人教版数学八年级下册:第17章 勾股定理测试卷
人教版数学八年级下册 第17章 勾股定理 单元复习试题 含答案

第17章勾股定理一.选择题(共10小题)1.下列结论中,错误的有()①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠A=90°;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形;A.0个B.1个C.2个D.3个2.如图,将一副三角板如图放置,如果DB=2,那么点E到BC的距离为()A.﹣1 B.3﹣C.2﹣2 D.+13.如图,在△ABC中,∠ACB=90°,CD⊥AB于D,若AC=2,BC=,则CD为()A.B.2 C.D.34.如图,将△ABC放在正方形网格中(图巾每个小正方形边长均为1)点A,B,C恰好在网格图中的格点上,那么∠ABC的度数为()A.90°B.60°C.45°D.30°5.如图,已知数轴上点P表示的数为﹣1,点A表示的数为1,过点A作直线l垂直于PA,在l上取点B,使AB=1,以点P为圆心,以PB为半径作弧,弧与数轴的交点C所表示的数为()A.B.C.D.6.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.已知AB=15,Rt△ABC的周长为15+9,则CD的长为()A.5 B.C.9D.67.如图,设小方格的面积为1,则图中以格点为端点且长度为的线段有()A.2条B.3条C.4条D.5条8.如图,已知在Rt△ABC中,E,F分别是边AB,AC上的点,AE=AB,AF=AC,分别以BE、EF、FC为直径作半圆,面积分别为S1,S2,S3,则S1,S2,S3之间的关系是()A.S1+S3=2S2 B.S1+S3=4S2C.S1=S3=S2 D.S2=(S1+S3)9.如图,有一个池塘,其底面是边长为10尺的正方形,一个芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′.则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺10.一云梯AB长25米,如图那样斜靠在一面墙上,云梯底端离墙7米,如果云梯的顶端下滑了4米,那么它的底端在水平方向滑动BB'的长是()A.10米B.8米C.6米D.4米二.填空题(共6小题)11.若△ABC的三边长分别为a,b,c.下列条件:①∠A=∠B﹣∠C;②a2=(b+c)(b﹣c);③∠A:∠B:∠C=3:4:5;④a:b:c=5:12:13.其中能判断△ABC是直角三角形的是(填序号).12.已知,△ABC的三边长分别为:2,,,则△ABC的面积是.13.如图,BD为△ABC的中线,AB=10,AD=6,BD=8,△ABC的周长是.14.若8,a,17是一组勾股数,则a=.15.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8.AD平分∠BAC交BC边于点D,则BD=.16.如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=8cm,AB=6cm,BC=10cm,点Q 从点A出发以1cm/s的速度向点D运动,点P从点B出发以2cm/s的速度向C点运动,P、Q两点同时出发,其中一点到达终点时另一点也停止运动.若DP≠DQ,当t=s 时,△DPQ是等腰三角形.三.解答题(共6小题)17.如图,在Rt△ABC中,∠B=90°.点D为BC边上一点,线段AD将Rt△ABC分为两个周长相等的三角形.若CD=2,BD=6,求△ABC的面积.18.如图,在△ABC中,AB=AC,△ABC的高BH,CM交于点P.(1)求证:PB=PC.(2)若PB=5,PH=3,求AB.19.已知:如图,在△ABC中,CD⊥AB,垂足为点D,AC=20,BC=15,DB=9.(1)求CD的长.(2)求AB的长.20.平面直角坐标系中如果任意两点A、B的坐标分别为(x1,y1)、(x2,y2),则A、B两点之间的距离可表示为|AB|=;在平面直角坐标系中.(1)若点C的坐标为(3,4),O为坐标原点,则C、O两点之间的距离为.(2)若点E(﹣2,3)、F(4,﹣5),求E、F两点之间的距离.21.如图,正方形网格的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上.(1)分别求出AB,BC,AC的长;(2)试判断△ABC是什么三角形,并说明理由.22.阅读下列材料:小明遇到一个问题:在△ABC中,AB,BC,AC三边的长分别为、、,求△ABC 的面积.小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.参考小明解决问题的方法,完成下列问题:(1)图2是一个6×6的正方形网格(每个小正方形的边长为1).①利用构图法在答卷的图2中画出三边长分别为、、的格点△DEF;②计算①中△DEF的面积为;(直接写出答案)(2)如图3,已知△PQR,以PQ,PR为边向外作正方形PQAF,正方形PRDE,连接EF.①判断△PQR与△PEF面积之间的关系,并说明理由.②若PQ=,PR=,QR=3,直接..写出六边形AQRDEF的面积为.参考答案一.选择题(共10小题)1.解:①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5或,错误;②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠C=90°,错误;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形,正确;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形,正确;故选:C.2.解:作EF⊥BC于F,设EF=x,则BF=x,BE=x,CE=2x,则AC=,AE=﹣x,则(﹣x)2+()2=(2x)2,x2+2x﹣6=0,解得x1=3﹣,x2=﹣3﹣(舍去).故点E到BC的距离为3﹣.故选:B.3.解:在Rt△ABC中,AC=2,BC=,根据勾股定理得:AB==3,∵△ABC中,∠C=90°,CD⊥AB,∴S△ABC=AC•BC=AB•CD,即AC•BC=AB•CD,∴CD==2,故选:B.4.解:由勾股定理得:AC2=12+22=5,BC2=12+32=10,AB2=12+22=5,∴AB=AC,AC2+AB2=BC2,∴△ACB是等腰直角三角形,∴∠ABC=45°,故选:C.5.解:PB=,∴PB=PC,∴OC=PC﹣1=﹣1,∴点C的数为﹣1,故选:B.6.解:如图所示:∵Rt△ABC的周长为15+9,∠ACB=90°,AB=15,∴AC+BC=9,AC2+BC2=AB2=152=225,∴(AC+BC)2=(9)2,即AC2+2AC×BC+BC2=405,∴2AC×BC=405﹣225=180,∴AC×BC=90,∵AB×CD=AC×BC,∴CD===6;故选:D.7.解:∵=,∴是直角边长为2,3的直角三角形的斜边,如图所示,AB,CD,BE,DF的长都等于;故选:C.8.解:∵在Rt△ABC中,AE=AB,AF=AC,∴AE=BE,AF=CF,EF2=AE2+AF2,∴EF2=BE2+CF2.∴π•EF2=π•(BE2+CF2),即S2=(S1+S3).∴S1+S3=4S2.故选:B.9.解:设芦苇长AB=AB′=x尺,则水深AC=(x﹣1)尺,因为边长为10尺的正方形,所以B'C=5尺在Rt△AB'C中,52+(x﹣1)2=x2,解之得x=13,即水深12尺,芦苇长13尺.故选:D.10.解:由题意可得:AB=25m,OB=7m,则OA==24(m),当云梯的顶端下滑了4米,则A′O=24﹣4=20(m),故OB′==15(m),则BB′=CB′﹣BC=(15﹣7)m=8m.答:它的底部在水平方向滑动了8米,故选:B.二.填空题(共6小题)11.解:∵∠A=∠B﹣∠C,∴∠A+∠C=∠B,∵∠A+∠C+∠B=180°,∴∠B=90°,∴△ABC是直角三角形,故①符合题意;∵a2=(b+c)(b﹣c)∴a2+c2=b2,∴△ABC是直角三角形,故②符合题意;∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC不是直角三角形,故③不符合题意;∵a:b:c=5:12:13,∴a2+b2=c2,∴△ABC是直角三角形,故④符合题意;故答案为:①②④.12.解:∵△ABC的三边长分别为:2,,,∴22+()2=()2,∴△ABC是直角三角形,斜边为,∴△ABC的面积为=,故答案为:.13.解:∵AB=10,AD=6,BD=8,∴AB2=AD2+BD2=100,∴△ABD是直角三角形且AD⊥BD.又BD为△ABC的中线,∴AB=BC=10,AD=CD=6.∴,△ABC的周长=AB+BC+AD=2AB+2AD=20+12=32.故答案是:32.14.解:①a为最长边,a==,不是正整数,不符合题意;②17为最长边,a==15,三边是整数,能构成勾股数,符合题意.故答案为:15.15.解:作DE⊥AC于E,如图所示:∵∠B=90°,AB=6,BC=8.∴DB⊥AB,AC==10,∵AD平分∠BAC,DE⊥AC,∴DE=DB,在Rt△AED和Rt△ABD中,,∴Rt△AED≌Rt△ABD(HL),∴AE=AB=6,∴CE=AC﹣AE=4,设DE=DB=x,则CD=8﹣x,在Rt△CDE中,由勾股定理得:x2+42=(8﹣x)2,解得:x=3,∴BD=3;故答案为:3.16.解:由运动知,AQ=t,BP=2t,∵AD=8,BC=10,∴DQ=AD﹣AQ=(8﹣t)(cm),PC=BC﹣BP=(10﹣2t)(cm),∵△DPQ是等腰三角形,且DQ≠DP,∴①当DP=QP时,∴点P在DQ的垂直平分线上,∴AQ+DQ=BP,∴t+(8﹣t)=2t,∴t=,②当DQ=PQ时,如图,Ⅰ、过点Q作QE⊥BC于E,∴∠BEQ=∠OEQ=90°,∵AD∥BC,∠B=90°,∴∠A=∠B=90°,∴四边形ABEQ是矩形,∴EQ=AB=6,BE=AQ=t,∴PE=BP﹣BE=t,在Rt△PEQ中,PQ==,∵DQ=8﹣t∴=8﹣t,∴t=,∵点P在边BC上,不和C重合,∴0≤2t<10,∴0≤t<5,∴此种情况符合题意,即t=或s时,△DPQ是等腰三角形.故答案为:或.三.解答题(共6小题)17.解:根据题意可知,△ACD与△ADB的周长相等,∴AC+CD+AD=AD+BD+AB.∴AC+CD=BD+AB.∵CD=2,BD=6,∴AC+2=6+AB,BC=CD+BD=8,∴AC=AB+4,设AB=x,则AC=4+x.在Rt△ABC中,AB2+BC2=AC2,∴x2+82=(x+4)2.∴x2+64=16+x2+8x.∴x=6.∵经检验,x=6为原方程的解,∴原方程的解为x=6.∴.18.(1)证明:∵AB=AC,∴∠ABC=∠ACB.∵BH,CM为△ABC的高,∴∠BMC=∠CHB=90°.∴∠ABC+∠BCM=90°,∠ACB+∠CBH=90°.∴∠BCM=∠CBH.∴PB=PC.(2)解:∵PB=PC,PB=5,∴PC=5.∵PH=3,∠CHB=90°,∴CH=4.设AB=x,则AH=x﹣4.在Rt△ABH中,∵AH2+BH2=AB2,∴(x﹣4)2+(5+3)2=x2.∴x=10.即AB=10.19.解:(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,∵BC=15、DB=9,∴CD===12;(2)在Rt△ACD中,∵AC=20、CD=12,∴AD===16,则AB=AD+DB=16+9=25.20.解:(1)∵O为原点,∴O坐标为(0,0),∵点C的坐标为(3,4),∴CO==5,故答案为:5;(2)∵点E(﹣2,3)、F(4,﹣5),E、F两点之间的距离可表示为|EF|=,∴EF===10.21.解:(1),,;(2)△ABC是直角三角形,理由如下:∵,AC2=52=25,∴AB2+BC2=AC2,∴△ABC是直角三角形.22.解:(1)①如图所示:②△DEF的面积为4×5﹣×2×3﹣×2×4﹣×2×5=8;(2)①如图3,△PEF的面积为6×2﹣×1×6﹣×1×3﹣×3×2=,△PQR的面积为×3×3=,∴△PQR与△PEF面积相等;②六边形AQRDEF的面积为()2+++()2=13+9+10=32.故答案为:8;32.。
人教版数学八年级下册第十七章勾股定理测试题及答案

