏电力并网,电力输送通道建设与电源建设不匹配造成光伏电力送出受限,以及当地工业基础薄弱影响光伏电力就地消纳等因素,导致大量光伏电能资源被浪费。鉴于此,本文主要分析储能系统在太阳能光伏发电中的应用。 关键词:储能系统;太阳能光伏发电;应用 1、光伏发电系统的概述 光伏发电是通过半导体界面的光伏效应而将光能转化为电能的一种技术。光伏发电系统中主要有太阳能电池板、蓄电池组、充放电控制器、逆变器、汇流箱等部分组成,其内部主要部件为电子元器件构成。 光伏发电与传统的火力发电相比具有以下几个显著的优点:①来源具有无枯竭性,即太阳光取之不尽、用之不竭。②不受区域的限制,光伏发电具有一定的广泛性,即只要有太阳光的地方就可以进行光伏发电。③方便、快捷性,不需要通过燃烧煤炭等资源就可以进行发电。 光伏发电的不足之处有:①照射能源分布密度小,需要进行大面积的建设太阳能电池板。②受天气因素的影响较大,只能在晴朗的天气下才能进行发电。③光伏板的制造过程具有高污染、高能耗的特点。 2、光伏发电并网对电力系统的影响 2.1、对配网电压及其调整的影响 太阳光照强度不停发生变化,包括全年或全天中的规律改变和因天气产生的随机改变,直接造成了光伏系统出力的波动性和不可控性。光伏电源接入配网后将改变系统潮流,配网节点电压将随配网潮流的改变而变化,产生不同程度的电压偏差与波动。随着光伏电源占有比例的逐渐升高,可能出现大规模的光伏电源突增突减,难以保障系统供电质量,电压调整不能顺利进行,最终导致电压超标。此外,调压操作需要根据太阳辐射的变化而频繁进行,致使调压装置的寿命大大减少。 2.2、对配电网保护的影响 辐射型网络是我国传统的配电网络结构。光伏电源没有接入的情况下,传统配网是一个单电源的网络,系统出现故障时,故障电流的流动是单向的。光伏电源接入后,配电网由单电源网络变成了多电源网络,故障电流的分布、大小以及方向都会由此而出现改变。而传统配电网保护的配置依据仅为故障电流的大小,并不具有方向性,因此当光伏电源接入后,保护装置的动作会受到影响。 2.3、对电能质量的影响 并网逆变器作用非常重要,是光伏并网系统中不可或缺的一部分,它可以将光伏阵列发出的直流电转化为交流电后接入电网。但是由于逆变器中开关器件频繁的开断,导致在开关频率附近产生大量谐波分量,导致系统电压和电流波形发生畸变,影响严重。对于设计优良的小容量光伏逆变器,谐波污染一般能被控制而满足标准。 2.4、对调度运行的影响 由于光伏系统的出力受天气变化比较敏感,表现出不可控的随机性,限制了光伏系统输出的可调度性。因此,电网部门需要认真考虑电力调度的稳定性和可靠性,尤其在某个地区中光伏电源所占比例达到一定程度后。此外,在用电价格上光伏电源与常规电源也有所不同,因此对于含光伏电源的系统中,在保证电能质量与供电可靠性的前提下进行经济性调度也是一个颇受关注的问题。 3、储能技术在光伏并网发电系统中的应用 3.1、在电力调峰上的应用 电力调峰的目标是将在峰电时段大功率负荷的集中需求减少,进而减轻电网的负荷压力。在光伏并网发电系统中应用储能技术可以依靠实际的需求做出改变,在负荷低谷的时候把系统所发出的电能进行储存,在负荷高峰的时候将所储存的电能进行释放,这部分电能属于负荷供电,进而提升供电的可靠性,提升整体运行的稳定性。 3.2、在微电网的应用 未来输配电系统的一个重要发展趋势就是微电网并网,它对于电网系统运行的可靠性和稳定性具有很好的提升效果。在系统和微电网分离的时候,微电网的运行为孤岛模式,这时,微电网电源会对负荷的供电任务进行独立承担。由光伏电源构成的微电网,其储能系统将根据负载的情况自动调节,提升供电的稳定和安全。 3.3、在电网电能质量控制上的应用 在电网电能质量控制上,将储能技术应用在光伏并网发电系统中,可以对光伏电源的供电特性进行改善,进而提高供电的稳定性,利用合理的逆变控制措施,储能技术让光伏并网发电系统可以对调整相角、有源滤波及电压等进行控制。 储能技术在光伏并网发电系统中可以为用户提供良好的断电保护功能。当正常的电力供应无法提供给用户的时候,光伏系统可以为用户供给电能;而在电力系统自身发生故障或是用户用电存在危险隐患的时候,光伏并网系统会选择自动断电,并将断电之后所发出的电能进行自动存储。以光伏并网用户使用分时计费市电作为基础,将储能技术在此系统中进行应用,可以实现负荷转移。其本身和电力调峰上的应用技术较为相似,在低谷期,储能系统可以在满足基本需求的情况下,将多余电能进行储存,然后在高峰期释放。除此之外,针对负荷高峰时高功率负荷交替投切给正常运行所带来的不利影响,储能技术在光伏并网发电系统中的应用还可以减少负荷响应策略所带来的弊端。 总之,光伏发电与传统电源不同,输出功率不可控并且受环境条件制约,光照强度、温度等发生变化都可能对发电量产生影响。因此,光伏电源接入对电网的冲击是阻碍其大规模接入电网、替代传统发电形式的主要绊脚石。而储能技术作为电力系统中的新兴技术,通过选取适当的储能方式,采用适当的控制方法,可以有效解决光伏系统出力的随机可控等问题,减小光伏发电出力变化对电网的冲击。因此,研究光伏并网系统中储能技术的应用具有极其重要的现实意义。

