人教版七年级上册数学有理数的加减法 题型分类练习题

合集下载

2022-2023学年人教版七年级数学上册《1-3有理数的加减法》同步达标测试题(附答案)

2022-2023学年人教版七年级数学上册《1-3有理数的加减法》同步达标测试题(附答案)

2022-2023学年人教版七年级数学上册《1.3有理数的加减法》同步达标测试题(附答案)一.选择题(共8小题,满分40分)1.计算﹣3﹣2的结果是()A.﹣1B.1C.﹣5D.52.若|m|=2,|n|=3,且m>n,则m+n的值是()A.﹣1B.﹣5C.1或﹣5D.﹣1或﹣53.若两个数的和为负数,则这两个数满足()A.都是负数B.都是正数C.至少一个是负数D.恰好一正一负4.某地一天早晨的气温是﹣2℃,中午温度上升了6℃,半夜比中午又下降了8℃,则半夜的气温是()A.﹣2℃B.﹣4℃C.﹣6℃D.﹣8℃5.若|m|=5,|n|=3且m+n的绝对值等于它的相反数,则m﹣n的值是()A.﹣2或﹣8B.2或﹣8C.2或8D.﹣2或86.下面说法中正确的有()(1)一个数与它的绝对值的和一定不是负数.(2)一个数减去它的相反数,它们的差是原数的2倍.(3)零减去一个数一定是负数.(4)正数减负数一定是负数.(5)数轴上原点两侧的数互为相反数.A.2个B.3个C.4个D.5个7.设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a+b+c等于()A.﹣1B.0C.1D.28.下列运算中正确的是()A.8+[14+(﹣9)]=15B.(﹣2.5)+[5+(﹣2.5)]=5C.[3+(﹣3)]+(﹣2)=﹣2D.3.14+[(﹣8)+3.14]=﹣8二.填空题(共8小题,满分40分)9.矿井下A,B,C三处的高度分别是﹣37m,﹣129m,﹣71.3m,那么最高处比最低处高m.10.计算:﹣26﹣(﹣15)=.11.小明在计算1﹣3+5﹣7+9﹣11+13﹣15+17时,不小心把一个运算符号写错了(“+”错写成“﹣”或“﹣”错写成“+”),结果算成了﹣17,则原式从左往右数,第个运算符号写错了.12.厂家检测10个足球的质量,每个足球的标准质量为265克,将每个足球超过克数记为正数,不足克数记为负数,这10个足球称重后的记录为:+1,+1,﹣1.3,+1.5,﹣1,+1.2,+1.3,﹣1.2,+1.4,+1.1.这十个足球的质量共是克.13.计算=.14.已知|x|=2,|y|=1,且|x﹣y|=y﹣x,则x﹣y=.15.若a的相反数等于它本身,b是到原点的距离等于2的负数,c是最大的负整数,则a ﹣b+c的值为.16.计算:1﹣2﹣3+4+5﹣6﹣7+8+......+2020+2021=.三.解答题(共6小题,满分40分)17.计算:20+(﹣14)﹣(﹣18)+13.18.计算:﹣﹣|﹣|﹣(﹣)+1.19.计算:1.5﹣(﹣4)+3.75﹣(+8).20.计算.(1)(﹣4)﹣(+13)+(﹣5)﹣(﹣9)+7;(2)0﹣+(+)+(﹣)+2;(3)﹣|﹣1|﹣(+2)﹣(﹣2.75);(4)(﹣3.125)+(+4.75)+(﹣9)+(+5)+(﹣4).21.阅读下面文字:对于(﹣5)+(﹣9)+17+(﹣3)可以如下计算:原式=[(﹣5)+(﹣)]+[(﹣9)+(﹣)]+(17+)+[(﹣3)+(﹣)]=[(﹣5)+(﹣9)+17+(﹣3)]+[(﹣)+(﹣)++(﹣)]=0+(﹣1)=﹣1上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,计算:.22.某领导慰问高速公路养护小组,乘车从服务区出发,沿东西向公路巡视,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,﹣9,+7,﹣15,﹣3,+11,(1)求该领导乘车最后到达的地方?(2)行驶1千米耗油0.5升,则这次巡视共耗油多少升?(3)若领导在这6个巡视点发放苹果慰问品,以50kg为标准,超过的记为正数,不足的记为负数,这6个巡视点的苹果重量记为5,﹣6,﹣4,9,﹣8,3(单位:kg),求发放苹果的总重量.参考答案一.选择题(共8小题,满分40分)1.解:﹣3﹣2=﹣5.故选:C.2.