数学建模的十大经典算法集锦

合集下载

数学建模方法模型

数学建模方法模型

数学建模方法模型一、统计学方法1 多元回归1、方法概述:在研究变量之间的相互影响关系模型时候用到。

具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。

2、分类分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx 可以转化为 y=u u=lnx 来解决;所以这里主要说明多元线性回归应该注意的问题。

3、注意事项在做回归的时候,一定要注意两件事:(1) 回归方程的显著性检验(可以通过 sas 和 spss 来解决)(2) 回归系数的显著性检验(可以通过 sas 和 spss 来解决)检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意。

4、使用步骤:(1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系; (2)选取适当的回归方程;(3)拟合回归参数;(4)回归方程显著性检验及回归系数显著性检验(5)进行后继研究(如:预测等)2 聚类分析1、方法概述该方法说的通俗一点就是,将 n个样本,通过适当的方法(选取方法很多,大家可以自行查找,可以在数据挖掘类的书籍中查找到,这里不再阐述)选取 m 聚类中心,通过研究各样本和各个聚类中心的距离 Xij,选择适当的聚类标准,通常利用最小距离法(一个样本归于一个类也就意味着,该样本距离该类对应的中心距离最近)来聚类,从而可以得到聚类结果,如果利用sas 软件或者 spss 软件来做聚类分析,就可以得到相应的动态聚类图。

这种模型的的特点是直观,容易理解。

2、分类聚类有两种类型:(1) Q型聚类:即对样本聚类;(2) R型聚类:即对变量聚类;通常聚类中衡量标准的选取有两种:(1) 相似系数法(2) 距离法聚类方法:(1) 最短距离法(2) 最长距离法(3) 中间距离法(4) 重心法(5) 类平均法(6) 可变类平均法(7) 可变法(8) 利差平均和法在具体做题中,适当选区方法;3、注意事项在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理。

数学建模算法大全线性规划

数学建模算法大全线性规划

第一章 线性规划§1 线性规划在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。

此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。

自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。

特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。

1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。

生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。

若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大?上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足(目标函数)2134max x x z += (1)s.t.(约束条件)⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0,781022122121x x x x x x x (2)这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。

由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。

总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。

在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。

而选适当的决策变量,是我们建立有效模型的关键之一。

1.2 线性规划的Matlab 标准形式线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。

数学建模的相关问题求解方法

数学建模的相关问题求解方法

数学建模的相关问题求解方法:1.量纲分析法是在物理领域建立数学模型的一种方法,主要是依据物理定律的量纲齐次原则来确定个物理量之间的关系,量纲齐次原则是指一个有意义的物理方程的量纲必须一致的,也就是说方程的两边必须具有相同的量纲,即: dim左=dim右并且,方程中每一边的每一项都必须有相同的量纲。

例子见书《数学建模方法与实践》P17—P232.线性规划法线性规划法是运筹学的一个重要分支应用领域广泛。

从解决各种技术领域中的优化问题,到工农业生产、商业经济、交通运输、军事等的计划和管理及决策分析。

线性规划所解决的问题具有以下共同的特征:(1)每一个问题都有一组未知数(x1,x2,……,xn)表示某一方案;这些未知数的一组定值就代表一个具体方案。

由于实际问题的要求,通常这些未知数取值都是非负的。

(2)存在一定的限制条件(即约束条件),这些条件是关于未知数的一组线性等式或线性不等式来表示。

(3)有一个目标要求,称为目标函数。

目标函数可表示为一组未知数的线性函数。

根据问题的需要,要求目标函数实现最大化或最小化。

例子见书《数学建模方法与实践》P26—P303.0—1规划法用于解决指派问题,是线性规划的特殊情况。

例子见书《数学建模方法与实践》P314.图解法用于求解二维线性规划的一种几何方法,其方法步骤见书《数学建模方法与实践》P345.单纯形法也是一种求解线性规划的常用方法,其基本原理和方法见书《数学建模方法与实践》P37——P39,计算步骤P40。

6.非线性规划法在目标函数和(或)约束条件很难用线性函数表示时,如果目标函数或约束条件中,有一个或多个是变量的非线性函数,则称这种规划问题为非线规划问题。

例子见书《数学建模方法与实践》P44——P457.最短路及狄克斯特拉算法狄克斯特拉算法是图论中用于计算最短路的一种方法,详见书《数学建模方法与实践》P588.克罗斯克尔算法克罗斯克尔算法是用来求解一个连通的赋权图的最小生成树的方法,详见书《数学建模方法与实践》P599.普莱姆算法同上10.欧拉回路及弗洛来算法欧拉回路是指若存在一条回路。