各种储能系统优缺点对比学习资料

史上最全储能系统优缺点梳理 谈到储能,人们很容易想到电池,但现有的电池技术很难满足电网级储能的要求。实际上,储能的市场潜力非常巨大,根据市场调研公司Pike Research的预测,从2011年到2021年的10年间,将有1220亿美元投入到全球储能项目中来。而在大规模储能系统中,最为广泛应用的抽水蓄能和压缩空气储能等传统的储能方式也在经历不断改进和创新。今天,无所不能(caixinenergy)为大家推荐一篇文章,该文章分析了目前全球的储能技术以及其对电网的影响和作用。 现有的储能系统主要分为五类:机械储能、电气储能、电化学储能、热储能和化学储能。目前世界占比最高的是抽水蓄能,其总装机容量规模达到了127GW,占总储能容量的99%,其次是压缩空气储能,总装机容量为440MW,排名第三的是钠硫电池,总容量规模为316MW。 全球现有的储能系统 1、机械储能 机械储能主要包括抽水蓄能、压缩空气储能和飞轮储能等。 (1)抽水蓄能:将电网低谷时利用过剩电力作为液态能量媒体的水从地势低的水库抽到地势高的水库,电网峰荷时高地势水库中的水回流到下水库推动水轮机发电机发电,效率一般为75%左右,俗称进4出3,具有日调节能力,用于调峰和备用。

不足之处:选址困难,及其依赖地势;投资周期较大,损耗较高,包括抽蓄损耗+线路损耗;现阶段也受中国电价政策的制约,去年中国80%以上的抽蓄都晒太阳,去年八月发改委出了个关于抽蓄电价的政策,以后可能会好些,但肯定不是储能的发展趋势。 (2)压缩空气储能(CAES):压缩空气蓄能是利用电力系统负荷低谷时的剩余电量,由电动机带动空气压缩机,将空气压入作为储气室的密闭大容量地下洞穴,当系统发电量不足时,将压缩空气经换热器与油或天然气混合燃烧,导入燃气轮机作功发电。国外研究较多,技术成熟,我国开始稍晚,好像卢强院士对这方面研究比较多,什么冷电联产之类的。 压缩空气储也有调峰功能,适合用于大规模风场,因为风能产生的机械功可以直接驱动压缩机旋转,减少了中间转换成电的环节,从而提高效率。 不足之处:一大缺陷在于效率较低。原因在于空气受到压缩时温度会升高,空气释放膨胀的过程中温度会降低。在压缩空气过程中一部分能量以热能的形式散失,在膨胀之前就必须要重新加热。通常以天然气作为加热空气的热源,这就导致蓄能效率降低。还有可以想到的不足就是需要大型储气装置、一定的地质条件和依赖燃烧化石燃料。

