高中线性回归习题含答案
高二数学线性回归分析试题

高二数学线性回归分析试题1.对两对变量和进行线性相关性检验,已知是观测值组数,是相关系数,且已知①,;②,;③,;④,,则和有较强线性相关关系的是()A.①②B.①③C.②④D.③④【答案】B【解析】相关系数,并且的值越大,两相关变量的相关性越强,的值越小,两相关变量的相关相关性越弱。
故和有较强线性相关关系的是①③。
【考点】相关关系、相关系数。
点评:相关系数是反映相关性强弱的量,一般用于线性相关关系中。
2.若某地财政收入与支出满足回归方程(单位:亿元)(),其中,,.如果今年该地区财政收入10亿元,年支出预计不会超过()A.10亿B.9亿C.10.5亿D.9.5亿【答案】C【解析】把代入回归方程得:。
【考点】回归方程的应用点评:已知回归方程,代入的值,即可算出y的估计值。
3.设有一个回归方程为,变量增加一个单位时()A.平均增加2个单位B.平均减少3个单位C.平均减少2个单位D.平均增加3个单位【答案】C【解析】在线性回归方程中,斜率是y随x变化的变化率。
由回归方程为,得增加一个单位时平均减少2个单位。
【考点】对回归方程的理解。
点评:学生应正确理解回归方程中各量的实际含义并能加以应用。
4.在比较两个模型的拟合效果时,甲、乙两个模型的相关指数分别约为0.96和0.85,则拟合效果好的模型为【答案】甲【解析】模型的拟合效果通常用相关指数的平方即来衡量,,并且的值越大,说明拟合效果越好。
∴拟合效果好的模型为甲。
【考点】相关指数点评:相关指数是衡量拟合效果的量,通常用来表示,并且的值越大拟合效果越好。
5.在查相关性检验的临界值表时,若在列对应的值为20,则观测值有组.【答案】22【解析】由列对应的值为20得n对应的值应是22,故观测值有22组。
【考点】独立性检验点评:本题主要考查临界值表的组成和应用。
6.某小卖部为了了解热茶销售量与气温之间的关系,随机统机并制作了某6天卖出的热茶的杯数与当天气温的对比表:64画出散点图并判断热茶销售量与气温之间是否具有线性相关关系【答案】(1)以表示气温,表示热茶杯数,画出散点图如图所示.与具有很强的线性相关关系【解析】首先以表示气温,表示热茶杯数,画出散点图如图所示从散点图上很明显的看到与具有很强的线性相关关系。
高中数学专题03线性回归方程及其应用分项汇编含解析新人教A版必修

专题03 线性回归方程及其应用一、选择题1.【北京101中学2016-2017学年下学期高二年级期中考试】一位母亲记录了自己儿子3~9岁的身高数据(略),由此建立的身高与年龄的回归模型为y =7.19x +73.93,用这个模型预测这个孩子10岁时的身高,则正确的叙述是( )A . 身高一定是145.83cmB . 身高在145.83cm 以上C . 身高在145.83cm 左右D . 身高在145.83cm 以下【答案】C【解析】由回归模型可得y =7.1910x +73.93=145.83,所以预测这个孩子10岁时的身高在145.83cm 左右。
2.【吉林省辽源市田家炳高级中学2017-2018学年高二下学期3月月考】有位同学家开了个小卖部,他为了研究气温对热饮销售的影响,经过统计得到一天所卖的热饮杯数(y )与当天气温(x ℃)之间的线性关系,其回归方程为ˆy=-2.35x +147.77.如果某天气温为2℃,则该小卖部大约能卖出热饮的杯数是( ) A . 140 B . 143 C . 152 D . 156【答案】B点睛:本题主要考查的知识点是线性回归方程的应用,即根据所给的或者是做出的线性回归方程,预报y 的值,这是一些解答题目中经常会出现的一个问题,是一个基础题。
关键是根据所给的一个热饮杯数与当天气温之际的线性关系,做出其回归方程。
3.【四川省棠湖中学2018届高三3月月考】如表是降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程为0.70.5ˆ3yx =+,则表中m 的值为( )A. 3B. 3.5C. 4.5D. 2.5 【答案】A点睛:回归直线一定经过样本中心(),x y,是线性回归分析中的重要结论,利用此结论可求回归方程中的参数,也可求样本点中的参数.4.【河北省阜城中学 2017-2018学年高二上学期期末考试】对具有线性相关关系的变量x,y,测得一组数据如下根据上表,利用最小二乘法得它们的回归直线方程为=10.5x+,据此模型预测当x=10时,y的估计值为()A. 105.5B. 106C. 106.5D. 107【答案】C【解析】根据表中数据,计算,,代入回归直线方程=10.5x+中,计算,∴回归直线方程为=10.5x+;当x=10时,y的估计值为=10.5×10+1.5=106.5.故选:C.5.【黑龙江省哈尔滨市第六中学2017-2018学年高二3月月考】下表是降耗技术改造后生产甲产品过程中记录的产量 (吨)与相应的生产能耗(吨标准煤)的几组对应数据,根据表中提供的数据,求出关于的线性回归方程,那么表中的值为( )A. 4B. 3.15C. 4.5D. 3【答案】D6.【陕西省西北工业大学附属中学2017-2018学年高二上学期期中考试】假设关于某设备使用年限(年)和所支出的维修费用(万元)有如下统计资料:若对呈线性相关关系,则与的线性回归方程必过的点是()A . B. C. D.【答案】D【解析】∵,,∴这组数据的样本中心点是,∵线性回归方程过样本中心点,∴线性回归方程一定过点,故选D .7.【湖南省张家界市2017-2018年全市联考高二数学】为了研究某班学生的脚长(单位:厘米)和身高(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出与之间有线性相关关系,设其回归直线方程为. 已知,,. 若该班某学生的脚长为24,据此估计其身高为A . 160B . 163C . 166D . 170【答案】C8.【广西钦州市2017-2018学年高二上学期期末考试】设回归方程为73y x ∧=-,当变量x 增加两个单位时( )A . y 平均增加3个单位B . y 平均减少3个单位C . y 平均增加6个单位D . y 平均减少6个单位【答案】D【解析】回归直线方程为73y x ∧=-, ∴变量x 增加两个单位时,函数值要平均增加6-个单位,即减少6个单位,故选D .9.【广西钦州市2017-2018学年高二上学期期末考试】某钢铁研究所经研究得到结论,废品率%x 和每吨生铁成本y (元)之间的回归直线方程为2562y x ∧=+,这表明( )A . 废品率每吨增加1%,生铁成本增加258元B . 废品率每吨增加1%,生铁成本增加2元C . 废品率每吨增加1%,生铁成本每吨增加2元D . 废品率不变,生铁成本为256元【答案】C与每吨生铁成本y (元)之间的相关关系,故回归直线方程为2562y x ∧=+时,表明废品率每增加,生铁成本每吨平均增加2元,故选C .10.【湖北省孝感市八校2017-2018学年高二上学期期末考试】下列说法中错误的是( )A . 先把高二年级的2000名学生编号为1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为50m +, 100m +, 150m +的学生,这样的抽样方法是系统抽样法B . 线性回归直线y b x a ∧∧∧=+一定过样本中心点C . 若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1 D . 若一组数据1、a 、3的平均数是2【答案】C∴该组数据的方差是s 1﹣2)2+(2﹣2)2+(3﹣2)D 正确. 故选:C11.【湖南省长郡中学2017-2018学年高二上学期期末考试】下表是某小卖部统计出的五天中卖出热茶的杯数与当天气温的对比表:若卖出热茶的杯数y 与气温x 近似地满足线性关系,则其关系式最接近的是( )A . 6y x =+B . 42y x =-+C . 260y x =-+D . 378y x =-+【答案】C【解析】1813104024343951629,4255x y ++++++++====∴, 260y x =-+过点()9,42 ,选C .12.【四川省广安市2017-2018学年高二上学期期末考试】对变量,x y 有观测数据()(),1,2,,10i i x y i =⋯,得散点图(1);对变量,u v 有观测数据(()(),1,2,,10i i u v i =⋯,得散点图(2),由这两个散点图可以判断( )A . 变量x 与y 正相关, u 与v 正相关B . 变量x 与y 正相关, u 与v 负相关C . 变量x 与y 负相关, u 与v 正相关D . 变量x 与y 负相关, u 与v 负相关【答案】C二、填空题13.【四川省成都外国语学校2017-2018学年高二下学期入学考试】从某大学随机抽取的5名女大学生的身高x (厘米)和体重y (公斤)数据如下表;根据上表可得回归直线方程为0.9298ˆ 6.yx =-,则表格中空白处的值为________. 【答案】60,96.8=55,解得y =60,故答案为:60.14.【广东省中山一中、仲元中学等七校2017-2018学年高二3月联考】某农场农作物使用肥料量x 与产量y 的统计数据如下表:根据上表,可得回归方程y =bx +a 中的b 为9.4,据此模型,预报使用肥料量为6吨时产量为____吨. 【答案】65.5点睛:本题考查回归方程的求解及应用。