十大数学算法

十大数学算法

十大数学算法数学算法是解决数学问题的方法和步骤的集合。

在数学领域中,有许多重要且被广泛使用的算法。

这些算法不仅能够解决各种数学问题,还在计算机科学、工程和其他领域中得到了广泛应用。

在本文中,我们将介绍十大数学算法,它们分别是欧几里得算法、牛顿法、二分法、高斯消元法、快速傅里叶变换、动态规划、贝叶斯定理、蒙特卡洛方法、线性规划和迭代法。

1. 欧几里得算法欧几里得算法是解决最大公约数问题的一种常见方法。

该算法的核心思想是,通过不断用较小数去除较大数,直到余数为零,最后一个非零余数即为最大公约数。

欧几里得算法在密码学、数据压缩等领域得到了广泛应用。

2. 牛顿法牛顿法是一种用来求解方程近似解的迭代方法。

它基于函数的泰勒级数展开,通过不断迭代逼近函数的零点。

牛顿法在优化问题、图像处理和物理模拟等领域中广泛使用。

3. 二分法二分法又称折半查找法,是一种高效的查找算法。

它通过将查找区间一分为二,判断目标元素在哪一侧,并重复此过程,直到找到目标元素或确认不存在。

二分法在查找有序列表和解决优化问题时被广泛应用。

4. 高斯消元法高斯消元法是一种求解线性方程组的常用方法。

它通过对方程组进行一系列的行变换,将方程组化为简化的阶梯形式,从而求得方程组的解。

高斯消元法在计算机图形学、物理学和工程学等领域中得到广泛应用。

5. 快速傅里叶变换快速傅里叶变换是一种计算离散傅里叶变换的高效算法。

通过将离散信号转换为频域信号,可以在数字信号处理、图像处理和通信系统中实现快速算法和压缩方法。

6. 动态规划动态规划是一种解决具有重叠子问题和最优子结构性质的问题的算法。

通过将问题分解为子问题,并保存子问题的解,动态规划可以高效地求解一些复杂的优化问题,如最短路径、背包问题和序列比对等。

7. 贝叶斯定理贝叶斯定理是一种用来计算条件概率的方法。

它通过已知先验概率和观测数据来更新事件的后验概率。

贝叶斯定理在机器学习、人工智能和统计推断等领域中具有重要的应用。

数学建模简单13个例子全解

数学建模简单13个例子全解

数学建模简单13个例子全解1. 线性回归模型线性回归是一种基本的数学建模方法,用于预测一个因变量与一个或多个自变量之间的关系。

通过最小化误差平方和来拟合一个直线或平面,使其能够最好地拟合数据。

2. 逻辑回归模型逻辑回归是一种用于分类问题的建模方法。

它通过将线性回归模型的输出变换为一个概率值,从而将输入样本分为两个不同的类别。

3. K-means聚类模型K-means聚类是一种无监督学习算法,用于将样本分为若干个不同的簇。

它根据样本之间的相似性将它们分配到不同的簇中。

4. 决策树模型决策树是一种基于规则的分类模型。

它通过一系列的决策节点和叶节点来对输入样本进行分类。

5. 随机森林模型随机森林是一种集成学习模型,它由多个决策树组成。

它通过对每个决策树的预测结果进行投票来进行分类。

6. 支持向量机模型支持向量机是一种基于最大间隔原则的分类模型。

它通过寻找一个超平面来将数据样本分成不同的类别。

7. 主成分分析模型主成分分析是一种降维技术,它将原始数据投影到一个低维空间中,以便尽可能保留数据的方差。

8. 马尔可夫链模型马尔可夫链是一种离散时间概率模型,它假设过去的状态对于预测未来的状态是有用的。

9. 指数平滑模型指数平滑是一种时间序列预测方法,它使用加权平均法来对下一个时间点的预测值进行估计。

10. 神经网络模型神经网络是一种模拟人类神经系统的方法,它通过多层神经元之间的连接来进行学习和预测。

11. 遗传算法模型遗传算法是一种通过模拟生物进化过程来求解优化问题的方法。

它通过交叉、变异和选择等操作来生成新的解,并逐步优化。

12. 时间序列模型时间序列模型用于分析和预测随时间变化的数据。

常用的时间序列模型包括自回归移动平均模型(ARMA)、自回归整合移动平均模型(ARIMA)等。

13. 蒙特卡洛模拟模型蒙特卡洛模拟是一种概率方法,用于通过随机模拟来解决复杂的数学问题。

它通常通过重复随机抽样和运算来估计问题的解。

数学建模方法详解三种最常用算法

数学建模方法详解三种最常用算法

数学建模方法详解--三种最常用算法一、层次分析法层次分析法[1] (analytic hierarchy process,AHP)是美国著名的运筹学家T.L.Saaty教授于20世纪70年代初首先提出的一种定性与定量分析相结合的多准则决策方法[2,3,4].该方法是社会、经济系统决策的有效工具,目前在工程计划、资源分配、方案排序、政策制定、冲突问题、性能评价等方面都有广泛的应用.(一) 层次分析法的基本原理层次分析法的核心问题是排序,包括递阶层次结构原理、测度原理和排序原理[5].下面分别予以介绍.1.递阶层次结构原理一个复杂的结构问题可以分解为它的组成部分或因素,即目标、准则、方案等.每一个因素称为元素.按照属性的不同把这些元素分组形成互不相交的层次,上一层的元素对相邻的下一层的全部或部分元素起支配作用,形成按层次自上而下的逐层支配关系.具有这种性质的层次称为递阶层次.2.测度原理决策就是要从一组已知的方案中选择理想方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的.然而对于社会、经济系统的决策模型来说,常常难以定量测度.因此,层次分析法的核心是决策模型中各因素的测度化.3.排序原理层次分析法的排序问题,实质上是一组元素两两比较其重要性,计算元素相对重要性的测度问题. (二) 层次分析法的基本步骤层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一致的[1]. 1. 成对比较矩阵和权向量为了能够尽可能地减少性质不同的诸因素相互比较的困难,提高结果的准确度.T .L .Saaty 等人的作法,一是不把所有因素放在一起比较,而是两两相互对比,二是对比时采用相对尺度.