中考数学专题复习:菱形的性质与判定

合集下载

初中数学《菱形中折叠、动点、旋转、最值、新定义》题型及答案解析

初中数学《菱形中折叠、动点、旋转、最值、新定义》题型及答案解析

解题技巧专题:菱形中折叠、动点、旋转、最值、新定义型问题目录【考点一利用菱形的性质与判定解决折叠问题】 1【考点二利用菱形的性质与判定解决动点与函数图象问题】 5【考点三利用菱形的性质与判定解决旋转问题】 10【考点四利用菱形的性质与判定解决最值问题】 16【考点五利用菱形的性质与判定解决新定义型问题】 21【典型例题】【考点一利用菱形的性质与判定解决折叠问题】1.(2024九年级下·江苏南京·专题练习)如图,在菱形ABCD中,点E,F分别在AB,BC上,沿EF翻折后,点B落在边CD上的G处,若EG⊥CD,BE=4,DG=3,则AE的长为.【变式训练】2.(2024·广东东莞·二模)如图,将菱形纸片ABCD折叠,使点B落在AD边的点F处,折痕为CE,若∠D= 80°,则∠BCF的度数是.3.(23-24八年级下·江苏无锡·期中)如图,在菱形ABCD中,AB=8,∠A=120°,M是CD上,DM=3,N是点AB上一动点,四边形CMNB沿直线MN翻折,点C对应点为E,当AE最小时,AN=.4.(23-24八年级下·河北邢台·期中)如图,在菱形纸片ABCD中,∠A=60°.(1)∠C=°.(2)点E在BC边上,将菱形纸片ABCD沿DE折叠,点C对应点为点C ,且DC 是AB的垂直平分线,则∠DEC的大小为°.5.(2024·云南曲靖·二模)如图,已知在△ABC中,∠ACB=90°,过点C作CD⊥AB于点D,点E为AC上一点,连接BE,交CD于点G,△BFE是△BCE沿BE折叠所得,且点C的对应点F恰好落在AB上,连接FG.(1)求证:四边形CEFG为菱形;(2)若AC=8,BC=6,求DG的长.【考点二利用菱形的性质与判定解决动点与函数图象问题】6.(2024·北京朝阳·二模)如图1,在菱形ABCD 中,∠B =60°,P 是菱形内部一点,动点M 从顶点B 出发,沿线段BP 运动到点P ,再沿线段P A 运动到顶点A ,停止运动.设点M 运动的路程为x ,MA MC=y ,表示y 与x 的函数关系的图象如图2所示,则菱形ABCD 的边长是()A.43B.4C.23D.2【变式训练】7.(2024·广东深圳·三模)如图(1),点P 为菱形ABCD 对角线AC 上一动点,点E 为边CD 上一定点,连接PB ,PE ,BE .图(2)是点P 从点A 匀速运动到点C 时,△PBE 的面积y 随AP 的长度x 变化的关系图象(当点P 在BE 上时,令y =0),则菱形ABCD 的边长为()A.5B.6C.23D.258.(23-24九年级下·山东淄博·期中)如图1,点P 从菱形ABCD 的顶点A 出发,沿A →C →B 以1cm/s 的速度匀速运动到点B ,点P 运动时△P AD 的面积y cm 2 随时间x (s )变化的关系如图2,则a 的值为()A.254B.253C.9D.1929.(2024·甘肃·中考真题)如图1,动点P 从菱形ABCD 的点A 出发,沿边AB →BC 匀速运动,运动到点C 时停止.设点P 的运动路程为x ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为()A.2B.3C.5D.2210.(23-24八年级下·江苏苏州·阶段练习)在菱形ABCD 中,∠ABC =60°,P 是直线BD 上一动点,以AP 为边向右侧作等边△APE ,(A 、P ,E 按逆时针排列),点E 的位置随点P 的位置变化而变化.(1)如图1,当点P 在线段BD 上,且点E 在菱形ABCD 内部或边上时,连接CE ,则BP 与CE 的数量关系是,BC 与CE 的位置关系是;(2)①如图2,当点P 在线段BD 上,且点E 在菱形ABCD 外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;②在①的条件下,连接BE ,若AB =2,∠APD =75°,直接写出BE 的长;(3)当点P 在直线BD 上时,其他条件不变,连接BE .若AB =23,BE =219,请直接写出△APE 的面积.【考点三利用菱形的性质与判定解决旋转问题】11.(2024·河南·三模)如图,菱形OABC 的顶点O (0,0),A (-1,0),∠B =60°,若菱形OABC 绕点O 顺时针旋转90°后得到菱形OA 1B 1C 1,依此方式,绕点O 连续旋转2024次得到菱形OA 2024B 2024C 2024,那么点C 2024的坐标是()A.32,12B.12,-32C.-32,-12D.-12,32【变式训练】12.(2024九年级·全国·竞赛)在菱形ABCD 中,∠ABC =120°,边长为2cm ,现将菱形ABCD 绕其外一点O影部分的面积为cm2.13.如图①,菱形ABCD和菱形AEFG有公共顶点A,点E,G分别落在边AB,AD上,连接DF,BF.(1)求证:DF=BF;(2)将菱形AEFG绕点A按逆时针方向旋转.设旋转角∠BAE=α0°≤α≤180°,且AB=6,AE= 3,∠DAB=∠GAE=60°.①如图②,当α=90°时,则线段DF的长度是多少?②连接BD,当△DFB为直角三角形时,则旋转角α的度数为多少度?14.(23-24八年级下·湖北武汉·期中)在菱形ABCD和菱形BEFG中,∠ABC=∠EBG=60°,AB=6,BE=2.(1)如图1,若点E、G分别在边AB、BC上,点F在菱形ABCD内部,连接DF,直接写出DF的长度为;(2)如图2,把菱形BEFG绕点B顺时针旋转α°(0<α<360),连接DF、CG,判断DF与CG的数量关系,并给出证明;(3)如图3,①把菱形BEFG继续绕点B顺时针旋转,连接GD,O为DG的中点,连接CO、EO,试探究CO与EO的关系;②直接写出菱形BEFG绕B点旋转过程中CO的取值范围.【考点四利用菱形的性质与判定解决最值问题】15.(23-24八年级下·重庆沙坪坝·期中)如图,菱形ABCD的周长为8,∠DAC=30°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.【变式训练】16.(2024九年级下·全国·专题练习)如图,在菱形ABCD中,E,F分别是边CD,BC上的动点,连接AE,EF,G,H分别为AE,EF的中点,连接GH.若∠B=45°,BC=23,则GH的最小值是.17.(23-24八年级下·安徽合肥·期末)菱形ABCD中,∠B=60°,E是BC中点,连接AE,DE,点F是DE上一动点,G为AF中点,连接CG.(1)∠BAE=;(2)若AB=2,则CG的最小值为.18.(2024八年级下·全国·专题练习)如图,菱形ABCD中,AB=4,∠ABC=60°,点P为AD边上任意一点(不包括端点),连结AC,过点P作PQ∥AC,交边CD于点Q,点R线段AC上的一点.(1)若点R为菱形ABCD对角线的交点,PQ为△ACD的中位线,求PR+QR的值;(2)当PR+QR的值最小时,请确定点R的位置,并求出PR+QR的最小值;(3)当PR+QR的值最小,且PR+QR+PQ的值最小时,在备用图中作出此时点P,Q的位置,写作法并写出PR+QR+PQ的最小值.【考点五利用菱形的性质与判定解决新定义型问题】19.(22-23八年级下·江苏苏州·期末)定义:如果三角形有两个内角的差为90°,那么称这样的三角形为“准直角三角形”.(1)已知△ABC是“准直角三角形”,∠C>90°,若∠A=40°,则∠B=°.(2)如图,在菱形ABCD中,∠B>90°,AB=5,连接AC,若△ABC正好为一个准直角三角形,求菱形ABCD的面积.【变式训练】20.(23-24九年级下·山东威海·期中)【理解新定义】若一个四边形具备一组对角互补和一组邻边相等,则称该四边形为“补等四边形”.如正方形和筝形,它们都具备这样的特征,所以称为补等四边形.【解决新问题】(1)如图Ⅰ,点E,F分别在菱形ABCD的边CD,AD上,CE=DF,∠A=60°.四边形BEDF是否为补等四边形?(填“是”或“否”)(2)如图Ⅱ,在△ABC中,∠B>90°.∠ACB的平分线和边AB的中垂线交于点D,中垂线交边AC于点G,连接DA,DB.四边形ADBC是否为补等四边形?若是,进行证明;若不是,说明理由.21.(22-23八年级下·浙江宁波·期末)我们定义:以已知菱形的对角线为边且有一条边与已知菱形的一条边共线的新菱形称为已知菱形的伴随菱形.如图1,在菱形ABCD中,连接AC,在AD的延长线上取点E 使得AC=AE,以CA、AE为边作菱形CAEF,我们称菱形CAEF是菱形ABCD的“伴随菱形”.(1)如图2,在菱形ABCD中,连接AC,在BC的延长线上作CA=CF,作∠ACF的平分线CE交AD的延长线于点E,连接FE.求证:四边形AEPC为菱形ABCD的“伴随菱形”.(2)①如图3,菱形AEFC为菱形ABCD的“伴随菱形”,过C作CH垂直AE于点H,对角线AC、BD相交于点O.连接EO若EO=2CH,试判断ED与BD的数量关系并加以证明.②在①的条件下请直接写出CHED的值.22.(22-23八年级下·安徽合肥·期末)定义:在三角形中,若有两条中线互相垂直,则称该三角形为中垂三角形.(1)如图(a),△ABC是中垂三角形,BD,AE分别是AC,BC边上的中线,且BD⊥AE于点O,若∠BAE=45°,求证:△ABC是等腰三角形.(2)如图(b),在中垂三角形ABC中,AE,BD分别是边BC,AC上的中线,且AE⊥BD于点O,求证:AC2+BC2=5AB2.(3)如图(c),四边形ABCD是菱形,对角线AC,BD交于点O,点M,N分别是OA,OD的中点,连接BM,CN并延长,交于点E.求证:△BCE是中垂三角形;解题技巧专题:菱形中折叠、动点、旋转、最值、新定义型问题目录【考点一利用菱形的性质与判定解决折叠问题】 1【考点二利用菱形的性质与判定解决动点与函数图象问题】 5【考点三利用菱形的性质与判定解决旋转问题】 10【考点四利用菱形的性质与判定解决最值问题】 16【考点五利用菱形的性质与判定解决新定义型问题】 21【典型例题】【考点一利用菱形的性质与判定解决折叠问题】1.(2024九年级下·江苏南京·专题练习)如图,在菱形ABCD 中,点E ,F 分别在AB ,BC 上,沿EF 翻折后,点B 落在边CD 上的G 处,若EG ⊥CD ,BE =4,DG =3,则AE 的长为.【答案】914【分析】此题重点考查菱形的性质、轴对称的性质、平行四边形的判定与性质、勾股定理等知识,正确地作出所需要的辅助线是解题的关键.作BH ⊥CD 交DC 的延长线于点H ,因为EG ⊥CD ,所以BH ∥EG ,由四边形ABCD 是菱形,得AB ∥CD ,AB =BC =CD ,则四边形BEGH 是平行四边形,所以GH =BE =4,由折叠得GE =BE =4,则BH =GE =4,所以DH =DG +GH =3+4=7,由勾股定理得42+7-AB 2=AB 2,求得AB =6514,所以AE =AB -BE =6514-4=914,于是得到问题的答案.【详解】解:作BH ⊥CD 交DC 的延长线于点H ,则∠H =90°,∵EG ⊥CD ,∴BH ∥EG ,∵四边形ABCD 是菱形,∴AB ∥CD ,AB =BC =CD ,∴BE ∥GH ,∴四边形BEGH 是平行四边形,∴GH =BE =4,由折叠得GE =BE =4,∵DG =3,∴DH =DG +GH =3+4=7,∵BH 2+CH 2=BC 2,CH =7-CD =7-AB ,∴42+7-AB 2=AB 2,解得AB =6514,∴AE =AB -BE =6514-4=914,故答案为:914.【变式训练】2.(2024·广东东莞·二模)如图,将菱形纸片ABCD 折叠,使点B 落在AD 边的点F 处,折痕为CE ,若∠D =80°,则∠BCF 的度数是.【答案】80°/80度【分析】此题考查了菱形的性质,折叠的性质,等边对等角和平行线的性质,首先根据平行的性质得到BC =CD ,由折叠得BC =CF ,然后求出CF =CD ,然后根据等边对等角和平行线的性质求解即可.【详解】∵四边形ABCD 是菱形∴BC =CD由折叠可得,BC =CF∴CF =CD∴∠CFD =∠D =80°∵四边形ABCD 是菱形∴AD ∥BC∴∠BCF =∠DFC =80°.故答案为:80°.3.(23-24八年级下·江苏无锡·期中)如图,在菱形ABCD 中,AB =8,∠A =120°,M 是CD 上,DM =3,N 是点AB 上一动点,四边形CMNB 沿直线MN 翻折,点C 对应点为E ,当AE 最小时,AN =.【答案】7【分析】本题考查了菱形的性质,折叠的性质,勾股定理等知识,解决本题的关键是确定点E在AM上时,AE的值最小.作AH⊥CD于H,如图,根据菱形的性质可求得AH=32AD=83,DH=CH=8,在Rt△AHM中,利用勾股定理计算出AM=7,再根据两点间线段最短得到当点E在AM上时,AE的值最小,然后证明AN=AM即可.【详解】解:作AH⊥CD于H,如图,∵菱形ABCD的边AB=8,∠A=120°,∴AD=AB=CD=8,AB∥CD,∴∠D=180°-∠BAD=60°,∴∠DAH=30°,∴DH=12AD=4,AH=AD2-DH2=43,∵DM=3,∴HM=1,MC=CD-DM=5,在Rt△AHM中,AM=AH2+HM2=7,∵四边形CMNB沿直线MN翻折,点C对应点为E,,∴ME=MC=10,∵AE+ME≥AM,∴AE≥AM-ME,∴当点E在AM上时,AE的值最小,由折叠的性质得∠AMN=∠CMN,而AB∥CD,∴∠ANM=∠CMN,∴∠AMN=∠ANM,∴AN=AM=7.故答案为:7.4.(23-24八年级下·河北邢台·期中)如图,在菱形纸片ABCD中,∠A=60°.(1)∠C=°.(2)点E在BC边上,将菱形纸片ABCD沿DE折叠,点C对应点为点C ,且DC 是AB的垂直平分线,则∠DEC的大小为°.【答案】6075【分析】本题考查菱形的性质,垂直平分线的定义.(1)直接根据菱形的对角相等即可求解;(2)如图,由垂直平分线的定义得到∠1=90°,从而∠ADC =30°,由菱形的性质得到∠CDC =∠1=90°,从而由折叠有∠CDE=∠C DE=12∠CDC =45°,因此∠ADE=75°,再根据菱形的对边平行即可求解.【详解】解:(1)∵四边形ABCD是菱形,∴∠C=∠A=60°.故答案为:60(2)如图,∵C D 是AB 的垂直平分线,∴∠1=90°,∴∠ADC =90°-∠A =90°-60°=30°,∵在菱形ABCD 中,AB ∥CD ,∴∠CDC =∠1=90°,由折叠可得∠CDE =∠C DE =12∠CDC =12×90°=45°,∴∠ADE =∠ADC +∠C DE =30°+45°=75°,∵在菱形ABCD 中,AD ∥BC ,∴∠DEC =∠ADE =75°.故答案为:755.(2024·云南曲靖·二模)如图,已知在△ABC 中,∠ACB =90°,过点C 作CD ⊥AB 于点D ,点E 为AC 上一点,连接BE ,交CD 于点G ,△BFE 是△BCE 沿BE 折叠所得,且点C 的对应点F 恰好落在AB 上,连接FG .(1)求证:四边形CEFG 为菱形;(2)若AC =8,BC =6,求DG 的长.【答案】(1)见解析(2)GD =1.8.【分析】(1)推出CG =EF ,CG ∥EF ,进而推出四边形CEFG 是平行四边形,并根据EC =EF 证得四边形CEFG 是菱形;(2)首先利用勾股定理求出AB ,设CG =x ,然后用x 表示出AE 和EF ,再在Rt △AEF 中,利用勾股定理构建方程,求出x ,进一步计算即可求解.【详解】(1)证明:∵CD ⊥AB ,△BFE 是△BCE 沿BE 折叠所得,∴∠BFE =∠BCE =90°,∠CEG =∠FEG ,EC =EF ,∴CD ∥EF ,∴∠CGE =∠FEG ,∴∠CGE =∠CEG ,∴CE =CG ,∴CG =EF ,∵CG ∥EF ,∴四边形CEFG 是平行四边形,∵EC =EF ,∴平行四边形CEFG 是菱形;(2)解:∵AC =8,BC =6,∠ACB =90°,22∵四边形CEFG 是菱形,∴EF =FG =CE =CG =x ,∴AE =8-x ,∵△BFE 是△BCE 沿BE 折叠所得,∴BF =BC =6,∴AF =AB -BF =10-6=4,∵在Rt △AEF 中,EF 2+AF 2=AE 2,∴x 2+42=8-x 2,解得:x =3,即CG =3.∵CD ⊥AB ,∴S △ABC =12AC ×BC =12AB ×CD ,∴CD =4.8,∴GD =4.8-3=1.8.【点睛】本题考查了平行线的性质,角平分线的性质,等腰三角形的判定,平行四边形的判定,菱形的判定和性质以及勾股定理的应用,灵活运用各性质进行推理论证是解题的关键.【考点二利用菱形的性质与判定解决动点与函数图象问题】6.(2024·北京朝阳·二模)如图1,在菱形ABCD 中,∠B =60°,P 是菱形内部一点,动点M 从顶点B 出发,沿线段BP 运动到点P ,再沿线段P A 运动到顶点A ,停止运动.设点M 运动的路程为x ,MA MC=y ,表示y 与x 的函数关系的图象如图2所示,则菱形ABCD 的边长是()A.43B.4C.23D.2【答案】C【分析】首先根据题意作图,然后由图象判断出点P 在对角线BD 上,BP =4,BP +AP =6,设AO =x ,则AB =2AO =2x ,利用勾股定理求解即可.【详解】如图所示,由图象可得,当x 从0到4时,MA MC=y =1∴MA =MC∵四边形ABCD 是菱形∴点P 在对角线BD 上∴由图象可得,BP =4,BP +AP =6∵在菱形ABCD 中,∠B =60°,∴∠ABD =30°,AC ⊥BD∴设AO =x ,则AB =2AO =2x∴PO =BP -BO =4-3x∴BO =AB 2-AO 2=3x∴在Rt △APO 中,AP 2=AO 2+PO 2∴22=x 2+4-3x 2解得x =3,负值舍去∴AB =2x =23∴菱形ABCD 的边长是23.故选:C .【点睛】此题考查了动点函数图象问题,菱形的性质,勾股定理,含30°角直角三角形的性质等知识,解题的关键是根据图象正确分析出点P 在对角线BD 上.【变式训练】7.(2024·广东深圳·三模)如图(1),点P 为菱形ABCD 对角线AC 上一动点,点E 为边CD 上一定点,连接PB ,PE ,BE .图(2)是点P 从点A 匀速运动到点C 时,△PBE 的面积y 随AP 的长度x 变化的关系图象(当点P 在BE 上时,令y =0),则菱形ABCD 的边长为()A.5B.6C.23D.25【答案】A 【分析】根据图象可知,当x =0时,即点P 与点A 重合,此时S △ABE =12,进而求出菱形的面积,当x =8时,此时点P 与点C 重合,即AC =8,连接BD ,利用菱形的性质,求出边长,即可得出结果.本题考查菱形的性质和动点的函数图象.熟练掌握菱形的性质,从函数图象中有效的获取信息,是解题的关键.【详解】解:由图象可知:当x =0时,即点P 与点A 重合,此时S △ABE =12,∴S 菱形ABCD =2S △ABE =24,当x =8时,此时点P 与点C 重合,即AC =8,连接BD ,交AC 于点O ,则:BD ⊥AC ,OA =OC =4,OB =OD ,∴S 菱形ABCD =12AC ⋅BD =24,∴BD =6,∴OB =OD =3,∴AB =OA 2+OB 2=5,∴菱形ABCD 的边长为5;故选A .8.(23-24九年级下·山东淄博·期中)如图1,点P 从菱形ABCD 的顶点A 出发,沿A →C →B 以1cm/s 的速度匀速运动到点B ,点P 运动时△P AD 的面积y cm 2 随时间x (s )变化的关系如图2,则a 的值为()A.254B.253C.9D.192【答案】B【分析】本题主要考查了菱形的性质,勾股定理,动点问题的函数图象,过点C 作CE ⊥AD ,根据函数图象求出菱形的边长为a ,再根据图像的三角形的面积可得CE =8,再利用菱形的性质和勾股定理列方程可求a 即可.