人教版数学八年级下册第十七章考试试题评卷人得分一、单选题1.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为()A.60海里B.45海里C.海里D.2.一直角三角形的三边分别为2,3,x,那么以x为边长的正方形的面积为()A.13B.5C.4D.13或53.在测量旗杆的方案中,若旗杆高为21m,目测点到杆的距离为15m,则目测点到杆顶的距离为(设目高为1m)().A.20m B.25m C.30m D.35m4.直角三角形斜边的平方等于两条直角边乘积的2倍,这个三角形有一个锐角是() A.15°B.30°C.45°D.60°5.直角三角形两直角边长度为5,12,则斜边上的高()A.6B.8C.1813D.60136.如图1,一架梯子AB长为5m,斜靠在一面墙上,梯子底端B离墙3m,若梯子的顶端A下滑了1m(如图2),则梯子的底端在水平方向上滑动的距离BD为()A.1m B.大于1m C.介于0m和0.5m之间D.介于0.5m和1m之间7.如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,且CD=5,如果Rt△ABC的面积为1,则它的周长为()A.5+1B.5+1C.5+2D.5+38.如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P是母线BC上一点,且PC=23BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是()A、6 (4π+㎝B、5cmC、35㎝9.如果Rt△的两直角边长分别为k2-1,2k(k>1),那么它的斜边长是()A.2k B.k+1C.k2-1D.k2+110.如图,一个无盖的正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从盒外的D点沿正方体的盒壁爬到盒内的M点(盒壁的厚度不计),蚂蚁爬行的最短距离是()A.25+B.13C29D.5评卷人得分二、填空题11.若一个三角形的三边长分别为1、a、8(其中a为正整数),则以a-2、a、a+2为边的三角形的面积为______.12.若直角三角形两直角边的比为3:4,斜边长为20,则此直角三角形的面积为____.13.如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为______.14.若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为______.15.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为.现已知△ABC 的三边长分别为1,2,则△ABC 的面积为______.16.在△ABC ,AB =AC =5,BC =6,若点P 在边AC 上移动,则BP 的最小值是_______.评卷人得分三、解答题17.如图,在△ABC 中,∠C=90°,M 是BC 的中点,MD ⊥AB 于D ,求证:222AD AC BD =+.18.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A ',那么梯子的底端在水平方向滑动了几米?19.已知:如图,四边形ABCD 中,∠ACB=90°,AB=15,BC=9,AD=5,DC=13.试判断△ACD 的形状,并说明理由;20.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点.求证:(1)△ACE ≌△BCD ;(2)222AD DB DE +=.21.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.22.如图,在等腰直角△ABC的斜边上取异于B,C的两点E,F,使∠EAF=45°,求证:以EF,BE,CF为边的三角形是直角三角形.参考答案1.D【解析】试题分析:根据条件易知△APB是直角三角形,AP=30,∠A=60°,∠B=30°,运用三角函数定义易求BP.考点:解直角三角形的应用-方向角问题.2.D【解析】【分析】以x为边长的正方形的面积即为x2.此题应考虑两种情况:2和3是直角边,x是斜边或2和x是直角边,3是斜边,运用勾股定理进行计算即可.【详解】当2和3是直角边,x是斜边时,则x2=4+9=13;当2和x是直角边,3是斜边,则x2=9-4=5.故选D.【点睛】此题考查了勾股定理,以及正方形的面积,此类题在没有明确直角边或斜边的时候,一定要注意分情况考虑,熟练运用勾股定理进行计算.3.B【解析】【分析】首先根据题意画出图形,题目已知条件是:已知旗杆AB高21m,目测点C到杆的距离CD 为15m,目高CE为1m.在Rt△BCD中,利用勾股定理求出BC即可.【详解】如图,已知AB=21m,CD=15m,CE=1m,∵∠A=∠ADC=∠AEC=90°,∴四边形ADCE是矩形,∴AD=CE=1.在Rt△BCD中,∵∠CDB=90°,CD=15,BD=AB-AD=21-1=20,∴BC25m,即目测点到杆顶的距离为25m.故选B.【点睛】本题考查了解直角三角形的应用,勾股定理,理解题意正确画出图形是解题的关键.【解析】设直角三角形的两直角边是a、b,斜边是c.根据斜边的平方等于两条直角边乘积的2倍得到:2ab=c2,根据勾股定理得到:a2+b2=c2,因而a2+b2=2ab,即:a2+b2-2ab=0,(a-b)2=0∴a=b,则这个三角形是等腰直角三角形,因而这个三角形的锐角是45°.故选C.点睛:本题考查了的是勾股定理,解答此题的关键是熟知勾股定理、直角三角形的性质及完全平方公式.5.D【解析】【分析】首先根据勾股定理,得:斜边=13.再根据直角三角形的面积公式,求出斜边上的高.【详解】=13.所以斜边上的高=12×5÷13=60 13.故选D.【点睛本题考查了勾股定理.解题的关键是掌握直角三角形斜边上的高等于两条直角边的乘积除以斜边.6.A【解析】解:图(1)中,AB=5m,BC=3m,由勾股定理得AC=4m.∵梯子下滑了1m,∴AE=1m,∴EC=3m,图(2)中,EC=3m,ED=5m,由勾股定理得CD=4m,所以梯子向外端下滑了1m.故选A.点睛:本题考查的是勾股定理的应用,要求熟练掌握.【解析】试题分析:∵在Rt△ABC中,∠ACB=90°,点D是AB的中点,且∴AB=2CD=5.∴AC2+BC2=5又Rt△ABC的面积为1,∴12AC•BC=1,则AC•BC=2.∴(AC+BC)2=AC2+BC2+2AC•BC=9,∴AC+BC=3(舍去负值),∴AC+BC+AB=3+5,即△ABC的周长是5+3.故选D.考点:1.勾股定理2.直角三角形斜边上的中线.D、7cm8.B9.D【解析】试题分析:设斜边长为c,根据勾股定理得:c2=(k2-1)2+(2k)2=k4-2k2+1+4k2=k4+2k2+1=(k2+1)2,∴c=k2+1.故选D.点睛:本题考查了勾股定理,利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.10.D【解析】【分析】利用侧面展开图形成平面图形,再根据两点之间线段最短,勾股定理即可解答.【详解】解:得如图的侧面展开图,由题意得到Rt△NDM,DN=3,NM=4,线段DM的长为最短路径,DM=5=.故选D.【点睛】本题考查的是平面展开-最短路径问题,解答此类问题应先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.11.24【解析】试题解析:∵8-1<a<8+1(其中a为正整数),即7<a<9,∴a=8.∴以a-2、a、a+2为边的三角形的三条边长分别为:6、8、10.∵62+82=102,∴以a-2、a、a+2为边的三角形是直角三角形,∴其面积=12×6×8=24.故答案是:24.点睛:在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.12.96【解析】根据题意,设两直角边是3x、4x,则(3x)2+(4x)2=202,解得x=4,所以两直角边为12,16,12×12×16=96,所以它的面积是96,故答案为96.13.60 13【解析】【分析】利用勾股定理求出斜边长,再利用面积法求出斜边上的高即可.【详解】解:∵直角三角形的两条直角边的长分别为5,12,=13,∵三角形的面积=12×5×12=12×13h (h 为斜边上的高),∴h=6013.故答案为:6013.【点睛】考查了勾股定理,以及三角形面积公式,熟练掌握勾股定理是解本题的关键.14.2.【解析】【详解】∵22251213+=,由勾股定理逆定理可知此三角形为直角三角形,∴它的内切圆半径5121322r +-==,15.1【解析】【分析】把题中的三角形三边长代入公式求解.【详解】∵SABC 的三边长分别为1,2ABC 的面积为:S=1,故答案为1.【点睛】本题考查二次根式的应用,解答本题的关键是明确题意,利用题目中的面积公式解答.16.4.8【解析】【分析】根据点到直线的连线中,垂线段最短,得到当BP 垂直于AC 时,BP 的长最小,过A 作等腰三角形底边上的高AD ,利用三线合一得到D 为BC 的中点,在直角三角形ADC 中,利用勾股定理求出AD 的长,进而利用面积法即可求出此时BP 的长.【详解】解:根据垂线段最短,得到BP ⊥AC 时,BP 最短,过A 作AD ⊥BC ,交BC 于点D ,∵AB=AC ,AD ⊥BC ,∴D 为BC 的中点,又BC=6,∴BD=CD=3,在Rt △ADC 中,AC=5,CD=3,根据勾股定理得:,又∵S △ABC =12BC•AD=12BP•AC ,∴BP=•BC AD AC =645⨯=4.8.故答案为4.8.【点睛】此题考查勾股定理,等腰三角形的三线合一性质,三角形的面积求法,以及垂线段最短,熟练掌握勾股定理是解本题的关键.17.见解析【解析】【分析】连接AM 得到三个直角三角形,运用勾股定理分别表示出AD²、AM²、BM²进行代换就可以最后得到所要证明的结果.【详解】证明:连接MA,∵MD⊥AB,∴AD2=AM2-MD2,BM2=BD2+MD2,∵∠C=90°,∴AM2=AC2+CM2∵M为BC中点,∴BM=MC.∴AD2=AC2+BD2【点睛】本题考查了勾股定理,三次运用勾股定理进行代换计算即可求出结果,另外准确作出辅助线也是正确解出的重要因素.18.(1)24米;(2)8.【解析】【分析】(1)利用勾股定理即可求出;(2)梯子的长度不变,再利用勾股定理算出BC'的长,即可求出梯子滑动的长度.【详解】(1)由题意得:AC=25米,BC=7米,AB(米).答:这个梯子的顶端距地面有24米;(2)由题意得:BA'=AB-A A'=20米,BC'=(米),则:CC'=15﹣7=8(米).答:梯子的底端在水平方向滑动了8米.【点睛】此题考查的是勾股定理的应用,找到两个三角形各边的关系是解决此题的关键19.△ACD是直角三角形.【解析】试题分析:首先利用勾股定理计算出AC 长,再利用勾股定理的逆定理证明90DAC ∠=︒,可得ACD 是直角三角形.试题解析:证明:∵90ACB ∠= ,AB =15,BC =9,∴12AC ,===∵2251213,+=∴222AD AC CD +=,∴90DAC ∠=︒,∴△ACD 是直角三角形.点睛:在三角形中,如果两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.20.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)本题要判定△ACE ≌△BCD ,已知△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,则DC =EC ,AC =BC ,∠ACB =∠ECD ,又因为两角有一个公共的角∠ACD ,所以∠BCD =∠ACE ,根据SAS 得出△ACE ≌△BCD .(2)由(1)的论证结果得出∠DAE =90°,AE =DB ,从而求出AD 2+DB 2=DE 2.【详解】(1)∵∠ACB =∠ECD =90°,∴∠ACD +∠BCD =∠ACD +∠ACE ,即∠BCD =∠ACE .∵BC =AC ,DC =EC ,∴△ACE ≌△BCD .(2)∵△ACB 是等腰直角三角形,∴∠B =∠BAC =45°.∵△ACE ≌△BCD ,∴∠B =∠CAE =45°,AE =BD ,∴∠DAE =∠CAE +∠BAC =45°+45°=90°,∴AD 2+AE 2=DE 2,∴AD 2+DB 2=DE 2.【点睛】本题考查了三角形全等的判定方法,及勾股定理的运用.21.5m【解析】试题分析:由于大门的宽和高与所加固的木板正好构成直角三角形,故可利用勾股定理解答.试题解析:解:设这条木条的长度为x m,由勾股定理得:木条长的平方=门高长的平方+门宽长的平方.即x2=42+32,解得x=5m.答:所需木条的长为5m.点睛:本题考查了勾股定理在实际生活中的运用,属较简单题目,可直接利用勾股定理解答.22.证明见解析.【解析】试题分析:首先把△ACF绕点A顺时针旋转90°,得到△ABG.连接EG,可得△ACF≌△ABG.进而得到AG=AF,BG=CF,∠ABG=∠ACF=45°,再证明△AEG≌△AEF 可得EF=EG,由∠GBE=90°利用勾股定理可得BE2+CF2=EF2,那么根据勾股定理的逆定理得出以EF,BE,CF为边的三角形是直角三角形.试题解析:证明:把△ACF绕点A顺时针旋转90°,得到△ABG.连接EG.则△ACF≌△ABG,∴AG=AF,BG=CF,∠ABG=∠ACF=45°.∵∠BAC=90°,∠GAF=90°,∴∠GAE=∠EAF=45°.在△AEG和△AEF中,∵AG AFGAE EAFAE AE=⎧⎪∠=∠⎨⎪=⎩,∴△AEG≌△AEF(SAS),∴EG=EF.又∵∠GBE=90°,∴BE2+BG2=EG2,即BE2+CF2=EF2,∴以EF,BE,CF为边的三角形是直角三角形.点睛:本题考查了全等三角形的性质和判定,勾股定理及其逆定理,旋转的性质,正确作出辅助线后证出△AEG≌△AEF是解答此题的关键.。
人教版八年级数学下册第十七章《勾股定理》单元测试卷附答案