最新苏教版高中数学必修三《线性回归方程》课时同步练习及解析.docx

(新课标)2018-2019学年苏教版高中数学必修三2.4 线性回归方程课时目标 1.理解两个变量的相关关系的概念.2.会作散点图,并利用散点图判断两个变量之间是否具有相关关系.3.会求线性回归方程.1.与函数关系不同,相关关系是一种有关系,但不是确定性的关系.2.能用直线方程________近似表示的相关关系叫做线性相关关系,该方程叫______,给出一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),线性回归方程中的系数a ,b 满足⎩⎪⎨⎪⎧b = a =.上式还可以表示为⎩⎪⎨⎪⎧b = ,a = .一、填空题1.下列两个变量之间的关系,不是函数关系的为______.(填序号) ①匀速行驶车辆的行驶距离与时间; ②圆半径与圆的面积;③正n 边形的边数与内角度数之和; ④人的年龄与身高.2.下列有关线性回归的说法,不正确的是________.①变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系;②在平面直角坐标系中用描点的方法得到表示具有相关关系的两个变量的一组数据的图形叫做散点图;③线性回归方程最能代表观测值x 、y 之间的关系; ④任何一组观测值都能得到具有代表意义的线性回归方程.3.工人月工资(元)依劳动生产率(千元)变化的线性回归方程为 =60+90x ,下列判断正确的是________.①劳动生产率为1千元时,工资为50元; ②劳动生产率提高1千元时,工资提高150元;③劳动生产率提高1千元时,工资约提高90元;④劳动生产率为1千元时,工资90元.4.某商品销售量y(件)与销售价格x(元/件)在实际生活中的回归方程可能是________.①=-10x+200;②=10x+200;③=-10x-200;④=10x-200.5.给出两组数据x、y的对应值如下表,若已知x、y是线性相关的,且线性回归方程:y=a+bx,经计算知:b=-1.4,则a=________.x 45678y 121098 66.线性回归方程表示的直线=a+bx必经过点____________.7.若对某个地区人均工资x与该地区人均消费y进行调查统计得y与x具有相关关系,且线性回归方程=0.7x+2.1(单位:千元),若该地区人均消费水平为10.5,则估计该地区人均消费额占人均工资收入的百分比约为________.8.设有一个回归方程=3-2.5x,当变量x增加一个单位时,变量y________个单位.9.期中考试后,某校高三(9)班对全班65名学生的成绩进行分析,得到数学成绩y对总成绩x的线性回归方程为=6+0.4x.由此可以估计:若两个同学的总成绩相差50分,则他们的数学成绩大约相差______分.二、解答题10.下表是某旅游区游客数量与平均气温的对比表:平均气温(℃)-1410131826数量(百个)202434385064若已知游客数量与平均气温是线性相关的,求回归方程.11.5个学生的数学和物理成绩(单位:分)如下表:学生A B C D E学科数学8075706560物理7066686462画出散点图,判断它们是否具有相关关系,若相关,求出回归方程.能力提升12.在研究硝酸钠的可溶性程度时,观测它在不同温度的水中的溶解度,得观测结果如下:温度x(℃)010205070溶解度y 66.776.085.0112.3128.0则由此得到回归直线的斜率约为________.13.炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼时间的关系.如果已测得炉料熔化完毕时,钢水的含碳量x与冶炼时间y(从炉料熔化完毕到出钢的时间)的一列数据,如下表所示:x(0.01% )104181917714713415191204121y(min)10202118515513517205235125若由数据知y对x呈线性相关关系.(1)求线性回归方程.(2)预测当钢水含碳量为160时,应冶炼多少分钟?1.线性回归方程=bx+a中的系数a,b的计算公式为:⎩⎪⎨⎪⎧b =∑ni =1(x i -x )(y i -y )∑n i =1 (x i -x )2=∑ni =1x i y i -n x y ∑ni =1x 2i -n x 2a =y -b x其中:b 是回归方程的斜率,a 是截距. 2.回归方程的求解过程 计算x ,y ,∑ni =1x 2i ,∑ni =1x i y i ⇓计算b =∑ni =1x i y i -n x y ∑n i =1x 2i -n x 2,a =y -b x⇓3.在回归方程 =bx +a 中,当回归系数b >0时,说明两个变量呈正相关关系,它的意义是:当x 每增加一个单位时y 就增加b 个单位;当b <0时,说明两个变量呈负相关关系,它的意义是:当x 每增加一个单位时,y 就减少b 个单位.2.4 线性回归方程知识梳理2. =bx +a 线性回归方程 n ∑ni =1x i y i -(∑ni =1x i )(∑ni =1y i )n ∑ni =1x 2i -(∑ni =1x i )2y -b x∑ni =1x i y i -n x y ∑ni =1x 2i -n x2=∑ni =1(x i -x )(y i -y )∑ni =1(x i -x )2y -b x作业设计 1.④解析 人的年龄与身高具有相关关系. 2.④解析 只有所有的数据点都分布在一条直线附近时,才能得到回归直线. 3.③解析 因工人月工资与劳动生产率变化的线性回归方程为 =60+90x ,当x 由a 提高到a +1时, 2- 1=60+90(a +1)-60-90a =90. 4.①解析 ∵在实际生活中,当销售价格提高时,商品销售量一般要降低,∴排除②、④,又∵③中x>0时 <0不合题意,∴③错. 5.17.4 解析x =15(4+5+6+7+8)=6,y =15(12+10+9+8+6)=9.a =y -b x =9+1.4×6=9+8.4=17.4. 6.(x ,y )解析 由a =y -b x 得y =b x +a , 即点(x ,y )适合方程 =a +bx. 7.87.5%解析 设该地区人均工资收入为y , 则y =0.7x +2.1,当y =10.5时,x =10.5-2.10.7=12.10.512×100%=87.5%. 8.减少2.5解析′=3-2.5(x+1)=3-2.5x-2.5=-2.5,因此,y的值平均减少2.5个单位.9.20解析令两人的总成绩分别为x1,x2.则对应的数学成绩估计为=6+0.4x1,2=6+0.4x2,所以| 1-2|=|0.4(x1-x2)|=0.4×50=20.10.解x=706=353,y=2306=1153,∑6i=1x2i=1+16+100+169+324+676=1 286,∑6i=1x i y i=-20+96+340+13×38+18×50+26×64=3 474.b=∑6i=1x i y i-6x y∑6 i=1x2i-6x2=3 474-6×353×11531 286-6×(353)2≈1.68,a=y-b x≈18.73,即所求的回归方程为=1.68x+18.73.11.解以x轴表示数学成绩,y轴表示物理成绩,可得到相应的散点图如图所示:由散点图可知,两者之间具有相关关系,且为线性相关.列表,计算i 1 2 3 4 5x i80 75 70 65 60y i70 66 68 64 62x i y i 56004950476041603720x2i 64005625490042253600x=70,y=66,∑5i=1x2i=24 750,∑5i=1x i y i=23 190设所求回归方程为=bx+a,则由上表可得b=∑5i=1x i y i-5x y∑5 i=1x2i-5x2=90250=0.36,a =y -b x =40.8.∴所求回归方程为 =0.36x +40.8. 