解:∵|m|=2,|n|=3,∴m=±2,n=±3,∵m>n,∴当m=2,n=﹣3时,m+n=2﹣3=﹣1;当m=﹣2,n=﹣3时,m+n=﹣2﹣3=﹣5;故选:D.3.解:两个数的和为负数,这两个数都是负数或有一个是负数且负数的绝对值比另一个数的绝对值大;故选:C.4.解:﹣2+6﹣8=4﹣8=﹣4(℃).答:半夜的气温是﹣4℃.故选:B.5.解:∵|m|=5,|n|=3,∴m=±5,n=±3,∵m+n的绝对值等于它的相反数,∴m+n<0,∴①m=﹣5,n=﹣3,②m=﹣5,n=3,当m=﹣5,n=﹣3时,m﹣n=﹣5﹣(﹣3)=﹣2;当m=﹣5,n=3时,m﹣n=﹣5﹣3=﹣8,综上所述:m﹣n=﹣8或﹣2,故选:A.6.解:(1)一个数与它的绝对值的和一定不是负数.正确,(2)一个数减去它的相反数,它们的差是原数的2倍,正确,(3)零减去一个数不一定是负数,如0﹣(﹣3)=3,故不正确,(4)正数减负数一定是正数.如3﹣(﹣4)=7,故不正确,(5)数轴上原点两侧的数不一定互为相反数,如5和﹣4,不是互为相反数.不正确.故选:A.7.解:依题意得:a=1,b=﹣1,c=0,∴a+b+c=1+(﹣1)+0=0.故选:B.8.解:A、原式=8+5=13,故A不符合题意.B、原式=﹣2.5+2.5=0,故B不符合题意.C、原式=0+(﹣2)=﹣2,故C符合题意.D、原式=3.14+3.14+(﹣8)=﹣1.72,故D不符合题意.故选:C.二.填空题(共8小题,满分40分)9.解:∵最高处:﹣37米,最低处:﹣129米,最高处比最低处高:﹣37﹣(﹣129)=92(米),故答案为:92.10.解:原式=﹣26+15=﹣11.故答案为:﹣11.11.解:∵1﹣3+5﹣7+9﹣11+13﹣15+17=9,9>﹣17,∴小明不小心把“+”写成“﹣”,∵9﹣(﹣17)=26,26÷2=13,∴小明将+13写错为﹣13,故答案为:6.12.解:+1+1﹣1.3+1.5﹣1+1.2+1.3﹣1.2+1.4+1.1=5(克),265×10+5=2655(克),所以这十个足球的质量一共是2655克,故答案为:2655.13.解:原式=1=1=1.故答案为:1.14.解:∵|x|=2,|y|=1,且|x﹣y|=y﹣x,∴x=﹣2,y=1或y=﹣1,∴x﹣y=﹣2﹣1=﹣3或x﹣y=﹣2+1=﹣1.故答案为:﹣3或﹣1.15.解:∵a是相反数等于它本身的数,b是到原点的距离等于2的负数,c是最大的负整数,∴a=0,b=﹣2,c=﹣1,∴a﹣b+c=0+2﹣1=1.故答案为:1.16.解:∵1﹣2﹣3+4=0,5﹣6﹣7+8=0,•,∴算式中从第一个数字开始,依次每四个数的代数和为0,∵2020÷4=505,∴前2020个数字的代数和为0.∴1﹣2﹣3+4+5﹣6﹣7+8+......+2020+2021=2021.故答案为:2021.三.解答题(共6小题,满分40分)17.解:20+(﹣14)﹣(﹣18)+13,=20﹣14+18+13,=6+31,=37.18.解:﹣﹣|﹣|﹣(﹣)+1=﹣﹣++1=(﹣)+(﹣+)+1=+(﹣2)+1=﹣.19.解:原式=1++4++3+﹣8﹣=﹣7+8=1.20.解:(1)原式=(﹣4)+(﹣13)+(﹣5)+9+7=[(﹣4)+(﹣13)+(﹣5)]+(9+7)=(﹣22)+16=﹣6;(2)原式=0+(﹣)++(﹣)+2=[(﹣)+(﹣)]++2=(﹣1)+3=2;(3)原式=﹣1+(﹣2)+2=﹣1+(﹣2+2)=+(﹣1+)=+(﹣1)=﹣;(4)原式=(﹣3)+4+(﹣9)+5﹣4=[(﹣3)+(﹣9)]+(4+5)﹣4=(﹣13)+10﹣4=﹣3﹣4=﹣7.21.解:原式=﹣2020﹣+2019+﹣2018﹣+2017+=﹣2020+2019﹣2018+2017﹣+﹣+=﹣1﹣1+﹣=﹣2﹣=.22.解:(1)17+(﹣9)+7+(﹣15)+(﹣3)+11=8(千米),答:该领导乘车最后到达的地方在东边8千米处;(2)|+17|+|﹣9|+|+7|+|﹣15|+|﹣3|+|+11|=62(千米),0.5×62=31(升),答:这次巡视共耗油31升;(3)5+(﹣6)+(﹣4)+9+(﹣8)+3=﹣1(千克),50×6+(﹣1)=299(千克),答:发放苹果的总重量为299千克.。