第十七章《勾股定理》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.如图,一根垂直于地面的旗杆在离地面5 m的B处撕裂折断,旗杆顶部落在离旗杆底部12 m的A处,则旗杆折断部分AB的高度是()A.5 mB.12 mC.13 mD.18 m第1题图第3题图第5题图2.下列各组数据中,不能作为直角三角形的三边长的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,153.如图,在Rt△ABC中,∠ACB=90°.若AB=10,则正方形ADEC和正方形BCFG的面积和为()A.100B.120C.140D.1604.若直角三角形的两条直角边长分别是3和4,则斜边长为()A.2.4B.5C.√7D.75.如图,以数轴的单位长线段为边作一个正方形,数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A.1B.1.4C.√2D.√36.在Rt△ABC中,a,b,c为三边长,则下列关系中正确的是()A.a2+b2=c2B.a2+c2=b2C.b2+c2=a2D.以上都有可能7.若一个直角三角形中,斜边的长为13,一条直角边长为5,则这个三角形的面积是()A.60B.30C.20D.328.如图,将风筝放至高30 m,牵引线与水平面夹角约为45°的高空中,则牵引线AB的长约是()A.30 mB.45 mC.20√3 mD.30√2 m第8题图第9题图第10题图9.(跨学科融合)如图,在物理实验课上,小明将长为8 cm的橡皮筋放置在水平面上,固定两端A和B,然后把中点C垂直向上拉升3 cm至点D,则橡皮筋被拉长了()A.3 cmB.2 cmC.6 cmD.4 cm10.如图所示的一块地,已知∠ADC=90°,AD=12 m,CD=9 m,AB=25 m,BC=20 m,则这块地的面积为()A.96 m2B.204 m2C.196 m2D.304 m2二、填空题(共5小题,每小题3分,共15分)11.如图,两个正方形的面积分别是100和36,则字母B所代表的正方形的面积是.第11题图第13题图12.若△ABC的三边长满足a2=b2+c2,则△ABC是直角三角形且∠=90°.13.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了步路(假设2步为1米),却踩伤了花草.14.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于.第14题图第15题图15.(数学文化)如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AH=6,EF=2,那么AB的长等于.三、解答题(一)(共3小题,每小题8分,共24分)16.如图,根据所给条件,求BC的长.17.如果三角形的三边长分别为√2,√6,2,那么这个三角形是直角三角形吗?。
人教版数学八年级下册第十七章勾股定理测试题含答案

人教版数学八年级下册第十七章考试试题评卷人得分一、单选题1.三角形的三边长分别为6,8,10,它的最短边上的高为()A .6B .4.5C .2.4D .82.Rt △ABC 中,斜边BC =2,则AB 2+AC 2+BC 2的值为()A .8B .4C .6D .无法计算3.△ABC 的三边分别为下列各组值,其中不是直角三角形三边的是()A .a=41,b=40,c=9B .a=1.2,b=1.6,c=2C .a=12,b=13,c=14D .a=35,b=45,c=14.已知三角形的三边长为n 、n +1、m(其中m 2=2n +1),则此三角形().A .一定是等边三角形B .一定是等腰三角形C .一定是直角三角形D .形状无法确定5.如图,矩形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A .25B .CD .6.下列命题的逆命题正确的是()A .如果两个角是对顶角,那么它们相等B .全等三角形的面积相等C .同位角相等,两直线平行D .若a =b ,则22a b =7.以下列数组为三角形的边长:(1)5,12,13;(2)10,12,13;(3)7,24,25;(4)6,8,10,其中能构成直角三角形的有()A .4组B .3组C .2组D .1组8.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的().A .1∶1∶2B .1∶3∶4C .9∶25∶26D .25∶144∶1699.把直角三角形两直角边同时扩大到原来的2倍,则斜边扩大到原来的()A .2倍B .4倍C .3倍D .5倍10.甲、乙两艘客轮同时离开港口,航行速度都是40m/min ,甲客轮用30min 到达A 处,乙客轮用40min 到达B 处.若A ,B 两处的直线距离为2000m ,甲客轮沿着北偏东30°的方向航行,则乙客轮的航行方向可能是()A .北偏西30°B .南偏西30°C .南偏东60°D .南偏西60°评卷人得分二、填空题11.如图,有一块直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 的长为________.12.一个三角形的两边的长分别是3和5,要使这个三角形为直角三角形,则第三条边的长为_____.13.△ABC 的两边a ,b 分别为5,12,另一边c 为奇数,且a +b +c 是3的倍数,则c 应为______,此三角形为______.14.所谓的勾股数就是使等式222+=a b c 成立的任何三个正整数.我国清代数学家罗士林钻研出一种求勾股数的方法,对于任意正整数m ,n(m >n),取a =22m n -,b =2mn ,c =22m n +,则a ,b ,c 就是一组勾股数.请你结合这种方法,写出85(三个数中最大),84和________组成一组勾股数.15.如图,一架梯子AB 长2.5m ,顶端A 靠墙AC 上,这时梯子下端B 与墙角C 距离为1.5m ,梯子滑动后停在DE 的位置上,测得BD 长为0.5m ,则梯子顶端A 下落了_______m.评卷人得分三、解答题16.写出下列命题的逆命题,这些逆命题成立吗?(1)两直线平行,同位角相等;=;(2)如果实数a=b,那么a b(3)直角都相等.17.已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.18.根据所给条件,求下列图形中的未知边的长度.(1)求图1中BC的长;(2)求图2中BC的长.19.能够成为直角三角形三边长的三个正整数,我们称之为一组勾股数,观察下列表格所给出的三个数a,b,c,a<b<c.(1)试找出它们的共同点,并证明你的结论.(2)写出当a=17时,b,c的值.20.如图,在月港有甲、乙两艘渔船,若甲渔船沿北偏东60°方向以每小时8海里的速度前进,乙渔船沿南偏东30°方向以每小时15海里的速度前进,两小时后,甲船到达M岛,乙船到达P岛.求P岛与M岛之间的距离.21.如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?22.如图,为修通铁路凿通隧道AC,量出∠A=40°∠B=50°,AB=5公里,BC=4公里,若每天凿隧道0.3公里,问几天才能把隧道AC凿通?23.写出下列命题的逆命题,并判断真假.(1)如果a=0,那么ab=0;(2)如果x=4,那么x2=16;(3)面积相等的三角形是全等三角形;(4)如果三角形有一个内角是钝角,则其余两个角是锐角;(5)在一个三角形中,等角对等边.参考答案1.D【解析】本题考查了直角三角形的判定即勾股定理的逆定理和直角三角形的性质由勾股定理的逆定理判定该三角形为直角三角形,然后由直角三角形的定义解答出最短边上的高.由题意知,,所以根据勾股定理的逆定理,三角形为直角三角形.长为6的边是最短边,它上的高为另一直角边的长为8.故选D .2.A【解析】利用勾股定理,由Rt △ABC 中,BC 为斜边,可得AB 2+AC 2=BC 2,代入数据可得AB 2+AC 2+BC 2=2BC 2=2×22=8.故选A .3.C【解析】试题分析:A 、因为92+402=412,所以是直角三角形;B 、因为1.22+1.62=22,所以是直角三角形;C 、因为(14)2+(13)2=25144≠(12)2,所以不是直角三角形;D 、因为(35)2+(45)2=12,所以是直角三角形.故选C .考点:勾股定理的逆定理.4.C【解析】【分析】根据勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形,进行判断即可.【详解】∵()2222211m n n n n +=++=+,∴三角形是直角三角形,且(n +1)为斜边.故选C.【点睛】本题考查了勾股定理的逆定理,属于基础题,关键是掌握定理的内容.5.D【解析】【分析】本题利用实数与数轴的关系及直角三角形三边的关系(勾股定理)解答即可.【详解】由勾股定理可知,∵,故选D .【点睛】本题考查了勾股定理的运用和如何在数轴上表示一个无理数的方法,解决本题的关键是根据勾股定理求出OB 的长.6.C【解析】【分析】交换原命题的题设与结论得到四个命题的逆命题,然后分别根据直角的定义、全等三角形的判定、平行线的性质和平方根的定义判定四个逆命题的真假.【详解】A 、逆命题为:如果两个角相等,那么它们都是直角,此逆命题为假命题;B 、逆命题为:面积相等的两三角形全等,此逆命题为假命题;C 、逆命题为:两直线平行,同位角相等,此逆命题为真命题;D 、逆命题为:若22a b =,则a =b ,此逆命题为假命题.所以C 选项是正确的.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.7.B【解析】【分析】能否构成直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】(1)、52+122=132,能构成直角三角形,故正确;(2)、102+122≠132,不能构成直角三角形,故错误;(3)、72+242=252,能构成直角三角形,故正确;(4)、62+82=102,能构成直角三角形,故正确.故选B.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.8.C【解析】试题解析:∵1+1=2,1+3=4,9+25=34≠36,25+144=169.∴其中不是直角三角形的是9:25:36.故选C.9.A【解析】【分析】根据勾股定理,可知:把直角三角形两直角边同时扩大到原来的2倍,则斜边扩大到原来的2倍.【详解】设一直角三角形直角边为a、b,斜边为c.则a2+b2=c2;另一直角三角形直角边为2a、2b=2c.即直角三角形两直角边同时扩大到原来的2倍,则斜边扩大到原来的2倍.故选A.【点睛】熟练运用勾股定理对式子进行变形.10.C【解析】【分析】首先根据速度和时间计算出行驶路程,再根据勾股定理逆定理结合路程可判断出甲和乙两艘轮船的行驶路线呈垂直关系,进而可得答案.根据题意可得甲的路程:40×30=1200(m ),乙的路程:40×40=1600(m ).∵12002+16002=20002,∴甲和乙两艘轮船的行驶路线呈垂直关系.∵甲客轮沿着北偏东30°,∴乙客轮的航行方向可能是南偏东60°.故选C.【点睛】此题主要考查了勾股定理逆定理的应用,关键是掌握如果三角形的三边长a ,b ,c 满足222c a b +=,那么这个三角形就是直角三角形.11.3cm【解析】【分析】先根据勾股定理求出AB 的长,设CD =x cm ,则()28BD x =-cm,再由图形翻折变换的性质可知AE =AC =6cm,DE =CD =x cm,进而可得出BE 的长,在t BDE R ∆中利用勾股定理即可求出x 的值,进而得出CD 的长.【详解】ABC ∆ 是直角三角形,AC =6cm,BC =8cm,10AB ∴===cm,AED ∆ 是ACD ∆翻折而成,6cm AE AC ∴==,设DE =CD =x cm,90AED ∠=︒,1064cm BE AB AE ∴=-=-=,在t BDE R ∆中,222BD DE BE =+,即()22284x x -=+,解得x =3.故CD 的长为3cm.本题考查的是翻折变换及勾股定理,解答此类题目时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其它线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.12.4【解析】【详解】解:①当第三边是斜边时,第三边的长的平方是:32+52=34;②当第三边是直角边时,第三边长的平方是:52-32=25-9=16=42,故答案是:4.13.13直角【解析】【分析】根据三角形的三边关系知,求得第三边c应满足12-5=7<c<5+12=17,又因为这个数与a+b的和又是3的倍数,则可求得此数;然后利用直角三角形的判定方法判定三角形即可完成.【详解】∵12-5=7<c<5+12=17,c又为奇数,∴满足从7到17的奇数有9,11,13,15.∵与a+b的和又是3的倍数,∴a+b+c=30,∴c=13.∵52+122=132,∴△ABC是直角三角形.【点睛】本题是三角形的三边关系、勾股定理类型的题目,解答本题的关键是利用三角形的三边关系进行解答.14.13【解析】【分析】根据勾股数的定义可得要求的数是852-842,再进行计算即可.【详解】∵852-842=132,∴85(三个数中最大)、84和13组成一组勾股数.故答案为13.【点睛】本题考查了勾股数的定义,熟练掌握该定义是本题解题的关键.15.0.5【解析】【分析】根据梯子、墙、地面构成直角三角形,利用勾股定理解答即可.【详解】在Rt△ABC中,AB=2.5m,BC=1.5m,==,故AC2m在Rt△ECD中,AB=DE=2.5m,CD=(1.5+0.5)=2m,==,故EC 1.5m故AE=AC-CE=2-1.5=0.5m,答:梯子顶端A下落了0.5m.故答案为0.5m.【点睛】本题考查了勾股定理的应用,熟练掌握该知识点是本题解题的关键.=,那么a 16.(1)逆命题:同位角相等,两直线平行.成立.(2)逆命题:如果实数a b=b.不成立.(3)逆命题:如果两个角相等,那么这两个角都是直角.不成立.【解析】【分析】把一个命题的条件和结论互换就得到它的逆命题;正确的命题叫真命题,错误的命题叫假命题.【详解】(1)逆命题为:同位角相等,两直线平行,是成立,是真命题;(2)逆命题为:如果实数|a|=|b|,那么a=b,不成立,是假命题;(3)逆命题为:如果两个角相等,那么它们都为直角,不成立,是假命题.【点睛】本题考查了命题与定理,熟练掌握该知识点是本题解题的关键.17.等腰直角三角形【解析】【分析】首先把等式的左右两边分解因式,再考虑等式成立的条件,从而判断△ABC的形状.【详解】解:∵a2c2-b2c2=a4-b4,∴a4-b4-a2c2+b2c2=0,∴(a4-b4)-(a2c2-b2c2)=0,∴(a2+b2)(a2-b2)-c2(a2-b2)=0,∴(a2+b2-c2)(a2-b2)=0得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,即△ABC为直角三角形或等腰三角形或等腰直角三角形.