12.0.880 9 解析x =30,y =93.6,∑5i =1x 2i =7 900,∑5i =1x i y i =17 035,所以回归直线的斜率b =∑5i =1x i y i -5x y ∑5i =1x 2i -5x 2=17 035-5×30×93.67 900-4 500≈0.880 9.13.解 (1)列出下表,并用科学计算器进行计算: i 1 2 3 4 5 6 7 8 9 10 x i 104 180 190 177 147 134 150 191 204 121 y i 100 200 210 185 155 135 170 205 235 125 x i y i10400360003990032745227851809025500391554794015 125x =159.8,y =172,∑10i =1x 2i =265 448,∑10i =1y 2i =312 350,∑10i =1x i y i =287 640 设所求线性回归方程为 =bx +a ,b =∑10i =1x i y i -10x y∑10i =1x 2i -10x2≈1.27,a =y -b x ≈-30.95.即所求的线性回归方程为 =1.27x -30.95.(2)当x =160时, =1.27×160-30.95≈172(min ),即大约冶炼172 min .。
线性回归方程(人教A版)(含答案)

线性回归方程(人教A版)一、单选题(共8道,每道12分)1.人的年龄与人体脂肪的百分数的回归方程为:,如果某人36岁,那么这个人的脂肪含量( )A.一定是B.在附近的可能性比较大C.无任何参考数据D.以上解释均无道理答案:B解题思路:试题难度:三颗星知识点:可线性化的回归分析2.根据如下样本数据:得到的回归方程为,则( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:可线性化的回归分析3.已知变量与负相关,且由观测数据算得样本平均数,,则由该观测数据算得的线性回归方程可能是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:可线性化的回归分析4.对具有线性相关关系的变量,测得一组数据如下表:根据上表,利用最小二乘法得到它们的回归直线方程为,则的值为( )A.1B.1.5C.2D.2.5答案:B解题思路:试题难度:三颗星知识点:可线性化的回归分析5.某单位为了解办公楼用电量与气温之间的关系,随机统计了四个用电量与当地平均气温,并制作了对照表:由表中数据得到线性归回方程,当气温为时,预测用电量为( )A.68度B.52度C.12度D.28度答案:A解题思路:试题难度:三颗星知识点:可线性化的回归分析6.根据如下样本数据:得到回归方程,则( )A.,B.,C.,D.,答案:A解题思路:试题难度:三颗星知识点:可线性化的回归分析7.某样本数据如下表所示:假设根据表中数据所得线性回归直线方程为,某同学根据表中的两组数据和求得的直线方程为,根据散点图的分布情况,判断以下结论正确的是( )A.,B.,C.,D.,答案:D解题思路:试题难度:三颗星知识点:可线性化的回归分析8.实验测得四组的值分别为,,,,则与间的线性回归方程是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:可线性化的回归分析。
《8.2 一元线性回归模型及其应用》(同步训练)高中数学选择性必修第三册_2024-2025学年

《8.2 一元线性回归模型及其应用》同步训练(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、以下哪个不是一元线性回归模型中的参数?A、截距bB、斜率aC、相关系数rD、自变量x2、某学校对16名高三学生的每周学习时间(单位:小时)和数学成绩(单位:分)进行调查,得到的数据如下:学习时间(x)成绩(y)1012012130151401814520150221552516028165学习时间(x)成绩(y)3017032175351803818540190431954520048205根据以上数据,采用一元线性回归模型进行拟合,下列哪个选项最接近于求得的回归直线方程(y=a+bx)中的(b)值?A. 2.5B. 3C. 3.5D. 43、已知某城市居民的收入(x)与消费支出(y)之间的关系数据如下:收入(x)/万元消费支出(y)/万元4 2.85 3.26 3.67 4.08 4.4现用最小二乘法拟合一元线性回归模型,下列说法错误的是()A. 拟合的回归直线必然通过点(5,3.2)B. 拟合的回归直线必然通过点(6,3.6)C. 回归直线的斜率k表示自变量x每增加1个单位,因变量y平均增加k个单位D. 可以通过计算回归直线的方程来预测当收入为9万元时的消费支出4、已知一组数据((x1,y1),(x2,y2), …,(x n,y n)) 在进行一元线性回归分析后,得到的回归直线方程为(y=a+bx),若该直线通过点 (1, 3) 和 (3, 7),则下列哪项选项正确表达了(a)和(b)的值?A、(a=1,b=2)B、(a=2,b=1)C、(a=1,b=1)D、(a=2,b=2)5、某公司近5年的年营业额(单位:万元)如下表所示:年份 | 年营业额-|—— 2016 | 500 2017 | 520 2018 | 545 2019 | 580 2020 | 610若以年份为自变量x,年营业额为因变量y,则下列回归方程中,最能反映这组数据的趋势的是()A. y = 1.2x - 580B. y = 1.6x - 1000C. y = 1.8x - 700D. y = 2.0x - 6006、某研究小组为了解高中学生的体质指数(BMI)与每周运动时间的关系收集了30名学生的相关数据,并构建了一元线性回归模型。
高中数学回归分析精选题

回归分析精选题20道一.选择题(共12小题)1.设某大学的女生体重y (单位:)k g 与身高x (单位:)cm 具有线性相关关系,根据一组样本数据(i x ,)(1i y i=,2,⋯,)n ,用最小二乘法建立的回归方程为ˆ0.8585.71y x =-,则下列结论中不正确的是()A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x ,)yC .若该大学某女生身高增加1c m ,则其体重约增加0.85k gD .若该大学某女生身高为170c m ,则可断定其体重必为58.79k g2.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是()A .ˆ10200yx =-+ B .ˆ10200yx =+ C .ˆ10200yx =-- D .ˆ10200yx =-3.有一散点图如图所示,在5个(,)x y 数据中去掉(3,10)D 后,下列说法正确的是( )A .残差平方和变小B .相关系数r 变小C .相关指数2R 变小D .解释变量x 与预报变量y 的相关性变弱4.在线性回归模型中,分别选择了4个不同的模型,它们的相关指数2R 依次为0.36、0.95、0.74、0.81,其中回归效果最好的模型的相关指数2R 为( )A .0.95B .0.81C .0.74D .0.365.已知四个命题:①在回归分析中,2R 可以用来刻画回归效果,2R 的值越大,模型的拟合效果越好; ②在独立性检验中,随机变量2K 的值越大,说明两个分类变量有关系的可能性越大;③在回归方程ˆ0.212yx =+中,当解释变量x 每增加1个单位时,预报变量ˆy平均增加1个单位;④两个随机变量相关性越弱,则相关系数的绝对值越接近于1; 其中真命题是( )A .①④B .②④C .①②D .②③6.某地区植被被破坏,土地沙化越来越严重,最近三年测得沙漠面积增加值分别为0.2万公顷、0.39万公顷和0.78万公顷,则沙漠面积增加数y (万公顷)关于年数x (年)的函数关系较为接近的是( )A .0.2yx= B .20.10.1y x x=+ C .40.2lo g yx=+ D .210xy=7.对于给定的样本点所建立的模型A 和模型B ,它们的残差平方和分别是212,,a a R 的值分别为1b ,2b ,下列说法正确的是( )A .若12a a <,则12b b <,A 的拟合效果更好 B .若12a a <,则12b b <,B 的拟合效果更好 C .若12a a <,则12b b >,A 的拟合效果更好 D .若12a a <,则12b b >,B 的拟合效果更好8.