太阳能储能方式简介

太阳能储能技术 一、太阳能供热零存整取 钱有盈余可以存到银行,物品多了可以放入仓库,那么太阳的光和热如何保存? 要是有个“热量银行”能把夏天过多的热量储存起来,到冬天再取出使用,该有多好。现在以色列、日本、意大利和美国都建有这种“银行”,专门储存太阳的热能,需要时就可把热能取出,用于取暖或发电。现在有两种类型的“热量银行”:一种叫“太阳能源湖”,另一种叫“硝酸盐太阳能储存罐”。 人造太阳能源湖 日本的某个太阳能源湖是一个面积1500平方米、深3米的人造湖,其湖水比较特别,分3层:最下面一层是1.5米深的含盐较多的咸水;中间一层是1.3米深的含盐较少的咸水;最上面一层是0.2米深的不含盐的淡水。人造湖只要灌入这3层水,“热量银行”就基本大功告成,只等太阳来储存热量。这样的太阳能源湖储存的热量能把下层1.5米深的咸水加热至80摄氏度,不仅可以取暖,还可以用来发电,而其中的奥秘就在这3层湖水中。 普通淡水湖不管太阳怎么晒,温度也不会超过当地气温。因为淡水湖白天经过日晒后,夜晚会把白天储存的热量散发掉。湖面的水先冷却,比重加大而下沉,下面还没有冷却的水因比重小而上浮,又把热

散掉,这样循环的结果,使湖水吸收的太阳热量根本不能保存下来。 人造太阳能源湖就不同,表面那层0.2米厚的淡水白天晒热后,热量到了夜晚同样会散掉,但这层淡水不会下沉,因为它即使冷却,比重也没有咸水大,因此一直浮在上面成为保温层。下层的含盐咸水由于永远也浮不到表面,因此它白天吸收的热量就不会被带到湖面散失掉。咸水被太阳晒的日子越久,湖底的水温就 越高。 硝酸盐太阳能储存罐 硝酸盐太阳能储存罐是另一种形式的“热量银行”,它的出现有一段有趣的历史。美国南加利福尼亚的爱迪生公司,曾建造了一座名为“太阳能一号”的发电站,利用一种太阳跟踪镜把太阳光聚焦后,照射到一座90多米高的塔顶上,塔顶有一个阳光接收器,接收器内有水,水被聚焦的阳光加热后变为水蒸气,然后利用这些水蒸气推动涡轮发电机发电。但由于设计上有些地方没有考虑周全,发电机会时不时“闹情绪”,有时能够发电,有时干脆就“躺倒不干”。 原来老天并不顺从人愿,有时阴天有时下雨,即使是晴天,也经常有云彩从发电厂上空飘过,这时塔顶接收器内的水因缺少阳光就很难变成蒸气,没有蒸气发电机就不能发电。因此“太阳能一号”发电站不能发挥其原来预想的作用。于是,爱迪生公司的老板请来美国桑迪亚国家实验室的太阳能热电技术专家研究对策。专家们研究后认为,问题出自接收器内的水,由于水储蓄太阳热量的能力太低,因此在云层遮住阳光时,接收器内保留的热量太少,无法把水加热成蒸气。经过计算,专家们决定在接收器中改用硝酸盐。因为硝酸盐有能力储蓄很多热量,起到“热量银行”的作用。这样,即使是阴雨天或有云层飘过发电厂上空,借助硝酸盐良好的储热能力,也可从中取出存储的热能用于发电。 常温下硝酸盐形似珊瑚,熔点达232摄氏度,熔化后呈黄色浆状物,能保存的热量比水和油高得多。当把硝酸盐放入接收器后,聚焦的阳光将其熔化,并使其温度高达556摄氏度。这时再把已熔化的高温硝酸盐抽到一个绝热良好的储存罐中,这个储存罐就把太阳的热量储蓄起来,需要时再将多余的热量从储热罐中取出,就可用来加热水产生蒸气进行发电。当储热罐内的热量“取”完后,即其中的硝酸盐温度降至288摄氏度时,将硝酸盐转移到另一个绝热罐中,并在阳光充足的天气里接收太阳的热能,再升温至556摄氏度。硝酸盐在绝热罐中能保持所吸收的太阳热能达13小时之久。这样,在阴雨天也能用它加热,使水变成蒸气推动涡轮发电机发电。有了这个“热量银行”,太阳能发电站就不会在阴雨天“闹情绪”或“躺倒不干”了。