考点:勾股定理的逆定理.18.(1)15;(2)12.【解析】试题分析:(1)直接根据勾股定理求出BC的长即可;(2)先根据勾股定理求出BD的长,再求出BC的长即可.试题解析:(1)在Rt△ABC中,由勾股定理可得222+=AC BC AB222BC+=817BC=15(2)在Rt△ABD中,由勾股定理可得222+=AD AB BCBD=5在Rt△BDC中,由勾股定理可得222+=BD BC CDBC=1219.(1)见解析;(2)b=144,c=145.【解析】【分析】(1)根据表格找出规律再证明其成立;(2)把已知数据代入经过证明成立的规律即可.【详解】(1)以上各组数的共同点可以从以下方面分析:①以上各组数均满足a2+b2=c2;②最小的数(a)是奇数,其余的两个数是连续的正整数;③最小奇数的平方等于另两个连续整数的和,如32=9=4+5,52=25=12+13,72=49=24+25,92=81=40+41…由以上特点我们可猜想并证明这样一个结论:设m为大于1的奇数,将m2拆分为两个连续的整数之和,即m2=n+(n+1),则m,n,n+1就构成一组简单的勾股数.证明:∵m2=n+(n+1)(m为大于1的奇数),∴m2+n2=2n+1+n2=(n+1)2,∴m,n,(n+1)是一组勾股数.(2)运用以上结论,当a=17时,∵172=289=144+145,∴b=144,c=145.【点睛】本题考查了勾股数的定义,熟练掌握该知识点是本题解题的关键.20.P岛与M岛之间的距离为34海里.【解析】【分析】由题意知,△BMP为直角三角形,在直角三角形中运用勾股定理求解.【详解】解:由题意可知△BMP为直角三角形,BM=8×2=16(海里),BP=15×2=30(海里),∴MP=34海里.答:P岛与M岛之间的距离为34海里.【点睛】本题考查勾股定理的应用.21.(1)作图见解析;(2)总费用为150万元.【解析】【详解】试题分析:此题的关键是确定点M的位置,需要首先作点A的对称点A′,连接点B和点A′,交l于点M,M即所求作的点.根据轴对称的性质,知:MA+MB=A′B.根据勾股定理即可求解.解:作A关于CD的对称点A′,连接A′B与CD,交点CD于M,点M即为所求作的点,则可得:DK=A′C=AC=10千米,∴BK=BD+DK=40千米,∴千米,总费用为50×3=150万元.考点:轴对称-最短路线问题.22.10天才能将隧道凿通【解析】试题分析:由题意知:∠A=50°,∠B=40°则∠C为90°,在直角△ABC中,已知AB,BC 根据勾股定理即可求AC,则需要天数可求.解:∵∠A=50°,∠B=40°,∴∠C=90°,∴AC2=AB2﹣BC2=(3km)2∴AC=3km,∵3÷0.3=10,∴10天才能将隧道凿通.答:10天才能将隧道凿通.23.(1)的逆命题是如果ab=0,那么a=0.不成立.(2)的逆命题是如果x2=16,那么x=4.不成立.(3)的逆命题是全等三角形的面积相等.成立.(4)的逆命题是如果三角形有两个内角是锐角,那么另一个内角是钝角.不成立.(5)的逆命题是在一个三角形中,等边对等角.成立.【解析】试题分析:分别写出各个命题的逆命题,再进行判断即可.试题解析:(1)的逆命题是如果ab=0,那么a=0.不成立.(2)的逆命题是如果x2=16,那么x=4.不成立.(3)的逆命题是全等三角形的面积相等.成立.(4)的逆命题是如果三角形有两个内角是锐角,那么另一个内角是钝角.不成立.(5)的逆命题是在一个三角形中,等边对等角.成立.。
人教版八年级数学下册 第17章 勾股定理 单元复习试题 含答案

第17章勾股定理一.选择题(共10小题)1.下列各组数是勾股数的是()A.2,3,4 B.0.3,0.4,0.5C.7,24,25 D.,,2.△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.a2+b2=c2B.a=5,b=12,c=13C.∠A:∠B:∠C═3:4:5 D.∠A=∠B+∠C3.如图,长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,AC的长为半径作弧交数轴于点M,则点M表示的数为()A.﹣1 B.﹣1 C.2 D.4.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=4,BC=6,将四个直角三角形中边长为4的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是()A.56 B.24 C.64 D.325.如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为()A.B.3 C.D.56.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和7.如图,今年第9号台风利奇马”过后,市体育中心附近一棵大树在高于地面3米处折断,大树顶部落在距离大树底部4米处的地面上,那么树高是()A.7m B.8m C.9m D.12m8.将一根长为25厘米的筷子置于底面直径为5厘米,高为12厘米的圆柱形水杯中,设筷子露在杯子外的长为h厘米,则h的取值范围是()A.12≤h≤13 B.11≤h≤12 C.11≤h≤13 D.10≤h≤129.如图,已知1号、4号两个正方形的面积和为7,2号、3号两个正方形的面积和为4,则a,b,c三个正方形的面积和为()A.11 B.15 C.10 D.2210.如图,高速公路上有A、B两点相距25km,C、D为两村庄,已知DA=10km,CB=15km.DA ⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则AE的长是()km.A.5 B.10 C.15 D.25二.填空题(共6小题)11.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8.AD平分∠BAC交BC边于点D,则BD=.12.如图,有赵爽弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=27,S3=1,则S1的值是.13.观察下列各式:32+42=52;82+62=102;152+82=172;242+102=262;…;你有没有发现其中的规律?请用你发现的规律写出接下来的式子:.14.如图,有一块田地的形状和尺寸如图所示,则它的面积为.15.如图,某自动感应门的正上方A处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范同内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方时(BC=1.2米),感应门自动打开,则AD=米.16.如图,△ABC是边长为12cm的正三角形,动点P从A向B以2cm/s匀速运动,同时动点Q从B向C以1cm/s匀速运动,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为t秒,则t=时,△PBQ为直角三角形.三.解答题(共5小题)17.如图,已知在四边形ABCD中,AB=20cm,BC=15cm,CD=7cm,AD=24cm,∠ABC=90°.(1)连结AC,求AC的长;(2)求∠ADC的度数;(3)求出四边形ABCD的面积18.分析探索题:细心观察如图,认真分析各式,然后解答问题.OA22=()2+1=2 S1=;OA32=()2+1=3 S2=;OA42=()2+1=4 S3=…(1)请用含有n(n为正整数)的式子表示S n=;(2)推算出OA10=.(3)求出S12+S22+S32+…+S102的值.19.《中华人民共和国道路交通管理条例》规定:小汽车在城市街道上的行驶速度不得超过70千米/时,如图,一辆小汽车在某城市街道直道上行驶,某一时刻刚好行驶到路对面车速检测仪A(观测点)正前方30米处的C处,过了2秒钟后,测得小汽车与车速检测仪间的距离为50米,问:这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)20.如图1,在△ABC中,∠B=22.5°,AC=5,AD是BC边上的高,AB的垂直平分线交AB 于点E,交BC于点F.(1)判别AD与DF的数量关系并证明;(2)过F点作FG⊥AC于点G,交AD于点O(如图2),若OD=3,求BC的长度.21.如图,在Rt△ABC中,AB=3,BC=4,动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q 的运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止运动,连接PQ,设它们的运动时间为t(t>0)秒.(1)设△CBQ的面积为S,请用含有t的代数式来表示S;(2)线段PQ的垂直平分线记为直线l,当直线l经过点C时,求AQ的长.参考答案一.选择题(共10小题)1.解:A、22+32≠42,故此选项错误;B、0.3,0.4,0.5不是正整数,故此选项错误;C、72+242=252,故此选项正确;D、()2+()2≠()2,同时它们也不是正整数,故此选项错误.故选:C.2.解:A、∵a2+b2=c2,∴∠C=90°,即△ABC是直角三角形,故本选项不符合题意;B、∵a=5,b=12,c=13,∴a2+b2=c2,∴∠C=90°,即△ABC是直角三角形,故本选项不符合题意;C、∵∠A:∠B:∠C=3:4:5,∴最大角∠C=×180°≠90°,∴△ABC是直角三角形,故本选项符合题意;D、∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,即△ABC是直角三角形,故本选项不符合题意;故选:C.3.解:∵AB=3,AD=1,∴AC==,∵点A为圆心,AC的长为半径作弧交数轴于点M,AM=AC=,∵A点表示﹣1,∴M点表示的数为:﹣1,故选:A.4.解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,则x2=82+62=100所以x=10所以“数学风车”的周长是:(10+4)×4=56.故选:A.5.解:∵四边形ABCD是正方形,∴∠B=90°,∴BC2=EC2﹣EB2=22﹣12=3,∴正方形ABCD的面积=BC2=3.故选:B.6.解:设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定理得,c2=a2+b2,阴影部分的面积=c2﹣b2﹣a(c﹣b)=a2﹣ac+ab=a(a+b﹣c),较小两个正方形重叠部分的宽=a﹣(c﹣b),长=a,则较小两个正方形重叠部分底面积=a(a+b﹣c),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,故选:C.7.解:根据勾股定理可知:折断的树高==5米,则这棵大树折断前的树高=3+5=8米.故选:B.8.解:当筷子与杯底垂直时h最大,h最大=25﹣12=13cm.当筷子与杯底及杯高构成直角三角形时h最小,如图所示:此时,AB===13cm,故h=25﹣13=12cm.故h的取值范围是12cm≤h≤13cm.故选:A.9.解:利用勾股定理可得S a=S1+S2,S b=S2+S3,S c=S3+S4,∴S a+S b+S c=S a=S1+S2+S2+S3+S3+S4=7+4+4=15.故选:B.10.解:设AE=x,则BE=25﹣x,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=102+x2,在Rt△BCE中,CE2=BC2+BE2=152+(25﹣x)2,由题意可知:DE=CE,所以:102+x2=152+(25﹣x)2,解得:x=15km.所以,E应建在距A点15km处.故选:C.二.填空题(共6小题)11.解:作DE⊥AC于E,如图所示:∵∠B=90°,AB=6,BC=8.∴DB⊥AB,AC==10,∵AD平分∠BAC,DE⊥AC,∴DE=DB,在Rt△AED和Rt△ABD中,,∴Rt△AED≌Rt△ABD(HL),∴AE=AB=6,∴CE=AC﹣AE=4,设DE=DB=x,则CD=8﹣x,在Rt△CDE中,由勾股定理得:x2+42=(8﹣x)2,解得:x=3,∴BD=3;故答案为:3.12.解:∵八个直角三角形全等,四边形ABCD,EFGH,MNKT是正方形,∴CG=NG,CF=DG=NF,∴S1=(CG+DG)2=CG2+DG2+2CG•DG=GF2+2CG•DG,S2=GF2,S3=(NG﹣NF)2=NG2+NF2﹣2NG•NF,∴S1+S2+S3=GF2+2CG•DG+GF2+NG2+NF2﹣2NG•NF=3GF2=27,∴GF2=9,∴S2=9,∵S3=1,∴S1的值是17.故答案为17.13.解:根据规律,下一个式子是:352+122=372.14.解:作辅助线:连接AB,因为△ABD是直角三角形,所以AB===5,因为52+122=132,所以△ABC是直角三角形,则要求的面积即是两个直角三角形的面积差,即×12×5﹣×3×4=30﹣6=24.15.解:如图,过点D作DE⊥AB于点E,∵AB=2.5米,BE=CD=1.6米,ED=BC=1.2米,则AE=AB﹣BE=2.5﹣1.6=0.9(米).在Rt△ADE中,由勾股定理得到:AD===1.5(米)故答案是:1.5.16.解:∵△ABC是等边三角形,∴AB=BC=6cm,∠A=∠B=∠C=60°,当∠PQB=90°时,∠BPQ=30°,∴BP=2BQ.∵BP=12﹣2x,BQ=x,∴12﹣2x=2x,解得x=3;当∠QPB=90°时,∠PQB=30°,∴BQ=2PB,∴x=2(12﹣2x),解得x=.答:3或秒时,△BPQ是直角三角形.故答案为3或.三.解答题(共5小题)17.解:(1)连接AC,在Rt△ABC中,∠ABC=90°,∵AB=20cm,BC=15cm,∴由勾股定理可得:AC=cm;(2)∵在△ADC中,CD=7cm,AD=24cm,∴CD2+AD2=AC2,∴∠ADC=90°;(3)由(2)知,∠ADC=90°,∴四边形ABCD的面积=,18.解:(1)+1=n+1Sn=(n是正整数);故答案是:;(2)∵OA12=1,OA22=()2+1=2,OA32=()2+1=3,OA42=()2+1=4,∴OA12=,OA2=,OA3=,…∴OA10=;故答案是:;(3)S12+S22+S32+…+S102=()2+()2+()2+…+()2=(1+2+3+ (10)=.即:S12+S22+S32+…+S102=.19.解:在Rt△ABC中,AC=30m,AB=50m,由勾股定理可得:BC==40(m),∴小汽车的速度为v=40÷2=20(m/s)=20×3.6(km/h)=72(km/h),∵72(km/h)>70(km/h),∴这辆小汽车超速行驶.答:这辆小汽车超速了.20.(1)AD=DF,理由如下:证明:如图1,连结AF,∵EF是AB的垂直平分线,∴BF=AF,∴∠BAF=∠B=22.5°,∴∠AFD=45°,∵AD是BC边上的高,∴△AFD是等腰直角三角形,∴AD=DF;(2)解:∵FG⊥AC,AD⊥BC,∴∠FGC=∠ADF=90°,∠GFC+∠C=90°,∠DAC+∠C=90°,∴∠GFC=∠DAC,∵AD=DF,∴△ODF≌△CDA,∴OD=CD=3,在Rt△ACD中,由勾股定理得AD===4,连结AF,在Rt△ADF中,AD=DF=4,∴AF===4,∴BF=AF=4,∴BC=BF+DF+CD=4+4+3=7+4.21.解:(1)如图1,当0<t≤3时,BQ=t,BC=4,∴S=×4×t=2t;如图2,当3<t≤5时,,AQ=t﹣3,则BQ=3﹣(t﹣3)=6﹣t,∴S=×4×(6﹣t)=12﹣2t;(2)连接CQ,如图3,∵QP的垂直平分线过点C,∴CP=CQ,∵AB=3,BC=4,∴AC===5,∴42+t2=(5﹣t)2,解得t=;或42+(6﹣t)2=(5﹣t)2,显然不成立;∴AQ=3﹣=.。