【详解】解:如图所示,过点C 作CE ⊥AD 于E ,∵在菱形ABCD 中,AD ∥BC ,AD =BC ,∴当点P 在边BC 上运动时,y 的值不变,∴AD =BC =10+a -10=a ,即菱形的边长是a ,∴12⋅AD ⋅CE =4a ,即CE =8.当点P 在AC 上运动时,y 逐渐增大,∴AC =10,∴AE =AC 2-CE 2=102-82=6.在Rt △DCE 中,DC =a ,DE =a -6,CE =8,∴a 2=82+a -6 2,解得a =253.故选:B .9.(2024·甘肃·中考真题)如图1,动点P 从菱形ABCD 的点A 出发,沿边AB →BC 匀速运动,运动到点C 时停止.设点P 的运动路程为x ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为()A.2B.3C.5D.22【答案】C 【分析】结合图象,得到当x =0时,PO =AO =4,当点P 运动到点B 时,PO =BO =2,根据菱形的性质,得∠AOB =∠BOC =90°,继而得到AB =BC =OA 2+OB 2=25,当点P 运动到BC 中点时,PO 的长为12BC=5,解得即可.本题考查了菱形的性质,图象信息题,勾股定理,直角三角形的性质,熟练掌握菱形的性质,勾股定理,直角三角形的性质是解题的关键.【详解】结合图象,得到当x=0时,PO=AO=4,当点P运动到点B时,PO=BO=2,根据菱形的性质,得∠AOB=∠BOC=90°,故AB=BC=OA2+OB2=25,当点P运动到BC中点时,PO的长为12BC=5,故选C.10.(23-24八年级下·江苏苏州·阶段练习)在菱形ABCD中,∠ABC=60°,P是直线BD上一动点,以AP为边向右侧作等边△APE,(A、P,E按逆时针排列),点E的位置随点P的位置变化而变化.(1)如图1,当点P在线段BD上,且点E在菱形ABCD内部或边上时,连接CE,则BP与CE的数量关系是,BC与CE的位置关系是;(2)①如图2,当点P在线段BD上,且点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;②在①的条件下,连接BE,若AB=2,∠APD=75°,直接写出BE的长;(3)当点P在直线BD上时,其他条件不变,连接BE.若AB=23,BE=219,请直接写出△APE的面积.【答案】(1)BP=CE,CE⊥BC;(2)①仍然成立,见解析;②20-83(3)73或313【分析】(1)连接AC,根据菱形的性质和等边三角形的性质证明△BAP≌△CAE即可证得结论;(2)①(1)中的结论成立,用(1)中的方法证明△BAP≌△CAE即可;②根据已知得出DP=AD,进而根据①可得BP=CE,根据CE⊥BC,勾股定理,即可求解;(3)分两种情形:当点P在BD的延长线上时或点P在线段DB的延长线上时,连接AC交BD于点O,由∠BCE=90°,根据勾股定理求出CE的长即得到BP的长,再求AO、PO、PD的长及等边三角形APE的边长可得结论.【详解】(1)解:如图1,连接AC,延长CE交AD于点H,∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=60°;∴AP=AE,∠P AE=60°,∴∠BAP=∠CAE=60°-∠P AC,∴△BAP≌△CAE SAS,∴BP=CE;∵四边形ABCD是菱形,∴∠ABP=1∠ABC=30°,2∴∠ABP=∠ACE=30°,∵∠ACB=60°,∴∠BCE=60°+30°=90°,∴CE⊥BC;故答案为:BP=CE,CE⊥BC;(2)(1)中的结论:BP=CE,CE⊥AD仍然成立,理由如下:如图2中,连接AC,设CE与AD交于H,∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等边三角形,∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,∵△APE是等边三角形,∴AP=AE,∠P AE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE SAS,∴BP=CE,∠ACE=∠ABD=30°,∴∠DCE=30°,∵∠ADC=60°,∴∠DCE+∠ADC=90°,∴∠CHD=90°,∴CE⊥AD;∴(1)中的结论:BP=CE,CE⊥AD仍然成立;②如图所示,∵△ABP≌△ACE SAS,∴CE=BP,∵∠APD=75°,∠ADB=30°∴∠DAP=75°=∠APD,∴DA=DP=2,∵BD=2BO=23AO=3AB=23∴BP=CE=BD-DP=23-2∵CE⊥AD,AD∥BC∴CE⊥BC∴BE=BC2+CE2=22+23-22=20-83故答案为:20-83.(3)如图3中,当点P在BD的延长线上时,连接AC交BD于点O,连接CE,BE,作EF⊥AP于F,∵四边形ABCD是菱形,∵∠ABC =60°,AB =23,∴∠ABO =30°,∴AO =12AB =3,OB =3AO =3,∴BD =6,由(2)知CE ⊥AD ,∵AD ∥BC ,∴CE ⊥BC ,∵BE =219,BC =AB =23,∴CE =(219)2-(23)2=8,由(2)知BP =CE =8,∴DP =2,∴OP =5,∴AP =OA 2+OP 2=(3)2+52=27,∵△APE 是等边三角形,∴S △AEP =34×27 2=73,如图4中,当点P 在DB 的延长线上时,同法可得AP =OA 2+OP 2=(3)2+112=231,∴S △AEP =34×231 2=313.【点睛】此题考查菱形的性质、等边三角形的性质、全等三角形的判定与性质、勾股定理等知识点,解题的关键是正确地作出解题所需要的辅助线,将菱形的性质与三角形全等的条件联系起来.【考点三利用菱形的性质与判定解决旋转问题】11.(2024·河南·三模)如图,菱形OABC 的顶点O (0,0),A (-1,0),∠B =60°,若菱形OABC 绕点O 顺时针旋转90°后得到菱形OA 1B 1C 1,依此方式,绕点O 连续旋转2024次得到菱形OA 2024B 2024C 2024,那么点C 2024的坐标是()A.32,12B.12,-32C.-32,-12D.-12,32【答案】D 【分析】本题考查了旋转的性质、菱形的性质,含30°直角三角形的性质,勾股定理,坐标与图形,根据题意得到旋转的规律是解题的关键.根据题意得到点C 2024与点C 重合,在菱形中算出C 点坐标,即可解答.【详解】解:作CD ⊥OA 于D ,则∠CDO =90°,∵四边形OABC 是菱形,O 0,0 ,A -1,0 ,∴∠AOC =∠B =60°,OC =OA =1∴∠OCD =30°∴OD =12OC =12,CD =3OD =32∴点C 的坐标为-12,32,若菱形绕点O 顺时针旋转90°后得到菱形OA 1B 1C 1,依此方式,绕点O 连续旋转2024次得到菱形OA 2024B 2024C 2024,则菱形OABC 绕点O 连续旋转2024次,旋转4次为一周,旋转2024次为2024÷4=506(周),∴绕点O 连续旋转2024次得到菱形OA 2024B 2024C 2024与菱形OABC 重合,∴点C 2024与C 重合,∴点C 2024的坐标为-12,32,故选:D .【变式训练】12.(2024九年级·全国·竞赛)在菱形ABCD 中,∠ABC =120°,边长为2cm ,现将菱形ABCD 绕其外一点O按顺时针方向分别旋转90°、180°、270°后,得到如图的图形,每相邻两个菱形有一个顶点重合,则图中阴影部分的面积为cm 2.【答案】12-43【分析】连接AC 、OB ,交点为点E ,则OB 为AC 的中垂线,S △AOD =12×AE ×OD =12×3×3-1 =3-32cm 2 ,计算即可.【详解】如图,连接AC 、OB ,交点为点E ,则OB 为AC 的中垂线,∴点D 在OB 上,由已知条件易得BE =DE =12AB =1cm ,AE =OE =3cm ,∴OD =3-1cm ,∴S =1×AE ×OD =1×3×3-1 =3-3cm 2 ,∴所求面积为8×3-32=12-43cm2.故答案为:12-43.13.如图①,菱形ABCD和菱形AEFG有公共顶点A,点E,G分别落在边AB,AD上,连接DF,BF.(1)求证:DF=BF;(2)将菱形AEFG绕点A按逆时针方向旋转.设旋转角∠BAE=α0°≤α≤180°,且AB=6,AE= 3,∠DAB=∠GAE=60°.①如图②,当α=90°时,则线段DF的长度是多少?②连接BD,当△DFB为直角三角形时,则旋转角α的度数为多少度?【答案】(1)证明见解析(2)①33;②30°或90°【分析】(1)连接AF,根据菱形的性质,可得到△GAF≅△EAF,从而得到∠GAF=∠EAF,进而得到△DAF ≅△BAF,即可求证;(2)①连接AF,EG,BD,AC,BD与AC交于点O,AF交EG于点P,根据旋转的性质和菱形的性质可得AF∥OD,△ABD和△AEG是等边三角形,从而得到AF=OD,进而得到四边形AODF是平行四边形,即可求解;②分两种情况讨论:∠BDF=90°和∠BFD=90°,利用矩形的性质、等边三角形的判定与性质求解即可得.【详解】(1)证明:连接AF,∵四边形AEFG是菱形,∴AE=EF=FG=GA,在△GAF和△EAF中,AG=AEGF=EFAF=AF,∴△GAF≅△EAF SSS,∵四边形ABCD 是菱形,∴AD =AB ,在△DAF 和△BAF 中,AD =AB∠DAF =∠BAF AF =AF,∴△DAF ≅△BAF SAS ,∴DF =BF .(2)解:①如图,连接AF ,EG ,BD ,AC ,BD 与AC 交于点O ,AF 交EG 于点P ,由(1)得当菱形AEFG 没有旋转时,AC 平分∠BAD ,AF 平分∠EAG ,∴此时点A 、F 、C 三点共线,∴当菱形AEFG 绕点A 按逆时针方向旋转时,∠FAC =α,∴当α=90°时,∠FAC =∠BAE =90°,在菱形ABCD 中,AB =AD ,OD =12BD ,OA =12AC ,BD ⊥AC ,∠DAO =12∠BAD =30°,∴∠AOD =90°∴∠DOA +∠FAC =180°,∴AF ∥OD ,在菱形AEFG 中,∠EAF =12∠EAG =30°,AE =AG ,AP =12AF ,PE =12EG ,∵∠DAB =∠GAE =60°.∴△ABD 和△AEG 是等边三角形,∴BD =AB =6,EG =AE =3,∴OD =3,EP =32,∴AP =AE 2-EP 2=32,OA =AD 2-OD 2=33∴AF =3,∴AF =OD ,∴四边形AODF 是平行四边形,∴DF =OA =33;②由①得四边形AODF 是平行四边形,∵∠FAC =90°,∴四边形AODF 是矩形,∴∠BDF =90°,即△DFB 为直角三角形,∴此时旋转角α的度数为90°;如图,当点F 在AD 上时,由①得AF =3,∴AF=DF,∵△ABD为等边三角形,∴BF⊥AD,即∠BFD=90°,∴此时△DFB为直角三角形,∵∠EAF=1∠EAG=30°,2∴∠BAE=∠BAD-∠EAF=30°,即此时旋转角α的度数为30°;综上所述,当△DFB为直角三角形时,旋转角α的度数为30°或90°.【点睛】本题主要考查了菱形的性质,图形旋转的性质,等边三角形的判定和性质,勾股定理等知识,熟练掌握菱形的性质,图形旋转的性质,等边三角形的判定和性质,勾股定理等知识,并利用分类讨论思想解答是解题的关键.14.(23-24八年级下·湖北武汉·期中)在菱形ABCD和菱形BEFG中,∠ABC=∠EBG=60°,AB=6,BE=2.(1)如图1,若点E、G分别在边AB、BC上,点F在菱形ABCD内部,连接DF,直接写出DF的长度为;(2)如图2,把菱形BEFG绕点B顺时针旋转α°(0<α<360),连接DF、CG,判断DF与CG的数量关系,并给出证明;(3)如图3,①把菱形BEFG继续绕点B顺时针旋转,连接GD,O为DG的中点,连接CO、EO,试探究CO与EO的关系;②直接写出菱形BEFG绕B点旋转过程中CO的取值范围.【答案】(1)43(2)FD=3CG,证明见解析(3)OE=3OC,2≤OC≤4【分析】(1)连接AC,EG,BF,DB,AC,BD交于点O,EG,BF交于点H,根据菱形的性质,证明B,F,D三点共线,求出BD,BF的长,用BD-BF即可求出DF的长度;(2)过点D作DM∥FG,过点G作GM∥DF,过点C作CN⊥MG,得到四边形DMGF为平行四边形,证明△CDM≌△CBG,得到CM=CG,∠DCM=∠BCG,进而求出∠MCG=∠BCG+∠BCM=∠DCM+∠BCM=∠DCB=120°,利用等腰三角形的性质结合30度角的直角三角形的性质,即可得出结论;(3)①延长CO至点H,使OC=OH,连接AC,AH,HE,HG,延长BA,交CH于点Q,先证明△DOC≌△GOH,推出四边形AHGB为平行四边形,再证明△HAC≌△EBC,推出△CHE为等边三角形,利用等边三角形的性质和含30度角的直角三角形的性质,即可得出结论;②三角形的三边关系,求出CE的范围,进而求出OC的范围即可.【详解】(1)解:连接AC,EG,BF,DB,AC,BD交于点O,EG,BF交于点H,∵菱形ABCD ,菱形EBGF ,∴∠ABD =∠CBF =12∠ABC =30°,∠EBF =∠GBF =12∠EBG =30°,AC ⊥BD ,EG ⊥BF ,BD =2OB ,BF =2HB ,∵点E 、G 分别在边AB 、BC 上,∴∠ABD =∠ABF =30°,∴B ,F ,D 三点共线,∵BE =2,∠EBF =30°,∴HE =12BE =1,BH =3HE =3,∴BF =2BH =23,同理:BD =2OB =23OA =2×32AB =63,∴DF =BD -BF =43;故答案为:43;(2)FD =3CG ,证明如下:过点D 作DM ∥FG ,过点G 作GM ∥DF ,过点C 作CN ⊥MG ,则:四边形DMGF 为平行四边形,∴DF =MG ,DM =GF ,∵菱形ABCD ,菱形EBGF ,∠ABC =∠EBG =60°,∴AD ∥BC ,BE ∥GF ,∠ADB =∠ABC =∠EBG =60°,CD =BC ,BG =GF =DM∴BE ∥DM ,∠1=∠2,∠DCB =180°-∠ADC =120°,∴∠3=∠DMN ,∵∠1=∠ADM +∠DMN ,∠2=∠3+∠CBE∴∠ADM =∠CBE ,∴∠CDA +∠ADM =∠CBE +∠EBG ,即:∠CDM =∠CBG ,又∵CD =BC ,BG =DM ,∴△CDM ≌△CBG ,∴CM =CG ,∠DCM =∠BCG ,∴∠MCG =∠BCG +∠BCM =∠DCM +∠BCM =∠DCB =120°,∴∠CMG =∠CGM =12180°-120° =30°,∵CN ⊥MG ,∴DF =MG =2NG ,CN =12CG ,∴NG=CG2-CN2=3CG,2∴DF=3CG;(3)①延长CO至点H,使OC=OH,连接AC,AH,HE,HG,延长BA,交CH于点Q,∵O是DG的中点,∴OD=OG,又∵∠DOC=∠HOG,∴△DOC≌△GOH,∴GH=CD,∠OCD=∠OHG,∴CD∥HG,∵菱形ABCD,∴AB∥CD,AD∥BC,AB=BC=CD=DA,∠ADC=∠ABC=60°,∴AB∥HG,GH=CD=AB,△ABC为等边三角形,∴四边形AHGB为平行四边形,∠BAC=∠ACB=60°,AC=AB=BC,∴AH∥BG,AH=BG,∠CAQ=180°-∠CAB=120°,∴∠HAQ=∠ABG,∵BG=BE,∴AH=BE,∵∠CBE=∠ABC+∠ABG+∠EBG=120°+∠ABG,∠HAC=∠HAQ+∠CAQ=∠HAQ+120°,∴∠CBE=∠HAC,又∵AH=BE,AC=BC,∴△HAC≌△EBC,∴CH=CE,∠HCA=∠ECB,∴∠HCE=∠HCA+∠ACE=∠BCE+∠ACE=∠ACB=60°,∴△CHE为等边三角形,∵OC=OH,∠HEC=60°,∴OE⊥OC,∠CEO=30°,∴OC=1CE,2∴OE=3OC;②∵BC=AB=6,BE=2,∴BC-BE≤CE≤BC+BE,即:4≤CE≤8,∵OC=1CE,2∴2≤OC≤4.【点睛】本题考查菱形的性质,平行四边形的判定和性质,等腰三角形的判定和性质,等边三角形的判定和性质,含30度角的直角三角形,勾股定理,三角形的三边关系等知识点,综合性强,难度大,属于压轴题,熟练掌握相关知识点,添加辅助线构造特殊图形和全等三角形,是解题的关键.【考点四利用菱形的性质与判定解决最值问题】15.(23-24八年级下·重庆沙坪坝·期中)如图,菱形ABCD的周长为8,∠DAC=30°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.【答案】3【分析】此题考查轴对称确定最短路线问题,菱形的性质,等边三角形的判定与性质连接BD ,DE ,根据菱形的性质可得,△ABD 是等边三角形,再证明△ADP ≌△ABP ,可得PD =PB ,从而得到PE +PB 的最小值为DE 的长,再由E 是AB 的中点,可得DE ⊥AB ,AE =12AB =1,然后根据勾股定理可得DE =3,即可求解.【详解】解:如图,连接BD ,DE ,∵四边形ABCD 是菱形,周长为8,∠DAC =30°,∴∠DAB =2∠DAC =60°,∠DAP =∠BAP ,AB =AD =2,∴△ABD 是等边三角形,在△ADP 和△ABP 中,∵AP =AP ,∠DAP =∠BAP ,AB =AD ,∴△ADP ≌△ABP ,∴PD =PB ,∴PE +PB =PE +PD ≥DE ,即PE +PB 的最小值为DE 的长,∵E 是AB 的中点,∴DE ⊥AB ,AE =12AB =1,∴DE =AD 2-AE 2=3,即PE +PB 的最小值为3.故答案为:3.【变式训练】16.(2024九年级下·全国·专题练习)如图,在菱形ABCD 中,E ,F 分别是边CD ,BC 上的动点,连接AE ,EF ,G ,H 分别为AE ,EF 的中点,连接GH .若∠B =45°,BC =23,则GH 的最小值是.【答案】62【分析】连接AF ,利用三角形中位线定理,可知GH =12AF ,当AF ⊥BC 时,AF 最小,求出AF 最小值即可求出.【详解】解:连接AF ,如图,∵四边形ABCD 是菱形,∵G ,H 分别为AE ,EF 的中点,∴GH 是△AEF 的中位线,∴GH =12AF ,当AF ⊥BC 时,则∠AFB =90°,AF 最小,GH 得到最小值,∵∠B =45°,∴△ABF 是等腰直角三角形,∴AF 2+BF 2=AB 2,即2AF 2=AB 2,∴AF =6,∴GH =62,故答案为:62.【点睛】本题考查了菱形的性质、三角形的中位线定理、等腰直角三角形的判定与性质、垂线段最短等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.17.(23-24八年级下·安徽合肥·期末)菱形ABCD 中,∠B =60°,E 是BC 中点,连接AE ,DE ,点F 是DE 上一动点,G 为AF 中点,连接CG .(1)∠BAE =;(2)若AB =2,则CG 的最小值为.【答案】30°2217【分析】(1)连接AC ,证明△ABC 为等边三角形,三线合一,即可得出结果;(2)取AD 的中点I ,AE 的中点H ,连接HG ,IG ,CH ,CI ,根据三角形的中位线定理,推出点G 在IH 上运动,当CG ⊥HG 时,CG 最小,进行求解即可.【详解】解:(1)连接AC ,∵菱形ABCD ,∴AB =BC ,∵∠B =60°,∴△ABC 为等边三角形,∴∠BAC =60°,∵E 是BC 中点,∴AE 平分∠BAC ,∴∠BAE =12∠BAC =30°;故答案为:30°;(2)取AD 的中点I ,AE 的中点H ,连接HG ,IG ,CH ,CI则:IG ∥DF ,HG ∥DF ,∴I ,G ,H 三点共线,。