国内外飞轮储能技术发展现状研究

国内外飞轮储能技术发展现状研究 时间:2011-11-1 来源:北极星电力网 一、大规模发展新能源和推动节能环保亟须发展大容量储能产业 传统能源的日益匮乏和环境日趋恶化,极大地促进了新能源的发展,新能源发电的规模也快速攀升。但风电、太阳能发电自身所固有的随机性、间歇性特征,决定了其规模化发展必然会对电网调峰和系统安全运行带来显著影响,必须要有先进的储能技术作支撑。国外有关研究表明,如果风电装机占装机总量的比例在10%以内,依靠传统电网技术以及增加水电、燃气机组等手段基本可以保证电网安全;但如果所占比例达到20%甚至更高,电网的调峰能力和安全运行将面临巨大挑战。储能技术在很大程度上解决了新能源发电的随机性、波动性问题,可以实现新能源发电的平滑输出,能有效调节新能源发电引起的电网电压、频率及相位的变化,使大规模风电及太阳能发电方便可靠地并入常规电网。 中国新能源大发展在即,对储能产业有更急迫的现实需求。预计到2020年风电和太阳能发电装机会突破1.7亿千瓦,占全国发电装机总量的比例会超过15%。但由于目前我国电力系统煤电比例较高,在部分地区又主要是调峰能力差的供热机组,核电发展很快但却不能参与调峰,水电、燃气发电等调峰性能优越的电源所占比例过低,导致现有电力系统接纳新能源的能力很弱。再加上我国能源资源所在地多远离负荷地,不得不实施风电、光电的“大规模集中开发、远距离输送”,这更进一步加大了电网运行和控制风险。随着国内新能源发电规模的快速扩大,电网与新能源的矛盾越来越突出,对储能的需求更为迫切。 大容量储能还可提高能源利用效率,为国家节约巨额投资。为应对城市尖峰负荷,电力系统每年都要新增大量投资用于电网和电源后备容量建设,但利用率却非常低。以上海为例,2004—2006年间,为解决全市每年只有183.25小时的尖峰负荷,仅对电网侧的投资每年就超过200亿元,而为此形成的输配电能力的年平均利用率不到2%。同样是为了应对尖峰负荷,转而采用大容量储能技术,不仅投资会成倍减少,而且由于储能设施占地少、无排放,其节地、节能、减排的效果是其他调峰措施无法比拟的。 二、全球大容量储能技术呈多元化发展格局,中国企业已掌握关键技术,拥有自主知识产权。 全球储能技术主要有化学储能(如钠硫电池、液流电池、铅酸电池、镍镉电池、超级电容器等)、物理储能(如抽水蓄能、压缩空气储能、飞轮储能等)和电磁储能(如超导电磁储能等)三大类。目前技术进步最快的是化学储能,其中钠硫、液流及锂离子电池技术在安全性、能量转换效率和经济性等方面取得重大突破,产业化应用的条件日趋成熟。钠硫电池的充电效率已可达到80%,能量密度是铅酸蓄电池的3倍,循环寿命更长。日本在此项技术上处于国际领先地位,2004年日本在本国Hitachi自动化工厂安装了当时世界上最大的钠硫电池系统,容量是9.6MW/57.6MWh。液流钒电池的基础材料是钒,该电池具有能量效率高、蓄电容量大、能够100%深度放电、寿命长等优点,已进入商业化阶段。锂离子电池的基础材料是锂,已开始在电动自行车、电动汽车等领域应用,近年来由于磷酸亚铁锂、纳米磷酸铁锂等新材料的开发与应用,大大改善了锂离子电池的安全性能和循环寿命,大容量锂电池储能电站正逐渐兴起。 物理储能中最成熟也是世界应用最普遍的是抽水蓄能,主要用于电力系统的调峰、填谷、调频、调相、紧急事故备用等。其能量转换效率在70%—75%左右。目前世界范围内抽水蓄能电站总装机容量9000万千瓦,约占全球发电装机容量的3%。压缩空气技术早在1978年就实现了应用,但由于受地形、地质条件制约,没有大规模推广。飞轮蓄能的特点是寿命长、无污染,动态特性好,但超大容量的飞轮,目前技术尚不成熟。电磁储能技术现在仍很昂贵,还没有商业化。

