高中一元线性回归方程

合集下载

1一元线性回归方程

1一元线性回归方程
Lyy = ∑(Yi −Y )
i =1 n
i =1 n
2
Lxy = ∑( Xi − X ) (Yi −Y )
i=1
ˆ ˆ β0 = Y − β1 X ˆ Lxy β1 = Lxx
二、OLS回归直线的性质 回归直线的性质
ˆ (1)估计的回归直线 Yi )
(2) )
ˆ ˆ = β 0 + β 1X i
前三个条件称为G-M条件 条件 前三个条件称为
§1.2 一元线性回归模型的参数估计
普通最小二乘法( Squares) 普通最小二乘法(Ordinary Least Squares) OLS回归直线的性质 OLS回归直线的性质 OLSE的性质 OLSE的性质
一、普通最小二乘法
对于所研究的问题, 对于所研究的问题,通常真实的回归直线 E(Yi|Xi) = β0 + β1Xi 是观 测不到的。可以通过收集样本来对真实的回归直线做出估计。 测不到的。可以通过收集样本来对真实的回归直线做出估计。
Y
55 80 100 120140 160
X
二、随机误差项εi的假定条件 随机误差项
为了估计总体回归模型中的参数,需对随机误差项作出如下假定: 为了估计总体回归模型中的参数,需对随机误差项作出如下假定: 假定1: 假定 :零期望假定:E(εi) = 0。 。 假定2: 假定 :同方差性假定:Var(εi) = σ 2。 假定3: 假定 :无序列相关假定:Cov(εi, εj) = 0, (i ≠ j )。 。 假定4: 假定 : εi 服从正态分布,即εi ∼ N (0, σ 2 )。 。
以下设 x 为自变量(普通变量 Y 为因变量(随机变 普通变量) 普通变量 随机变 量) .现给定 x 的 n 个值 x1,…, xn, 观察 Y 得到相应的 n 个 值 y1,…,yn, (xi ,yi) i=1,2,…, n 称为样本点 样本点. 样本点 以 (xi ,yi) 为坐标在平面直角坐标系中描点,所得到 的这张图便称之为散点图 散点图. 散点图

高中数学线性回归方程线性回归方程公式详解

高中数学线性回归方程线性回归方程公式详解

高中数学线性回归方程线性回归方程公式详解
线性回归方程是一种用于拟合一组数据的最常见的数学模型,它可以用来预测一个因变量(例如销售额)和一个或多个自变量(例如广告费用)之间的关系。

下面是线性回归方程的公式详解:
假设有n个数据点,每个数据点包含一个因变量y和k个自变量x1,x2,...,xk。

线性回归方程可以表示为:
y = β0 + β1*x1 + β2*x2 + ... + βk*xk + ε
其中,β0, β1, β2, ..., βk是模型的系数,ε是误差项,用来表示实际数据和模型预测之间的差异。

系数β0表示当所有自变量均为0时的截距,而β1, β2, ..., βk 则表示每个自变量对因变量的影响。

当系数为正时,自变量增加时因变量也会增加;而当系数为负时,自变量增加时因变量会减少。

通常,我们使用最小二乘法来估计模型的系数。

最小二乘法就是通过最小化所有数据点与模型预测之间的距离来找到最优的系数。

具体来说,我们可以使用以下公式来计算系数:
β = (X'X)-1 X'y
其中,X是一个n×(k+1)的矩阵,第一列全为1,其余的列为自变量x1,x2,...,xk。

y是一个n×1的向量,每一行对应一个因
变量。

X'表示X的转置,-1表示X的逆矩阵,而β则是一个(k+1)×1的向量,包含所有系数。

当拟合出线性回归方程后,我们可以使用它来预测新的数据点的因变量。

具体来说,我们可以将自变量代入方程中,计算出相应的因变量值。

如果模型的系数是可靠的,我们可以相信这些预测结果是比较准确的。

一元线性回归方程的建立

一元线性回归方程的建立

第二节一元线性回‎归方程的建立一‎元线性回归分析是处理‎两个变量之间关系的最‎简单模型,它所研究的‎对象是两个变量之间的‎线性相关关系。

通过对‎这个模型的讨论,我们‎不仅可以掌握有关一元‎线性回归的知识,而且‎可以从中了解回归分析‎方法的基本思想、方法‎和应用。

一、问题‎的提出例2-1‎-1 为了研究氮含‎量对铁合金溶液初生奥‎氏体析出温度的影响,‎测定了不同氮含量时铁‎合金溶液初生奥氏体析‎出温度,得到表2-1‎-1给出的5组数据。