初中考数学专题总复习《四边形》矩形、菱形、正方形

初中考数学专题总复习《四边形》矩形、菱形、正方形

∵BE=DF,
∴OE=OF.(2分)
在△AOE和△COF中,
OA=OC
∠AOE=∠COF
OE=OF ∴△AOE≌△COF(SAS), ∴AE=CF;(4分)
第2题图
(2)若AB=6,∠COD=60°,求矩形ABCD的面积.
(2)解:∵OA=OC,OB=OD,AC=BD, ∴OA=OB. ∵∠AOB=∠COD=60°, ∴△AOB是等边三角形, ∴OA=AB=6, ∴AC=2OA=12,(6分) 在Rt△ABC中,由勾股定理得BC= AC 2 AB2 =6 3 , ∴S矩形ABCD=AB·BC=6×6 3 =36 3 .(8分)
第5题图
(1)证明:∵对角线AC的中点为O, ∴AO=CO. ∵AG=CH, ∴AO-AG=CO-CH.即GO=HO. ∵四边形ABCD是矩形, ∴AB∥CD. ∴∠OAE=∠OCF. 又∵∠AOE=∠COF, ∴△OAE≌△OCF(ASA).
第5题图
∴OE=OF. ∴GH与EF互相平分, ∴四边形EHFG是平行四边形;
证明:∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形,
∵四边形ABCD是矩形,
第1题图
∴AC=BD,OA=OC,OB=OD. ∴OC=OD,∴四边形OCED是菱形.
母题变式 改变条件、增加设问→在矩形基础上构造菱形,增加设问及解题难度. 2. (2020德阳)如图,四边形ABCD为矩形,G是对角线BD的中点,连接GC并延长 至F,使CF=GC,以DC,CF为邻边作菱形DCFE.连接CE. (1)判断四边形CEDG的形状,并证明你的结论;
第6题图
(2)若∠ABE=∠CBE,求证:四边形AFBE为矩形.
(2)∵点D、E分别为AB、AC的中点, ∴DE∥BC,∴∠DEB=∠CBE, ∵∠ABE=∠CBE, ∴∠DEB=∠ABE,∴BD=DE, ∵AD=BD,DF=DE, ∴AD+BD=DE+DF,即AB=EF, ∴四边形AFBE是矩形.