人教版七年级上册有理数的加减法练习题50

人教版七年级上册有理数的加减法练习题50

人教版七年级上册有理数的加减法练习题50一、选择题(共8小题;共40分)1. 比小的数等于C. D.2. 小明家年月日至年月日在网上银行缴纳电费的详情(不完整)如下表所示:则表格中问号处的数据为A. B. C. D.3. 计算的结果是A. C.4. 记,令,称为,,,这列数的“理想数”.已知,,,的“理想数”为,那么,,,,的“理想数”为A. B. C. D.5. 数轴上点,,分别表示数,,,那么下列运算结果一定是正数的是A. B. C.6. 减去一个数的差是这个数的A. 本身B. 相反数C. 绝对值D. 倒数7. 邢台市某天的最高气温是,最低气温是,那么当天的温差是A. B. C. D.8. 计算结果正确的是A. B.二、填空题(共4小题;共20分)9. 小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额元,则五笔交易后余额元.10. .11. .12. 计算:.三、解答题(共4小题;共52分)13. 列式计算:某数减去所得的差是14. 计算:.15. 如图,一只甲虫在的方格(每小格边长为)上沿着网格线运动,他从处出发去看望,,处的其他甲虫,规定:向上向右走均为正,向下向左走均为负,如果从到记为,从到记为:,其中第一个数表示左右方向,第二个数表示上下方向.(1)图中,,;(2)若这只甲虫的行走路线为,请计算该甲虫走过的最短路程.(3)若图中另有两个格点,,且,,则应记为什么?直接写出你的答案.16. 计算:(1);(2).答案第一部分1. C 【解析】由题意得.故选C.2. A 【解析】.故问号处的数据为.故选A.3. B4. C5. A【解析】,.,.,,.,,A.,,,故正确;B.,,,故不正确;C.,,,故不正确;D.,,故不正确.6. B7. A 【解析】,当天的温差是.故选A.8. C第二部分9.【解析】(元),故答案为.11.12.【解析】.第三部分.14.15. (1)(2)根据已知条件可知:表示为:,记为,记为;则该甲虫走过的路线长为:;(3)应记为.16. (1)(2)。