‎表2-1-1 ‎氮含量与灰铸铁初生‎奥氏体析出温度测试数‎据如果‎把氮含量作为横坐标,‎把初生奥氏体析出温度‎作为纵坐标,将这些数‎据标在平面直角坐标上‎,则得图2-1-1,‎这个图称为散点图。

‎从图2-1-1可以‎看出,数据点基本落在‎一条直线附近。

这告诉‎我们,变量X与Y的关‎系大致可看作是线性关‎系,即它们之间的相互‎关系可以用线性关系来‎描述。

但是由于并非所‎有的数据点完全落在一‎条直线上,因此X与Y‎的关系并没有确切到可‎以唯一地由一个X值确‎定一个Y值的程度。

其‎它因素,诸如其它微量‎元素的含量以及测试误‎差等都会影响Y 的测试‎结果。

如果我们要研究‎X与Y的关系,可以作‎线性拟合‎(2-‎1-1)二、最小二乘法‎原理如果把用回‎归方程计算得到的‎i值(i=1,2‎,…n)称为回归值,‎那么实际测量值y i与‎回归值i之间存在‎着偏差,我们把这(i=1,2,3,…‎,n)。

这样,我们就‎可以用残差平种偏‎差称为残差,记为e i‎方和来度‎量测量值与回归直线的‎接近或偏差程度。

残差‎平方和定义为:‎ (2-1-‎2) 所谓最小二乘‎法,就是选择a和b使‎Q(a,b)最小,即‎用最小二乘法得到的回‎归直线是在所有直‎线中与测量值残差平方‎和Q最小的一条。

由(‎2-1-2)式可知Q‎是关于a,b的二次函‎数,所以它的最小值总‎是存在的。

下面讨论的‎a和b的求法。

一元线性回归

一元线性回归

12.9 一元线性回归以前我们所研究的函数关系是完全确定的,但在实际问题中,常常会遇到两个变量之间具有密切关系却又不能用一个确定的数学式子表达,这种非确定性的关系称为相关关系。

通过大量的试验和观察,用统计的方法找到试验结果的统计规律,这种方法称为回归分析。

一元回归分析是研究两个变量之间的相关关系的方法。

如果两个变量之间的关系是线性的,这就是一元线性回归问题。

一元线性回归问题主要分以下三个方面:(1)通过对大量试验数据的分析、处理,得到两个变量之间的经验公式即一元线性回归方程。

(2)对经验公式的可信程度进行检验,判断经验公式是否可信。

(3)利用已建立的经验公式,进行预测和控制。

12.9.1 一元线性回归方程 1.散点图与回归直线在一元线性回归分析里,主要是考察随机变量y 与普通变量x 之间的关系。

通过试验,可得到x 、y 的若干对实测数据,将这些数据在坐标系中描绘出来,所得到的图叫做散点图。

例1 在硝酸钠(NaNO 3)的溶解度试验中,测得在不同温度x (℃)下,溶解于100解 将每对观察值(x i ,y i )在直角坐标系中描出,得散点图如图12.11所示。