2021年中考复习数学《一轮专题训练》—选择题专项:菱形的性质与判定综合(四)

2021年中考复习数学《一轮专题训练》—选择题专项:菱形的性质与判定综合(四)

2021年中考数学《一轮专题训练》—选择题专项:菱形的性质与判定综合(四)1.如图,在菱形ABCD中,E,F分别是AB,AC的中点,若EF=2,则菱形ABCD的周长为()A.16 B.8 C.D.42.如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=6,AC=8,直线OE⊥AB交CD 于点F,则EF的长为()A.4.8 B.C.5 D.63.如图,在平面直角坐标系中,O是菱形ABCD对角线BD的中点,AD∥x轴且AD=4,∠A =60°,将菱形ABCD绕点O旋转,使点D落在x轴上,则旋转后点C的对应点的坐标是()A.(0,2)B.(2,﹣4)C.(2,0)D.(0,2)或(0,﹣2)4.如图,在菱形ABCD中,AC与BD交于点O,点E为BC中点,连接OE,若菱形ABCD的周长为8,则线段OE的长为()A.4B.2C.D.5.校园内有一个由两个全等的六边形(边长为3.5m)围成的花坛,现将这个花坛在原有的基础上扩建成如图所示的一个菱形区域,并在新扩建的部分种上草坪,则扩建后菱形区域的周长为()A.28m B.35m C.42m D.56m6.如图在菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为32,则OH的长等于()A.8 B.6 C.7 D.47.如图,将三角尺ABC沿边BC所在直线平移后得到△DCE,连接AD,下列结论正确的是()A.AD=ABB.四边形ABCD是平行四边形C.AD=2ACD.四边形ABCD是菱形8.下列说法中,错误的是()A.有一条对角线平分一个内角的平行四边形是菱形B.对角线互相垂直且平分的四边形是菱形C.一条对角线平分另一条对角线的四边形是平行四边形D.三角形的一条中位线与第三边上的中线互相平分9.下列条件中,能判断四边形是菱形的是()A.对角线互相垂直且相等的四边形B.对角线互相垂直的四边形C.对角线相等的平行四边形D.对角线互相平分且垂直的四边形10.如图,平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是OA,OC的中点,下列条件中,不能判断四边形BEDF是菱形的是()A.AC⊥BD B.AC=2BD C.AC平分∠BAD D.AB=BC11.如图,丝带重叠的部分一定是()A.正方形B.矩形C.菱形D.都有可能12.如图,在▱ABCD中,下列说法能判定ABCD是菱形的是()A.AC⊥BD B.BA⊥BD C.AB=CD D.AD=BC13.下列说法中,错误的是()A.如果一个四边形绕对角线的交点旋转90°后,所得的图形能与原图形重合,那么这个四边形是正方形B.在一个平行四边形中,如果有一条对角线平分一个内角,那么该平行四边形是菱形C.在一个四边形中,如果有一条对角线平分一组内角,则该四边形是菱形D.两张等宽的纸条交叠在一起,重叠的部分是菱形14.如图,在边长为1的菱形ABCD中,∠A=60°,点E,F分别为AD、CD上的动点,连接BE、BF、EF.若∠EBF=60°,则(1)BE=BF;(2)△BEF是等边三角形;(3)四边形EBFD面积是菱形面积的一半;(4)△DEF面积的最大值是.以上结论成立的是()A.(1)(2)B.(1)(2)(3)C.(1)(2)(4)D.(1)(2)(3)(4)15.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得点A,C之间的距离为6cm,点B,D之间的距离为8cm,则线段AB的长为()A.5cm B.4.8cm C.4.6cm D.4cm16.如图所示,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若BD=6,则四边形CODE的周长是()A.10 B.12 C.18 D.2417.如图所示,在Rt△ABC中,∠ABC=90°,∠BAC=30°,分别以直角边AB、斜边AC为边,向外作等边△ABD和等边△ACE,F为AC的中点,DE与AC交于点O,DF与AB交于点G,给出如下结论:①四边形ADFE为菱形;②DF⊥AB;③AO=AE;④CE=4FG;其中正确的是()A.①②③B.①②④C.①③④D.②③④18.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=8,则四边形CODE的周长()A.8 B.12 C.16 D.2019.菱形ABCD的边长为2,∠A=60°,点G为AB的中点,以BG为边作菱形BEFG,其中点E在CB的延长线上,点P为FD的中点,则PB=()A.B.C.D.20.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′.设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为()A.B.2 C.D.3参考答案1.解:∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×2=4,∵四边形ABCD是菱形,∴AB=BC=CD=AD=4,∴菱形ABCD的周长=4×4=16.故选:A.2.解:∵在菱形ABCD中,BD=6,AC=8,∴OB=BD=3,OA=AC=4,AC⊥BD,∴AB==5,=AC•BD=AB•EF,∵S菱形ABCD即×6×8=5EF,∴EF=4.8.故选:A.3.解:根据菱形的对称性可得:当点C旋转到y轴负半轴时,A、B、C均在坐标轴上,如图,∵∠BAD=60°,AD=4,∴∠OAD=30°,∴OD=2,∴AO===OC,∴点C的坐标为(0,),同理:当点C旋转到y轴正半轴时,点C的坐标为(0,),∴点C的坐标为(0,)或(0,),故选:D.4.解:∵菱形ABCD的周长为8,∴BC=2,AC⊥BD,∵E为BC的中点,∴OE=BC=.故选:C.5.解:如图,∵花坛是由两个相同的正六边形围成,∴∠FGM=∠GMN=120°,GM=GF=EF,∴∠BMG=∠BGM=60°,∴△BMG是等边三角形,∴BG=GM=2.5(m),同理可证:AF=EF=3.5(m)∴AB=BG+GF+AF=3.5×3=10.5(m),∴扩建后菱形区域的周长为10.5×4=42(m).故选:C.6.解:∵菱形ABCD的周长为32,∴AD=8,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOD=90°,∵H为AD边中点,∴OH=AD=4,故选:D.7.解:∵将三角尺ABC沿边BC所在直线平移后得到△DCE,∴AD=BC,AD∥BC,∴四边形ABCD是平行四边形,故选:B.8.解:A、∵有一条对角线平分一个内角的平行四边形是菱形,∴选项A不符合题意;B、∵对角线互相垂直且平分的四边形是菱形,∴选项B不符合题意;C、∵对角线互相平分的四边形是平行四边形,一条对角线平分另一条对角线的四边形不一定是平行四边形,∴选项C符合题意;D、如图所示:连接DF、EF,∵D、F分别是AB、BC的中点,∴DF∥AC,同理可得:EF∥AB,∴四边形ADFE是平行四边形,∴DE与AF互相平分,∴选项D不符合题意;故选:C.9.解:A、对角线互相垂直相等的四边形不一定是菱形,此选项错误;B、对角线互相垂直的四边形不一定是菱形,此选项错误;C、对角线相等的平行四边形也可能是矩形,此选项错误;D、对角线互相平分且垂直的四边形是菱形,此选项正确;故选:D.10.解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵点E,F分别是OA,OC的中点,∴OE=OF==,∴四边形EBDF是平行四边形,添加AC⊥BD时,∵BO是△BEF的中线,∴BE=BF,∴四边形EBFD是菱形,选项A正确;添加AC平分∠BAD,∴∠DAC=∠BAC=∠ACB,∴AD=AB=BC,在△ABE和△DAE中,,∴△ABE≌△DAE(SAS),∴BE=DE,∴四边形EBFD是菱形,选项C正确;添加AB=BC时,∴∠BAE=∠BCF,在△BAE和△BCF中,,∴△BAE≌△BCF(SAS),∴BE=BF,∴四边形EBFD是菱形,选项D正确;只有添加选项B不能判定四边形EBFD是菱形;故选:B.11.解:过点A作AE⊥BC于E,AF⊥CD于F,因为两条彩带宽度相同,所以AB∥CD,AD∥BC,AE=AF.∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AE=CD•AF.又AE=AF.∴BC=CD,∴四边形ABCD是菱形.故选:C.12.解:∵对角线垂直的平行四边形是菱形,或一组邻边相等的平行四边形是平行四边形,∴当AC⊥BD或AB=BC或AB=AD或AD=CD或BC=CD时,平行四边形ABCD是菱形,故选:A.13.解:A.如果一个四边形绕对角线的交点旋转90°后,所得的图形能与原图形重合,那么这个四边形是正方形,本选项正确;B.在一个平行四边形中,如果有一条对角线平分一个内角,那么该平行四边形是菱形,本选项正确;C.在一个四边形中,如果有一条对角线平分一组内角,则该四边形不一定是菱形,本选项错误;D.两张等宽的纸条交叠在一起,重叠的部分是菱形,本选项正确;故选:C .14.解:(1)如图1,连接BD ,∵四边形ABCD 是菱形,∴AB =AD =CD ,∵∠A =60°,∴△ABD 是等边三角形, ∴AB =BD ,∠ABD =60°,∵DC ∥AB ,∴∠CDB =∠ABD =60°,∴∠A =∠CDB ,∵∠EBF =60°,∴∠ABE +∠EBD =∠EBD +∠DBF ,∴∠ABE =∠DBF ,在△ABE 和△DBF 中,,∴△ABE ≌△DBF (AAS ),∴BE =BF ,故(1)成立;(2)∵BE =BF ,∠EBF =60°,∴△BEF 是等边三角形;故(2)成立;(3)∵△ABE ≌△DBF ,∴S △ABE =S △DBF ,∴四边形EBFD 面积=S △BED +S △DBF =S △ABE +S △BED =S △ABD ,∵,∴四边形EBFD面积是菱形面积的一半,故(3)成立;(4)设AE=DF=x,∴DE=1﹣x,如图2,过点F作FH⊥AD于点H,∵∠ADF=120°,∴∠FDH=60°,∴∴=,=﹣,∴当x=时,S有最大值为.故(4)成立;故选:D.15.解:作AR⊥BC于R,AS⊥CD于S,连接AC、BD交于点O.由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形等宽,∴AR=AS,∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形,∴AC⊥BD,在Rt△AOB中,∵OA=3,OB=4,∴AB==5,故选:A.16.解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴OC=AC,OD=BD,AC=BD=6,∴OC=OD=3,∴四边形CODE是菱形,∴DE=OC=OD=CE=3,∴四边形CODE的周长=4×3=12.17.解:∵∠BAC=30°,△ABD是等边三角形,∴∠BAD=60°,∴∠DAF=90°,∴DF>AD,∴四边形ADFE不可能是菱形.故①错误.连接BF.∵△ABC是直角三角形,AF=CF,∴FA=FB,∵DA=DB,∴DF垂直平分线段AB,故②正确,∵AE⊥AB,DF⊥AB,∴AE∥DF,∵AE=2AF,DF=2AF,∴AE=DF,∴四边形AEFD是平行四边形,∴OA=OF,∴AE=AC=4OA,故③正确,在Rt△AFG中,∠FAG=30°,∴AF=2FG,∵EC=AC=2AF,∴EC=4FG,故④正确,故选:D.18.解:∵CE∥BD,DE∥AC,∴EC∥DO,DE∥OC,∴四边形DOCE是平行四边形,∵四边形ABCD是矩形,∴AC=BD,OB=OD=BD,OA=OC=AC,∴OC=OD,∴▱DOCE是菱形,∴OC=OD=DE=CE,∵AC=8,∴OC=OD=DE=CE=AC=4,∴四边形CODE的周长=4×4=16.故选:C.19.解:如图,连接BF、BD,∵菱形ABCD的边长为2,∵∠A=60°,∴△BCD是等边三角形,∴BD=BC=2,∠DBC=60°,∴∠DBA=60°,∵点G为AB的中点,∴菱形BEFG的边长为1,即BE=EF=BG=1,∵点E在CB的延长线上,∠GBE=60°,∴∠FBG=30°,连接EG,∴EG⊥FB于点O,∴OB=,∴FB=,∵∠DBF=∠DBA+∠FBG=90°,根据勾股定理,得DF==,∵点P为FD的中点,∴PB=DF=.故选:A.20.解:连接PP′交BC于O,∵若四边形QPCP′为菱形,∴PP′⊥QC,∴∠POQ=90°,∵∠ACB=90°,∴PO∥AC,∴=,∵设点Q运动的时间为t秒,∴QC=6﹣t,∴CO=3﹣,∵AC=CB=6,∠ACB=90°,∴AB=6,∴=,解得:t=2,故选:B.。

菱形的性质及判定

菱形的性质及判定

菱形的性质及判定1.菱形的定义:有一组邻边相等的平行四边形叫做菱形. 2.菱形的性质菱形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质: ① 边的性质:对边平行且四边相等. ② 角的性质:邻角互补,对角相等.③对角线性质:对角线互相垂直平分且每条对角线平分一组对角. ④ 对称性:菱形是中心对称图形,也是轴对称图形.菱形的面积等于底乘以高,等于对角线乘积的一半.点评:其实只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半. 3.菱形的判定判定①:一组邻边相等的平行四边形是菱形. 判定②:对角线互相垂直的平行四边形是菱形. 判定③:四边相等的四边形是菱形.重点是菱形的性质和判定定理。