太阳能光热发电几种创新型储热技术简述

太阳能光热发电几种创新型储热技术 光热电站相比光伏电站的核心优势即在于光热电站可配置储热系统,与传统的火力发电厂一样,生产出电网友好型的可调度电力,满足连续的用电需求。目前,商业化光热发电项目的储能市场仍然以二元熔盐为工质的熔盐储能技术为主流,但其凝固点过高,易冻堵管道的缺陷也饱受诟病。 2016年下半年接连发生的美国新月沙丘电站熔盐罐熔盐泄露事故以及西班牙Gemasolar光热电站熔盐热罐损毁事故,均造成了熔盐罐维修费用及售电收入方面的巨大损失,熔盐储热系统的安全性、可靠性再次受到行业关注。 那么,有没有一种更先进的储热技术,可替代传统的熔盐储热技术进而成为主流?近年来,创新型储能技术层出不穷,尽管其大多停留在实验室或小型示范阶段,在理论层面已证明了其发展潜力,但其商业化价值仍尚待发掘。 1. 挪威Energy Nest公司新型固态混凝土储能技术 挪威科技公司Energy Nest与德国Heidelberg水泥公司(德国跨国建材公司,全球四大水泥生产商之一)展开合作,耗时五年半研发出一种全新的特殊混凝土HEATCRETE储能技术。HEATCRETE混凝土经国际权威独立第三方实验室测试,具有高比热容和高热导率的特性。与之前最为先进的混凝土储能系统相比,HEATCRETE系统的导热系数提高了70%,比热容值提高了15%,这对电站的热力性能和传热介质来说意义重大。该公司表示,其HEATCRETE混凝土储能系统能使整个光

热电站的成本下降10%,针对熔盐储能系统则能节约60%的成本。HEATCRETE混凝土储能技术还能应用于风电和生产高温设备的工厂,但光热电站是该公司的主要目标市场。 2. 麻省理工学院新型液态金属储能技术 2014年9月,麻省理工学院的研究人员公开一种新型全液态金属电池储能系统。该液态金属储能系统内部没有使用任何固体材料制作,全部的储能元件也都采用融化的液体来制作。该系统造价低廉,且使用寿命较长。研究团队称该储能系统可使风能和太阳能这些可再生能源具备与传统能源相竞争的能力。 3. 瑞典查尔姆斯大学新型含碳化学液体高效储能 2017年3月,瑞典查尔姆斯理工大学研究者成功验证了以一种含碳化学液体作为介质,来高效存储太阳能的新型储能技术的可行性。通过这种化学液体,能够实现能量的自由传输以及随时释放。值得一提的是,该化学液体释放能量时,几乎可以实现能量的零损耗。研究小组将这个过程叫做“分子式太阳能储热系统”。目前,此项新技术已成功登上《能源与环境科学》(英国皇家化学院发行的学术期刊)的封面。

深能南控-江苏用户侧储能市场及投资策略研究

深能南控-江苏用户侧储能市场及 投资策略研究 深能南控技术部 2020.08

1.1 储能系统 现有的储能系统主要分为五类:机械储能、电气储能、电化学储能、热储能和化学储能。本文所述用户侧储能主要指磷酸铁锂电化学储能。 锂离子电池,简称锂电池,是用锂金属或锂合金为负极材料,使用非水电解质溶液的电池。锂离子电池是目前讨论储能应用最主要的领域。锂电池有多个优点,比如效率高(可达95%以上),放电时间长(可达数小时),循环次数可达5000 次或更多。 1.2 商业模式 峰谷套利:用户侧储能主要商业收入来源于企业用电的峰谷电价差,在谷电期间充电、峰电价期间放电,通过电价差节省企业用电费用,节省的费用与企业分成(一般分成比例为1:9)来使双方都可以获取收益。 容量费减免:大工业用电企业需要向电网每月缴纳基本电费,一般基本电费按两种方式收取,1)根据变压器容量收取;2)根据企业实际用电最大负荷收取。用户侧储能系统通过充放电策略减少企业最大用电负荷,可减少一定需量电费,从而带来电费节约。 需求侧响应及其他电力辅助服务市场收入:部分地区满足条件的储能电站可以参与电力辅助服务市场,可通过参与辅助服务市场获取部分收益。 二、江苏用户侧储能政策及峰谷价差条件