假设要比较某一层n 个因素n C C ,,1 对上层一个因素O 的影响,每次取两个因素i C 和j C ,用ij a 表示i C 和j C 对O 的影响之比,全部比较结果可用成对比较阵1,0,ij ij ji n nijA a a a a表示,A 称为正互反矩阵. 一般地,如果一个正互反阵A 满足:,ij jk ik a a a ,,1,2,,i j k n L (1)则A 称为一致性矩阵,简称一致阵.容易证明n 阶一致阵A 有下列性质: ①A 的秩为1,A 的唯一非零特征根为n ;②A 的任一列向量都是对应于特征根n 的特征向量.如果得到的成对比较阵是一致阵,自然应取对应于特征根n 的、归一化的特征向量(即分量之和为1)表示诸因素n C C ,,1 对上层因素O 的权重,这个向量称为权向量.如果成对比较阵A 不是一致阵,但在不一致的容许范围内,用对应于A 最大特征根(记作 )的特征向量(归一化后)作为权向量w ,即w 满足:Aw w (2)直观地看,因为矩阵A 的特征根和特征向量连续地依赖于矩阵的元素ij a ,所以当ij a 离一致性的要求不远时,A 的特征根和特征向量也与一致阵的相差不大.(2)式表示的方法称为由成对比较阵求权向量的特征根法.2. 比较尺度当比较两个可能具有不同性质的因素i C 和j C 对于一个上层因素O 的影响时,采用Saaty 等人提出的91 尺度,即ij a 的取值范围是9,,2,1 及其互反数91,,21,1 .3. 一致性检验成对比较阵通常不是一致阵,但是为了能用它的对应于特征根 的特征向量作为被比较因素的权向量,其不一致程度应在容许范围内.若已经给出n 阶一致阵的特征根是n ,则n 阶正互反阵A 的最大特征根n ,而当n 时A 是一致阵.所以 比n 大得越多,A 的不一致程度越严重,用特征向量作为权向量引起的判断误差越大.因而可以用n 数值的大小衡量A 的不一致程度.Saaty 将1nCI n(3)定义为一致性指标.0CI 时A 为一致阵;CI 越大A 的不一致程度越严重.注意到A 的n 个特征根之和恰好等于n ,所以CI 相当于除 外其余1n 个特征根的平均值.为了确定A 的不一致程度的容许范围,需要找到衡量A 的一致性指标CI 的标准,又引入所谓随机一致性指标RI ,计算RI 的过程是:对于固定的n ,随机地构造正互反阵A ,然后计算A 的一致性指标CI .表1 随机一致性指标RI 的数值表中1,2n 时0RI ,是因为2,1阶的正互反阵总是一致阵.对于3n 的成对比较阵A ,将它的一致性指标CI 与同阶(指n 相同)的随机一致性指标RI 之比称为一致性比率CR ,当0.1CICR RI(4) 时认为A 的不一致程度在容许范围之内,可用其特征向量作为权向量.对于A 利用(3),(4)式和表1进行检验称为一致性检验.当检验不通过时,要重新进行成对比较,或对已有的A 进行修正. 4. 组合权向量由各准则对目标的权向量和各方案对每一准则的权向量,计算各方案对目标的权向量,称为组合权向量.一般地,若共有s 层,则第k 层对第一层(设只有1个因素)的组合权向量满足:1,3,4,kkk w W w k s L (5)其中 kW 是以第k 层对第1k 层的权向量为列向量组成的矩阵.于是最下层对最上层的组合权向量为:132s s s w W W W w L (6)5. 组合一致性检验在应用层次分析法作重大决策时,除了对每个成对比较阵进行一致性检验外,还常要进行所谓组合一致性检验,以确定组合权向量是否可以作为最终的决策依据.组合一致性检验可逐层进行.如第p 层的一致性指标为p n p CI CI ,,1 (n 是第1 p 层因素的数目),随机一致性指标为1,,p p nRI RI L ,定义11,,P p p p n CI CI CI w L 11,,p p p p n RI RI RI wL 则第p 层的组合一致性比率为:,3,4,,p p p CI CRp s RIL (7) 第p 层通过组合一致性检验的条件为 0.1pCR .定义最下层(第s 层)对第一层的组合一致性比率为:2*sP p CR CR (8)对于重大项目,仅当*CR 适当地小时,才认为整个层次的比较判断通过一致性检验.层次分析法的基本步骤归纳如下:(1) 建立层次结构模型 在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次.同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用,而同一层的各因素之间尽量相互独立.最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有1个或几个层次,通常称为准则或指标层,当准则过多时(比如多于9个)应进一步分解出子准则层.(2) 构造成对比较阵从层次结构模型的第2层开始,对于从属于上一层每个因素的同一层诸因素,用成对比较法和91 比较尺度构造成对比较阵,直到最下层.(3)计算权向量并做一致性检验对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标,随机一致性指标和一致性比率做一致性检验.若检验通过,特征向量(归一化后)即为权向量;若不通过,重新构造成对比较阵.(4)计算组合权向量并做组合一致性检验利用公式计算最下层对目标的组合权向量,并酌情作组合一致性检验.若检验通过,则可按照组合权向量表示的结果进行决策,否则需重新考虑模型或重新构造那些一致性比率CR较大的成对比较阵.(三) 层次分析法的优点1.系统性层次分析把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具.2.实用性层次分析把定性和定量方法结合起来,能处理许多用传统的最优化技术无法着手的实际问题,应用范围很广.同时,这种方法将决策者与决策分析者相互沟通,决策者甚至可以直接应用它,这就增加了决策的有效性.3.简洁性具有中等文化程度的人即可了解层次分析的基本原理和掌握它的基本步骤,计算也非常简便,且所得结果简单明确,容易为决策者了解和掌握.(四) 层次分析法的局限性层次分析法的局限性可以用囿旧、粗略、主观等词来概括.