第十七章 勾股定理 单元测试卷 2023—2024学年人教版数学八年级下册

第十七章勾股定理单元测试一、选择题:1.以下列各组数为三角形的三边,能构成直角三角形的是()A.4,5,6B.1,1,2C.6,8,11D.5,12,232.下列各组数为勾股数的是()A.7,12,13B.3,4,7C.3,4,6D.8,15,173.如图,在边长为1个单位长度的小正方形网格中,点A、B都是格点(即网格线的交点),则AB的长度为()A.33B.5C.6D.424.如图,在△ABC中,△A=△B=45°,AB=4,以AC为边的阴影部分图形是一个正方形,则这个正方形的面积为()A.2B.4C.8D.16(第3题)(第4题)(第5题)(第6题)5.如图,点A,B是棱长为1的正方体的两个顶点,将正方体按图中所示展开,则在展开图中A,B两点间的距离为()A.2B.5C.22D.106.如图,在△ABC中,AB=5,AC=4,△A=60°,若边AC的垂直平分线DE交AB于点D,连接CD,则△BDC的周长为()A.8B.9C.5+21D.5+17三、解答题:7.已知一个Rt△的两边长分别为3和4,则第三边长是.8.如图,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=.(第8题)(第9题)9.如图是一种“羊头”形图案,其作法是:从正方形△开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形△和△′,…依此类推,若正方形△的边长为64cm,则正方形△的边长为cm.10.如图,每个小正方形的边长为1,则△ABC的度数为.(第10题)(第11题)(第12题)11.如图所示,在数轴上点A所表示的数为a,则a的值为.12.如图,△ABC是等边三角形,P是△ABC的平分线BD上一点,PE△AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若FQ=1,则BE的长为.13.如图,一块直角三角形的纸片,两直角边6和8 ,现将直角边AC沿AD折叠,使C点与斜边AB上点E重合,则DE的长为.(第13题)(第14题)14.如图,长方形ABCD中,AB=8,BC=4,将长方形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.三、解答题:15.下面有4张形状,大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:(1)画一个直角边长为10,面积为5的直角三角形.(2) 画一个底边长为6,面积为9的等腰三角形.(3) 画一个面积为9的等腰直角三角形.(4) 画一个周长为10+52,面积为10的等腰三角形.16.如图,在△ABC中,△ACB=90°,BC=15,AC=20,CD是高.(1)求AB的长;(2)求△ABC的面积;(3)求CD的长.17.如图,在△ABC中,△ACB=90°,以B为圆心,BC为半径画弧,交线段AB于点D,以A为圆心,AD为半径画弧,交线段AC于点E,连接CD.(1)若△A=25°,求△ACD的度数.(2)若BC=2.5,CE=2,求AD的长.18.如图是一块地的平面图,AD=4m,CD=3m,AB=13m,BC=12m,∠ADC=90°,求这块地的面积.19.如图,△ABC中,AB=AC,D是AC边上的一点,CD=1,BC=5,BD=2.(1)求证:△BCD是直角三角形;(2)求△ABC的面积.20.如图,一个梯子AB长10米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为6米,梯子滑动后停在DE的位置上,测得BD长为2米,求梯子顶端A下落了多少米?21.用四个全等的直角三角形拼成如图△所示的大正方形,中间也是一个正方形.它是美丽的弦图.其中四个直角三角形的直角边长分别为a,b(a<b),斜边长为c.(1)结合图△,求证:a2+b2=c2;(2)如图△,将这四个全等的直角三角形无缝隙无重叠地拼接在一起,得到图形ABCDEFGH.若该图形的周长为24,OH=3,求该图形的面积;(3)如图△,将八个全等的直角三角形紧密地拼接成正方形PQMN,记正方形PQMN、正方形ABCD、正方形EFGH的面积分别为S1、S2、S3,若S1+S2+S3=27,则S2=.22.如图,在Rt△ABC中,△ABC=90°,AB=8,BC=6,点D为AC边上的动点,点D从点C出发,沿边CA往A运动,当运动到点A时停止,若设点D运动的时间为t秒,点D运动的速度为每秒1个单位长度.(1)当t=2时,CD=,AD=;(请直接写出答案)(2)当△CBD是直角三角形时,t=;(请直接写出答案)(3)求当t为何值时,△CBD是等腰三角形?并说明理由.。
人教版八年级数学下册第17章《勾股定理》 单元综合测试卷(含答案)
人教版八年级数学下册第17章勾股定理单元综合测试卷(时间90分钟,满分120分)一、选择题(共10小题,3*10=30)1.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A.25 B.14 C.7 D.7或252.由下列线段a,b,c不能组成直角三角形的是()A.a=1,b=2,c= 3 B.a=1,b=2,c= 5C.a=3,b=4,c=5 D.a=2,b=2 3 ,c=33.如图,在边长为1个单位长度的小正方形组成的网格中,点A,B都是格点,则线段AB的长度为()A.5B.6C.7D.254.下列命题中,其逆命题成立的是()A.对顶角相等B.等边三角形是等腰三角形C.如果a>0,b>0,那么ab>0D.如果三角形的三边长a,b,c(其中a<c,b<c)满足a2+b2=c2,那么这个三角形是直角三角形5.如图,在正方形网格中,每个正方形的边长为1,则在△ABC中,边长为无理数的边数是()A.0 B.1 C.2 D.36. 如图,在△ABC中,AD⊥BC于D,AB=3,BD=2,DC=1,则AC=()A.6B. 6 C. 5 D.47.一木工师傅测量一个等腰三角形的腰、底边和底边上的高的长,但他把这三个数据与其他数据弄混了,请你帮他找出来,应该是()A.13,12,12 B.12,12,8 C.13,10,12 D.5,8,48.三角形的三边长满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形9.如果一个三角形的三边分别为1、2、3,则其面积为()A.2B.22C.32D.6210.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.3二.填空题(共8小题,3*8=24)11.在△ABC中,若BC2+AB2=AC2,则∠A+∠C=________度.12. 平面直角坐标系中,点P(-3,4)到原点的距离是_______.13.如图,一棵树在离地面9米处断裂,树的顶部落在离底部12米处,则树折断之前高________米.14.已知a,b,c是△ABC的三边长,且满足关系式c2-a2-b2+|a-b|=0,则其形状为_______________.15.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B 落在AD边的点F上,则DF的长为.16.如图,正方形ODBC中,OC=1,OA=OB,则数轴上点A表示的数是________.17.如图,在△ABC中,AB=AC=13,BC=10,点D为BC的中点,DE⊥AB于点E,则DE=________.18.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=6,若点P是边AB上的一个动点,以每秒3个单位长度的速度沿从A→B→A的方向运动,同时点Q沿从B→C的方向以每秒1个单位长度的速度运动,当一个动点到达终点时,另一个动点也随之停止运动.在运动过程中,设运动时间为t秒,若△BPQ为直角三角形,则t的值为________.三.解答题(共7小题,66分)19.(8分) 如图,在△ABC中,CD⊥AB于D,AB=AC=13,BD=1.求:(1)CD的长;(2)BC的长.20.(8分)如图,在△ABC中,∠A=90°,D是BC中点,且DE⊥BC于点D,交AB于点E.求证:BE2-EA2=AC2.21.(8分) 如图,∠C=90°,AC=3,BC=4,AD=12,BD=13,试判断△ABD的形状,并说明理由.22.(10分) 一个零件的形状如图所示,按规定这个零件中∠BAC与∠ADC都应为直角,工人师傅量得零件各边尺寸(单位:cm)为:AD=8,AC=10,CD=6,AB=24,BC=26,请你判断这个零件是否符合要求,并说明理由.23.(10分)如图,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36 cm,点P从点A开始沿AB 边向B点以每秒1 cm的速度移动;点Q从点B开始沿BC边向点C以每秒2 cm的速度移动.如果同时出发,经过3 s,△PBQ的面积为多少?24.(10分)如图,已知正方形OABC的边长为2,顶点A,C分别在x轴的负半轴和y轴的正半轴上,M是BC的中点,P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D.(1)求点D的坐标(用含m的代数式表示);(2)当△APD是以AP为腰的等腰三角形时,求m的值;25.(12分) △ABC中,∠C=90°,AD平分∠CAB,DE⊥AB,垂足为E点,AC=6,BC=8,求CD 的长.参考答案1-5DDADD 6-10BCCBD11. 9012. 513.2414.等腰直角三角形15.616. -216. 60 1318. 125,247或24519.解:(1)∵AB=13,BD=1,∴AD=13-1=12.在Rt△ACD中,CD=AC2-AD2=132-122=5.(2)在Rt△BCD中,BC=BD2+CD2=12+52=26.20. 解:连接CE,∵ED垂直平分BC,∴EB=EC,又∵∠A=90°,∴EA2+AC2=EC2,∴BE2-EA2=AC221. 解:△ABD为直角三角形.理由如下:∵在△ABC中,∠C=90°,∴AB2=CB2+AC2=42+32=52,∴在△ABD中,AB2+AD2=52+122=132,∴AB2+AD2=BD2,∴△ABD为直角三角形22. 解:这个零件符合要求.理由:在△ACD中,因为AD2+CD2=82+62=64+36=100.且AC2=102=100,所以AD2+CD2=AC2,所以∠ADC=90°.在△ABC中,因为AC2+AB2=102+242=100+576=676,且BC 2=262=676,所以AC 2+AB 2=BC 2,所以∠BAC =90°.因此,这个零件符合要求.23.解:依题意,设AB =3k cm ,BC =4k cm ,AC =5k cm ,则3k +4k +5k =36,∴k =3. ∴AB =9 cm ,BC =12 cm ,AC =15 cm.∵AB 2+BC 2=AC 2,∴△ABC 是直角三角形且∠B =90°.点P ,Q 分别从点A ,B 同时出发3 s 后,BP =9-1×3=6 (cm),BQ =2×3=6 (cm),∴S △PBQ =12BP·BQ =12×6×6=18 (cm 2). 24. 解:(1)先证△DBM ≌△PCM ,从中可得BD =PC =2-m ,则AD =2-m +2=4-m ,∴点D 的坐标为(-2,4-m)(2)分两种情况:①当AP =AD 时,AP 2=AD 2,∴22+m 2=(4-m)2,解得m =32; ②当AP =PD 时,过点P 作PH ⊥AD 于点H ,∴AH =12AD , ∵AH =OP ,∴OP =12AD , ∴m =12 (4-m),∴m =43, 综上可得,m 的值为32 或4325. 解:在Rt △ABC 中,AB =AC 2+BC 2=36+64 =10,又∵AD 平分∠CAB ,∠C =90°,DE ⊥AB ,∴∠CAD =∠EAD ,∠C =∠AED =90°,在△ACD 与△AED 中,⎩⎪⎨⎪⎧∠CAD =∠EAD ,AD =AD ,∠C =∠AED ,∴△ACD ≌△AED(AAS)∴AE =AC =6,∴BE =AB -AE =10-6=4,设CD =x ,则 DE =CD =x ,DB =BC -CD =8-x ,在Rt △BDE 中,由BD 2=DE 2+BE 2得:(8-x)2=x 2+42,解得 x =3,故CD 的长为3.。