人教版数学七年级上册1.3 有理数的加减法 同步练习

人教版数学七年级上册1.3 有理数的加减法 同步练习

一、选择题1.小马虎在下面计算中只做对了一道题,他做对的题目是( ) A .(-3)+5=-2 B .(-7)+(-7)=0 C .(-6)+(-3)=-9 D .9+(-9)=12. .用字母表示有理数的减法法那么正确的选项是( ) A .a -b =a +b B .a -b =a +(-b) C .a -b =-a +b D .a -b =a -(-b)3. 以下式子可读作“负10,负6,正3,负7的和〞的是( ) A .-10+(-6)+(+3)-(-7) B .-10-6+3-7C .-10-(-6)-3-(-7)D .-10-(-6)-(-3)-(-7)4. 某村有几块麦田,今年的收成与去年相比(增产为正,减产为负)的情况如下(单位为kg):+32,-17, -32,+13,+15,+4,-15,那么今年小麦的总产量与去年相比( )A .增产2千克B .减产2千克C .增产12千克D .与去年的产量一样 5. 冰箱冷冻室的温度为-6℃,此时房屋内的温度为20℃,那么房屋内的温度比冰箱冷冻室的温度高( )A .26℃B .14℃C .-26℃D .-14℃ 6. 0减去一个数等于( )A .这个数B .0C .这个数的相反数D .负数7. 在数1,2,3,4,…,405前分别加“+〞或“-〞,使所得数字之和为非负数,那么所得非负数最小为( )A .0B .1C .2D .3 8. a ,b 在数轴上的位置如下图,那么a -b 的结果的符号为( )A .正B .负C .0D .无法确定 9. 以下说法正确的选项是( )A .两个数之差一定小于被减数B .减去一个负数,差一定大于被减数C .减去一个正数,差不一定大于被减数D .0减去任何数,差都是负数 10. 计算(-2.29)+8+(-7.71)时,以下简便运算正确的选项是( ) A .[(-2.29)+8]+(-7.71) B .(-2.29)+[8+(-7.71)] C .(-8)+(2.29+7.71) D .[(-2.29)+(-7.71)]+8 (-8)-(+4)+(-5)-(-2)写成省略括号的和的形式是( ) A .-8+4-5+2 B .-8-4-5+2 C .-8-4+5+2 D .8-4-5+212. 7-3-4+18-11=(7+18)+(-3-4-11)是应用了( ) A .加法交换律 B .加法结合律C .分配律D .加法的交换律和结合二、填空题13.计算(+1)+(-2)+(+3)+(-4)+…+(+9)+(-10)的结果是_______. 14. a +x =2021 ,b +y =-2021,那么a +b +x +y =_______. 15.绝对值大于1而小于6的所有整数的和是____. 16. 有理数+3,-8,-10,+12,请你通过有理数的加减混合运算,使其运算结果最大,那么列式为_______ __________________.17. 如果a =-14,b =-2,c =-34,那么a +(-b )-|-c |的值为__ __.18. 在( )里写出每一步变形过程的依据.(-4)+(+18)-(-3)-(+13)+(-2)=(-4)+(+18)+(+3)+(-13)+(-2)(________________) =[(-4)+(-13)+(-2)]+[(+18)+(+3)](_____________) =(-19)+(+21)(________________) =2.(______ __________)19. 假设a -(-b)=0,那么a 与 b 的关系是____________. 20. |x|=5,y =3,那么 x -y 的值为________.三、解答题21. (1)20-(-7)-|-2|; (2)12-(-18)+(-7)-15;(3)-213-56-12+116; (4)|-212|-(-2.5)+1-|1-212|;(5)16+(-25)+24-35; (6)314+(-235)+534-825;(7)(-12)+|0-5|+|-4|+(-9); (8)312-(-214)+(-13)-0.25+(+16).22.假设a 、b 、c 是有理数,|a|=3,|b|=10,|c|=5,且a 、b 异号,b 、c 同号,求a -b -(-c)的值.23.某只股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+〞表示股票比前一天上涨,“-〞表示股票比前一天下跌)上周末 收盘价 周一 周二 周三 周四 周五(1)周一至周五这只股票每天的收盘价各是多少元?(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了多少?(3)这五天的收盘价中哪天的最高?哪天的最低?相差多少?24.A ,B 两点在数轴上分别表示的数为m ,n . (1)对照数轴填写下表:(2)假设A,B两点间的距离记为d,试问d与m,n有何数量关系?并用文字描述出来;(3)A,B在数轴上分别表示的数为x和-1,那么A,B两点间的距离d可表示为____________,如果d=3,求x的值.参考答案一、选择题1.小马虎在下面计算中只做对了一道题,他做对的题目是(C)A .(-3)+5=-2B .(-7)+(-7)=0C .(-6)+(-3)=-9D .9+(-9)=12. .用字母表示有理数的减法法那么正确的选项是( B ) A .a -b =a +b B .a -b =a +(-b) C .a -b =-a +b D .a -b =a -(-b)3. 以下式子可读作“负10,负6,正3,负7的和〞的是( B ) A .-10+(-6)+(+3)-(-7) B .-10-6+3-7C .-10-(-6)-3-(-7)D .-10-(-6)-(-3)-(-7)4. 某村有几块麦田,今年的收成与去年相比(增产为正,减产为负)的情况如下(单位为kg):+32,-17,-32,+13,+15,+4,-15,那么今年小麦的总产量与去年相比( D )A .