第一,它只能从原有的方案中选优,不能生成新方案;第二,它的比较、判断直到结果都是粗糙的,不适于精度要求很高的问题;第三,从建立层次结构模型到给出成对比较矩阵,人的主观因素的作用很大,这就使得决策结果可能难以为众人接受.当然,采取专家群体判断的方法是克服这个缺点的一种途径. (五) 层次分析法的若干问题层次分析法问世以来不仅得到广泛的应用而且在理论体系、计算方法等方面都有很大发展,下面从应用的角度讨论几个问题. 1. 正互反阵最大特征根和对应特征向量的性质成对比较阵是正互反阵.层次分析法中用对应它的最大特征根的特征向量作为权向量,用最大特征根定义一致性指标进行一致性检验.这里人们碰到的问题是:正互反阵是否存在正的最大特征根和正的特征向量;一致性指标的大小是否反映它接近一致阵的程度,特别,当一致性指标为零时,它是否就为一致阵.下面两个定理可以回答这些问题. 定理1 对于正矩阵A (A 的所有元素为正数) 1)A 的最大特征根是正单根 ;2) 对应正特征向量w ( 的所有分量为正数);3)w IA I I A k k k lim ,其中1,1,1 I ,w 是对应 的归一化特征向量.定理2 n 阶正互反阵A 的最大特征根n ;当n 时A 是一致阵.定理2和前面所述的一致阵的性质表明,n 阶正互反阵A 是一致阵的充要条件为 A 的最大特征根n .2. 正互反阵最大特征根和特征向量的实用算法众所周知,用定义计算矩阵的特征根和特征向量是相当困难的,特别是矩阵阶数较高时.另一方面,因为成对比较阵是通过定性比较得到的比较粗糙的量化结果,对它精确计算是不必要的,下面介绍几种简单的方法. (1) 幂法 步骤如下:a .任取n 维归一化初始向量 0wb .计算1,0,1,2,k k wAw k %L c .1k w%归一化,即令ni k ik k ww1111~~d .对于预先给定的精度 ,当 1||1,2,,k k i i i n L 时,1k w 即为所求的特征向量;否则返回be. 计算最大特征根 111k n ik i in %这是求最大特征根对应特征向量的迭代法, 0w 可任选或取下面方法得到的结果.(2) 和法 步骤如下:a. 将A 的每一列向量归一化得1nij ij iji a a%b .对ij %按行求和得1ni ij j %%c .将i %归一化 *121,,,ni ini w%%L 即为近似特征向量.d. 计算 11n ii iAw n ,作为最大特征根的近似值.这个方法实际上是将A 的列向量归一化后取平均值,作为A 的特征向量.(3) 根法 步骤与和法基本相同,只是将步骤b 改为对ij %按行求积并开n 次方,即11nn iij j%%.根法是将和法中求列向量的算术平均值改为求几何平均值.3. 为什么用成对比较阵的特征向量作为权向量当成对比较阵A 是一致阵时,ij a 与权向量n w ,,1 的关系满iij ja,那么当A 不是一致阵时,权向量w 的选择应使得ij a 与ij相差尽量小.这样,如果从拟合的角度看确定w 可以化为如下的最小二乘问题: 21,,11min i nniij i n i j j aL (9) 由(9)式得到的最小二乘权向量一般与特征根法得到的不同.因为(9)式将导致求解关于i 的非线性方程组,计算复杂,且不能保证得到全局最优解,没有实用价值.如果改为对数最小二乘问题:21,,11min ln ln i nni ij i n i j j aL (10)则化为求解关于ln i 的线性方程组.可以验证,如此解得的i 恰是前面根法计算的结果.特征根法解决这个问题的途径可通过对定理2的证明看出. 4. 成对比较阵残缺时的处理专家或有关学者由于某种原因无法或不愿对某两个因素给出相互比较的结果,于是成对比较阵出现残缺.应如何修正,以便继续进行权向量的计算呢?一般地,由残缺阵 ij A a 构造修正阵 ijA a %%的方法是令,,0,,1,ij ij ij ij i i a a i j a a i jm m i i j%为第行的个数, (11)表示残缺.已经证明,可以接受的残缺阵A 的充分必要条件是A 为不可约矩阵.(六) 层次分析法的广泛应用层次分析法在正式提出来之后,由于它在处理复杂的决策问题上的实用性和有效性,很快就在世界范围内得到普遍的重视和广泛的应用.从处理问题的类型看,主要是决策、评价、分析、预测等方面. 这个方法在20世纪80年代初引入我国,很快为广大的应用数学工作者和有关领域的技术人员所接受,得到了成功的应用.层次分析法在求解某些优化问题中的应用[5]举例 假设某人在制定食谱时有三类食品可供选择:肉、面包、蔬菜.这三类食品所含的营养成分及单价如表所示表2 肉、面包、蔬菜三类食品所含的营养成分及单价该人体重为55kg维生素A 7500国际单位 (IU)维生素B 1.6338mg热量 R 8548.5kJ考虑应如何制定食谱可使在保证营养需求的前提下支出最小?用层次分析法求解最优化问题可以引入包括偏好等这类因素.具体的求解过程如下:①建立层次结构② 根据偏好建立如下两两比较判断矩阵表3 比较判断矩阵max 2 ,10CI ,100.1CR ,主特征向量0.75,0.25W 故第二层元素排序总权重为 10.75,0.25W表4 比较判断矩阵111max 1113,0,0,0.58CI CR RI ,主特征向量0.4,0.4,0.2W故相对权重 210.4,0.4,0.2,0P③ 第三层组合一致性检验问题因为 2111211112120;0.435CI CI CI W RI RI RI W ,212200.1CR CR CI RI故第三层所有判断矩阵通过一致性检验,从而得到第三层元素维生素A 、维生素B 、热量Q 及支出E 的总权重为:221221120.3,0.3,0.15,0.25W P W P P W求第四层元素关于总目标W 的排序权重向量时,用到第三层与第四层元素的排序关系矩阵,可以用原始的营养成分及单价的数据得到.注意到单价对人们来说希望最小,因此应取各单价的倒数,然后归一化.