下列结论正确的是( )①函数关系是一种确定性关系; ②相关关系是一种非确定性关系;③回归分析是对具有函数关系的两个变量进行统计分析的一种方法; ④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法. A .①②B .①②③C .①②④D .①②③④9.某车间加工零件的数量x 与加工时间y 的统计数据如表:现已求得上表数据的回归方程ˆˆˆy bx a =+中的ˆb 值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为( )A .84分钟B .94分钟C .102分钟D .112分钟10.两个变量y与x的回归模型中,分别选择了4个不同模型,它们对应的22121()1()ni i i ni i y y Ry y ==-=--∑∑的值如下,其中拟合效果最好的模型是()A .模型1对应的20.48R =B .模型3对应的20.15R =C .模型2对应的20.96R =D .模型4对应的20.30R =11.对于回归分析,下列说法错误的是( )A .在残差图中,纵坐标表示残差B .若散点图中的一组点全部位于直线ˆ32yx =-+的图象上,则相关系数1r =C .若残差平方和越小,则相关指数2R 越大D .在回归分析中,变量间的关系若是非确定关系,那么因变量不能由自变量唯一确定 12.在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是( )A .总偏差平方和B .残差平方和C .回归平方和D .相关指数二.多选题(共1小题)13.下列有关回归分析的结论中,正确的有()A .运用最小二乘法求得的回归直线一定经过样本点的中心(x ,)yB .若相关系数r 的绝对值越接近于1,则相关性越强C .若相关指数2R 的值越接近于0,表示回归模型的拟合效果越好D .在残差图中,残差点分布的带状区域的宽度越窄,说明模型拟合的精度越高 三.填空题(共4小题)14.某商店统计了最近6个月某商品的进价x 与售价y (单位:元)的对应数据如表:假设得到的关于x 和y 之间的回归直线方程是ˆˆˆy bx a =+,那么该直线必过的定点是 .15.对具有线性相关关系的变量x ,y ,测得一组数据如表:根据上表,利用最小二乘法得它们的回归直线方程为ˆˆ10.5y x a=+,据此模型预测,当10x=时,y 的估计值是16.已知x 与y 之间的一组数据:已求得关于y 与x 的线性回归方程ˆ 2.10.85y x =+,则m 的值为 .17.对某城市进行职工人均工资水平x (千元)与居民人均消费水平y (千元)统计调查后知,y 与x 具有线性相关关系,满足回归方程0.6 1.5yx =+,若该城市居民人均消费水平为7.5(千元),则可以估计该城市人均消费额占人均工资收入的百分比约为 . 四.解答题(共3小题)18.某同学在生物研究性学习中想对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料:(1)从这5天中任选2天,记发芽的种子数分别为m ,n ,求事件“m ,n 均不小于25的概率.(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出y 关于x 的线性回归方程ˆˆˆybx a =+;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?(参考公式:1221ˆni i i ni i x y n x yb x n x==-=-∑∑,ˆˆ)ay bx =-19.随着人们经济收入的不断增长,个人购买家庭轿车已不再是一种时尚.车的使用费用,尤其是随着使用年限的增多,所支出的费用到底会增长多少,一直是购车一族非常关心的问题.某汽车销售公司作了一次抽样调查,并统计得出某款车的使用年限x 与所支出的总费用y(万元)有如下的数据资料:(1)在给出的坐标系中做出散点图;(2)求线性回归方程ˆˆˆybx a =+中的ˆa、ˆb ; (3)估计使用年限为10年时,车的使用总费用是多少?(最小二乘法求线性回归方程系数公式1221ˆni i i ni i x y n x yb x n x==-=-∑∑,ˆˆ)ay bx =-.20.一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:(1)画散点图;(2)如果y对x有线性相关关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺点的零件最多为89个,那么机器的运转速度应控制在什么范围内?(参考数值:511380 i iix y==∑,521145)iix==∑回归分析精选题20道参考答案与试题解析一.选择题(共12小题)1.设某大学的女生体重y (单位:)k g 与身高x (单位:)cm 具有线性相关关系,根据一组样本数据(i x ,)(1i y i=,2,⋯,)n ,用最小二乘法建立的回归方程为ˆ0.8585.71y x =-,则下列结论中不正确的是()A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x ,)yC .若该大学某女生身高增加1c m ,则其体重约增加0.85k gD .若该大学某女生身高为170c m ,则可断定其体重必为58.79k g【分析】根据回归方程为ˆ0.8585.71yx =-,0.85>,可知A ,B ,C 均正确,对于D 回归方程只能进行预测,但不可断定. 【解答】解:对于A ,0.85>,所以y 与x 具有正的线性相关关系,故正确;对于B ,回归直线过样本点的中心(x ,)y ,故正确;对于C ,回归方程为ˆ0.8585.71yx =-,∴该大学某女生身高增加1c m ,则其体重约增加0.85k g,故正确;对于D ,170xc m=时,ˆ0.8517085.7158.79y =⨯-=,但这是预测值,不可断定其体重为58.79k g,故不正确故选:D .【点评】本题考查线性回归方程,考查学生对线性回归方程的理解,属于中档题. 2.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是()A .ˆ10200yx =-+ B .ˆ10200yx =+ C .ˆ10200yx =-- D .ˆ10200yx =-【分析】本题考查的知识点是回归分析的基本概念,根据某商品销售量y (件)与销售价格x(元/件)负相关,故回归系数应为负,再结合实际进行分析,即可得到答案.【解答】解:由x 与y 负相关, 可排除B 、D 两项,而C 项中的ˆ102000yx =--<不符合题意.故选:A .【点评】两个相关变量之间的关系为正相关关系,则他们的回归直线方程中回归系数为正;两个相关变量之间的关系为负相关关系,则他们的回归直线方程中回归系数为负.3.有一散点图如图所示,在5个(,)D后,下列说法正确的是()x y数据中去掉(3,10)A.残差平方和变小B.相关系数r变小C.相关指数2R变小D.解释变量x与预报变量y的相关性变弱【分析】利用散点图分析数据,判断相关系数,相关指数,残差的平方和,的变化情况.【解答】解:从散点图可分析得出:只有D点偏离直线远,去掉D点,变量x与变量y的线性相关性变强,相关系数变大,相关指数变大,残差的平方和变小,故选:A.【点评】本题考查了利用散点图分析数据,判断变量的相关性问题,属于运用图形解决问题的能力,属于容易出错的题目.4.在线性回归模型中,分别选择了4个不同的模型,它们的相关指数2R依次为0.36、0.95、0.74、0.81,其中回归效果最好的模型的相关指数2R为()A.0.95B.0.81C.0.74D.0.36【分析】根据两个变量y与x的回归模型中,它们的相关指数2R越接近于1,这个模型的拟合效果就越好,由此选出选项中的答案.【解答】解:两个变量y与x的回归模型中,它们的相关指数2R越接近于1,这个模型的拟合效果就越好,在所给的四个选项中0.95是相关指数最大的值,∴其拟合效果也最好.故选:A.【点评】本题考查了相关指数,这里不用求相关指数,而是根据所给的相关指数判断模型的拟合效果,解题的关键是理解相关指数越大拟合效果越好.5.已知四个命题:①在回归分析中,2R可以用来刻画回归效果,2R的值越大,模型的拟合效果越好;②在独立性检验中,随机变量2K的值越大,说明两个分类变量有关系的可能性越大;③在回归方程ˆ0.212y x=+中,当解释变量x每增加1个单位时,预报变量ˆy平均增加1个单位;④两个随机变量相关性越弱,则相关系数的绝对值越接近于1;其中真命题是()A.①④B.②④C.①②D.②③【分析】对4个选项分别进行判断,即可得出结论.