人教版八年级数学下册《第17章 勾股定理》(A卷)
初中数学试卷《第17章勾股定理》(A卷)一、填空题(共14小题,每题2分,共28分)1.△ABC中,∠C=90°,a=9,b=12,则c= .2.△ABC,AC=6,BC=8,当AB= 时,∠C=90度.3.等边三角形的边长为6cm,则它的高为cm.4.△ABC中,∠C=90°,∠A=30°,则BC:AC:AB= .5.直角三角形两直角边长分别为5和12,则它斜边上的高为.6.等腰三角形的顶角为120°,底边上的高为3,则它的周长为.7.若直角三角形两直角边之比为3:4,斜边长为20,则它的面积为.8.等腰三角形的两边长为2和4,则底边上的高为.9.若等腰直角三角形斜边长为2,则它的直角边长为.10.测得一个三角形花坛的三边长分别为5cm,12cm,13cm,则这个花坛的面积是cm2.11.已知△ABC的三边a,b,c满足(a﹣5)2+(b﹣12)2+c2﹣26c+169=0,则△ABC是三角形.12.如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个三角形中,与众不同的是,不同之处:.13.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需米.14.若一个三角形的三边长分别为3,4,x,则使此三角形是直角三角形的x的值是.二、选择题(共4小题,每题3分,共12分)15.下列各组数中,不能构成直角三角形的一组是()A.1,2,B.1,2,C.3,4,5 D.6,8,1216.如图,△ABC中AD⊥BC于D,AB=3,BD=2,DC=1,则AC等于()A.6 B.C.D.417.已知三角形的三边长之比为1:1:,则此三角形一定是()A.锐角三角形B.钝角三角形C.等边三角形D.等腰直角三角形18.直角三角形的斜边比一直角边长2cm,另一直角边长为6cm,则它的斜边长()A.4cm B.8cm C.10cm D.12cm三、解答题(共60分)19.如图,每个小正方形的边长是1.①在图①中画出一个面积是2的直角三角形;②在图②中画出一个面积是2的正方形.21.如图,一次“台风”过后,一根旗杆被台风从离地面2.8米处吹断,倒下的旗杆的顶端落在离旗杆底部9.6米处,那么这根旗杆被吹断裂前至少有多高?22.在某山区需要修建一条高速公路,在施工过程中要沿直线AB打通一条隧道,动工前,应先测隧道BC的长,现测得∠ABD=150°,∠D=60°,BD=32 km,请根据上述数据,求出隧道BC的长(精确到0.1 km).23.如图,△ABC中,AB=15cm,AC=24cm,∠A=60°.求BC的长.24.如图,△ABC中,AB=13,BC=14,AC=15,求BC边上的高AD.26.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)27.如图,△ABC中,CD⊥AB于D.(1)图中有个直角三角形;A、0B、1C、2D、3(2)若AD=12,AC=13,则CD= ;(3)若CD2=AD•DB,求证:△ABC是直角三角形.28.小明把一根长为160cm的细铁丝弯折成三段,将其做成一个等腰三角形风筝的边框ABC,已知风筝的高AD=40cm,你知道小明是怎样弯折铁丝的吗?29.去年某省将地处A、B两地的两所大学合并成一所综合大学,为了方便A、B两地师生的交往,学校准备在相距2千米的A、B两地之间修筑一条笔直公路.如图中线段AB,经测量,在A地北偏东60°方向,B地西偏北45°方向的C处有一个半径为0.7千米的公园,问计划修筑的这条公路会不会穿过公园?为什么?30.(8分)学习了勾股定理以后,有同学提出“在直角三角形中,三边满足a2+b2=c2,或许其他的三角形三边也有这样的关系”.让我们来做一个实验!(1)画出任意一个锐角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= mm;b= mm;较长的一条边长c= mm.比较=a2+b2c2(填写“>”,“<”,或“=”);(2)画出任意的一个钝角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= mm;b= mm;较长的一条边长c= mm.比较a2+b2c2(填写“>”,“<”,或“=”);(3)根据以上的操作和结果,对这位同学提出的问题,你猜想的结论是:,类比勾股定理的验证方法,相信你能说明其能否成立的理由.《第17章勾股定理》(A卷)参考答案与试题解析一、填空题(共14小题,每题2分,共28分)1.△ABC中,∠C=90°,a=9,b=12,则c= 15 .【考点】勾股定理.【分析】根据勾股定理即可解决.【解答】解:根据勾股定理,得c==15.【点评】主要是考查了勾股定理,熟记9,12,15勾股数.2.△ABC,AC=6,BC=8,当AB= 10 时,∠C=90度.【考点】勾股定理.【分析】由已知得,这是一个直角三角形,则根据勾股定理即可求解.【解答】解:∵∠C=90°∴AB为斜边∴AC2+BC2=AB2,∴AB=10【点评】本题利用了勾股定理来求解,是基础知识比较简单.3.等边三角形的边长为6cm,则它的高为3cm.【考点】等边三角形的性质;勾股定理.【分析】作底边上的高.根据等腰三角形的三线合一,以及勾股定即可求解.【解答】解:底边的一半是3.再根据勾股定理,得它的高为=3cm.【点评】考查了等腰三角形的三线合一性质以及勾股定理.4.△ABC中,∠C=90°,∠A=30°,则BC:AC:AB= 1::2 .【考点】勾股定理.【分析】根据直角三角形各角的度数判断出其所对边的长短,再根据直角三角形的性质及勾股定理解答.【解答】解:∵∠A=30°,∴BC为最短边,设其为1,∵∠C=90°,∴AB为最长边,∴AB=2BC=2,∴AC==,∴BC:AC:AB=1::2.【点评】需注意:在求30°的直角三角形的各边之比时,应设最短边为1,再根据勾股定理解答.5.直角三角形两直角边长分别为5和12,则它斜边上的高为.【考点】勾股定理.【分析】本题可先用勾股定理求出斜边长,然后再根据直角三角形面积的两种公式求解即可.【解答】解:由勾股定理可得:斜边长2=52+122,则斜边长=13,直角三角形面积S=×5×12=×13×斜边的高,可得:斜边的高=.故答案为:.【点评】本题考查勾股定理及直角三角形面积公式的综合运用,看清题中条件即可.6.等腰三角形的顶角为120°,底边上的高为3,则它的周长为12+6.【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质可分别求得腰长和底边的长,从而不难求得三角形的周长.【解答】解:∵等腰三角形的顶角为120°,底边上的高为3,∴腰长=6,底边的一半=3,∴周长=6+6+2×3=12+6.故答案为:12+6.【点评】本题考查勾股定理及等腰三角形的性质的综合运用.7.若直角三角形两直角边之比为3:4,斜边长为20,则它的面积为96 .【考点】勾股定理.【分析】首先根据比值设出两直角边,利用勾股定理即可求出直角边的长,代入面积公式求解即可.【解答】解:根据题意,设两直角边是3x、4x,则(3x)2+(4x)2=202,解得x=4,所以两直角边为12,16;×12×16=96,所以它的面积是96.【点评】根据比值设出两直角边利用勾股定理求解是本题的考查点.8.等腰三角形的两边长为2和4,则底边上的高为.【考点】勾股定理;等腰三角形的性质.【分析】根据已知确定底边与腰,从而根据勾股定理求得底边上的高.【解答】解:∵等腰三角形底边上的高与底边上的中线互相重合,∴底边上的高与腰长,底边的一半构成直角三角形,∵底边长是2,∴底边的一半是1,∴底边上的高==.【点评】本题应根据三角形三边关系先得到此等腰三角形的腰长与底边的值.然后利用勾股定理求解.9.若等腰直角三角形斜边长为2,则它的直角边长为.【考点】等腰直角三角形.【分析】利用勾股定理,设直角边为a,则2a2=4求解即可.【解答】解:∵三角形为等腰直角三角形,∴设两直角边为a,则a2+a2=22解得a=【点评】本题需注意根据等腰直角三角形的特点,利用勾股定理进行解答,还要注意,三角形的边长是正值.10.测得一个三角形花坛的三边长分别为5cm,12cm,13cm,则这个花坛的面积是30 cm2.【考点】勾股定理的应用.【专题】应用题.【分析】根据三角形花坛的三边长可知符合勾股定理的逆定理的表达式,根据勾股定理的逆定理,可知此三角形为直角三角形,再代入直角三角形的面积公式即可求解.【解答】解:∵52+122=132,∴此三角形为直角三角形,两直角边分别为5cm和12cm,∴花坛面积=×5×12=30(cm2).【点评】本题主要是根据勾股定理的逆定理推出此三角形为直角三角形,再根据直角三角形的面积解答.11.已知△ABC的三边a,b,c满足(a﹣5)2+(b﹣12)2+c2﹣26c+169=0,则△ABC是直角三角形.【考点】勾股定理的逆定理;非负数的性质:偶次方.【分析】根据给出的条件求出三角形的三边长,再根据勾股定理的逆定理来判定三角形的形状.【解答】解:∵(a﹣5)2+(b﹣12)2+c2﹣26c+169=0,∴(a﹣5)2+(b﹣12)2+(c2﹣26c+169)=0,∴(a﹣5)2+(b﹣12)2+(c﹣13)2=0,∴a=5,b=12,c=13,∵52+122=132,∴△ABC是直角三角形.【点评】本题考查了特殊方程的解法与及勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.12.如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个三角形中,与众不同的是A,不同之处:A不是直角三角形,B,C,D是直角三角形.【考点】勾股定理.【专题】网格型.【分析】可以设正方形小格的边长是1.根据勾股定理计算各个三角形的三边,看三边的平方是否满足两条较短边的平方和等于最长边的平方.【解答】解:(1)在A图中三角形的三个边的长为、、,由勾股定理的逆定理可知5+10≠17,故A不是直角三角形;(2)在B图中三角形的三个边的长为2,4,,由勾股定理的逆定理可知22+42=()2,所以B是直角三角形;(3)根据(2)的计算方法,同理可求得C,D也是直角三角形.【点评】综合运用了勾股定理及其逆定理.13.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需2+2米.【考点】勾股定理的应用.【专题】压轴题.【分析】地毯水平的部分的和是水平边的和,竖直的部分的和是竖直边,因此根据勾股定理求出直角三角形两直角边即可.【解答】解:已知直角三角形的高是2米,根据三角函数得到:水平的直角边是=2,则地毯水平的部分的和是水平边的和,竖直的部分的和是竖直边,则地毯的长是(2+2)米.【点评】正确计算地毯的长度是解决本题的关键.14.若一个三角形的三边长分别为3,4,x,则使此三角形是直角三角形的x的值是5或.【考点】勾股定理.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边4既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即4是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:设第三边为x(1)若4是直角边,则第三边x是斜边,由勾股定理,得32+42=x2,所以x=5;(2)若4是斜边,则第三边x为直角边,由勾股定理,得32+x2=42,所以x=;所以第三边的长为5或.【点评】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.二、选择题(共4小题,每题3分,共12分)15.下列各组数中,不能构成直角三角形的一组是()A.1,2,B.1,2,C.3,4,5 D.6,8,12【考点】勾股定理的逆定理.【分析】符合勾股定理的逆定理是判定直角三角形的方法之一.【解答】解:根据勾股定理的逆定理知,三角形三边满足c2=a2+b2,三角形就为直角三角形,四个选项,只有D中不满足,故选D.【点评】本题考查了勾股定理的逆定理的应用,是基础知识,要熟练掌握.16.如图,△ABC中AD⊥BC于D,AB=3,BD=2,DC=1,则AC等于()A.6 B.C.D.4【考点】勾股定理.【分析】利用两次勾股定理即可解答.【解答】解:∵AD⊥BC∴∠ADC=∠ADB=90°∵AB=3,BD=2,∴AD==∵DC=1∴AC==.故选B.【点评】本题需先求出AD长,利用了两次勾股定理进行推理计算.17.已知三角形的三边长之比为1:1:,则此三角形一定是()A.锐角三角形B.钝角三角形C.等边三角形D.等腰直角三角形【考点】勾股定理的逆定理.【分析】由已知得其有两条边相等,并且符合勾股定理的逆定理,从而可判断三角形的形状.【解答】解:由题意设三边长分别为:x,x, x∵x2+x2=(x)2,∴三角形一定为直角三角形,并且是等腰三角形.故选D.【点评】本题考查了勾股定理的逆定理,三角形三边关系满足a2+b2=c2,三角形为直角三角形.18.直角三角形的斜边比一直角边长2cm,另一直角边长为6cm,则它的斜边长()A.4cm B.8cm C.10cm D.12cm【考点】勾股定理.【分析】设斜边长为x,表示出一直角边为(x﹣2)cm,然后利用勾股定理列出方程求解即可.【解答】解:设斜边长为x,则直角边为(x﹣2)cm,由勾股定理得,x2=(x﹣2)2+62,解得x=10,所以,它的斜边长为10cm.故选C.【点评】本题考查了勾股定理,熟记定理并列出方程是解题的关键.三、解答题(共60分)19.