其他营养成分的数据直接进行归一化计算,可得表5表5 各营养成分数据的归一化则最终的第四层各元素的综合权重向量为:3320.2376,0.2293,0.5331W P W ,结果表明,按这个人的偏好,肉、面包和蔬菜的比例取0.2376:0.2293:0.5331较为合适.引入参数变量,令10.2376x k ,20.2293x k ,30.5331x k ,代入 1LP123min 0.02750.0060.007f x x x131231231230.352725.075000.00210.00060.002 1.6338..(1)11.930011.5100 1.048548.5,,,0x x x x x s t LP x x x x x x则得k f 0116.0min13.411375000.0017 1.6338..26.02828548.50k k s t LP k k容易求得1418.1k ,故得最优解 *336.9350,325.1650,755.9767x;最优值 *16.4497f ,即肉336.94g ,面325.17g ,蔬菜755.98g ,每日的食品费用为16.45元.总之,对含有主、客观因素以及要求与期望是模糊的优化问题,用层次分析法来处理比较适用.二、模糊数学法模糊数学是1965年美国控制论专家L.A.Zadeh创立的.模糊数学作为一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判等各方面.在气象、结构力学、控制、心理学方面已有具体的研究成果.(一) 模糊数学的研究内容第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系;第二,研究模糊语言和模糊逻辑,并能作出正确的识别和判断;第三,研究模糊数学的应用.(二) 模糊数学在数学建模中应用的可行性1.数学建模的意义在于将数学理论应用于实际问题[6].而模糊数学作为一种新的理论,本身就有其巨大的应用背景,国内外每年都有大量的相关论文发表,解决了许多实际问题.目前在数学建模中较少运用模糊数学方法的原因不在于模糊数学理论本身有问题,而在于最新的研究成果没有在第一时间进入数学建模的教科书中,就其理论本身所具有的实用性的特点而言,模糊数学应该有助于我们解决建模过程中的实际问题.2.数学建模的要求是模型与实际问题尽可能相符.对实际问题有这样一种分类方式:白色问题、灰色问题和黑色问题.毫无疑问,引进新的方法对解决这些问题大有裨益.在灰色问题和黑色问题中有很多现象是用“模糊”的自然语言描述的.在这种情况下,用模糊的模型也许更符合实际.3.数学建模活动的目的之一是培养学生的创新精神.用新理论、新方法解题应该受到鼓励.近年来,用神经网络法、层次分析法等新方法建立模型的论文屡有获奖,这也说明了评审者对新方法的重视.我们相信,模糊数学方法应该很好,同样能够写出优秀的论文.(三) 模糊综合评判法中的最大隶属原则有效度在模糊统计综合评判中,如何利用综合评判结果向量12,,,m b b b b L ,其中, 01j b ,m为可能出现的评语个数,提供的信息对被评判对象作出所属等级的判断,目前通用的判别原则是最大隶属原则[7].在实际应用中很少有人注意到最大隶属原则的有效性问题,在模糊综合评判的实例中最大隶属原则无一例外地被到处搬用,然而这个原则并不是普遍适用的.最大隶属原则有效度的测量1. 有效度指标的导出在模糊综合评判中,当11max 1,1njj j nj bb 时,最大隶属原则最有效;而在 1max 01,jj nbc c 1n j j b nc 时,最大隶属原则完全失效,且1max jj nb 越大(相对于1njj b 而言),最大隶属原则也越有效.由此可认为,最大隶属原则的有效性与1max jj nb 在1njj b 中的比重有关,于是令:11max njjj nj b b (12)显然,当11max 1,1njj j nj bb 时,则1 为 的最大值,当 1max 01jj nb c c ,1njj bnc时,有1n 为 的最小值,即得到 的取值范围为:11n .由于在最大隶属原则完全失效时,1n 而不为0,所以不宜直接用 值来判断最大隶属原则的有效性.为此设:11111n n n n(13)则 可在某种程度上测定最大隶属原则的有效性.而最大隶属原则的有效性还与j nj b 1sec (jnj b 1sec 的含义是向量b 各分量中第二大的分量)的大小有很大关系,于是我们定义:11sec njjj nj b b(14)可见: 当 1,1,0,0,,0b L 时, 取得最大值12.当 0,1,0,0,,0b L 时, 取得最小值0.即 的取值范围为012 ,设 02120.一般地, 值越大最大隶属原则有效程度越高;而 值越大,最大隶属原则的有效程度越低.因此,可以定义测量最大隶属原则有效度的相对指标:112121n n n n(15) 使用 指标能更准确地表明实施最大隶属原则的有效性.2. 指标的使用从 指标的计算公式看出 与 成反比,与 成正比.由 与 的取值范围,可以讨论 的取值范围: 当 取最大值, 取最小值时, 将取得最小值0;当 取最小值, 取最大值时, 将取得最大值:因为 0lim ,所以可定义0 时, .即:0 .由以上讨论,可得如下结论:当 时,可认定施行最大隶属原则完全有效;当1 时,可认为施行最大隶属原则非常有效;当0.51 时,可认为施行最大隶属原则比较有效,其有效程度即为 值;当00.5 时可认为施行最大隶属原则是最低效的;而当0 时,可认定施行最大隶属原则完全无效.有了测量最大隶属原则有效度的指标,不仅可以判断所得可否用最大隶属原则确定所属等级,而且可以说明施行最大隶属原则判断后的相对置信程度,即有多大把握认定被评对象属于某个等级. 讨论a . 在很多情况下,可根据 值的大小来直接判断使用最大隶属原则的有效性而不必计算 值.根据 与 之间的关系,当0.7 ,且4n 时,一定存在1 .通常评价等级数取4和9之间,所以4n 这一条件往往可以忽略,只要0.7 就可免算 值,直接认定此时采取最大隶属原则确定被评对象的等级是很有效的.b . 