【解答】解:①相关指数2R是用来刻画回归效果的,2R表示解释变量对预报变量的贡献率,2R越接近于1,表示解释变量和预报变量的线性相关关系越强,越趋近0,关系越弱,故2R的值越大,说明回归模型的拟合效果越好,故①正确.②由2K的计算公式可知,对分类变量X与Y的随机变量2K的观测值k来说,k越小,判断“X与Y有关系”的把握越小,随机变量2K的值越大,说明两个分类变量有关系的可能性越大,故②正确;③在回归直线方程ˆ0.212=+中,当解释变量x每增加一个单位时,预报变量ˆy平均增加y x0.2个单位,故③错误.④两个随机变量相关性越强,则相关系数的绝对值越接近于1;两个随机变量相关性越弱,则相关系数的绝对值越接近于0,故④不正确.故选:C.【点评】本题以命题的真假判断为载体,考查了抽样方法,相关系数,回归分析,独立性检验等知识点,难度不大,属于基础题.6.某地区植被被破坏,土地沙化越来越严重,最近三年测得沙漠面积增加值分别为0.2万公顷、0.39万公顷和0.78万公顷,则沙漠面积增加数y (万公顷)关于年数x (年)的函数关系较为接近的是( )A .0.2yx= B .20.10.1y x x=+ C .40.2lo g yx=+D .210xy=【分析】将(1,0.2),(2,0.39),(3,0.78)分别代入0.2y x=,20.10.1yx x=+,40.2lo g yx=+和210xy=中,验证即可.【解答】解:将(1,0.2),(2,0.39),(3,0.78)代入0.2y x=,当3x=时,0.6y=,和0.78相差较大;将(1,0.2),(2,0.39),(3,0.78)代入20.10.1y x x=+,当2x=时,0.6y=,和0.39相差较大;将(1,0.2),(2,0.39),(3,0.78)代入40.2lo g y x=+,当2x=时,0.7y=,和0.39相差较大;将(1,0.2),(2,0.39),(3,0.78)代入210xy =,当1x =时,0.2y =,当2x =时,0.4y =,与0.39相差0.01, 当3x=时,0.8y=,和0.78相差0.02;综合以上分析,选用函数关系210xy =较为近似.故选:D .【点评】本题考查了函数模型的应用问题,也考查了运算求解能力,是基础题.7.对于给定的样本点所建立的模型A 和模型B ,它们的残差平方和分别是212,,a a R 的值分别为1b ,2b ,下列说法正确的是( )A .若12a a <,则12b b <,A 的拟合效果更好 B .若12a a <,则12b b <,B 的拟合效果更好 C .若12a a <,则12b b >,A 的拟合效果更好D .若12a a <,则12b b >,B 的拟合效果更好【分析】比较两个模型的拟合效果时,如果模型残差平方和越小,则相应的相关指数2R 越大,该模型拟合的效果越好,即可得出结论.【解答】解:比较两个模型的拟合效果时,如果模型残差平方和越小, 则相应的相关指数2R 越大,该模型拟合的效果越好. 故选:C .【点评】本题是基础题.考查残差平方和、相关指数. 8.下列结论正确的是()①函数关系是一种确定性关系; ②相关关系是一种非确定性关系;③回归分析是对具有函数关系的两个变量进行统计分析的一种方法; ④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法. A .①②B .①②③C .①②④D .①②③④【分析】本题是一个对概念进行考查的内容,根据相关关系的定义与回归分析的统计意义进行判断.【解答】解:①函数关系是一种确定性关系,这是一个正确的结论. ②相关关系是一种非确定性关系,是一个正确的结论.③回归分析是对具有相关关系的两个变量进行统计分析的一种方法,所以③不对. 与③对比,依据定义知④是正确的, 故选:C .【点评】本题的考点是相关关系,对本题的正确判断需要对相关概念的熟练掌握. 9.某车间加工零件的数量x 与加工时间y 的统计数据如表:现已求得上表数据的回归方程ˆˆˆy bx a =+中的ˆb 值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为( )A .84分钟B .94分钟C .102分钟D .112分钟【分析】根据表中所给的数据,做出横标和纵标的平均数,得到样本中心点,代入样本中心点求出a 的值,写出线性回归方程.将100x=代入回归直线方程,得y ,可以预测加工100个零件需要102分钟,这是一个预报值,不是生产100个零件的准确的时间数. 【解答】解:由表中数据得:20x =,30y=,又ˆb 值为0.9,故300.92012a=-⨯=,0.912y x ∴=+.将100x=代入回归直线方程,得0.910012102y =⨯+=(分钟).∴预测加工100个零件需要102分钟.故选:C .【点评】本题考查线性回归方程的求法和应用,解题的关键是正确应用最小二乘法求出线性回归方程的系数的运算,再一点就是代入样本中心点可以求出字母a 的值,是一个中档题目. 10.两个变量y与x的回归模型中,分别选择了4个不同模型,它们对应的22121()1()ni i i ni i y y Ry y ==-=--∑∑的值如下,其中拟合效果最好的模型是()A .模型1对应的20.48R =B .模型3对应的20.15R =C .模型2对应的20.96R =D .模型4对应的20.30R =【分析】根据回归分析中相关指数2R 越接近于1,拟合效果越好,即可得出答案. 【解答】解:回归分析中,相关指数2R 越接近于1,拟合效果越好; 越接近0,拟合效果越差,由模型2对应的2R 最大,其拟合效果最好. 故选:C .【点评】本题考查了利用相关指数判断模型拟合效果的应用问题,是基础题. 11.对于回归分析,下列说法错误的是( )A .在残差图中,纵坐标表示残差B .若散点图中的一组点全部位于直线ˆ32y x =-+的图象上,则相关系数1r =C .若残差平方和越小,则相关指数2R 越大D .在回归分析中,变量间的关系若是非确定关系,那么因变量不能由自变量唯一确定 【分析】根据题意,对选项种的命题分析判断正误即可.【解答】解:对于A ,在残差图中,纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重的估计值等,所以A 正确;对于B,散点图中的一组点全部位于直线ˆ32=-+的图象上,则x,y成负相关,且相关y x关系最强,此时相关系数1r=-,所以B错误;对于C,若残差平方和越小,则残差点分布的带状区域的宽度越窄,其相关性越强,相关指数2R越大,所以C正确;对于D,回归分析中,变量间的关系若是非确定关系,即变量间的关系不是函数关系,因变量不能由自变量唯一确定,所以D正确.故选:B.【点评】本题考查了统计知识的概念与应用问题,掌握相关概念的含义是解题的关键,是基础题.12.在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是() A.总偏差平方和B.残差平方和C.回归平方和D.相关指数【分析】本题考查的回归分析的基本概念,根据拟合效果好坏的判断方法我们可得,数据点和它在回归直线上相应位置的差异是通过残差的平方和来体现的.【解答】解:拟合效果好坏的是由残差的平方和来体现的,而拟合效果即数据点和它在回归直线上相应位置的差异故据点和它在回归直线上相应位置的差异是通过残差的平方和来体现的.故选:B.【点评】拟合效果好坏的是由残差的平方和来体现的,也可以理解为拟合效果即数据点和它在回归直线上相应位置的差异,故据点和它在回归直线上相应位置的差异是通过残差的平方和来体现的.二.多选题(共1小题)13.下列有关回归分析的结论中,正确的有()A.运用最小二乘法求得的回归直线一定经过样本点的中心(x,)yB.若相关系数r的绝对值越接近于1,则相关性越强C.若相关指数2R的值越接近于0,表示回归模型的拟合效果越好D.在残差图中,残差点分布的带状区域的宽度越窄,说明模型拟合的精度越高【分析】利用回归分析中的相关知识对四个选项逐一分析判断即可.【解答】解:对于A,回归方程必定经过样本中心(x,)y,故选项A正确;对于B,由相关系数的意义可知,相关系数r的绝对值越接近于1,则相关性越强,故选项B正确;对于C ,若相关指数2R 的值越接近于1,表示回归模型的拟合效果越好,故选项C 错误; 对于D ,在残差图中,残差点分布的带状区域的宽度越窄,说明模型拟合的精度越高,故选项D 正确. 故选:A B D .【点评】本题考查了回归分析的理解,主要考查了回归方程的性质,相关系数的意义等,属于基础题.三.填空题(共4小题)14.某商店统计了最近6个月某商品的进价x 与售价y (单位:元)的对应数据如表:假设得到的关于x 和y 之间的回归直线方程是ˆˆˆy bx a =+,那么该直线必过的定点是13(2,8).