如图,每个小正方形的边长是1.①在图①中画出一个面积是2的直角三角形;②在图②中画出一个面积是2的正方形.【考点】作图—代数计算作图.【分析】面积是2的直角三角形只需两直角边长为2,2即可;面积是2的正方形的边长为,是直角边长为1,1的两个直角三角形的斜边长.【解答】解:.【点评】直角三角形的两直角边的积等于面积的2倍;边长为无理数应先找到所求的无理数是直角边长为哪两个有理数的直角三角形的斜边长.21.如图,一次“台风”过后,一根旗杆被台风从离地面2.8米处吹断,倒下的旗杆的顶端落在离旗杆底部9.6米处,那么这根旗杆被吹断裂前至少有多高?【考点】勾股定理的应用.【专题】探究型.【分析】先根据勾股定理求出BC的长,再由旗杆高度=AB+BC即可解答.【解答】解:∵旗杆剩余部分、折断部分与地面正好构成直角三角形,∴BC===10m,∴旗杆的高=AB+BC=2.8+10=12.8m.答:这根旗杆被吹断裂前至少有12.8米高.【点评】本题考查的是勾股定理在实际生活中的应用,解答此题的关键是从题中抽象出勾股定理这一数学模型,再根据勾股定理进行解答.22.在某山区需要修建一条高速公路,在施工过程中要沿直线AB打通一条隧道,动工前,应先测隧道BC的长,现测得∠ABD=150°,∠D=60°,BD=32 km,请根据上述数据,求出隧道BC的长(精确到0.1 km).【考点】勾股定理的应用.【专题】应用题.【分析】首先根据三角形的内角和定理的推论求得∠BCD=90°;再根据直角三角形的性质求得CD的长,最后运用勾股定理求得BC的长即可.【解答】解:在直角△BCD中,∵∠ABD=150°,∠D=60°,∴∠BCD=90°∠CBD=30°,∴CD=BD=16,∴BC===16≈16×1.732≈27.7km.【点评】综合运用了三角形的内角和定理的推论“30°角所对的直角边是斜边的一半”及勾股定理.23.如图,△ABC中,AB=15cm,AC=24cm,∠A=60°.求BC的长.【考点】勾股定理.【分析】在解决三角形问题时常需构成直角三角形来解决.∠A=60°应在这个直角三角形中.然后利用勾股定理来进行解答.【解答】解:过B作BD⊥AC于D.∴∠BDA=∠BDC=90°∵∠A=60°∴∠ABD=30°∵AB=15 cm∴AD=AB=cm,∴BD=cm,CD=AC﹣AD=cm,∴BC===21cm【点评】本题的难点在于作辅助线,要求是构造直角三角形,所给的特殊角在直角三角形中.24.如图,△ABC中,AB=13,BC=14,AC=15,求BC边上的高AD.【考点】勾股定理.【分析】AD为高,那么题中有两个直角三角形.AD在这两个直角三角形中,设BD为未知数,可利用勾股定理都表示出AD长.求得BD长,再根据勾股定理求得AD长.【解答】解:设BD=x,则CD=14﹣x,在Rt△ABD中,AD2+x2=132,在Rt△ADC中,AD2=152﹣(14﹣x)2,所以有132﹣x2=152﹣(14﹣x)2,132﹣x2=152﹣196+28x﹣x2,解得x=5,在Rt△ABD中,AD==12.【点评】本题考查了勾股定理,解决本题的关键在于利用两个直角三角形的公共边找到突破点.主要利用了勾股定理进行解答.26.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)【考点】勾股定理的应用.【专题】应用题.【分析】本题求小汽车是否超速,其实就是求BC的距离,直角三角形ABC中,有斜边AB的长,有直角边AC的长,那么BC的长就很容易求得,根据小汽车用2s行驶的路程为BC,那么可求出小汽车的速度,然后再判断是否超速了.【解答】解:在Rt△ABC中,AC=30m,AB=50m;据勾股定理可得:(m)∴小汽车的速度为v==20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.答:这辆小汽车超速了.【点评】本题是将实际问题转化为直角三角形中的数学问题,可把条件和问题放到直角三角形中,进行解决.要注意题目中单位的统一.27.如图,△ABC中,CD⊥AB于D.(1)图中有 C 个直角三角形;A、0B、1C、2D、3(2)若AD=12,AC=13,则CD= 5 ;(3)若CD2=AD•DB,求证:△ABC是直角三角形.【考点】勾股定理的逆定理.【专题】计算题;证明题.【分析】(1)根据直角三角形的判定定理,△ACD和△BCD是直角三角形;(2)根据勾股定理求出CD的值;(3)再通过给出的条件CD2=AD•DB,推出△ABC的三边关系,判定它是直角三角形.【解答】解:(1)C;(2)CD==5;(3)AC2=AD2+CD2①BC2=CD2+BD2②①+②得AC2+BC2=2CD2+AD2+BD2=2AD•BD+AD2+BD2=(AD+BD)2=AB2∴△ABC是直角三角形.【点评】本题考查了直角三角形的判定与及勾股定理等内容.28.小明把一根长为160cm的细铁丝弯折成三段,将其做成一个等腰三角形风筝的边框ABC,已知风筝的高AD=40cm,你知道小明是怎样弯折铁丝的吗?【考点】勾股定理的应用.【分析】设出腰的长,则底边的长可表示出来,又已知等腰三角形的高,在Rt△ABD中运用勾股定理可解得腰长.【解答】解:设腰长AB=AC=xcm,则BC=160﹣2x,BD=BC=80﹣x,在Rt△ABD中,AB2=BD2+AD2,即x2=(80﹣x)2+402,解之得:x=50,∴AB=AC=50cm,BC=160﹣2×50=60cm.所以小明在先量取铁丝50cm弯折一次,再量取60cm弯折一次,然后与铁丝的两端点对接即可得到等腰三角形风筝的边框ABC.【点评】本题考查正确运用勾股定理.29.去年某省将地处A、B两地的两所大学合并成一所综合大学,为了方便A、B两地师生的交往,学校准备在相距2千米的A、B两地之间修筑一条笔直公路.如图中线段AB,经测量,在A地北偏东60°方向,B地西偏北45°方向的C处有一个半径为0.7千米的公园,问计划修筑的这条公路会不会穿过公园?为什么?【考点】解直角三角形的应用﹣方向角问题.【专题】应用题.【分析】本题要求的实际上是C到AB的距离,过C点作CD⊥AB,CD就是所求的线段,由于CD是条公共直角边,可用CD表示出AD,BD,然后根据AB的长,来求出CD的长.【解答】解:过C点作CD⊥AB于D,由题可知:∠CAD=30°,设CD=x千米,tan∠CAD=,所以AD==x,由CD⊥AB,得到∠CDB=90°,又∠CBD=45°,所以△CDB为等腰直角三角形,则BD=CD=x,∵AB=2,∴x+x=2,∴x====﹣1>0.7.∴计划修筑的这条公路不会穿过公园.【点评】解直角三角形的应用关键是构建直角三角形,如果有共用直角边的,可以利用公共边来进行求解.30.学习了勾股定理以后,有同学提出“在直角三角形中,三边满足a2+b2=c2,或许其他的三角形三边也有这样的关系”.让我们来做一个实验!(1)画出任意一个锐角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= 6 mm;b= 8 mm;较长的一条边长c= 9 mm.比较=a2+b2>c2(填写“>”,“<”,或“=”);(2)画出任意的一个钝角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= 6 mm;b= 8 mm;较长的一条边长c= 11 mm.比较a2+b2<c2(填写“>”,“<”,或“=”);(3)根据以上的操作和结果,对这位同学提出的问题,你猜想的结论是:若△ABC是锐角三角形,则有a2+b2>c2若△ABC是钝角三角形,∠C为钝角,则有a2+b2<c2,类比勾股定理的验证方法,相信你能说明其能否成立的理由.【考点】勾股定理的证明.【专题】阅读型.【分析】熟悉勾股数,然后根据大边对大角,小边对小角,确定第三边的长,从而保证三角形的形状.如取较小的两边是6,8,若是直角三角形,则第三边应是10.故要保证它是锐角三角形,只需取9.要保证它是钝角三角形,只需取11.证明的时候,充分运用勾股定理结合完全平方公式即可分析证明.【解答】解:(1)较短的两条边长分别是a=6mm;b=8mm;较长的一条边长c=9mm.比较=a2+b2>c2;(2)较短的两条边长分别是a=6mm;b=8mm;较长的一条边长c=11mm.比较a2+b2<c2;(3)若△ABC是锐角三角形,则有a2+b2>c2;若△ABC是钝角三角形,∠C为钝角,则有a2+b2<c2.当△ABC是锐角三角形时,理由:过点A作AD⊥BC,垂足为D,设CD为x,则有BD=a﹣x.根据勾股定理,得b2﹣x2=AD2=c2﹣(a﹣x)2,即b2﹣x2=c2﹣a2+2ax﹣x2.∴a2+b2=c2+2ax.∵a>0,x>0,∴2ax>0;∴a2+b2>c2.当△ABC是钝角三角形时,理由:过B作BD⊥AC,交AC的延长线于D.设CD为x,则有BD2=a2﹣x2,根据勾股定理,得(b+x)2+a2﹣x2=c2,即a2+b2+2bx=c2.∵b>0,x>0,∴2bx>0,∴a2+b2<c2.【点评】本题考查了勾股定理的证明,在给定三角形的三边的时候,还要注意三角形的三边关系.注意勾股定理的熟练运用以及完全平方公式的灵活变形.-------------------------------------------------------------------奋斗没有终点任何时候都是一个起点-----------------------------------------------------信达。
人教版八年级下册数学 第17章勾股定理 单元测试卷(含答案)
第17章 勾股定理 单元测试卷一、选择题1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ). (A )30 (B )28 (C )56 (D )不能确定2. 小丰的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法中正确的是( ) (A ) 小丰认为指的是屏幕的长度 (B ) 小丰的妈妈认为指的是屏幕的宽度 (C ) 小丰的爸爸认为指的是屏幕的周长 (D ) 售货员认为指的是屏幕对角线的长度3. 等腰直角三角形三边的平方比为﹙﹚A .1:4:1B .1:2:1C .1:8:1D .1:3:14. △ABC 中,∠C=90°,a+c=32,a :c=3:5,则△ABC 的周长为﹙﹚A .30B .40C .48D .505. 在△ABC 中,AB=13,AC=15,高AD=12,则BC 的长是 ( )A .14B .9C .9或5D .4或146. 若a 、b 、c 为△ABC 的三边长,且满足a 2+ab -ac -bc=0,b 2+bc -ba -ca=0,则△ABC 的形状是 ( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形 7. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )(A ) 钝角三角形 (B ) 锐角三角形 (C ) 直角三角形 (D ) 等腰三角形. 8.. 如图,AB ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).(A )12 (B )7 (C )5 (D )139. 小丽和小芳二人同时从公园去图书馆,都是每分钟走50米,小丽走直线用了10分钟,小芳先去家拿了钱去图书馆,小芳到家用了6分,从家到图书馆用了8分,小芳从公园到图书馆拐了个( )角.(A )锐角 (B )直角 (C )钝角 (D )不能确定EA BC DCBA10. 如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π取3)是( ).(A )20cm (B )10cm (C )14cm (D )无法确定11. 小刚准备测量一段河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( ) (A ) 2m (B ) 2.5m (C ) 2.25m (D ) 3m12. 设a 、b 都是正整数,且a -b ,3b ,a+b (a >2b )构成一个直角三角形三边的长,则这个三角形的任一边的长不可能是 ( )A .12B .13C .14D .1513.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为A .90°B .60°C .45°D .30°二、填空题14.如图,一副三角板拼在一起,O 为AD 的中点,AB = a .将△ABO 沿BO 对折于△A ′BO ,M 为BC 上一动点,则A ′M 的最小值为 .15. 如图,小明在A 时测得某树的影长为2m ,B 时又测得该树的影长为8m ,若两次日照的光线互相垂直,则树的高度为_____m.AB 45︒60︒A ′B MAODCA 时B 时16.勾股定理有着悠久的历史,它曾引起很多人的兴趣.l955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在右图的勾股图中,已知∠ACB=90°,∠BAC=30°,AB=4.作△PQR使得∠R=90°,点H在边QR上,点D,E在边PR上,点G,F在边_PQ上,那么APQR的周长等于 ____.17.如图,在△ABC中,AB=AC=13,BC=10,D是AB的中点,过点D作DE⊥AC于点E,则DE的长是______________.三、解答题18. 如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求这块地的面积。
八年级数学下册《第十七章 勾股定理的应用》练习题-附答案(人教版)