增产2千克B .减产2千克C .增产12千克D .与去年的产量一样5. 冰箱冷冻室的温度为-6℃,此时房屋内的温度为20℃,那么房屋内的温度比冰箱冷冻室的温度高( A )A .26℃B .14℃C .-26℃D .-14℃ 6. 0减去一个数等于( C )A .这个数B .0C .这个数的相反数D .负数7. 在数1,2,3,4,…,405前分别加“+〞或“-〞,使所得数字之和为非负数,那么所得非负数最小为( B )A .0B .1C .2D .3 8. a ,b 在数轴上的位置如下图,那么a -b 的结果的符号为( B )A .正B .负C .0D .无法确定 9. 以下说法正确的选项是( B )A .两个数之差一定小于被减数B .减去一个负数,差一定大于被减数C .减去一个正数,差不一定大于被减数D .0减去任何数,差都是负数 10. 计算(-2.29)+8+(-7.71)时,以下简便运算正确的选项是( D ) A .[(-2.29)+8]+(-7.71) B .(-2.29)+[8+(-7.71)] C .(-8)+(2.29+7.71) D .[(-2.29)+(-7.71)]+8 (-8)-(+4)+(-5)-(-2)写成省略括号的和的形式是( B ) A .-8+4-5+2 B .-8-4-5+2 C .-8-4+5+2 D .8-4-5+212. 7-3-4+18-11=(7+18)+(-3-4-11)是应用了( D ) A .加法交换律 B .加法结合律C .分配律D .加法的交换律和结合律二、填空题13.计算(+1)+(-2)+(+3)+(-4)+…+(+9)+(-10)的结果是__-5_____. 14. a +x =2021 ,b +y =-2021,那么a +b +x +y =____-5___. 15.绝对值大于1而小于6的所有整数的和是__0__.16. 有理数+3,-8,-10,+12,请你通过有理数的加减混合运算,使其运算结果最大,那么列式为_________ (+12)+(+3)-(-8)-(-10) __________________.17. 如果a =-14,b =-2,c =-34,那么a +(-b )-|-c |的值为__ 1 __.18. 在( )里写出每一步变形过程的依据.(-4)+(+18)-(-3)-(+13)+(-2)=(-4)+(+18)+(+3)+(-13)+(-2)(____ 统一为加法____________) =[(-4)+(-13)+(-2)]+[(+18)+(+3)](_加法的交换律、结合律___) =(-19)+(+21)(____有理数加法法那么__) =2.(______ 有理数加法法那么______)19. 假设a -(-b)=0,那么a 与 b 的关系是___互为相反数_________. 20. |x|=5,y =3,那么 x -y 的值为__2或-8______. 三、解答题21. (1)20-(-7)-|-2|; (2)12-(-18)+(-7)-15;(3)-213-56-12+116; (4)|-212|-(-2.5)+1-|1-212|;(5)16+(-25)+24-35; (6)314+(-235)+534-825;(7)(-12)+|0-5|+|-4|+(-9); (8)312-(-214)+(-13)-0.25+(+16).解:(1)原式=20+7-2=25.(2)原式=12+18-7-15=30-22=8.(3)原式=-213-12+(116-56)=-213-12+13=-2-12=-212.(4)原式=212+2.5+1-112=4.5.(5)原式=16+24+[(-25)+(-35)]=40+(-60)=-20. (6)原式=314+534+[(-235)+(-825)]=9+(-11)=-2.(7)原式=-12+5+4+(-9)=-12.(8)原式=(214-14)+(312-13+16)=2+(336-26+16)=2+313=513.22.假设a 、b 、c 是有理数,|a|=3,|b|=10,|c|=5,且a 、b 异号,b 、c 同号,求a -b -(-c)的值. 解:由题 意,得当a =-3,b =10,c =5时,a -b -(-c)=-3-10-(-5)=-8; 当a =3,b =-10,c =-5时,a -b -(-c)=3-(-10)-5=8.23.某只股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+〞表示股票比前一天上涨,“-〞表示股票比前一天下跌)上周末 收盘价 周一 周二 周三 周四 周五(1)(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了多少?(3)这五天的收盘价中哪天的最高?哪天的最低?相差多少?解:(1)10+0.28=10.28(元);10.28-2.36=7.92(元);7.92+1.80=9.72(元);9.72-0.35=9.37(元);9.37+0.08=9.45(元).所以,周一至周五这只股票每天的收盘价分别为10.28元、7.92元、9.72元、9.37元、9.45元.(2)10.00-9.45=0.55(元),本周末收盘价比上周末的收盘价下跌了0.55元.〔3〕周一最高,周二最低,因为10.28-7.92=2.36(元),所以相差2.36元.24.A,B两点在数轴上分别表示的数为m,n.(1)m 6 -6 -6 -6 2 -n 4 0 4 -4 -8 -A,B两点间的距离 2 6 10 2 10 0(2)假设A,B两点间的距离记为d,试问d与m,n有何数量关系?并用文字描述出来;(3)A,B在数轴上分别表示的数为x和-1,那么A,B两点间的距离d可表示为___|x+1|__________,如果d=3,求x的值.解:(2)d=|m-n|,数轴上两个点之间的距离,等于这两个点表示的数的差的绝对值(3)|x+1|当d=3时,|x-(-1)|=3,所以x=2或-4。