2017年9月,国网江苏省电力公司发布了全国首个《客户侧储能系统并网管理规定》(试行)文件,明确20MW以下、35kv接入电压等级以下的用户侧储能电站的简化并网流程、技术要求。 表1.江苏储能政策 综上,目前江苏对用户侧储能项目没有设备补贴或电价补贴类政策,但鼓励用户侧自主投资储能项目,电网对用户侧储能项目的申报也较为简便,同时满足条件的项目可以参与电力辅助服务市场。 2.2江苏峰谷电价差 目前江苏大工业用电峰谷电价差0.7元/kwh以上 工商业用电峰谷价差0.86元/kwh以上 表2 江苏省电网销售电价表

【CN209949009U】一种物联网太阳能储能系统【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920376194.3 (22)申请日 2019.03.22 (73)专利权人 无锡隆玛新能源有限公司 地址 214028 江苏省无锡市新吴区经一路 高速公路之间的旺庄工业园三区二期 1号标准厂房 (72)发明人 杨朝辉 杨宇辉 李宝剑  (74)专利代理机构 无锡市大为专利商标事务所 (普通合伙) 32104 代理人 曹祖良 (51)Int.Cl. H02S 10/12(2014.01) H02S 20/32(2014.01) (54)实用新型名称 一种物联网太阳能储能系统 (57)摘要 本实用新型属于太阳能应用技术领域,涉及 一种物联网太阳能储能系统,包括太阳能电池 板、底座、设置底座上的下电机箱、设置在下电机 箱上的控制柜、设置在所述控制柜上的上电机 箱,所述上电机箱和下电机箱内分别设有第一电 机、第二电机,所述下电机箱内的第二电机与控 制柜转动连接,所述上电机箱内的第一电机通过 支架与太阳能电池板转动连接;本实用新型的物 联网太阳能储能系统,该系统通过设置风力检测 模块和风向检测模块、阳光感应器模块,配合PLC 控制模块,来调节太阳能板的倾斜角度和位置, 从而防止太阳能板顶风工作,损坏太阳能板及调 高了太阳能转化效率。权利要求书1页 说明书3页 附图3页CN 209949009 U 2020.01.14 C N 209949009 U

权 利 要 求 书1/1页CN 209949009 U 1.一种物联网太阳能储能系统,包括太阳能电池板(1),其特征在于:还包括底座(2)、设置底座(2)上的下电机箱(9)、设置在下电机箱(9)上的控制柜(8)、设置在所述控制柜(8)上的上电机箱(7),所述上电机箱(7)和下电机箱(9)内分别设有第一电机(17)、第二电机(18),所述下电机箱(9)内的第二电机(18)与控制柜(8)转动连接,所述上电机箱(7)内的第一电机(17)通过支架(6)与太阳能电池板(1)转动连接;还包括底盘(3)、焊接在所述底盘(3)上的支撑杆(4)、设置在所述支撑杆(4)顶端且与其垂直的检测杆(5),所述检测杆(5)与支撑杆(4)间活动连接,在所述检测杆(5)的一端设有风扇;所述支撑杆(4)顶端设有轴承,所述检测杆(5)能以支撑杆(4)顶端的轴承为转轴自由旋转;所述控制柜(8)内安装有PLC控制模块(20),所述检测杆(5)内安装有风向检测模块(13)和风力检测模块(14),所述风向检测模块(13)和风力检测模块(14)均通过电缆穿过支撑杆(4)内部与PLC控制模块(20)连接;在所述太阳能电池板(1)侧边安装有阳光感应模块(15)和角度传感器模块(16),所述阳光感应模块(15)和角度传感器模块(16)均通过电缆与PLC控制模块(20)连接;所述PLC控制模块(20)分别与第一电机(17)、第二电机(18)连接;所述太阳能电池板(1)内设有若干个相互串联的光伏组件(10),所述光伏组件(10)与逆变器(11)连接,所述逆变器(11)与蓄电池(19)连接,所述蓄电池(19)与PLC控制模块(20)连接;所述下电机箱(9)内的第二电机(18)的转轴朝上,且穿出下电机箱(9)与控制柜(8)固定连接;所述上电机箱(7)内的第一电机(17)水平放置,且第一电机(17)的转轴穿出上电机箱(7)侧壁与支架(6)的一端固定连接,所述支架(6)的另一端与太阳能电池板(1)固定连接。 2