菱形是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。

菱形的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。

难点是菱形性质的灵活应用。

由于菱形是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。

如果得到一个平行四边形是菱形,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程 中应给予足够重视。

重、难点知识点睛中考要求板块一、菱形的性质【例1】 ☆ ⑴菱形的两条对角线将菱形分成全等三角形的对数为⑵在平面上,一个菱形绕它的中心旋转,使它和原来的菱形重合,那么旋转的角度至少是【例2】 ⑴如图2,一活动菱形衣架中,菱形的边长均为16cm 若墙上钉子间的距离16cm AB BC ==,则1∠= 度.图21CBA⑵如图,在菱形ABCD 中,60A ∠=︒,E 、F 分别是AB 、AD 的中点,若2EF =,则菱形ABCD 的边长是______.【例3】 如图,E 是菱形ABCD 的边AD 的中点,EF AC ⊥于H ,交CB 的延长线于F ,交AB 于P ,证明:AB 与EF 互相平分.P HFE DCBA【例4】 ☆ 如图1所示,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为24,则OH 的长等于 .图1HO DC BAE F DBC A例题精讲【巩固】 ☆如图,已知菱形ABCD 的对角线8cm 4cm AC BD DE BC ==⊥,,于点E ,则DE 的长为【例5】 ☆ 菱形的周长为20cm ,两邻角度数之比为2:1,则菱形较短的对角线的长度为【巩固】 如图2,在菱形ABCD 中,6AC =,8BD =,则菱形的边长为( )A .5B .10C .6D .8图2DCBA【巩固】 如图3,在菱形ABCD 中,110A ∠=︒,E 、F 分别是边AB 和BC 的中点,EP CD ⊥于点P ,则FPC ∠=( )A .35︒B .45︒C .50︒D .55︒图3E DP CF BA【例6】 ☆如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒的菱形,剪口与折痕所成的角α的度数应为( )A .15︒或30︒B .30︒或45︒C .45︒或60︒D .30︒或60︒【巩固】 菱形ABCD 中,E 、F 分别是BC 、CD 的中点,且AE BC ⊥,AF CD ⊥,那么EAF ∠等于 .【巩固】 如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( )A .210cmB .220cmC .240cmD .280cm图1DCBA【例7】 ☆已知菱形ABCD 的两条对角线AC BD ,的乘积等于菱形的一条边长的平方,则菱形的一个钝角的大小是【例8】 如图,菱形花坛ABCD 的周长为20m ,60ABC ∠=︒,•沿着菱形的对角线修建了两条小路AC 和BD ,求两条小路的长和花坛的面积.图2【例9】 已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,若AE AF EF AB ===,求C ∠的度数.FEDCBA板块二、菱形的判定【例10】 如图,如果要使平行四边形ABCD 成为一个菱形,需要添加一个条件,那么你添加的条件是 .DCAB【例11】 ☆如图,在ABC ∆中,BD 平分ABC ∠,BD 的中垂线交AB 于点E ,交BC 于点F ,求证:四边形BEDF 是菱形FEDCBA【巩固】 已知:如图,平行四边形ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别相交于E 、F .求证:四边形AFCE 是菱形.ODEFCAB【例12】 如图,在梯形纸片ABCD 中,//AD BC ,AD CD >,将纸片沿过点D 的直线折叠,使点C 落在AD 上的点C 处,折痕DE 交BC 于点E ,连结C E '.求证:四边形CDC E '是菱形.C'DCB A E【例13】 ☆如图,E 是菱形ABCD 的边AD 的中点,EF AC ⊥于H ,交CB 的延长线于F ,交AB 于P ,证明:AB 与EF 互相平分AB CDEF P PF EDC B A【巩固】 ☆已知:如图,在平行四边形ABCD 中,AE 是BC 边上的高,将ABE ∆沿BC 方向平移,使点E与点C 重合,得GFC ∆.若60B ∠=︒,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.GF E DCBA【例14】 如图,在ABC ∆中,AB AC =,M 是BC 的中点.分别作MD AB ⊥于D ,ME AC ⊥于E ,DF AC ⊥于F ,EG AB ⊥于G .DF EG 、相交于点P .求证:四边形DMEP 是菱形.PMF E DG CBA【例15】 如图,ABC ∆中,90ACB ∠=︒,AD 是BAC ∠的平分线,交BC 于D ,CH 是AB 边上的高,交AD于F ,DE AB ⊥于E ,求证:四边形CDEF 是菱形.HF DECBA【巩固】 ☆如图,M 是矩形ABCD 内的任意一点,将MAB ∆沿AD 方向平移,使AB 与DC 重合,点M 移动到点'M 的位置⑴画出平移后的三角形; ⑵连结'MD MC MM ,,,试说明四边形'MDM C 的对角线互相垂直,且长度分别等于AB AD ,的长;⑶当M 在矩形内的什么位置时,在上述变换下,四边形'MDM C 是菱形?为什么?M'MDC BA三、与菱形相关的几何综合题【例16】 已知等腰ABC △中,AB AC =,AD 平分BAC ∠交BC 于D 点,在线段AD 上任取一点P (A 点除外),过P 点作EF AB ∥,分别交AC 、BC 于E 、F 点,作PM AC ∥,交AB 于M 点,连结ME .⑴求证四边形AEPM 为菱形⑵当P 点在何处时,菱形AEPM 的面积为四边形EFBM 面积的一半?MPFABCDE1. 菱形周长为52cm ,一条对角线长为10cm ,则其面积为 .2.如图,在菱形ABCD 中,4AB a E =,在BC 上,2120BE a BAD P =∠=︒,,点在BD 上,则PE PC +的最小值为DB3. 已知菱形的一个内角为60︒,一条对角线的长为,则另一条对角线的长为________.4.已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且60B EAF ∠=∠=︒,18BAE ∠=︒.求:CEF ∠的度数.FEDCBA5.如图,在ABC ∆中,AB AC =,D 是BC 的中点,连结AD ,在AD 的延长线上取一点E ,连结BE ,CE .当AE 与AD 满足什么数量关系时,四边形ABEC是菱形?并说明理由.EDCB A6.如图,ACD ∆、ABE ∆、BCF ∆均为直线BC 同侧的等边三角形.已知AB AC =.⑴ 顺次连结A 、D 、F 、E 四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.⑵ 当BAC ∠为 度时,四边形ADFE 为正方形.课后练习FEDCB A7.如图,已知BE 、CF 分别为ABC ∆中B ∠、C ∠的平分线,AM BE ⊥于M ,AN CF ⊥于N ,求证:MN BC ∥.NMEFCBA。

人教版中考数学复习《第21讲:矩形、菱形、正方形》课件

人教版中考数学复习《第21讲:矩形、菱形、正方形》课件
BF=3x,由勾股定理得:AF2+BF2=AB2,即x2+(3x)2=22,解得
x=
10
,所以
5
3 10
,即
5
3x=
BF=
3 10
.
5
18
考点梳理自清
考法1
考法2
考题体验感悟
考法互动研析
考法3
3.(2017·江苏徐州)如图,在平行四边形ABCD中,点O是边BC的中点,
连接DO并延长,交AB延长线于点E连接EC.
一半
5
考点梳理自清
考点一
考点二
考点三
考题体验感悟
考法互动研析
考点四
考点三正方形(高频)
正方形
的定义
正方形
的性质
正方形
的判定
有一组邻边相等,且有一个角是直角的平行四边形叫
做正方形
(1)正方形的对边平行
(2)正方形的四条边相等
(3)正方形的四个角都是直角
(4)正方形的对角线相等,互相垂直平分 ,每条对角线
( C )
A.2 5
B.3 5
C.5
D.6
10
考点梳理自清
命题点1
命题点2
考题体验感悟
考法互动研析
命题点3
解析 如图,连接EF交AC于点O,根据菱形性质有FE⊥AC,OG=OH,
易证OA=OC.由四边形ABCD是矩形,得∠B=90°,根据勾股定理得
AC=

4 5
42
+
82 =4

5,OA=2 5,易证△AOE∽△ABC,则
考法3
考法1矩形的相关证明与计算
例1(2017·山东潍坊)如图,将一张矩形纸片ABCD的边BC斜着向

菱形的性质和判定

菱形的性质和判定
欢迎同学们 走进数学课堂
高新区实验学校 王莹
课前准备:
课本、导学案、错题本、练习本, 双色笔,最重要的是激情和坚决清
除底子的决心!
迅速反应
立即行动!
教师寄语
• • 思路一定要清晰 推理一定要严密
定义: 一组邻边相等的平行四边形叫做菱形.
第六章 特殊平行四边形
1 菱形的性质与判定 第1课时
【规律方法】利用菱形的边、角、对角线特征,构造 出全等三角形、直角三角形,解决求线段、角的问题.
菱形的定义:一组邻边相等的平行四边形是菱形.
菱形的性质: 边:四条边都相等,对边分别平行.
角:对角相等.
对角线:互相垂直且平分,每一条对角线平分一组对角. 菱形的对称性:是中心对称图形,对角线的交点是对称中心 是轴对称图形,对称轴是其对角线所在的直线
又∵AB=4,∴BE=
1 由勾股定理得AE= 2
AB=2,
AB2-BE2 42-22 2 3.
【想一想】 在这个问题中,四边形AECF是什么形状的四边形?当∠B=60°时 ,可得△ACF和△DCF全等吗,那么∠B≠60°呢? 提示:四边形AECF是平行四边形.当∠B=60°时,△ACF和△DCF 全等,当∠B≠60°时,△ACF和△DCF不全等.
3.(曲靖·中考)如图,活动衣帽架由三个菱形组成,利用四边形的不 稳定性,调整菱形的内角α 使衣帽架拉伸或收缩,当菱形的边长为18cm, α =120°时,A,B两点的距离为 cm.
【答案】54
4.四边形ABCD是菱形,O是两条对角线的交点, 已知AB=5cm,AO=4cm,求对角线BD的长. D 解析:∵四边形ABCD是菱形, A ∴AC⊥BD,AC平分BD ∴AO2+BO2=AB2, ∴BO=3,BD=6. B O C

菱形的判定、判定与性质综合(原卷版)-九年级数学(北师大版)

第02讲菱形的判定、判定与性质综合1.掌握菱形的判定定理2.学会利用菱形的判定与性质综合解题菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.要点:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.考点一:菱形的判定例1.在下列条件中,能够判定ABCD Y 为菱形的是()A .AB AC =B .AC BD ⊥C .90A ∠=︒D .AC BD =例2.如图,添加下列条件不能判定ABCD Y 是菱形的是().A .AB BC =B .AC BD ⊥C .BD 平分ABC ∠D .AC BD=例3.下列条件中能判断四边形是菱形的是()A .对角线互相垂直B .对角线互相垂直且平分C .对角线相等D .对角线相等且互相平分例4.如图所示,四边形ABCD ,当AB CD ∥,AB CD =时,再下列选项中,添加一个条件,使得四边形ABCD 是菱形的是()A .对角线互相平分B .对角线相等C .对角线互相垂直D .有一个内角是直角例5.在平行四边形ABCD 中,添加下列条件,能判定平行四边形ABCD 是菱形的是()A .AB AD =B .AC BD =C .90ABC ∠= D .AB CD =例6.在平行四边形ABCD 的对角线AC 与BD 相交于点O ,5BC =, 6AC =,8BD =,则四边形ABCD ()A .平行四边形B .矩形C .菱形D .正方形例7.如图,在ABCD Y 中,对角线AC 、BD 交于点O ,请添加一个条件:____________,使平行四边形ABCD 为菱形(不添加任何辅助线).例8.如图,用直尺和圆规作菱形ABCD ,作图过程如下:①作锐角A ∠;②以点A 为圆心,以任意长度为半径作弧,与A ∠的两边分别交于点B ,D ;③分别以点B ,D 为圆心,以AD 的长度为半径作弧,两弧相交于点C ,分别连接DC ,BC ,则四边形ABCD 即为菱形,其依据是()A .一组邻边相等的四边形是菱形B .四条边相等的四边形是菱形C .对角线互相垂直的平行四边形是菱形D .每条对角线平分一组对角的平行四边形是菱形考点二:利用菱形的判定与性质求长度、角度、面积例9.如图,在菱形ABCD 中,AC BD 、相交于O ,70ABC ∠=︒,E 是线段AO 上一点,则BEC ∠的度数可能是()A .100︒B .70︒C .50︒D .20︒例10.如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,ABC ∠的平分线交AD 于点F ,连接EF ,若12BF =,10AB =,则AE 的长为()A .16B .15C .14D .13例11.如图,两张等宽的纸条交叉叠放在一起,重合部分构成一个四边形ABCD ,在其中一张纸条转动的过程中,下列结论一定成立的是()A .AD CD =C .AC BD =D .四边形ABCD 例12.如图,将矩形纸片ABCD 角线的交点O 上,下列说法:①四边形四边形AECF 的面积为833,④A .4B .3考点三:利用菱形的判定与性质解答证明例13.如图,在Rt ABC △中,90ACB ∠=︒,D 为AB 的中点,CE AB ∥,DE AC ∥,DE 交BC 于点F ,连结CD ,BE .(1)求证:四边形CDBE 是菱形;(2)若6AC =,8BC =,则四边形CDBE 的面积是________.例14.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,DE AC ∥,CE BD ∥.(1)判断四边形OCDE 的形状,并进行证明;(2)若4AB =,30ACB ∠=︒,求四边形OCDE 的面积.例15.如图,在Rt △ABC 中,∠BAC =90°,D 是BC 的中点,CE AD ∥,AE BC ∥.(1)求证:四边形ADCE 是菱形;(2)若AC =6,AB =8,求菱形ADCE 的面积.例16.如图,ABCD Y 的对角线AC ,BD 相交于点O ,点O 作AC 的垂线,与AD ,BC 分别相文于点E ,F ,连接EC ,AF .(1)求证:四边形AECF 是菱形;(2)若4=EC ED ,DOE 的面积是2,求ABCD Y 的面积.例17.如图,在平行四边形ABCD 中,E 为对角线AC 上一点,过点B 作BF AC ∥,BF AE =,连接DE ,CF ,EF ,线段EF 交BC 于点H .(1)若180BFC ACD ∠+∠=︒,求证:四边形EFCD 为菱形;(2)在(1)问的基础上,若120BFC ∠=︒,4BF CF ==,求四边形EHCD 的面积.说法正确的是()A .若OB =OD ,则▱C .若OA =OD ,则▱2.(2022·甘肃兰州·为AD 的中点,连接A .4B .2A .43B 二、解答题4.(2022·湖南郴州·统考中考真题)如图,四边形ABCD 是菱形,E ,F 是对角线AC 上的两点,且AE CF =,连接BF .FD ,DE ,EB .求证:四边形DEBF 是菱形.5.(2022·山东聊城·统考中考真题)如图,ABC 中,点D 是AB 上一点,点E 是AC 的中点,过点C 作CF AB ∥,交DE 的延长线于点F .(1)求证:AD CF =;(2)连接AF ,CD .如果点D 是AB 的中点,那么当AC 与BC 满足什么条件时,四边形ADCF 是菱形,证明你的结论.1.在一组对边平行的四边形中,增加一个条件,使得这个四边形是菱形,那么增加的条件可以是()A .另一组对边相等,对角线相等B .另一组对边相等,对角线互相垂直C .另一组对边平行,对角线相等D .另一组对边平行,对角线相互垂直2.两个边长为2的等边三角形如图所示拼凑出一个平行四边形ABCD ,则对角线BD 的长为()A .2B .4C .3D .233.如图,在ABCD Y 中,E 、F 分别为边AD 、BC 的中点,点G 、H 在AC 上,且AH CG =,若添加一个条件使四边形EGFH 是菱形,则下列可以添加的条件是()A .AB AD =B .AB AD ⊥C .AB AC =D .AB AC ⊥4.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,点E 为CD 的中点.若OE =3,则菱形ABCD 的周长为()A .6B .12C .24D .485.如图,菱形ABCD 的对角线交于点O ,过点A 作AE CD ⊥于点E ,连接OE .若3AB =,2OE =,则DE 的长度为()A .53B .32C .43D .1426.如图,在四边形ABCD 中,AB CD BC AD ,∥∥,且AD DC =,则下列说法:①四边形ABCD 是平行四边形;②AB BC =;③AC BD ⊥;④BD 平分ABC ∠;⑤若68AC BD ==,,则四边形ABCD 的面积为24.其中正确的有(A .2个B .3个7.菱形ABCD 中,60D ∠=︒.点则AEF △的面积为().A .43B .3对角线OB 上的一个动点,A .1(1,)2B 10.如图,把菱形ABCD 交于点K ,GD 的延长线交③∠DHE =12∠BAD ;④∠A .1个B .2个二、填空题11.如图,已知AD 是△ABC 的角平分线,DE ∥AC 交AB 于点E ,请你添加一个条件________,使四边形AEDF 是菱形.12.若▱ABCD 的对角线则AE 的长为______cm .15.如图,在四边形ABCD 中,对角线=6,AC =8,则四边形周长为_____16.如图,在给定的一张平行四边形下:分别作A B ∠∠,的平分线AE ,68AE BF ==,,则四边形ABEF 的周长是______.17.如图,在菱形ABCD 中,6AB =,∠BCD =60°OC 上一点,连接ED ,若43AE =,则DE 的长为18.如图,菱形ABCD 中,60BAD ∠=︒,AC 与BD CD DE =,连结BE ,分别交AC ,AD 于点F 、G ,连结②ABF ODGF S S >△四边形;③由点A 、B 、D 、E 构成的四边形是菱形;④正确的结论是______(请填写正确的序号)19.已知:如图,在ABCD Y 20.如图,四边形ABCD 的对角线(1)求证:四边形ABCD 是平行四边形EAO DCO ∠=∠.(1)求证:AOE COD ≌△△;(2)若AB BC =,求证:四边形OE AB =.(1)求证:四边形ABCD 是菱形.(1)DF =EF ;24.如图,在ABCD Y 中,AC BD ,交于点O (1)求证:四边形EBFD 是平行四边形;(2)若,BAC DAC ∠=∠求证:四边形EBFD 是菱形.25.如图,在菱形ABCD 中,对角线AC ,BD 连接CE ,CF ,BE AF =,AB AC =.(1)求证:CE CF =;(2)若23ABCD S =菱形,求菱形ABCD 的周长.26.已知在菱形ABCD 中,点P 在CD 上,连接AP .(1)在BC 上取点Q ,使得∠PAQ =∠B ,①如图1,当AP ⊥CD 于点P 时,求证:②如图2,当AP 与CD 不垂直时,判断①中的结论(即请给出证明,若不成立,则需说明理由.(2)如图3,在CD 的延长线取点N ,连接∠ANC =45°,求此时线段DN 的长.。