八年级数学下册《第十七章勾股定理的应用》练习题-附答案(人教版)一、选择题1.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要( )A.4米B.5米C.6米D.7米2.某工程的测量人员在规划一块如图所示的三角形土地时,在BC上有一处古建筑D,使得BC 的长不能直接测出,工作人员测得AB=130米,AD=120米,BD=50米,在测出AC=150米后,测量工具坏了,使得DC的长无法测出,请你想办法求出BC的长度为( )A.90米B.120米C.140米D.150米3.《九章算术》第九章有如下题目,原文:今有垣高一丈,倚木于垣,上与垣齐.引木却行一尺,其木至地.问木长几何?译文是:今有墙高1丈,倚木杆于墙.使木杆之上端与墙平齐.牵引木杆下端退行1尺,则木杆(从墙上)滑落至地上.间木杆长是多少?(1丈=10尺,1尺=10寸)( )A.5尺5寸B.1丈1尺C.5丈5寸D.5丈5尺4.如图,长方形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A.2.5B.2 2C. 3D. 55.如图,小明在广场上先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米.则小明到达的终止点与原出发点的距离是( )A.90米B.100米C.120米D.150米6.如图,有一个由传感器控制的灯A装在门上方离地高4.5 m的墙上,任何东西只要移至距该灯5 m及5 m以内时,灯就会自动发光,请问一个身高1.5 m的学生要走到离墙多远的地方灯刚好发光?( )A.4 mB.3 mC.5 mD.7 m7.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,则水深是( )尺A.3.5B.4C.4.5D.58.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)( )A.12 mB.13 mC.16 mD.17 m9.如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是( )A. 3B. 5C. 6D.710.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为( )A.32B.43C.53D.8511.如图,已知线段BC,分别以B、C为圆心,大于12BC为半径作弧,两弧相交于E、F两点,连接CE,过点E作射线BA,若∠CEA=60°,CE=4,则△BCE的面积为( )A.4B.4 3C.8D.8 312.如图,圆柱形纸杯高8 cm,底面周长为12 cm,在纸杯内壁离杯底2 cm的点C处有一滴蜂蜜,一只蚂蚁正好在纸杯外壁,离杯上沿2 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为( )3 B.6 2 C.10 D.以上答案都不对二、填空题13.上午8时,一条船从海岛A出发,以15海里/时的速度向正北航行,10时到达海岛B处,从A、B望灯塔C,测得∠BAC=60°,点C在点B的正西方向,海岛B与灯塔C之间的距离是海里.14.在平面直角坐标系中,点P(﹣5,2)到原点的距离是.15.如图,要做一个两条直角边的长分别是7 cm和4 cm的三角尺,斜边长应为 cm.16.如图,A,B,C,D为四个养有珍稀动物的小岛,连线代表连接各个小岛的晃桥(各岛之间也可以通过乘船到达),四边形ABCD为长方形,如果黄芳同学想从A岛到C岛,则至少要经过________米.17.某快递公司要在街道旁设立一个派送还点,向A、B两居民区投送快递,派送点应该设在什么地方,才能使它到A、B的距离之和最短?快递员根据实际情况,以街道为x轴,建立了如图所示的平面直角坐标系,测得坐标A(﹣2,2)、B(6,4),则派送点的坐标是.18.如图,在平面直角坐标系中,已知点P(2,1),点A是x轴上的一个动点,当△PAO是等腰三角形时,点A的坐标为.三、解答题19.如图所示,一棵36米高的树被风刮断了,树顶落在离树根24米处,求折断处的高度AB.20.如图,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶50000米.飞机每小时飞行多少千米?21.如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了5003m 到达B点,然后再沿北偏西30°方向走了500m到达目的地C点.(1)求A、C两点之间的距离;(2)确定目的地C在营地A的什么方向?22.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?23.如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=∠90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AD=6,BD=8,求ED的长.24.如图,在△ABC中,AD是BC边的中线,∠BAD=90°,AB=2,AC=11,求BC的长.25.如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m.假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少秒?参考答案1.D2.C3.C4.D5.B.6.A.7.C8.D.9.B.10.A11.B.12.C.13.答案为:30 3.14.答案为:3.15.答案为:65.16.答案为:370.17.答案为:(23,0).18.答案为:A(4,0),(5,0),(﹣5,0).19.解:设AB=x米,则AC=(36﹣x)米∵AB⊥BC∴AB2+BC2=AC2∴x2+242=(36﹣x)2.∴x=10∴折断处的高度AB是10米.20.解:如图,在Rt△ABC中,根据勾股定理可知BC=3000(米).3000÷20=150米/秒=540千米/小时.所以飞机每小时飞行540千米.21.解:(1)过B点作BE∥AD如图,∴∠DAB=∠ABE=60°.∵30°+∠CBA+∠ABE=180°∴∠CBA=90°.即△ABC为直角三角形.由已知可得:BC=500 m,AB=500 3 m由勾股定理可得:AC2=BC2+AB2所以AC=1 000(m);(2)在Rt△ABC中,∵BC=500 m,AC=1 000 m∴∠CAB=30°∵∠DAB=60°∴∠DAC=30°.即点C在点A的北偏东30°的方向.22.解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等即BC=CA设AC为x,则OC=45﹣x由勾股定理可知OB2+OC2=BC2又∵OA=45,OB=15把它代入关系式152+(45﹣x)2=x2解方程得出x=25(cm).答:如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是25cm.23.(1)证明:∵△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=∠90°∴AC=BC,EC=DC,∠B=∠CAB=45°,∠ACE=∠BCD=90°﹣∠ACD在△ACE和△BCD中∴△ACE ≌△BCD(SAS);(2)解:∵△ACE ≌△BCD∴∠CAE =∠B ,AE =BD =8∵∠CAB =∠B =45°∴∠EAD =45°+45°=90°在Rt △EAD 中,由勾股定理得:ED =10.24.解:延长AD 至点E ,使AD =ED ,连结CE.∵D 是BC 的中点,∴BD =CD.在△ABD 和△ECD 中∵⎩⎨⎧AD =ED ,∠ADB =∠EDC ,BD =CD ,∴△ABD ≌△ECD(SAS)∴EC =AB = 2∴∠CED =∠BAD =90°.在Rt △AEC 中,∵AE 2=AC 2﹣EC 2∴AE =(11)2-(2)2=3∴AD =12AE =32. 在Rt △ABD 中,∵BD 2=AB 2+AD 2∴BD =172∴BC =2BD =17.25.解:作AB⊥MN,垂足为B在 RtΔABP中,∵∠ABP=90°,∠APB=30°, AP=160∴ AB=12AP=80∵点 A到直线MN的距离小于100m∴这所中学会受到噪声的影响.如图,假设拖拉机在公路MN上沿PN方向行驶到点C处学校开始受到影响那么AC=100(m)由勾股定理得: BC2=1002﹣802=3600∴ BC=60.同理,拖拉机行驶到点D处学校开始脱离影响那么AD=100(m),BD=60(m)∴CD=120(m).拖拉机行驶的速度为:18km/h=5m/s,t=120m÷5m/s=24s.答:拖拉机在公路 MN上沿PN方向行驶时,学校会受到噪声影响,学校受影响的时间为24秒.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
C
B
O
/
20
25
25
24
24
24
7
20
15
学
的比是(
)
第 17 章 勾股定理
形.若正方形 A、B、C、D 的边长分别为 3、5、2、3,则最大正方形 E 的面积是( )
A. 13 B. 26 C. 47 D. 94
题 号
一 二 三 总 分
C
E B
D
C
O
B
A
64
号
得
考
分
H
A
F
A D B
100
A
G A
第3题图
第6题图
第10题图
第12题图
6.如图,一圆柱高为 8cm,底面周长为 30cm,蚂蚁在圆柱表面爬行,从点 A 爬到 点
题
一.选择题:(每小题 3 分,共 36 分)
1.下列说法正确的是( )
A.若 a、b、c 是△ABC 的三边,则 a2+b2=c
2
B.若 a、b、c 是 Rt △ABC 的三边,则 a2+b2=c
2
B 的最短路程是( )
A.15cm B.16cm C.17cm D.18cm
7.三角形的三边长分别为 a2+b2、2ab、a2-b2(a、b 都是正整数),则这个三角形是
( )
名
姓 答 C.若 a、b、c 是 Rt △ABC 的三边,∠A=90°,则
a2+b2=c
2
A. 直角三角形 B. 钝角三角形 C. 锐角三角形 D. 不能确定
得
不
D.若 a、b、c 是 Rt △ABC 的三边,∠C=90°,则 a2+b2=c
2
2.五根小木棒,其长度分别为 7,15,20,24,25,现将它们摆成两个直角三角形,
其中正确的是( )
8.等腰直角三角形三边长度之比为( )
A. 1︰1︰2 B.1︰1︰ 2 C. 1︰2︰ 3 D. 不能确定
9.三角形的三边长 a、b、c 满足 (a + b)2=c2+2ab,则这个三角形是( )
内
7
A. 等边三角形 B. 钝角三角形 C. 锐角三角形 D. 直角三角形
级
线
班
封
密
20
25 20
24
7
15 7 15 15
25
A
B C
D
第 2题图
3.如图,在单位正方形组成的网格图中标有四条线段,其中能构成一个直角三角形
10.一块木板如图所示,已知 AB=4,BC=3,DC=12,AD=13,∠B=90°,木板的
面积为( )
A. 60 B. 30 C. 24 D. 12
11.已知三角形的三边长为 a、b、c,如果 (a - 9)2 + b - 12 + (c - 15) = 0 ,则△ABC 是( )
校
三边的线段是( )
A. CD,EF,GH B. AB,EF,GH C. AB,CD,GH D. AB,CD,EF
4.在一个由 16 个小正方形组成的正方形网格中,阴影部分面积与正方形 ABCD 面积
A. 3︰4 B. 5︰8 C. 9︰16 D. 1︰2
5.一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角
第 1 页,共 4 页
A.以 a 为斜边的直角三角形 B. 以 b 为斜边的直角三角形
C.以 c 为斜边的直角三角形 D. 不是直角三角形
12.三个正方形的面积如图,正方形 A 的边长为( )
A. 8 B. 36 C. 64 D. 6
二、填空题:(每小题 3 分,共 24 分)
第 2 页,共 4 页
F
13.某同学想知道学校旗杆的高度,他发现旗杆顶端的绳子垂到地还多 1 米,当他把 绳子的下端拉开 5 米后,发现下端刚好接触地面,旗杆的高度是 . 14.已知直角三角形的两边长为 3、5,则另一边长是 . 15.若一个三角形的三边之比为 5︰12︰13,则它为 三角形. 16.在△ABC 中,若 a2+b2=25,a2-b△2=7,c=5,则 ABC 为 三角形. 17.一个长方形土地面积为 48m2,对角线长为 10m,则此长方形的周长为 . 18.如图所示,某河堤的横断面是梯形 ABCD,BC∥AD,迎水坡 AB 长 13 米, 且 BE︰AE=12︰5,则河堤的高 BE 为 米. AD=13,求四边形 ABCD 的面积.
C
B
A
D
第22题图
23. (10分)如图,要从电线杆离地面8m处向地面拉一条长10m的电缆,求地面电
A
B
C
C
M
D
缆固定点A到电线杆底部B的距离.
C
密
N
封
A
E
第 18 题图
D
A
第19题图
B
B
E
C
第20 题图
线
19.如图, Rt △ABC 的面积为 20cm2,在 AB 的同侧,分别以 AB,BC,AC 为直径作三
个半圆,则阴影部分的面积为 .
20.如图,将边长为 8cm 的正方形 ABCD 折叠,使点 D 落在 BC 边的中点 E 处,点 A 落
A B
24.(10 分)如图所示,在一次夏令营活动中,小玲从营地 A 出发,沿北偏东 60°
内
不
在 F 处,折痕为 MN,则线段 CN 的长是 .
三、解答题:(共 40 分)
方向走了 500 3 m 到达 B 点,然后再沿北偏西方向走了 500m 到达目的地 C 点.
得
(1)求 A、C 两点之间的距离.
答
21.( 10 分)有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就
比门高出 1 尺,斜放就恰好等于门的对角线,已知门宽 4 尺,求门高和竹竿长.
(2)确定目的地 C 在营地 A 什么方向.
题
北
D
C
A
B
第25题图
东
22.(10 分)如图,已知四边形 ABCD 中,∠B=90°,AB=3,BC=4,CD=12,
第 3 页,共 4 页
第 4 页,共 4 页