【分析】根据回归方程必过点(,)x y ,计算出,x y 即可求得答案. 【解答】解:35289121362x+++++==,4639121486y+++++==,回归方程必过点(,)x y ,∴该直线必过的定点是13(2,8).故答案为:13(2,8).【点评】本题考查了回归方程,线性回归方程必过样本中心点(,)x y ,这是线性回归中最常考的知识点,希望大家熟练掌握.属于基础题.15.对具有线性相关关系的变量x ,y ,测得一组数据如表:根据上表,利用最小二乘法得它们的回归直线方程为ˆˆ10.5y x a=+,据此模型预测,当10x=时,y 的估计值是 106.5【分析】根据表中数据计算x 、y ,代入回归直线方程求得ˆa的值, 写出回归直线方程,利用方程求出10x =时ˆy的值即可. 【解答】解:根据表中数据,计算1(24568)55x=⨯++++=,1(2040607080)545y =⨯++++=,代入回归直线方程ˆˆ10.5y x a=+中,求得ˆ5410.55 1.5a =-⨯=,∴回归直线方程为ˆ10.5 1.5yx =+,据此模型预测,10x=时,ˆ10.510 1.5106.5y=⨯+=,即y 的估计值是106.5. 故答案为:106.5.【点评】本题考查了线性回归方程的应用问题,是基础题. 16.已知x 与y 之间的一组数据:已求得关于y 与x 的线性回归方程ˆ 2.10.85y x =+,则m 的值为 0.5 .【分析】首先求出这组数据的横标和纵标的平均数,写出这组数据的样本中心点,把样本中心点代入线性回归方程求出m 的值. 【解答】解:0123342x +++==,3 5.5715.544m m y++++==,∴这组数据的样本中心点是3(2,15.5)4m +, 关于y 与x 的线性回归方程ˆ 2.10.85y x =+,∴15.532.10.8542m +=⨯+,解得0.5m =,m∴的值为0.5.故答案为:0.5.【点评】本题考查回归分析,考查样本中心点满足回归直线的方程,考查求一组数据的平均数,是一个运算量比较小的题目,并且题目所用的原理不复杂,是一个好题.17.对某城市进行职工人均工资水平x (千元)与居民人均消费水平y (千元)统计调查后知,y 与x 具有线性相关关系,满足回归方程0.6 1.5yx =+,若该城市居民人均消费水平为7.5(千元),则可以估计该城市人均消费额占人均工资收入的百分比约为 75%.【分析】根据y 与x 具有线性相关关系,且满足回归方程,和该城市居民人均消费水平为,把消费水平的值代入线性回归方程,可以估计该市的职工均工资水平,做出人均消费额占人均工资收入的百分比. 【解答】解:y与x 具有线性相关关系,满足回归方程0.6 1.5yx =+,该城市居民人均消费水平为7.5y=,∴可以估计该市的职工均工资水平7.50.6 1.5x =+,10x ∴=,∴可以估计该城市人均消费额占人均工资收入的百分比约为7.5100%75%10⨯=,故答案为:75%【点评】本题考查线性回归方程的应用,考查用线性回归方程估计方程中的一个变量,利用线性回归的知识点解决实际问题. 四.解答题(共3小题)18.某同学在生物研究性学习中想对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料:(1)从这5天中任选2天,记发芽的种子数分别为m ,n ,求事件“m ,n 均不小于25的概率.(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出y 关于x 的线性回归方程ˆˆˆybx a =+;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?(参考公式:1221ˆni i i ni i x y n x yb x n x==-=-∑∑,ˆˆ)ay bx =-【分析】(1)用数组(,)m n 表示选出2天的发芽情况,用列举法可得m ,n 的所有取值情况,分析可得m ,n 均不小于25的情况数目,由古典概型公式,计算可得答案;(2)根据所给的数据,先做出x ,y 的平均数,即做出本组数据的样本中心点,根据最小二乘法求出线性回归方程的系数,写出线性回归方程.(3)根据估计数据与所选出的检验数据的误差均不超过2颗,就认为得到的线性回归方程是可靠的,根据求得的结果和所给的数据进行比较,得到所求的方程是可靠的.【解答】解:(1)用数组(,)m n 表示选出2天的发芽情况,m,n 的所有取值情况有(23,25),(23,30),(23,26),(23,16),(25,30),(25,26),(25,16),(30,26),(30,16),(30,26),共有10个设“m ,n 均不小于25”为事件A ,则包含的基本事件有(25,30),(25,26),(30,26) 所以3()10P A =,故事件A 的概率为310(2)由数据得12,27xy ==,3972x y=,31977i i i x y ==∑,321434i i x ==∑,23432x =由公式,得9779725ˆ4344322b -==-,5ˆ271232a=-⨯=-所以y 关于x 的线性回归方程为5ˆ32yx =-(3)当10x =时,ˆ22y=,|2223|2-<,当8x=时,ˆ17y=,|1716|2-<所以得到的线性回归方程是可靠的.【点评】本题考查回归直线方程的计算与应用,涉及古典概型的计算,是基础题,在计算线性回归方程时计算量较大,注意正确计算.19.随着人们经济收入的不断增长,个人购买家庭轿车已不再是一种时尚.车的使用费用,尤其是随着使用年限的增多,所支出的费用到底会增长多少,一直是购车一族非常关心的问题.某汽车销售公司作了一次抽样调查,并统计得出某款车的使用年限x 与所支出的总费用y(万元)有如下的数据资料:(1)在给出的坐标系中做出散点图;(2)求线性回归方程ˆˆˆybx a =+中的ˆa、ˆb ; (3)估计使用年限为10年时,车的使用总费用是多少?(最小二乘法求线性回归方程系数公式1221ˆni i i ni i x y n x yb x n x==-=-∑∑,ˆˆ)ay bx =-.【分析】(1)利用描点法作出散点图;(2)把数据代入公式,利用最小二乘法求回归方程的系数,可得回归直线方程; (3)把10x=代入回归方程得y 值,即为预报变量.【解答】解:(1)散点图如图,由图知y 与x 间有线性相关关系.(2)4x=,5y=,52190i i x ==∑,51112.3i i i x y ==∑,∴112.354512.3ˆ 1.239054210a-⨯⨯===-⨯;ˆˆ5 1.2340.08a y b x =-=-⨯=.(3)线性回归直线方程是ˆ 1.230.08y x =+,当10x=(年)时,ˆ 1.23100.0812.38y=⨯+=(万元),即估计使用10年时,支出总费用是12.38万元.【点评】本题考查了线性回归直线方程的求法及利用回归方程估计预报变量,解答此类问题的关键是利用公式求回归方程的系数,计算要细心.20.一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:(1)画散点图;(2)如果y 对x 有线性相关关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺点的零件最多为89个,那么机器的运转速度应控制在什么范围内?(参考数值:511380i i i x y ==∑,521145)i i x ==∑【分析】(1)根据表格数据,可得散点图;(2)先求出横标和纵标的平均数,代入求系数b 的公式,利用最小二乘法得到系数,再根据公式求出a 的值,写出线性回归方程,得到结果.(3)允许每小时的产品中有缺点的零件最多为89个,即线性回归方程的预报值不大于89,写出不等式,解关于x 的一次不等式,得到要求的机器允许的转数. 【解答】解:(1)散点图如图;(2)5x =,50y=,511380i i i x y ==∑,521145i i x ==∑∴13805550ˆ 6.5145555b-⨯⨯==-⨯⨯,ˆˆ17.5ay b x =-=∴回归直线方程为:ˆ 6.517.5yx =+;(3)由89y …得6.517.589x+…,解得11x …∴机器的运转速度应控制11转/秒内【点评】本题考查线性回归分析,考查线性回归方程,考查线性回归方程的应用,考查不等式的解法,是一个综合题目.。
(完整版)多元线性回归模型习题及答案