初中数学菱形的性质及判定

初中数学菱形的性质及判定1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.2.菱形的性质菱形是特殊的平行四边形,它具有平行四边形的所有性质,? 还具有自己独特的性质:①边的性质:对边平行且四边相等.②角的性质:邻角互补,对角相等.③对角线性质:对角线互相垂直平分且每条对角线平分一组对角.④对称性:菱形是中心对称图形,也是轴对称图形.菱形的面积等于底乘以高,等于对角线乘积的一半.点评:其实只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半.3.菱形的判定判定①:一组邻边相等的平行四边形是菱形.判定②:对角线互相垂直的平行四边形是菱形.判定③:四边相等的四边形是菱形.4.三角形的中位线中位线:连结三角形两边的中点所得的线段叫做三角形的中位线.也可以过三角形一边的中点作平行于三角形另外一边交于第三边所得的线段也是中位线.以上是中位线的两种作法,第一种可以直接用中位线的性质,第二种需要说明理由为什么是中位线,再用中位线的性质.定理:三角形的中位线平行第三边且长度等于第三边的一半.重点是菱形的性质及判定定理。

菱形是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。

菱形的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。

难点是菱形性质的灵活应用。

由于菱形是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。

如果得到一个平行四边形是菱形,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程中应给予足够重视。

板块一、菱形的性质菱形的两条对角线将菱形分成全等三角形的对数为考点】菱形的性质及判定题型】填空难度】2 星关键词】解析】根据菱形的性质可知:共有8 对答案】8在平面上,一个菱形绕它的中心旋转,使它和原来的菱形重合,那么旋转的角度至少是【考点】菱形的性质及判定【题型】填空【难度】2 星【关键词】【解析】根据菱形的性质可知:应当旋转至少180【答案】180如图2,一活动菱形衣架中,菱形的边长均为16cm 若墙上钉子间的距离AB BC16cm ,则1 度.考点】菱形的性质及判定题型】填空难度】2 星关键词】2009 年,江西中考解析】由题意可知:构成三角形为等边三角形答案】120如图,在菱形ABCD 中,A 60 ,E 、F 分别是AB 、AD 的中点,若EF 2 ,则菱形ABCD 的边长是______________________ .AC【考点】菱形的性质及判定【题型】填空【难度】2 星【关键词】2009 年,漳州中考【解析】省略【答案】4如图,E 是菱形ABCD 的边AD 的中点,EF AC 于H ,交CB 的延长线于F ,交AB 于P ,证明:AB与EF 互相平分.考点】菱形的性质及判定,平行四边形的性质和判定题型】解答难度】3 星关键词】解析】省略答案】连接BD、AF、EB菱形ABCD 中BD AC ,EF AC ,∴ BD ∥ EF∵ AD ∥ FC ,∴四边形BDEF 是平行四边形,∴ ED FB 又∵ AE∥FB,∴四边形AFBE 是平行四边形∴ AB 与EF 互相平分如图1 所示,菱形ABCD 中,对角线AC 、BD 相交于点O,H 为AD 边中点,菱形ABCD 的周长为24 ,则OH 的长等于AE ED ,∴ AE FB考点】菱形的性质及判定 题型】填空 难度】 2 星 关键词】 2009 年,本溪中考 解析】省略 答案】 3如图,已知菱形 ABCD 的对角线 AC 8cm ,BD 4cm ,DE BC 于点 E ,则 DE 的长 为 【考点】菱形的性质及判定 【题型】填空 【难度】 2 星【关键词】 【解析】省略 【答案】8 5cm 5菱形周长为 52cm , 一条对角线长为 10cm ,则其面积为 【考点】菱形的性质及判定 【题型】填空 【难度】 2 星 【关键词】D图1【解析】菱形的边长为52 4 13 cm ,由勾股数和菱形对角线的性质得另一对角线长为24 cm ,故面积为120 cm2【答案】120菱形的周长为20cm ,两邻角度数之比为2:1 ,则菱形较短的对角线的长度为【考点】菱形的性质及判定【题型】填空【难度】2 星【关键词】【解析】省略【答案】5如图2,在菱形ABCD 中,AC 6,BD 8,则菱形的边长为()A.5 B .10 C .6 D .8考点】菱形的性质及判定题型】选择难度】2 星关键词】2009 年,重庆江津中考解析】由菱形的对角线互相垂直平分及勾股数可知选A答案】A如图3,在菱形ABCD 中,A 110 ,E 、F 分别是边AB 和BC 的中点,EP 于点P ,则FPC ()A.35 B .45 C .50 D .55CDD考点】菱形的性质及判定 题型】选择 难度】 2 星 关键词】 2009 年,杭州市中考 解析】省略 答案】 D如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一 个锐角为 60 的菱形,剪口与折痕所成的角 的度数应为( ) 考点】菱形的性质及判定 题型】选择 难度】 2 星 关键词】 2009 年,绵阳市中考 解析】省略 答案】 D菱形 ABCD 中, E 、F 分别是 BC 、CD 的中点,且 AE BC ,AF CD , 那么 等于 . 【考点】菱形的性质及判定 题型】填空 难度】 2 星 关键词】A . 15 或 30B . 30 或 45C . 45 或 60DEAFE BP C图330解析】省略 答案】 60已知菱形的一个内角为 60 ,一条对角线的长为 2 3 ,则另一条对角线的 长为 _________________ . 【考点】菱形的性质及判定 【题型】填空 【难度】 2 星【关键词】 2009 年,辽宁朝阳中考 【解析】省略 【答案】 2 或 6如图,将一个长为 10cm ,宽为 8cm 的矩形纸片对折两次后,沿所得矩形 两邻边中点的连线 (虚线)剪下,再打开, A . 10cm 2B . 20cm 2C . 40cm 2考点】菱形的性质及判定 题型】选择 难度】 3 星 关键词】 2009 年,南宁市中考 解析】省略 答案】 A已知菱形 ABCD 的两条对角线 AC ,BD 的乘积等于菱形的一条边长的平方, 则菱形的一个钝角的大小是 【考点】菱形的性质及判定得到的菱形的面积为 ( ) D . 80cm 2C2【题型】填空 【难度】 4 星【关键词】希望杯邀请赛【解析】如图,过点 A 作 AE BC 于 E ,则 1AC BD BC AE ,又 AC BD AB 2,2得AE 1AB , ABC 30 , BAD 1502答案】 150如图,菱形花坛 ABCD 的周长为 20m , ABC 60 , ? 沿着菱形的对角线修 建了两条小路 AC 和 BD ,求两条小路的长和花坛的面积.考点】菱形的性质及判定 题型】解答 难度】 3 星 关键词】 解析】 ∵四边形 ABCD 是菱形∴ AB BC CD DA 5 ∵ABC 60∴ ABC 和 ADC 都是等边三角形 ∴ AC 5 又∵ AC BD在 Rt ABO 和 Rt ADO 中可得53BO DODA图2∴BD 5 3∴ S ABCD1 AC BD 25 3 ABCD 2 2点评:内角为60 和120 的菱形学生必须掌握,这是考试的热点模型.【答案】见解析如图,在菱形ABCD 中,AB 4a ,E 在BC 上,BE 2a ,BAD 120 ,P 点在BD 上,则PE PC 的最小值为【考点】菱形的性质及判定【题型】填空【难度】3 星【关键词】【解析】A,C 关于BD对称,连AE 交BD 于P ,且AE BC ,BAE 30 ,PE PC AE 4a 2 2a 2 2 3a 为最小值【答案】2 3a已知,菱形ABCD中,E、F 分别是BC 、CD上的点,若AE AF EF AB,求C的度数.考点】菱形的性质及判定题型】解答难度】4 星关键词】解析】∵ AE AB ∴ B AEBD同理D AFD∵四边形 ABCD 是菱形考点】菱形的性质及判定 题型】解答 难度】 4 星 关键词】 解析】连接 AC ,∵ 四边形 ABCD 为菱形AB BC CD AD△ABC 和 △ ACD 为等边三角形AB AC , B ACD BAC 60 EAF 60 BAE CAF△ ABE ≌△ ACF AE AFEAF 60△AEF 为等边三角形AEF 60∵AEC B BAE AEF CEF∴ CEF 18 分析:在矩形、菱形的定理题中,有时也常连对角线,把四边形问题 转∴ AD ∥ BC , B D , BAD C , AEB AFDB D ∴ BAE DAFDE EF AF ,∴ △ AEF 是等边三角形,∴EAF 60AD ∥BC ,xB BAD 180 ,∴ 90 60 2x 1802∴x 20 ∴C【答案】 100BAD 60 2 x 100已知,菱形 ABCD 中, E 、 F 分别是 BC 、 BAE 18 .求: CEF 的度数.CD 上的点,且B EAF 60 ,化为三角形问题.【答案】18板块二、菱形的判定如图,如果要使平行四边形ABCD 成为一个菱形,需要添加一个条件,那么你添加的条件是.考点】菱形的性质及判定题型】填空难度】2 星关键词】2007 年,四川成都解析】AB AD,AC BD 等;答案】AB AD,AC BD如图,在ABC 中,BD 平分ABC ,BD 的中垂线交AB 于点E ,交BC 于点F ,求证:四边形BEDF 是菱形考点】菱形的性质及判定题型】解答难度】3 星关键词】解析】省略答案】∵ EF 是BD 的中垂线∴BE DE ,BF DF ,∴DBE BDE∵ EBD DBF∴ DBF EDB ,所以BC∥ DE 同理AB∥ DF 所以四边形BEDF 是菱形如图,在ABC 中,AB AC ,D是BC 的中点,连结AD,在AD 的延长线上取一点E,连结BE ,CE .当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.【考点】菱形的性质及判定【题型】解答【难度】3 星【关键词】2009 年,娄底中考【解析】当AE 2AD (或AD DE 或DE 1 AE )时,四边形ABEC 是菱形2理由如下:∵ AE 2AD ,∴ AD DE又点D 为BC 中点,∴ BD CD∴四边形ABEC 为平行四形边∵ AB AC∴四边形ABEC 为菱形【答案】见解析已知:如图,平行四边形ABCD 的对角线AC的垂直平分线与边AD 、BC 分别相交于E 、F . 求证:四边形AFCE 是菱形.【考点】菱形的性质及判定【题型】解答【难度】3 星【关键词】2006 年,盐城中考【解析】省略【答案】∵ EF 垂直平分AC,∴ EF AC,AO CO .o∴ AOE COF 90o.又∵ ABCD 平行四边形,∴ EAO FCO .∴ AOE ≌COF .∴OE OF .∴四边形AECF 是平行四边形.又由AC EF 可知,四边形AECF 是菱形.如图,在梯形纸片ABCD 中,AD //BC ,AD CD ,将纸片沿过点D 的直线折叠,使点C 落在AD上的点C处,折痕DE交BC于点E,连结CE. 求证:四边形CDC E 是菱形.考点】菱形的性质及判定题型】解答难度】3 星关键词】2007 年,云南双柏解析】省略答案】根据题意可知CDE C'DE则CD C'D,C'DE CDE ,CE C'E .∵ AD / /BC ,∴ C DE CDE .∴ CDE CED ,∴ CD CE .∴ CD C D CE CE ,∴四边形CDC E为菱形.如图,E 是菱形ABCD 的边AD 的中点,EF AC 于H ,交CB 的延长线于F ,交AB 于P ,证明:AB 与EF 互相平分【考点】菱形的性质及判定,平行四边形的性质和判定【题型】解答【难度】3 星【关键词】【解析】省略【答案】连结BD,AF ,EB,因为菱形ABCD 中BD AC ,又因为EF AC ,所以BD ∥ EF ,因为AD ∥ FC ,所以四边形BDEF 是平行四边形,可得ED FB ,因为AE ED,所以AE FB,从而AE∥ FB ,AE FB ,因此四边形AFBE 是平行四边形,所以AB与EF互相平分已知:如图,在平行四边形ABCD 中,AE 是BC边上的高,将ABE沿BC 方向平移,使点E与点C重合,得GFC .若B 60 ,当AB与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.B E F C考点】菱形的性质及判定题型】解答难度】3 星关键词】2009 年,山东青岛市解析】省略答案】当BC 3AB 时,四边形ABFC 是菱形.2AB∥GF ,AG∥ BF 四边形ABFG 是平行四边形∵ Rt ABE 中, B 60∴ BAE 30∴ BE1 AB2∵ BE CF ,BC3 AB2∴ EF1 AB2∴ AB BF∴四边形ABFG是菱形如图,在ABC 中,AB AC ,M 是BC 的中点.分别作MD AB于D ,ME AC 于E,DF AC 于F ,EG AB 于G.DF、EG 相交于点P .求证:四边形DMEP 是菱形.【考点】菱形的性质及判定【题型】解答【难度】3 星【关键词】【解析】省略【答案】∵ MD AB,EG AB.∴ MD ∥ EG ,同理ME ∥ DF ,∴四边形MFPD 是平行四边形AB AC ,BCo∵ BM MC , BDM CEM 90o,∴ BDM ≌ CEM ∴ DM EM ,∴四边形 DMEP 是菱形如图, ABC 中, ACB 90 ,AD 是 BAC 的平分线, 交 BC 于 D ,CH 是 AB 边上 的高,交 AD 于 F , DE AB 于 E ,求证:四边形 CDEF 是菱形.考点】菱形的性质及判定 题型】解答 难度】 3 星 关键词】 解析】省略 答案】 ∵ CH AB ,∴ HAF AFH 90ACB 90 ,∴ CAD ADC 90AD 平分 CAB ,∴ CAD HAF ,∴ AFH CDF AFH CFD ,∴ CDF CFD ,∴ CF CD AD 平分 CAB , DC AC , DE AB∴CD DE ,∴ CF DE 又∵ CH AB ,DE AB∴ CF ∥ DE , 故四边形 ABCD 是平行四边形∵ CD DE , ∴四边形 ABCD 是菱形 如图, M 是矩形 ABCD 内的任意一点,将 MAB 沿 AD 方向平移,使 AB 与 DC 重合,点 M 移动到点 M '的位置 ⑴画出平移后的三角形;⑵连结 MD ,MC ,MM ' ,试说明四边形 MDM 'C 的对角线互相垂直,且长度分 别等于AB ,AD 的长;⑶当 M 在矩形内的什么位置时, 在上述变换下, 四边形 MDM 'C是菱形?为什么?AD AM D M'BC【考点】菱形的性质及判定 【题型】解答 【难度】 3 星【关键词】 【解析】省略 【答案】⑴如图, DCM '就是所要作的三角形⑵因为 AM 平移到 DM ' ,所以 AM ∥DM '且AM DM ',四边形 DAMM' 是平行四边形,所以AD ∥MM ',矩形 ABCD 中,AD CD , 所以 MM ' CD ,又因为 AD MM ' , CD AB ,所以四边形 MDM 'C 的对角线互相垂直, 且长度分别等于 AB ,AD 的 长⑶当点 M 是 AC ,BD 的交点时,四边形 MDM 'C 是菱形,理由:如 图,矩形ABCD 中,AM BM MC MD , 又因为 AM D'M ,BM CM ' , 可得 MD MC CM ' DM ' , 所以 四边形 MDM 'C 是菱形 如图, ACD 、 ABE 、 BCF 均为直线 BC 同侧的等边三角形.已知 ABAC . ⑴ 顺次连结 A 、D 、F 、 E四点所构成的图形有哪几类?直接写出构成 图形的类型和相应 的条件.⑵ 当 BAC 为度时,四边形 ADFE 为正方形.考点】菱形的性质及判定题型】解答【难度】 3 星【关键词】 2008 年,佛山市中考改编DBC【解析】省略【答案】⑴ 构成的图形有两类,一类是菱形,一类是线段.当图形为菱形时,∠ BAC≠60°(或A与F不重合、△ ABC不为正三角形)(若写出图形为平行四边形时,不给分)当图形为线段时,∠BAC= 60°(或A与F重合、△ ABC为正三角形).⑵ 150 .三、与菱形相关的几何综合题已知等腰△ABC 中,AB AC ,AD 平分BAC交BC 于D点,在线段AD 上任取一点P(A点除外),过P点作EF ∥ AB ,分别交AC 、BC于E 、F点,作PM∥AC,交AB于M 点,连结ME .