如果对 12,,,m b b b b L 进行归一化处理而得到b ,则可直接根据b 进行最大隶属原则的有效度测量. (四) 模糊数学在数学建模中的应用模糊数学有诸多分支,应用广泛.如模糊规划、模糊优化设计、综合评判、模糊聚类分析、模糊排序、模糊层次分析等等.这些方法在工业、军事、管理等诸多领域被广泛应用. 举例 带模糊约束的最小费用流问题[8]问题的提出 最小费用流问题的一般提法是:设 ,,,D V A c 是一个带出发点s v 和收点t v 的容量-费用网络,对于任意,ijv v A ,ijc表示弧 ,i j v v 上的容量,ij 表示弧 ,i j v v 上通过单位流量的费用,0v 是给定的非负数,问怎样制定运输方案使得从s v 到t v 恰好运输流值为0v 的流且总费用最小?如果希望尽可能地节省时间并提高道路的通畅程度,问运输方案应当怎样制定?模型和解法 问题可以归结为:怎样制定满足以下三个条件的最优运输方案?(1)从s v 到t v 运送的流的值恰好为0v ;(2)总运输费用最小;(3)在容量ij c 大的弧 ,i j v v 上适当多运输.如果仅考虑条件(1)和(2),易写出其数学模型为:,0,,0,,,,min()..0,0i j s j j s t j j t i j j i ij ijv v Asj js v v A v v A tj jt v v Av v A ij ji i s t v v A v v A ij ijf f f v f f v M s t f f v V v v f c把条件(3)中的“容量大” 看作A 上的一个模糊子集A %,定义其隶属函数 : 0,1A 为: 00,0,1,ij ij ij i j A d c c v ij c c v v e c c%其中 1,i j ij v v c A cg (平均容量)21,21,0,1lg 1i j i j ij v v A ij v v A A c c d A c cg g建立ij 是为了量化“适当多运输”这一模糊概念.对条件(2)作如下处理:对容量ij c 大的弧 ,i j v v ,人为地降低运价ij ,形成“虚拟运价”ij ,其中ij 满足:ij c 越大,相应的ij 的调整幅度也越大.选取ij 为 1kij ij ij , ,i j v v A .其中k 是正参数,它反映了条件(2)和条件(3)在决策者心目中的地位.决策者越看重条件(3),k 取值越小;当k 取值足够大时,便可忽略条件(3) .一般情况下,合适的k 值最好通过使用一定数量的实际数据进行模拟、检验和判断来决定.最后,用ij 代替原模型M 中的ij ,得到一个新的模型M .用现有的方法求解这个新的规划问题,可期望得到满足条件(3)的解.模型的评价 此模型在原有的数学规划模型和解法的基础上,增加了模糊约束.新模型比较符合实际,它的解包含了原模型的解,因而它是一个较为理想的模型.隶属度的确定在模糊数学中有多种方法,可以根据不同的实际问题进行调整.同样的思想方法可以处理其他的模糊约束问题.三、灰色系统客观世界的很多实际问题,其内部结构、参数以及特征并未全部被人们了解,对部分信息已知而部分信息未知的系统,我们称之为灰色系统.灰色系统理论是从系统的角度出发来研究信息间的关系,即研究如何利用已知信息去揭示未知信息.灰色系统理论包括系统建模、系统预测、系统分析等方面.(一)灰色关联分析理论及方法灰色系统理论[9]中的灰色关联分析法是在不完全的信息中,对所要分析研究的各因素,通过一定的数据,在随机的因素序列间,找出它们的关联性,找到主要特性和主要影响因素.计算方法与步骤:1.原始数据初值化变换处理分别用时间序列 k 的第一个数据去除后面的原始数据,得出新的倍数列,即初始化数列,量纲为一,各值均大于零,且数列有共同的起点.2. 求关联系数0000min min ||max max ||||max max ||k i k k i k ik i ki k k i k k i k ikx x x x x x x x3. 取分辨系数 01 4. 求关联度11ni ki k k r n(二) 灰色预测1.灰色预测方法的特点(1)灰色预测需要的原始数据少,最少只需四个数据即可建模;(2)灰色模型计算方法简单,适用于计算机程序运行,可作实时预测;(3) 灰色预测一般不需要多因素数据,而只需要预测对象本身的单因素数据,它可以通过数据本身的生成,寻找系统内在的规律;(4) 灰色预测既可做短期预测,也可做长期预测,实践证明,灰色预测精度较高,误差较小.2. 灰色预测GM(1,1)模型的一点改进一些学者为了提高预测精度做出了大量的研究工作,提出了相应的方法.本文将在改善原始离散序列光滑性的基础上,进一步研究GM(1,1)预测模型的理论缺陷及改进方法[10].问题的存在及改进方法如下:传统灰色预测GM(1,1)模型的一般步骤为: (1)1-ADO :对原始数据序列0k x 1,2,,k n L 进行一次累加生成序列 101kk i i x x1,2,,k n L(2)对0x 数列进行光滑性检验:00,k ,当0k k 时:0011101k k k k ii x x x x文献[11]进一步指出只要0101k k ii x x 为k 的递减函数即可.(3)对1x 作紧邻生成: 1111*1*,2,3,,k k k Z x x k n L一般取0.5b ax dtdx 11 (16)为灰色微分方程 01k k x aZ b 的白化方程. (4)按最小二乘法计算参数,a b(5)解(16)式并进行离散化得模拟序列1x 和0x 的计算公式: 1101exp k x x b a ak b a ,其中0,1,2,,k n L01111011exp *exp k k k x x x a x b a ak ,其中1,2,k L并假定 111101x x x文献[12,13]指出:假定 111101x x x 的理由是不充分的,文献[14]认为应当以最后一个 1n x 为已知条件来确定微分方程中常数项m c 的值,理由是最后一个数据是最新的,最能反映实际情况.同时文献[15]又进一步提出常数m c 的确定,由于数据序列中。