从图12.11可看出,这些点虽不在一条直线上,但都在一条直线附近。

于是,很自然会想到用一条直线来近似地表示x 与y 之间的关系,这条直线的方程就叫做y 对x 的一元线性回归方程。

设这条直线的方程为yˆ=a+bx 其中a 、b 叫做回归系数(y ˆ表示直线上y 的值与实际值y i 不同)。

图12.11下面是怎样确定a 和b ,使直线总的看来最靠近这几个点。

2.最小二乘法与回归方程在一次试验中,取得n 对数据(x i ,y i ),其中y i 是随机变量y 对应于x i 的观察值。

我们所要求的直线应该是使所有︱y i -yˆ︱之和最小的一条直线,其中i y ˆ=a+bx i 。

由于绝对值在处理上比较麻烦,所以用平方和来代替,即要求a 、b 的值使Q=21)ˆ(i ni iyy-∑=最小。

一元线性回归方程

一元线性回归方程

北京市城市居民家庭生活抽样调查表1 14 12 10 8 6 4 2 0 1976 1978 1980 1982 1984 1986 1988
Y: 人 均 收 入
x:年份
北京市城市居民家庭生活抽样调查图表 2 10 8 6 4 2 0 0 2 4 6 8
Y:人均食品支出
10 12 14 16 18
Fα (1,n-2),得否定域为F >Fα (1,n-2);
4.代入样本信息,F落入否定域则否定原假设, 线性关系显著;落入接受域则接受原假设, 线性关系不显著.
相关系数检验法: 相关系数检验法:
1.提出原假设:H0:b=0; lxy 2.选择统计量 R = lxxl yy 3.对给定的显著性水平α,查临界值rα (n-2), 得否定域为R >rα (n-2); 4.代入样本信息,R落入否定域则否定原假设,线性关 系显著;落入接受域则接受原假设,线性关系不显著.
第二节
一元线性回归方程
一 回归直线方程
两个变量之间的线性关系,其回归模型为: 两个变量之间的线性关系,其回归模型为:
yi = a + bxi + εi
ε 称为 y称为因变量,x称为自变量,
随机扰动,a,b称为待估计的回归参 数,下标i表示第i个观测值。
对于回归模型,我们假设:
εi ~ N( 0,σ ),i = 1,2,⋯,n E( εiε j ) = 0,i ≠ j
pt
qt
概率 0.25 0.50 0.25 0.25 0.50 0.25 … 0.25 0.50 0.25
qt = 11 − 4 pt+ εt
其中
这时, 这时,方程的形式为
εt
为随机变量. 为随机变量

一元线性回归方程的应用

一元线性回归方程的应用

第四节一元线性回归方程的应用回归方程最主的应用就是用它进行估计或预测。

只要r2≠1,估计误差就不可避免。

因而在应用回归方程时,需要对估计的误差以及与之相联系的一些问题有所了解。

一、回归方程的建立与预测(或估计)对于一组X、Y的数据,我们可以建立回归方程,有了y对X的回归方程,也就找到了X与y之间变化的数量关系,对于任意一个X值都可估计出与之对应的y值。

一)回归方程的建立例下面是20名工作人员的智商和某一次技术考试成绩,根据这个结果求出考试成绩对智商的回归方程。

如果另有一名工作人员智商为120,则估计一下若让他也参加技术考试,将会得多少分?解:经检验两者具有线性关系计算得:X与Y的均值:107 71标准差:13.69 11.63 r=0.86代入公式则回归方程为:NO 智商X成绩Y估计Y'NO智商X成绩Y估计Y'1 89 55 57.86 11 84 53 54.212 97 74 63.7 12 121 82 81.223 126 87 84.87 13 97 58 63.74 87 60 56.4 14 101 60 66.625 119 71 79.76 15 92 67 60.056 101 54 66.62 16 110 80 73.197 130 90 87.79 17 128 85 86.338 115 73 76.84 18 111 73 73.929 108 67 71.73 19 99 71 65.1610 105 70 69.54 20 120 90 80.49二)回归方程的检验1.方差分析法SSR=1997.48 SST=2705.14 SSE=707.66F=MSR/MSE=(SSR/dfR)/(SSE/dfE)= 1997.48 /(707.66/18)=50.81查表F(1,18)=8.28(0.01) 或 4.41(0.05) 结果显著2.回归系数法SX=13.69 SY=11.63 b=0.73 r=0.86三)用回归方程进行预测若X=120,代入回归方程得=80.5就是说,这位工作人员虽没参加技术考试,但根据他的智商,估计其技术考试的分数应该为80.5。

《一元线性回归方程》教学设计

《一元线性回归方程》教学设计

《一元线性回归模型参数的最小二乘估计》教学设计一、 教学内容解析1. “一元线性回归模型参数的最小二乘估计”是人民教育出版社A 版《普通高中教科书选择性必修第三册》第8章“成对数据的统计分析”第2节的内容,是统计思想方法在实际生活中的典型应用案例。

本节内容渗透了数学建模与转化化归的数学思想方法,在具体方法上有观察法、主元、消元等。

本节课的教学重点是一元线性回归模型参数的最小二乘估计和利用残差分析进行数据曲线拟合程度分析。

2 . 本节内容是在学习了“一元线性回归模型”的基础上,继续对一元线性回归模型参数进行估计,并对模型的刻画效果进行检验,是后续非线性回归模型学习的基础。

因此本节内容可以看作一元线性回归模型的下位学习,非线性回归模型的上位学习。

3.本节教学过程呈现了发现问题、提出问题、分析问题、解决问题的特点。

在学习过程中让学生体会最小二乘的思想,积累数据分析的经验。

围绕“人的年龄与脂肪含量的关系”这个案例,完整呈现了从直观寻找与散点整体接近的直线,到用竖直距离i i y bx a --刻画散点与直线的“距离”,再到用()21n i i i Q y bx a ==--∑定量刻画整体接近的程度,最后得到参数估计的数学化过程。