⑴求证四边形AEPM 为菱形⑵当P 点在何处时,菱形AEPM 的面积为四边形EFBM 面积的一半?M考点】菱形的性质及判定题型】解答难度】3 星关键词】解析】省略答案】⑴∵ PM ∥AC,EF∥ AB∴四边形AEPM 为平行四边形∵ AB AC ,AD平分CAB∴ CAD BADAD BC,BAD EPACAD EPAEA EPS 四边形 EFBM2 ∵四边形 AEPM 为菱形, ∴ AD EM∵AD BC ∴EM ∥BC 又 EF ∥AB ∴四边形 EFBM 为平行四边形问题:如图 1,在菱形 ABCD 和菱形 BEFG 中,点 A ,B ,E 在同一条直线上, P 是线段 DF 的中点,连结 PG ,PC .若 ABC BEF 60 ,探究 PG 与 PC 的位置 关系及 PG的值.PC小聪同学的思路是:延长 GP 交 DC 于点 H ,构造全等三角形,经过推理 使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题: ⑴ 写出上面问题中线段 PG 与 PC 的位置关系及 PG的值;PC⑵ 将图 1 中的菱形 BEFG 绕点 B 顺时针旋转,使菱形 BEFG 的对角线 BF 恰 好与菱形ABCD 的边 AB 在同一条直线上,原问题中的其他条件不变(如 图 2).你在⑴中得到的两个结论是否发生变化?写出你的猜想并加以 证明. ⑶ 若图 1 中 ABC BEF 2 0 90 ,将菱形 BEFG 绕点 B 顺时针旋转任【考点】菱形的性质及判定,全等三角形的性质和判定,旋转的性 质 题型】解答 难度】 5 星【关键词】 2008 年,北京中考 【解析】省略【答案】⑴ 线段 PG 与 PC 的位置关系是 PG PC ;PG3 .PC∴四边形 AEPM 为菱形 ⑵当 P 为 EF 中点时,S意角度,原问题中的其他条件不变,求 PG 的值(用含的式子表示) .F⑵ 猜想:⑴中的结论没有发生变化.证明:如图,延长 GP 交 AD 于点 H ,连结 CH ,CG .∵ P 是线段 DF 的中点, ∴ FP DP .由题意可知 AD ∥FG .∴ GFP HDP . 又∵ GPF HPD ,∴ GFP ≌ HDP ,∴ GP HP , GF HD .∵四边形 ABCD 是菱形,∴ CD CB , HDC ABC 60 . 由ABC BEF 60 ,且菱形 BEFG 的对角线 BF 恰好与菱形 ABCD 的边 AB 在同 一条直线上,可得 GBC 60 . ∴ HDC GBC . ∵四边形 BEFG 是菱形,∴ GF GB ,∴ HD GB .∴ HDC ≌ GBC ,∴ CH CG , DCHBCG . ∴ DCH HCB BCG HCB 120 ,即 HCG 120 .∵CHCG, PH PG , ∴ PG PC , GCP HCP 60 .∴ PG3.PC⑶PGtan 90 .证明过程略.PC本题是一道探究性的几何综合题,本题的题干是以阅读材料的形式呈 现,从而降低了题目的难度, 本题应该是在 05 年大连中考压轴题的基 础上改进而来的.四、中位线与平行四边形顺次连结面积为 20 的矩形四边中点得到一个四边形,再顺次连结新四 边形四边中点得到一个 ,其面积为 . 【考点】三角形的中位线 【题型】填空 【难度】 3 星【关键词】【解析】理由:由中位线得 EF FG GH HE 1AD 即可.2【答案】 AD BC .如图,在四边形 ABCD 中, AB CD , E 、 F 、 G 、 H 分别是 AB 、 BD 、 CD 、 AC 的中点,要使四边形 EFGH 是菱形,四边形 ABCD 还满足的一个条件 是 ,并说明理由.考点】菱形的性质及判定,三角形的中位线 题型】填空 难度】 3 星 关键词】2009 年,上海模拟 解析】理由:由中位线得 EF FG GH HE 1AD 即可.2 答案】 AD BC .在四边形 ABCD 中, AB CD , P , Q 分别是 AD 、 BC 的中点, M , N 分别是 对角线AC , BD 中点,证明:PQ 与MN互相垂直.考点】菱形的性质及判定,三角形的中位线题型】解答难度】4 星关键词】解析】连接PN , NQ , MQ , PM .证明PNQM 为菱形.答案】见解析四边形ABCD 中,R、P 分别是BC 、CD 上的点,点,当点P在CD上从C向D移动而点R不动时,()A.线段EF 的长逐渐增大B.线段EF 的长逐渐减小C.线段EF 的长不变D.线段EF 的长与点P的位置有关考点】三角形的中位线题型】选择难度】4 星关键词】解析】连结AR ,利用三角形的中位线可得答案】CE、F 分别是AP、RP的中那么下列结论成立的是EF 12 AR与点P无关.如图,ABC 中,AD 是BAC 的平分线,CE AD 于 E ,M 为BC 的中点,AB 14cm ,AC 10cm,则ME 的长为【考点】三角形的中位线【题型】填空【难度】3 星【关键词】【解析】延长CE 交AB 于点线可得14 10 2 cm .2【答案】2N .利用中位线的性质和直角三角形斜边中如图,四边形ABCD 中,AB长,分别交BA,CDCD ,的延长线于点的中点,连结EF 并延CHEBC,ADBGEE,F 分别是G ,H ,求证:【考点】三角形的中位线【题型】解答【难度】4 星【关键词】【解析】省略【答案】连结BD,取BD中点P ,连结PE,PF ,BDC ,DBA 的中位线,所以PE∥DC,PF ∥BA,且PE 所以PE PF ,所以PEF PFE ,由PE∥ DC 可得:所以BGE CHEPE PF ,PFEBGE ,由条件易得1DC ,PF2PEF1BA2CHEPE,PF 分别是,因为AB CD ,,同理可得如图,已知 BE 、 CF 分别为 ABC 中 B 、 C 的平分线, AM BE 于 M,AN CF 于 N ,求证:MN ∥ BC.【考点】三角形的中位线 【题型】解答 【难度】 4 星 【关键词】【解析】延长 AM 、 AN 交 BC 于点 Q 、 R . 由等腰三角形三线合一可得 AM QM 、 ANRN 再由三角形中位线可得 MN ∥ BC .【答案】见解析如图,四边形 ABCD 中,E ,F 分别是边 AB ,CD 的中点,【考点】三角形的中位线 【题型】选择 【难度】 3 星 【关键词】【解析】连结 BD ,取 BD 的中点 P ,连结 FP ,EP ,由三角形的中位线可知 选B 【答案】 B则 AD ,BC 和 EF 的关系是( )A . AD BC 2EFBC .AD BC 2EF DAD BC ≥ 2EF AD BC ≤ 2EF已知如图所示,E、F 、G 、H分别是四边形ABCD 的四边的中点,求证:四边形EFGH 是平行四边形.【考点】平行四边形的性质和判定,三角形的中位线【题型】解答【难度】3 星【关键词】【解析】连接AC .∵ H 、G 分别为AD 、DC 中点∴ HG 1 AC ,HG ∥ AC2 又∵ E、F 分别为AB、BC 中点∴ EF 1 AC ,EF ∥ AC ,∴ HG EF ,HG ∥ EF2 ∴四边形EFGH 为平行四边形【答案】见解析如图,在四边形ABCD 中,E为AB 上一点,ADE 和BCE 都是等边三角形,AB、BC 、CD 、DA的中点分别为P、Q、M 、N ,证明四边形PQMN 为平行四边形且PQ PN .D考点】平行四边形的性质和判定,三角形的中位线题型】解答难度】4 星关键词】2009 年,兰州中考解析】如图,连结AC 、BD .∵ PQ 为 ABC 的中位线 ∴ PQ ∥ AC 且 PQ 1AC2同理 MN ∥ AC 且 MN 1AC2∴ MN ∥ PQ 且 MN PQ∴四边形 PQMN 为平行四边形. 在 AEC 和 DEB 中AE DE , EC EB , AED 60 CEB 即 AEC DEB ∴ AEC ≌ DEB∴AC BD ∴ 1 1.∴ PQ AC BD PN .22【答案】见解析如图,四边形 ABCD 中,AB CD ,E ,F ,G ,H 分别是 AD ,BC ,BD ,AC 的中点,求证: EF ,GH相互垂直平分【考点】菱形的性质及判定,三角形的中位线 【题型】解答 【难度】 3 星 【关键词】【解析】连结 EG ,GF ,FH ,HE ,根据题意, EG ,HF 分别是 DAB , CAB 的中位线, 所 以 EG HF 1AB , 同 理 可 证 : GF EH 1CD , 因为 AB CD , 所以 22EG HF GF EH , 则四边形 EGFH 是菱形,所以 EF ,GH 相互垂直 【答案】见解析ABC 的三条中线分别为 AD 、BE 、CF ,H 为 BC 边外一点,且 BHCF 为平行 四边形,求证: AD ∥ EH.C考点】平行四边形的性质和判定,三角形的中位线题型】解答难度】4 星关键词】【解析】此题解法很多,仅供两种解法参考.方法一:连结DE 、DH .(如图1)∵四边形BHCF 为平行四边形∴CH BF AF 且CH ∥ AF由中位线可得DE 12 AB AF∴ CH DE∴四边形DECH 为平行四边形∴DH ∥ CE 且DH CE AE∴四边形DHEA 为平行四边形∴ AD ∥ EH方法二:连结DE .(如图2)通过中位线和平行四边的性质可得DE HC ,AB∥ DE ∥HC∴ AED ECH 又∵ AE EC显然ADE ≌EHC ∴DAE HEC ∴ AD ∥ EH 【答案】见解析在平行四边形ABCD 的对角线BD上取一点 E ,使BE1 DE ,连接AE 并延长3与DC 的延长线交于F ,则CF 2 AB .OR ∥CD ∥ AB,【考点】三角形的中位线 【题型】解答 【难度】 5 星 【关键词】【解析】法 1:如图 2,取 BD 之中点 O ,由 O 引 OM ∥ AF 交 DF 于 M ,再由 C 引CG ∥FE交BD 于 G .∵ AB CD , ABE CDG , BAE DCG ,∴ ABE ≌ CDG , BE DG , 则 O 为 EG 的中点, ∴ EO OG . 又∵ DG BE 1DE ,3 1∴ EO OG DE ,3即 G 、 O 是 DE 的三等分点. ∵ CG ∥ OM ∥ AF ,∴C 、M 是 DF 的三等分点,有 CF 2CD . 而 CD AB ,∴ CF 2AB .法 2 :如图 3,连接 AC 交 BD 于 O ,则 O 为 AC 、BD 的中点,取 AF 的中点 R , 连接 AC 交 BD 于 O ,则 O 为 AC 、 BD 的中点,取 AF 的中点 R ,连接 OR ,则 1 OR ∥ CF .2图3∴ABE ROE ,BAE ORE.又∵ BE OE OD ,BE 1 DE 1 (OE OD),33由此可得BE 1OD,OE 1DE ,23BE OE ,ABE ≌ROEAB OR.即AB1OR CF ,∴CF2AB.2法3:如图1,∵AB∥DF ,AB BE 1,DF DE 3即DF3AB.又AB CD ,CF DF CD 3 AB AB,即CF2AB.答案】见解析如图,ABC中,E、F分别是AB 、BC的中点,G、H是AC的三等分点,连结并延长EG 、FH交于点D.求证:四边形ABCD是平行四边形.【考点】平行四边形的性质和判定,三角形的中位线【题型】解答【难度】4 星【关键词】【解析】连接BG 、BH 、BD ,设BD 与AC 相交与点O∵E、F 分别是AB 、BC 的中点,∴ EG ∥ BH ,同理FH ∥ BG ∴四边形BHDG 是平行四边形,∴ OB OD ,OG OH∵ AG HC ,∴ OA OC∴四边形ABCD 是平行四边形【答案】见解析如图,在四边形 ABCD 中, M 、 N 分别为 AD 、BC 的中点, BD AC ,BD 和 AC 相交于点O , MN 分别与 AC 、 BD 相交于 E 、 F ,求证 : OE OF .【考点】三角形的中位线 【题型】解答 【难度】 3 星 【关键词】【解析】取 AB 中点 P ,连结 MP 、 NP . 利用中位线可得MP 1BD NP 1AC22∴PMN PNM ∵ MP ∥BD ,NP ∥ AC∴ OFE OEF ∴ OE OF【答案】见解析 如图,线段 AB ,CD 相交于点 O ,且 AB CD , 连结 AD ,BC , E ,F 分别是 AD ,BC的中点, EF 分别交 AB ,CD 于 M ,N ,求证: OM ON考点】三角形的中位线 题型】解答 难度】 4 星关键词】解析】连结 BD ,取 BD 中点 P ,连结 PE ,PF ,由条件易得 PE ,PF 分别是答案】见解析 如图,梯形 ABCD 中,AD ∥ BC ,AB CD ,对角线 AC ,BD 相交于点 O , AOD 60 ,E ,F ,G 分别是 OA ,OB ,CD 的中点,求证 : EFG 是等边三角形【考点】三角形的中位线,直角三角形斜边上的中线等于斜边的一 半,等腰梯形的性质和判定 【题型】解答 【难度】 4 星 【关键词】【解析】省略【答案】 连结 DE ,由等腰梯形对角线相等, 且 AOD 60 ,可证 AOD 是等 边三角形,因为 E 是 OA 中点,所以 DE AC , 在 Rt DCE 中, G 是 DC 中点, 所以 EG 1DC ,同理可证 FG 1DC ,因为 E ,F 分别是 OA ,OB 的中点,所以 22 EF 1AB ,因为 AB DC , 所以 EG FG EF ,即 EFG 是等边三角形2如图,求证:四边形两组对边中点连线与两对角线中点连结这三条线 共点.DBA , BDC 的中位线,所以 PE ∥ BA ,PF ∥ DC , 且 PE 1 BA ,PF 2所以 PE PF ,所以 PEFPFE ONM , 所以 OMNPFE ,由 PE ∥ BA 可得ONM , 所以 OM ONPEF1DC , 因为 AB CD ,2OMN ,同理可得DLD【考点】三角形的中位线【题型】解答 【难度】 5 星 【关键词】【解析】方法一:设 N ,H ,M ,L ,F ,E 分别为 AB ,BC ,CD ,DA ,AC ,BD 的中点, 要证明 EF ,LH ,及MN 三线共点.因为 LF ∥DC 且 LF 1DC ,2所以 EF ∥ DC 且 EF 1DC ,2LF ∥ EH 且 LF EH ,从而四边形 EHFL 为平行四边形,故 LH 与EF 互相平分.设 LH 与 EF 的交点为 O ,则 LH 经过 EF 中点 O (当然也是 LH 中点).同理, MN 也过EF 中点 O .所以, EF ,LH ,MN 三线共点于 O .说明:本题证明的关键是平行四边形 EHFL 的获得(它是通过三角形中 位线定理来证明的) .由此可见,在某些四边形的问题中,通过构造平行四边形去解题是一 种常用的技巧. 请看下例.方法二:应用中点公式法 可设 A x 1,y 1 ,B x 2,y 2 ,C x 3,y 3 ,D x 4 ,y 4 那 么 AC 线 段 的 中 点 坐 标 为 Fx1 x3,y1 y3, BD 线 段 的 中 点 坐 标 为 22Ex 2 x 4 ,y 2 y 4E2 ,2 那么 EF 线段的中点坐标为 x 1 x 2 x3 x4,y 1 y 2 y 3 y422同理可得: MN ,LH的中点坐标也为x1 x2 x3 x4,y1 y2 y3 y422 所以可知: EF , LH , MN 三线共点于 O【答案】见解析如图, O 是平行四边形 ABCD 内任意一点, E , F , G , H 分别是 OA , OB ,OC , OD 的中点.若 DE , CF 交于 P ,DG ,AF 交于 Q , AH , BG 交于 R ,BE ,CH 交 于 S ,求证 :A ENOFHPQ SR .【考点】平行四边形的性质和判定,三角形的中位线【题型】解答【难度】6 星【关键词】【解析】设法证明四边形PORS 为平行四边形.因为F ,G 分别为OB ,OC 的中点,所以FG∥BC,且FG 21BC,FG ∥ AD ,且FG 1 AD ,2从而F 是AQ 中点.同理可证,F 是PC 的中点(EF 是PCD 的中位线).所以四边形APQC 为平行四边形,PQ∥AC,PA AC.同理,RS∥ AC,RS = AC.因此PQ ∥ RS,PQ =RS,即四边形PQRS 为平行四边形,故PQ RS .说明本题证明显示了用平行四边形证题的技巧,平行四边形PQRS ,APQC ,ACRS 像三座互相连接的桥梁一样沟通了条件与结论之间的道路.事实上,由于PQRS 为平行四边形,我们还可得到PQ∥SR,PS∥QR,PS QR,SQ与PR互相平分等等一系列结论.F为AQ的中点(同样G 为DQ 的中点)的断言可以证明于下:取AD 中点M ,连MF ,则FG ∥ MD 且FG MD ,所以四边形MFGD 为平行四边形,MF ∥ DG .因此F 为AQ 的中点.答案】见解析。