数学建模常用方法

数学建模常用方法

数学建模常用方法数学建模是利用数学工具和方法来研究实际问题,并找到解决问题的最佳方法。

常用的数学建模方法包括线性规划、非线性规划、动态规划、整数规划、图论、最优化理论等。

1. 线性规划(Linear Programming, LP): 线性规划是一种在一定约束条件下寻找一组线性目标函数的最佳解的方法。

常见的线性规划问题包括生产调度问题、资源分配问题等。

2. 非线性规划(Nonlinear Programming, NLP): 非线性规划是指当目标函数或约束条件存在非线性关系时的最优化问题。

非线性规划方法包括梯度方法、牛顿法、拟牛顿法等。

3. 动态规划(Dynamic Programming, DP): 动态规划方法是一种通过将复杂的问题分解成多个子问题来求解最优解的方法。

动态规划广泛应用于计划调度、资源配置、路径优化等领域。

4. 整数规划(Integer Programming, IP): 整数规划是一种在线性规划的基础上,将变量限制为整数的最优化方法。

整数规划常用于离散变量的问题,如设备配置、路径优化等。

5. 图论(Graph Theory): 图论方法研究图结构和图运算的数学理论,常用于解决网络优化、路径规划等问题。

常见的图论方法包括最短路径算法、最小生成树算法等。

6. 最优化理论(Optimization Theory): 最优化理论是研究寻找最优解的数学方法和理论,包括凸优化、非凸优化、多目标优化等。

最优化理论在优化问题建模中起到了重要的作用。

7. 离散数学方法(Discrete Mathematics): 离散数学方法包括组合数学、图论、概率论等,常用于解决离散变量或离散状态的问题。

离散数学方法在计算机科学、工程管理等领域应用广泛。

8. 概率统计方法(Probability and Statistics): 概率统计方法通过对已有数据进行分析和建模,提供了一种推断和预测的数学方法。

概率统计方法在决策分析、风险评估等领域起到了重要的作用。

数学建模算法与应用引用格式

数学建模算法与应用引用格式

数学建模算法与应用引用格式引言数学建模的研究已经在各个领域中得到广泛应用,并且在实际问题的解决中发挥着重要作用。

为了提高数学建模的效果和准确性,各种算法被提出并被应用。

本文将介绍一些常见的数学建模算法以及它们在实际应用中的引用格式。

一、线性回归线性回归是一种常见的建模算法,用于建立输入变量和输出变量之间的线性关系。

在引用线性回归算法时,可以采用以下格式:[1] Author1, Author2, Author3, et al. Title of the Article. Journal Name, Year, Volume(Issue): Page range.例如:[1] Fisher, R. A. The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics, 1936, 7(2): 179-188.二、深度学习深度学习是一种基于神经网络的建模方法,能够通过多层次的非线性变换来学习数据的表示。

在引用深度学习算法时,可以采用以下格式:[2] Author1, Author2, Author3, et al. Title of the Article. Journal Name, Year, Volume(Issue): Page range.例如:[2] LeCun, Y., Bengio, Y., Hinton, G. Deep learning. Nature, 2015, 521(7553): 436-444.三、遗传算法遗传算法是一种模拟自然进化过程的优化算法,通过模拟生物进化中的遗传、突变和选择等机制,寻找问题的优化解。