对建立的模型进行应用是利用数学建模解决实际问题的一个重要环节,教学中通过“人的年龄与脂肪含量的关系”这个案例,利用经验回归方程进行预测,并对结果进行合理解释,进而进一步介绍残差分析的方法,据此对模型进行评价和改进。

二、教学目标设置统计学习不应只是记住一些概念、公式或方法实施的操作步骤,更重要的是了解概念和方法产生的必要性,以及方法的合理性,了解统计研究问题的思路和特点,进而学会用统计的眼光看问题,培养数据分析素养。

依据“课程目标——单元目标——课堂教学目标”设置本节课的教学目标如下:1.通过小组合作探究问题:“从直观感知与散点在整体上最接近的直线”,学生了解解决这一问题的各种思路,并能判断可行性。

一元线性回归方程的建立

一元线性回归方程的建立

第二节一元线性回归方程的建立一元线性回归分析是处理两个变量之间关系的最简单模型,它所研究的对象是两个变量之间的线性相关关系。

通过对这个模型的讨论,我们不仅可以掌握有关一元线性回归的知识,而且可以从中了解回归分析方法的基本思想、方法和应用。

一、问题的提出例2-1-1 为了研究氮含量对铁合金溶液初生奥氏体析出温度的影响,测定了不同氮含量时铁合金溶液初生奥氏体析出温度,得到表2-1-1给出的5组数据。

表2-1-1 氮含量与灰铸铁初生奥氏体析出温度测试数据如果把氮含量作为横坐标,把初生奥氏体析出温度作为纵坐标,将这些数据标在平面直角坐标上,则得图2-1-1,这个图称为散点图。

从图2-1-1可以看出,数据点基本落在一条直线附近。

这告诉我们,变量X与Y的关系大致可看作是线性关系,即它们之间的相互关系可以用线性关系来描述。

但是由于并非所有的数据点完全落在一条直线上,因此X与Y的关系并没有确切到可以唯一地由一个X值确定一个Y值的程度。

其它因素,诸如其它微量元素的含量以及测试误差等都会影响Y 的测试结果。

如果我们要研究X与Y的关系,可以作线性拟合(2-1-1)我们称(2-1-1)式为回归方程,a与b是待定常数,称为回归系数。

从理论上讲,(2-1-1)式有无穷多组解,回归分析的任务是求出其最佳的线性拟合。

二、最小二乘法原理如果把用回归方程计算得到的i值(i=1,2,…n)称为回归值,那么实际测量值y i与回归值i之间存在着偏差,我们把这种偏差称为残差,记为e i(i=1,2,3,…,n)。

这样,我们就可以用残差平方和来度量测量值与回归直线的接近或偏差程度。

残差平方和定义为:(2-1-2) 所谓最小二乘法,就是选择a和b使Q(a,b)最小,即用最小二乘法得到的回归直线是在所有直线中与测量值残差平方和Q最小的一条。

由(2-1-2)式可知Q是关于a,b的二次函数,所以它的最小值总是存在的。

下面讨论的a和b的求法。

三、正规方程组根据微分中求极值的方法可知,Q(a,b)取得最小值应满足(2-1-3)由(2-1-2)式,并考虑上述条件,则(2-1-4)(2-1-4)式称为正规方程组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中一元线性回归方程
线性回归是一种有用的数学方法,用来描述两种变量之间的关系并预测新值。

其中最常见的是一元线性回归。

一元线性回归可以用一个简单的等式来描述:y = mx + b,其中y是因变量,mx是自变量,b是偏置量(截距)。

在高中,首先要解决的是一元线性回归的问题,这就意味着计算机的对应的等式是:y = mx + b,其中m和b是要求的系数。

一元线性回归的关键是确定系数m和b,其中b也被称作截距(截距)。

计算m和b有多种数学方法,例如最小二乘法,均值方程法等。

最小二乘法被认为是最常用的方法,它可以通过拟合模型来最小化模型和实际观察值之间的差异,从而得到最适合的结果。

在高中,学生可以通过用图象法或数学公式法来确定系数m和b。

其中,图象法是把握表示的独立变量的值以及它们的关系的另一种更直观的方法。

这样,我们可以画出数据点的趋势线,再从统计学书籍上获取两个变量之间的最佳拟合数据,在图上画出拟合线,求出最佳拟合线上的斜率m和截距b。

另一种方法是用数学公式确定系数m和b,这需要了解一系列公式,而在高中的学习中,老师基本上会给出他们解决一元线性回归的具体公式。

总之,一元线性回归是一个重要的数学模型,其有助于理解两个变量之间的联系,它的性质和方程可以在高中很好地学习和实施。

相关文档
最新文档