2020年陕西中考数学一轮复习--4菱形的性质与判定

A.1 cm B.2 cm C.3 cm D.4 cm
5.(2019·呼和浩特)已知菱形的边长为 3,较短的一条对角线的长为 2,
则该菱形较长的一条对角线的长为(C )
A.2 2
B.2 5
C.4 2
D.2 10
6.(2019·邯郸永年区一模)如图,在菱形纸片 ABCD 中,∠A=60°, 折叠菱形纸片 ABCD,使点 C 落在 DP(P 为 AB 中点)所在的直线上,得到 经过点 D 的折痕 DE,则∠DEC 的大小为( B )
B.4 D.6
课后作业
1.(2019·玉林)菱形不具备的性质是( D)
A.是轴对称图形
B.是中心对称图形
C.对角线互相垂直
D.对角线一定相等
2.(2019·邯郸二模)菱形 OACB 在平面直角坐标系中的位置如图所示, 点 C 的坐标是(8,0),点 A 的纵坐标是 2,则点 B 的坐标是( C )
9.(2019·广西北部湾)如图,在菱形 ABCD 中,对角线 AC,BD 交于 24
点 O,过点 A 作 AH⊥BC 于点 H.已知 BO=4,S 菱形 ABCD=24,则 AH= 5 .
10.(2019·北京)把图 1 中的菱形沿对角线分成四个全等的直角三角形, 将这四个直角三角形分别拼成如图 2,图 3 所示的正方形,则图 1 中菱形的 面积为 12 .
A.
2 9
C.
2 6
B.
1 4
D.130
13.(2019·深圳)如图,已知菱形 ABCD,E,F 是动点,边长为 4, BE=AF,∠BAD=120°,则下列结论正确的有( D )
①△BEC≌△AFC;②△ECF 为等边三角形;③∠AGE=∠AFC;④ 若 AF=1,则EGGF=13.

中考数学总复习第五单元四边形第30课时菱形课件

第 30 课时 菱形
课前考点过关
| 考点自查 | 考点一 菱形的定义
一组邻边相等的 平行四边形 是菱形.
【疑难典析】 菱形的定义是在平行四边形的基础上
定义的.
课前考点过关
考点二 菱形的性质
1.菱形的四条边都① 相等 . 2.菱形的对角线互相② 垂直平分 ,并且每一条对角线平分一组对角. 3.菱形是中心对称图形,它的对称中心是两条对角线的交点;菱形也是轴对称图形,两条对角线所在的 直线是它的对称轴.
编后语
• 常常可见到这样的同学,他们在下课前几分钟就开始看表、收拾课本文具,下课铃一响,就迫不及待地“逃离”教室。实际上,每节课刚下课时的几分 钟是我们对上课内容查漏补缺的好时机。善于学习的同学往往懂得抓好课后的“黄金两分钟”。那么,课后的“黄金时间”可以用来做什么呢?
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
课前考点过关
考点三 菱形的判定
1.定义法. 2.对角线互相垂直的① 平行四边形 是菱形. 3.四条边都相等的② 四边形 是菱形.
【疑难典析】 在进行菱形判定时,必须转化出满足菱 形的定义或判定定理所需的条件.
课前考点过关
考点四 菱形的面积
1.由于菱形是平行四边形,所以菱形的面积=底×高. 2.因为菱形的对角线互相垂直平分,所以其对角线将菱
图 30-14
课堂互动探究
【答案】(2)菱形 【解析】解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∠FAE=∠BDE.∵E 是 AD 的中点,∴AE=DE.
∠������������������ = ∠������������������, 在△FAE 和△BDE 中, ∠������������������ = ∠������������������,∴△FAE≌△BDE.∴AF=DB.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学专题复习:菱形的性质与判定
一、选择题
1.下列命题中错误的是( )
A.平行四边形的对角线互相平分
B.菱形的对角线互相垂直
C.同旁内角互补
D.矩形的对角线相等
2.平面直角坐标系中,四边形ABCD的顶点坐标分别是A(-3,0),B(0,2),C(3,0),D(0,-2),则四边形ABCD是( )
A.矩形
B.菱形
C.正方形
D.梯形
3.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为( )
A.28°
B.52°
C.62°
D.72°
4.菱形的两条对角线长分别是6和8,则此菱形的边长是( )
A.10
B.8
C.6
D.5
5.如图,在菱形ABCD中,AB的垂直平分线EF交对角线AC于点F,垂足为点E,连接DF,且∠CDF=24°,则∠DAB等于( )
A.100°
B.104°
C.105°
D.110°
6.如图,菱形ABCD中,∠B=60°,AB=2cm,E、F分别是BC、CD的中点,连结AE、EF、AF,则△AEF的周长为( )
A. B. C. D.
7.某校的校园内有一个由两个相同的正六边形(边长为2.5m)围成的花坛,如图中的阴影部分所示,校方先要将这个花坛在原有的基础上扩建成一个菱形区域如图所示,并在新扩充的部分种上草坪,则扩建后菱形区域的周长为( )
A.20m
B.25m
C.30m
D.35m
8.如图,在菱形ABCD 中,∠ABC=60°,AB=1,E 为BC 的中点,则对角线BD 上的动点P 到E 、C 两点的距离之和的最小值为( )
A.43
B.33
C.2
3 D.21 二、填空题
9.如图,如果要使平行四边形ABCD 成为一个菱形,需要添加一个条件,那么你添加的条件是_________.
10.如图,两个完全相同的三角尺ABC 和DEF 在直线l 上滑动.要使四边形CBFE 为菱形,还需添加的一个条件是________(写出一个即可).
11.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,且AC=8,BD=6,则菱形ABCD 的高DH=________.
12.如图,将菱形ABCD折叠,使点A恰好落在菱形的对角线交点O处,折痕为EF.若菱形的边长为2 cm,∠BAD=120°,则EF的长为________.
13.如图,已知矩形ABCD中,AB=8 cm,AD=10 cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的面积等于________cm2.
14.把两张宽为2 cm的矩形纸片重叠在一起,然后将其中的一张任意旋转一个角度,则重叠部分(图中的阴影部分)的四边形ABCD的形状为________,其面积的最小值为________cm2.
三、解答题
15.如图,已知在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE、CF。

求证:△ADE≌△CDF.
16.如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD 交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF
是菱形.
17.如图在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA 的延长线于点E.
(1)证明:四边形ACDE是平行四边形;
(2)若AC=8,BD=6,求△ADE的周长.
18.如图,在△ABC中,AB=AC,D是BC的中点,连接AD,在AD的延长线上取一点E,连接BE,CE.
(1)求证:△ABE≌△ACE;
(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.
参考答案 题号 1 2 3 4 5 6 7 8 答案 C B C D
B B
C C
9.答案为:AB=AD 或AC ⊥BD ;
10.答案为:C ;B=BF 或BE ⊥CF 或∠EBF=60°或BD=BF(答案不唯一)
11.答案为:4.8;
12.答案为:(cm); 13.答案为:40
14.答案为:菱形,4 15.证明:∵四边形ABCD 是菱形,∴AD=CD.
∵E 、F 分别是CD 、AD 的中点,∴DE=21DC ,DF=2
1AD ,∴DE=DF. 在△ADE 和△CDF 中,DE=DF ,∠D=∠D ,DA=DC ∴△ADE ≌△CDF(SAS).
16.证明:∵AF ∥BC ,∴∠EAF=∠ECD ,∠EFA=∠EDC ,
又∵E 是AC 的中点,∴AE=CE ,∴△AEF ≌△CED.∴AF=CD ,
又AF ∥CD ,∴四边形ADCF 是平行四边形.
∵AC=2AB ,E 为AC 的中点,∴AE=AB ,
由已知得∠EAD=∠BAD ,又AD=AD ,∴△AED ≌△ABD.
∴∠AED=∠B=90°,即DF ⊥AC.
∴四边形ADCF 是菱形.
17.解:(1)证明:∵四边形ABCD 是菱形,∴AB ∥CD ,AC ⊥BD ,∴AE ∥CD ,∠AOB=90°, 又∵DE ⊥BD ,即∠EDB=90°,∴∠AOB=∠EDB.∴DE ∥AC.
∴四边形ACDE 是平行四边形.
(2)∵四边形ABCD 是菱形,AC=8,BD=6,∴AO=4,DO=3,∴AD=CD=5.
又∵四边形ACDE 是平行四边形,∴AE=CD=5,DE=AC=8.
∴△ADE 的周长为AD+AE+DE=5+5+8=18.
∵AE=AE ∴△ABE ≌△ACE (SAS ).
(2)解:当AE=2AD (或AD=DE 或DE=0.5AE )时,四边形ABEC 是菱形
理由如下:∵AE=2AD,∴AD=DE,又∵点D为BC中点,∴BD=CD,∴四边形ABEC为平行四边形,
∵AB=AC,
∴四边形ABEC为菱形.。

相关文档
最新文档