在引用遗传算法时,可以采用以下格式:[3] Author1, Author2, Author3, et al. Title of the Article. Journal Name, Year, Volume(Issue): Page range.例如:[3] Holland, J. H. Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press, 1975.四、蚁群算法蚁群算法是一种模拟蚁群寻找食物过程的优化算法,通过模拟蚂蚁在寻找食物过程中的信息素释放和信息素更新等行为,寻找问题的优化解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.数学建模十大经典算法
数学建模, 十大算法, 经典
1 十类常用算法

1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同
时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。

2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,
而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。

3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最
优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求
解。

4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图
论的问题可以用这些方法解决,需要认真准备。

5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较
常用的方法,竞赛中很多场合会用到。

6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是
用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困
难,需慎重使用。

7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点
讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编
程工具。

8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能
处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要
的。

9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法
比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。
10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需
要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB
进行处理。

2 十类算法的详细说明
以下将结合历年的竞赛题,对这十类算法进行详细地说明。
2.1 蒙特卡罗算法

大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。
举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求
解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可
能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方
法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为
一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子
就是去年y的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的
因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。

2.2 数据拟合、参数估计、插值等算法
数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是
98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的
插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据
的走向进行处理。此类问题在MATLAB中有很多现成的函数可以调用,熟悉MATLAB,这些方
法都能游刃有余的用好。

2.3 规划类问题算法
竞赛中很多问题都和数学规划有关,可以说不少的模型都可以归结为一组不等式作为约束
条件、几个函数表达式作为目标函数的问题,遇到这类问题,求解就是关键了,比如98年
B 题,用很多不等式完全可以把问题刻画清楚,因此列举出规划后用Lindo、Lingo 等软件
来进行解决比较方便,所以还需要熟悉这两个软件。

2.4 图论问题
98 年B 题、00 年B 题、95 年锁具装箱等问题体现了图论问题的重要性,这类问题算法
有很多,包括:Dijkstra、Floyd、Prim、Bellman-Ford,最大流,二分匹配等问题。每一
个算法都应该实现一遍,否则到比赛时再写就晚了。

2.5 计算机算法设计中的问题
计算机算法设计包括很多内容:动态规划、回溯搜索、分治算法、分支定界。比如92 年B
题用分枝定界法,97 年B 题是典型的动态规划问题,此外98 年B 题体现了分治算法。这
方面问题和ACM 程序设计竞赛中的问题类似,推荐看一下《计算机算法设计与分析》(电
子工业出版社)等与计算机算法有关的书。

2.6 最优化理论的三大非经典算法
这十几年来最优化理论有了飞速发展,模拟退火法、神经网络、遗传算法这三类算法发展
很快。近几年的赛题越来越复杂,很多问题没有什么很好的模型可以借鉴,于是这三类算
法很多时候可以派上用场,比如:97 年A 题的模拟退火算法,00 年B 题的神经网络分类
算法,象01 年B 题这种难题也可以使用神经网络,还有美国竞赛89 年A 题也和BP 算法
有关系,当时是86 年刚提出BP 算法,89 年就考了,说明赛题可能是当今前沿科技的抽
象体现。03 年B 题伽马刀问题也是目前研究的课题,目前算法最佳的是遗传算法。

2.7 网格算法和穷举算法
网格算法和穷举法一样,只是网格法是连续问题的穷举。比如要求在N 个变量情况下的最
优化问题,那么对这些变量可取的空间进行采点,比如在[a; b] 区间内取M +1 个点,就
是 那么这样循环就需要进行 次运算,所以计算量很大。比如97 年A 题、99 年B 题都
可以用网格法搜索,这种方法最好在运算速度较快的计算机中进行,还有要用高级语言来
做,最好不要用MATLAB 做网格,否则会算很久的。穷举法大家都熟悉,就不说了。

2.8 一些连续数据离散化的方法
大部分物理问题的编程解决,都和这种方法有一定的联系。物理问题是反映我们生活在一
个连续的世界中,计算机只能处理离散的量,所以需要对连续量进行离散处理。这种方法
应用很广,而且和上面的很多算法有关。事实上,网格算法、蒙特卡罗算法、模拟退火都
用了这个思想。

2.9 数值分析算法
这类算法是针对高级语言而专门设的,如果你用的是MATLAB、Mathematica,大可不必准备,
因为象数值分析中有很多函数一般的数学软件是具备的。

2.10 图象处理算法
01 年A 题中需要你会读BMP 图象、美国赛98 年A 题需要你知道三维插值计算,03 年B 题
要求更高,不但需要编程计算还要进行处理,而数模论文中也有很多图片需要展示,因此
图象处理就是关键。做好这类问题,重要的是把MATLAB 学好,特别是图象处理的部分。

1
、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题

的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据
需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数
问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用
Lindo、Lingo软件实现)
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,
涉及到图论的问题可以用这些方法解决,需要认真准备)
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法
设计中比较常用的方法,很多场合可以用到竞赛中)
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问
题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是
算法的实现比较困难,需慎重使用)
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多
竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方
案,最好使用一些高级语言作为编程工具)
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算
机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等
思想是非常重要的)
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析
中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函
数进行调用)
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也
应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常
使用Matlab进行处理)

相关文档
最新文档