、单项选择题1.在由n 30的一组样本估计的、包含3 个解释变量的线性回归模型中,计算得多重决定系数为0.8500 ,则调整后的多重决定系数为(D )A. 0.8603B. 0.8389C. 0.8655D.0.83272.下列样本模型中,哪一个模型通常是无效的(B)A. Ci(消费)=500+0.8 Ii(收入)B. Q i (商品需求)=10+0.8 Ii(收入)+0.9 Pi(价格)3.用一组有30个观测值的样本估计模型y t b o blXlt dX2t U t后,在0.05的显著性水平上对bl的显著性作t检验,则bl显著地不等于零的条件是其统计量t大于等于(C)A.t0.05 (30)B. t0.025 (28)C. t0.025 (27)D. F 0.025 (1,28)4.模型ln yt lnbo bl 1 nXt Ut中,b i的实际含义是(B)A. x关于y的弹性B. y关于x的弹性C.x关于y的边际倾向D.y关于x的边际倾向5.在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明模型中存在( C )A. 异方差性B.序列相关C.多重共线性D.高拟合优度6.线性回归模型y t b0 b i x it b2x2t ................... b k x kt U t 中,检验H0 :b t 0(i 0,i,2,...k)时,所用的统计量A. t(n-k+i)B.t(n-k-2)C. t(n-k-i)D.t(n-k+2)多元线性回归模型C.D. Qi(商品供给)=20+0.75 Pi(价格)Yi(产出量)=0.65 L i(劳动)K i0.4资本)服从( C )7.调整的判定系数 &关于经济计量模型进行预测出现误差的原因,正确的说法是( A. 只有随机因素 B. 只有系统因素 C.既有随机因素,又有系统因素 D.A 、B 、C 都不对 9•在多元线性回归模型中对样本容量的基本要求是 (k 为解释变量个数):(C )A n > k+1B *k+1C n > 30 或 n > 3 ( k+1)D n > 30 10、下列说法中正确的是: (D )2A 如果模型的R 很高,我们可以认为此模型的质量较好2B 如果模型的R 较低,我们可以认为此模型的质量较差C 如果某一参数不能通过显著性检验,我们应该剔除该解释变量D 如果某一参数不能通过显著性检验,我们不应该随便剔除该解释变量 11.半对数模型丫 011nX 中,参数 1的含义是(与多重判定系数A.R 2C. R 2 丄丄R 2n k 11 n 1 (1 R 2) D.n k 1B.R 21R 2 1之间有如下关系丄丄R 2 n k 1 丄^(1 n k 1R 2)C )。
高学期线性回归方程同步练习题(文科)(教师版)
高二第二学期第一章线性回归方程同步练习题(文科)(1)一、选择题1 . 下列两个变量之间的关系哪个不是函数关系( D ) A .角度和它的余弦值 B.正方形边长和面积 C .正n边形的边数和它的内角和 D.人的年龄和身高2.某市纺织工人的月工资(元)依劳动生产率(千元)变化的回归方程为y=50+80x ,则下列说法中正确的是( C )A .劳动生产率为1000元时,月工资为130元B .劳动生产率提高1000元时,月工资提高约为130元C .劳动生产率提高1000元时,月工资提高约为80元D .月工资为210元时,劳动生产率为2000元 3.设有一个回归方程为y=2-1.5x ,则变量x 每增加一个单位时,y 平均 ( C ) A .增加1.5单位 B .增加2单位 C .减少1.5单位 D .减少2单位4.实验测得四组(x ,y )的值为(1,2),(2,3),(3,4),(4,5),则y 与x 之间的回归直线方程为( A )A.y ^=x +1 B.y ^=x +2 C.y ^=2x +1 D.y ^=x -15.由一组样本(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到的回归直线方程y ^=a +bx ,下面有四种关于回归直线方程的论述:(1)直线y ^=a +bx 至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点;(2)直线y ^=a +bx 的斜率是∑ni =1x i y i -n x y ∑ni =1x 2i -n x 2;(3)直线y ^=a +bx 必过(x ,y )点; (4)直线y ^=a +bx 和各点(x 1,y 1),(x 2,y 2),…,(x n ,y n )的偏差∑ni =1 (y i -a -bx i )2是该坐标平面上所有的直线与这些点的偏差中最小的直线.其中正确的论述有( D )A .0个 B .1个C .2个 D .3个解析 线性回归直线不一定过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的任何一点;b =∑ni =1x i y i -n x y∑ni =1x 2i -n x 2就是线性回归直线的斜率,也就是回归系数;线性回归直线过点(x ,y );线性回归直线是平面上所有直线中偏差∑ni =1(y i -a -bx i )2取得最小的那一条.故有三种论述是正确的,选D. 6.某化工厂为预测产品的回收率y ,需要研究它和原料有效成分含量x 之间的相关关系,现取8对观测值,计算,得∑8i =1x i =52,∑8i =1y i =228,∑8i =1x 2i =478,∑8i =1x i y i =1849,则其线性回归方程为( A ) A.y ^=11.47+2.62x B.y ^=-11.47+2.62x C.y ^=2.62+11.47x D.y ^=11.47-2.62x解析 利用回归系数公式计算可得a =11.47,b =2.62,故y ^=11.47+2.62x . 7. 下列变量之间的关系是函数关系的是( A )A .已知二次函数c bx ax y ++=2,其中a ,b 是已知常数,取b 为自变量,因变量是这个函数的判别式ac b Δ42-=B .光照时间和果树的亩产量C .降雪量和交通事故发生率D .每亩用肥料量和粮食亩产量 8. 列有关线性回归的说法,不正确是( D )A.变量取值一定时,因变量的取值带有一定的随机性的两个变量之间的关系叫做相关关系B.在平面直角坐标系中用描点的方法得到表示具有相关关系的两个变量的一组数据的图形叫做散点图C.线性回归直线方程最能代表观测值x ,y 之间的关系D.任何一组观测值都能得到具有代表意义的回归直线方程 9.已知x 与y 之间的一组数据:则y 对x 的线性回归方程y =bx +A. (2,2) B. (1.5,3.5) C. (1,2) D. (1.5,4)10. 设回归直线方程为y =2-1.5x ,若变量x 增加1个单位,则( C ). A. y 平均增加1.5个单位 B. y 平均增加2个单位 C. y 平均减少1.5个单位 D. y 平均减少2个单位二、填空题11.下列关系中,是相关关系的为 (填序号).①学生的学习态度与学习成绩之间的关系;②教师的执教水平与学生的学习成绩之间的关系; ③学生的身高与学生的学习成绩之间的关系;④家庭的经济条件与学生的学习成绩之间的关系. 答案 ①②12.下列有关线性回归的说法,正确的是 (填序号).①相关关系的两个变量不一定是因果关系②散点图能直观地反映数据的相关程度 ③回归直线最能代表线性相关的两个变量之间的关系④任一组数据都有回归直线方程 答案 ①②③13.下列命题:①线性回归方法就是由样本点去寻找一条贴近这些样本点的直线的数学方法; ②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示;③通过回归直线yˆ=b ˆx +a ˆ及回归系数b ˆ,可以估计和预测变量的取值和变化趋势. 其中正确命题的序号是 .答案 ①②③14.下列关系:①人的年龄与其拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一树木,其截面直径与高度之间的关系;⑤学生的身高与其学号之间的关系,其中有相关关系的是___①③④_____(填序号).15.已知回归方程为yˆ=0.50x-0.81,则x=25时,y ˆ的估计值为 .答案 11.69 16.下表是某厂1~4由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归直线方程是y ^=-0.7x +a ,则a 等于______.解析 x =2.5,y =3.5,∵回归直线方程过定点(x ,y ),∴3.5=-0.7×2.5+a .∴a =5.25. 17.某服装商场为了了解毛衣的月销售量y (件)与月平均气温x (℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:由表中数据算出线性回归方程y =bx +a 中的b ≈-2,气象部门预测下个月的平均气温约为6℃,据此估计,该商场下个月毛衣的销售量约为________件.答案 46解析 由所提供数据可计算得出x =10,y =38,又b ≈-2代入公式a =y -b x 可得a =58,即线性回归方程y ^=-2x +58,将x =6代入可得.18.正常情况下,年龄在18岁到38岁的人们,体重y (kg )依身高x (cm )的回归方程为y=0.72x-58.5。