飞轮储能系统及简述

飞轮储能系统及简述 在电网的调频调峰方面,飞轮储能电站与核电站,火电站等其他类型的电站相比,在爬升能力,调峰调频比率等方面有着一定的优势。 1研究意义 储能技术应用于电力系统,可以改变电能生产、输送与消费必须同步完成的传统模式。目前,我国正在规划与大力发展坚强智能电网,全面覆盖发-输-变-配-用-调的六大环节与信息平台的建设。储能技术将是未来智能电网的重要组成部分,涉及其建设的各个主要环节。发展储能技术重要意义包括削峰填谷、调节节约能源、提高电力电网系统效率、保证电力电网系统安全等方面。同时采用储能技术可以弥补新能源发电的随机性、波动性,并实现新能源发电的平滑输出,使大规模风电及太阳能发电更安全更可靠地并入常规电网。储能技术也可以解决电动汽车充电的随机性、波动性问题,有效调节电动汽车充电引起的电网电压、频率及相位的变化,为新能源汽车的大规模推广提供基础。随着智能电网、分布式供电等新技术的推广应用,储能的作用进一步突现出来。大规模储能技术的发展和应用将对新能源乃至整个电力系统带来革命性的影响。 2飞轮储能的原理 飞轮储能是利用高速旋转的飞轮将电能以动能形式储存起来。典型的飞轮储能系统的基本结构如图1所示, 主要由五部分组成:飞轮转子、支撑轴承、高速电机、双向变流器、真空室。为了减少空闲运转时的损耗,提高飞轮的转速和飞轮储能装置的效率,飞轮储能装置轴承的设计一般都使用非接触式的磁悬浮轴承技术,而且将电机和飞轮都密封在一个真空容器内以减少风阻。通常发电机和电动机使用一台电机来实现,通过轴承直接和飞轮连接在一起。

图1飞轮储能系统的基本结构 其工作原理为:系统储能时,高速电机作为电动机运行,由工频电网提供的电能经变频器驱动电机加速,电机拖动飞轮加速储能,能量以动能形式储存在旋转的飞轮体中。当飞轮达到设定的最大转速后,系统处于能量保持状态,直到接收到一个释放能量的控制信号,系统释放能量,高速旋转的飞轮利用其惯性作用拖动电机减速发电,经变流器输出适用于电网要求的电能,完成动能到电能的转换。在整个飞轮储能装置中,飞轮是其中的核心部件,它决定了整个装置的储能多少,其储存的能量为: J 为飞轮的转动惯量, 与飞轮的形状和重量有关;ω为飞轮转动的角速度。 3飞轮储能的技术优势 储能技术是指,将电能通过某种装置转换成其他便于存储的能量高效存储起来,在需要时,可以将所存储的能量方便地换成所需形式能量的一种技术。储能技术主要有物理储能(如抽水蓄能、压缩空气储能、飞轮储能等)、化学储能(如各类蓄电池、可再生燃料电池、液流电池、超级电容器等)和电磁储能(如超导电磁储能等)。 飞轮储能是用物理方法实现电能存储, 是一种高度机电一体化产品, 是最有发展前途的储能技术之一。飞轮储能与其他几种典型储能方式性能比较如表1所示。飞轮储能使用寿命可达到20年以上,超过了其他几种储能方式,并且由于飞轮储能是机械储能方式,对于工作温度没有特定的要求,对于环境几乎没有影响。飞轮储能具有较大的容量密度和功率密度,维护周期长,系统稳定性强,适用于调峰调频,电能质量调节,输配电系统稳定性,UPS等场合。

相关文档
最新文档