人教版七年级上册第一章《1.3有理数的加减法》测试题

人教版七年级上册第一章《1.3有理数的加减法》测试题

有理数的加减法学习时间: 年 月 日一.相信你都能选对(每小题2分,共16分)1、下列计算结果等于2的是( )A 、│-7│+│+5│B 、│(-7)+(+5)│C 、│+7│+│-4│D 、│(+7)-(-4)│2、1减负4的结果为( )A 、-3,B 、3,C 、-5,D 、53、食品店一天周只各天的盈亏情况如下( 盈余为正,亏损为负,单位:元)132,-12,-100,127,-97,137,98则这一周的盈亏情况是( )A 、盈了B 、亏了C 、不盈不亏,D 、以上都不对。

4、下列式子成立的是( )A 、055=--+)()(,B 、550=-,C 、055=---)()(,D 、505=--)(。

6、一个数大于另一个数的绝对值,则这两个数的和是( )A.负数B.正数C.非负数D.非正数 7、如果两个数的和为正数,那么( )A.这两个加数都是正数B.一个数为正,另一个为0C.两个数一正一负,且正数绝对值大D.必属于上面三种之一 8、下列结论不正确的是( )A.若a>0,b>0,则a+b>0B.若a<0,b<0,则a+b<0C.若a>0,b<0,则|a|>|b|,则a+b>0D.若a<0,b>0,且|a|>|b|,则a+b>0 二、相信你填得又快又准(每小题2分,共16分)9、-4-_______=23,( )-(-10)=20。

10、比-6小-3的数是______。

11、冬季的某一天,甲地最低温度是-15℃,乙地最低温度是15℃,甲地比乙地低___℃.12、把(+5)+(+1)-(-7)+(-3)-(+8)写成省略括号的和的形式是 。