高一数学线性回归方程试题
高一数学线性回归方程试题1.下列关系中,是相关关系的是()①学生的学习态度与学习成绩之间的关系②教师的教学水平与学生学习成绩之间的关系③学生的身高与学生学习成绩之间的关系④家庭经济条件与学生学习成绩之间的关系A.①②B.①③C.②③D.②④【答案】A【解析】相关关系是一种有关而又非确定的关系,学生的学习态度、教师的教学水平和学生的学习成绩都有关,但学生的学习成绩除了受这些因素影响外还与其他因素有关,所以①②是相关关系;学生的身高以及家庭经济条件与学生学习成绩之间没关系。
【考点】相关关系点评:相关关系是一种有关而又非确定的关系。
判断两变量之间是否具有相关关系,关键看两点,一是要有关,二是变量除了受这个因素影响外还与其他因素有关。
2.变量y与x之间的回归方程表示()A.y与x之间的函数关系B.y与x之间的确定性关系C.y与x之间的真实关系D.y与x之间的真实关系达到最大限度的吻合【答案】D【解析】回归方程描述的是两变量间相关关系,是y与x之间的真实关系达到最大限度的吻合。
【考点】回归方程点评:因相关关系是一种有关而又非确定的关系,所以回归方程只是表示两变量之间的真实关系达到最大限度的吻合。
3.若x,y具有相关关系,且得到的一组散点大致分布在一条直线的附近,则下列有关线性回归的说法中,不正确的是()A.具有相关关系的两个变量不是因果关系B.散点图能直观地反映数据的相关程度C.回归直线最能代表线性相关的两个变量之间的关系D.任一组数据的回归方程都有意义【答案】D【解析】相关关系是一种有关而又非确定的关系,所以不是因果关系,散点图越密集,两变量间的相关性就越强,散点图越分散,相关性越弱,所以散点图能直观地反映数据的相关程度,回归直线是利用最小二乘法的思想求出来的,最能代表线性相关的两个变量之间的关系,但并不是任一组数据的回归方程都有意义。
【考点】散点图、回归直线方程。
点评:解决此类问题,要准确把握回归直线的含义、相关关系的概念和散点图的作用。
人教版高中数学选修2-3练习第三章3.1第1课时线性回归模型 Word版含解析
第三章统计案例回归分析的基本思想及其初步应用第课时线性回归模型级基础巩固一、选择题.有下列说法:①线性回归分析就是由样本点去寻找一条直线,贴近这些样本点的数学方法;②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示;③通过回归方程=+及其回归系数,可以估计和观测变量的取值和变化趋势;④因为由任何一组观测值都可以求得一个线性回归方程,所以没有必要进行相关性检验.其中正确说法的个数是( )....解析:①反映的是最小二乘法思想,故正确.②反映的是画散点图的作用,也正确.③反映的是回归模型=++,其中为随机误差,故也正确.④不正确,在求回归方程之前必须进行相关性检验,以体现两变量的关系.答案:.设两个变量和之间具有线性相关关系,它们的相关系数是,关于的回归直线的斜率是,纵轴上的截距是,那么必有( ).与的符号相同.与的符号相同.与的符号相反.与的符号相反解析:因为>时,两变量正相关,此时>;<时,两变量负相关,此时<.答案:.实验测得四组(,)的值为(,),(,),(,),(,),则与之间的回归直线方程为( )=+=+=-=+解析:求出样本中心((—),\ ( )),(—),\ ( )))代入选项检验知选项正确.答案:.设某大学的女生体重(单位:)与身高(单位:)具有线性相关关系.根据一组样本数据(,)(=,,…,),用最小二乘法建立的回归方程为=-,则下列结论中不正确的是( ).与具有正的线性相关关系.回归直线过样本点的中心((—),\ ( )),(—),\ ( ))).若该大学某女生身高增加,则其体重约增加.若该大学某女生身高为,则可断定其体重必为解析:回归方程中的系数为>,因此与具有正的线性相关关系,正确;由回归方程系数的意义可知回归直线过样本点的中心(—),\ ( )),(—),\ ( )),正确;依据回归方程中的含义可知,每变化个单位,相应变化约个单位,正确;用回归方程对总体进行估计不能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本资料为word版本,可以直接编辑和打印,感谢您的下载
高中线性回归习题含答案
地点:__________________
时间:__________________
说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与
义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时
请详细阅读内容
资料范本
高二选修1—2线性回归习题
1. 独立性检验,适用于检查变量之间的关系
( )
A.线性 B.非线性 C.解释与预报
D.分类
2. 样本点的样本中心与回归直线的关系( )
A.在直线上 B.在直线左上方 C. 在直线右下方
D.在直线外
3 已知数列,则是这个数列的 ( )
A.第项 B.第项 C.第项 D.第
项
4 用数学归纳法证明成立时,第二步归纳假设正确写法是( )
A.假设时命题成立 B.假设时命题成立
C.假设时命题成立 D.假设时命题成立
5 .确定结论“与有关系”的可信度为℅时,则随即变量的观测值必须
( )
A.大于 B.小于 C.小于 D.大于
6.有下列关系:①人的年龄与他(她)拥有的财富之间的关系;②曲线上
的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的
同一种树木,其横断面直径与高度之间的关系,其中有相关关系的是
( )
A.①②③ B.①② C.②③
D.①③④
7.在线性回归模型中,下列说法正确的是
A.是一次函数
B.因变量y是由自变量x唯一确定的
C.因变量y除了受自变量x的影响外,可能还受到其它因素的影响,这些
因素会导致随机误差e的产生
D.随机误差e是由于计算不准确造成的,可以通过精确计算避免随机误差
e的产生
8.对相关系数r,下列说法正确的是
( )
A.越大,线性相关程度越大
B.越小,线性相关程度越大
C.越大,线性相关程度越小,越接近0,线性相关程度越大
D.且越接近1,线性相关程度越大,越接近0,线性相关程度越小
9.在独立性检验中,统计量有两个临界值:3.841和6.635;当>3.841
时,有95%的把握说明两个事件有关,当>6.635时,有99%的把握说明两个事
件有关,当3.841时,认为两个事件无关.在一项打鼾与患心脏病的调查中,共
调查了2000人,经计算的=20.87,根据这一数据分析,认为打鼾与患心脏病之
间 ( )
A.有95%的把握认为两者有关 B.约有95%的打
鼾者患心脏病
C.有99%的把握认为两者有关 D.约有99%的打鼾者患
心脏病
10.已知x与y之间的一组数据:
则y与x的线性回归方程为y=bx+a必过点 .
11.已知,且, 求证:与中至少有一个小于2
12. 如图是所在平面外一点,平面,是的中点,是上的点,。求证:.
13. 若,,求证:
14.在调查男女乘客是否晕机的情况中,已知男乘客晕机为28人,不会晕
机的也是28人,而女乘客晕机为28人,不会晕机的为56人.
(1)根据以上数据建立一个列联表;
(2)试判断是否晕机与性别有关?
(参考数据:时,有90%的把握判定变量A,B有关联;时,有95%的把握判
定变量A,B有关联;时,有99%的把握判定变量A,B有关联.
参考公式:)
参考答案
1.D 2.A 3.B;4.C;5.B; .6-10ADCD 10,(1.5,4)
11. 证明:设且
因为,所以
所以与矛盾 所以与中至少有一个小于2.
12.取PB的中点,连结,∵是的中点,∴,∵平面,∴平面,∴MQ⊥AB,
取的中点,连结QD,则QD∥PA,∵∴QD=QB,又,∴,∴,∴AB⊥平面QMN,
∴
13.
14.(1)解:2×2列联表如下:
(2)假设是否晕机与性别无关,
则 的观测值
又知k︽3.888>3.841,
所以有95%的把握认为是否晕机与性别有关