13、海拔-200m 比-300m 高 ;从海拔200m 下降到-50m ,下降了 。

14、已知甲数是9的相反数,乙数比甲数的相反数大5,则乙数比甲数大 。

15、存折中原有750元,取出360元,又存入278元,现在存折中还有 元。

人教版七年级数学上册有理数的加减法专项综合练习题21

人教版七年级数学上册有理数的加减法专项综合练习题21

人教版七年级数学上册有理数的加减法专项综合练习题 一、计算。 1 1 (+9—)+(+2—) (+15)-(-34) (-7)-(+80) 6 3

1 1 (+—)+(-—) (+28)-(-30) (+8)-(+9) 3 3

7 1 (+—)-(+—) (+23)-(-28) (-24)-(+16) 6 6

二、计算。 (-7)-8-1-(-4) 1+(+10)-10-2+(+8)-(-9)

(+0.6)+1.6-(-1.5)+(-1.2)+1+1.6 3 1 1 5 1 —+(+—)+—+(-—)-(+—) 4 3 4 6 3 人教版七年级数学上册有理数的加减法专项综合练习题 一、计算。 1 1 (-7—)-(+7—) (-4.4)+(-17) (+5)-(-40) 2 2

1 1 (-—)+(+—) (-31)-(-7) (-1)+(+8) 2 2

1 3 (+—)+(+—) (-12)-(+24) (+26)+(-46) 3 4

二、计算。 (+10)-10-1+(-10) 4-(-5)-4-4-(+9)+(-1)

(+0.2)-0.5+(-0.8)-(+0.5)+1.8+1.4 4 4 4 4 5 —+(-—)+—+(+—)-(+—) 5 5 3 3 4 人教版七年级数学上册有理数的加减法专项综合练习题 一、计算。 1 1 (+1—)-(-8—) (-3.5)+(-7) (-0.9)+(+0.9) 5 5

3 1 (-—)+(+—) (+14)-(-50) (-1)-(-6) 5 5

5 4 (+—)-(+—) (-19)+(-2) (-2)+(-39) 4 3

二、计算。 (-7)+5+4-(-6) 7+(-6)+10+1-(+2)+(+5)

(+0.2)+1.9+(+0.7)+(-0.8)+0.4+0.9 5 3 2 6 4 —+(-—)+—-(-—)+(+—) 4 2 3 5 3 人教版七年级数学上册有理数的加减法专项综合练习题 一、计算。 1 1 (+7—)-(+8—) (+1.2)+(+3) (-8)-(-10) 8 4

人教版七年级上册数学习题课件:1.3 有理数的加减法

人教版七年级上册数学习题课件:1.3 有理数的加减法
例题3 计算: (1) -24+3.7-16-3.5+0.3; (2) 3-21-(-0.5)-(-6)-(+4).
1.3 有理数的加减法
分析
1.3 有理数的加减法
1.3 有理数的加减法
1.3 有理数的加减法
锦囊妙计 有理数的加减混合运算的步骤
(1)把加减混合运算统一成加法运算; (2)写成省略括号和加号的和的形式; (3)运用加法运算律使运算简便; (4)计算出结果.
例题6 若|x-3|与|2y-3|互为相反数, 求x+y的值.
分析 (1)互为相反数的Байду номын сангаас个数相加得0; (2)任 何一个数的绝对值是非负数. 解 依题意, 得|x-3|+|2y-3|=0, 又因为|x-3|≥0, |2y-3|≥0, 所以x-3=0, 2y-3=0,
1.3 有理数的加减法
锦囊妙计
相反数和绝对值的性质 (1)互为相反数的两个数的和为0; (2)任何一个数的绝对值是非负数, 即|a|≥0; (3)若几个非负数的和为0, 则这几个数都为0.
1.3 有理数的加减法
例题5 某产粮专业户出售余粮10袋, 每袋质 量(单位:千克)如下: 199, 201, 197, 203, 200, 195, 197, 199, 202, 196. 该产粮专业户出售 的余粮总共有多少千克?
1.3 有理数的加减法
解 以200千克为基准, 超过200千克的数记作 正数, 不足200千克的数记 作负数, 则这10袋余粮与 标准质量差值的和是 (-1)+(+1)+(-3)+(+3)+0 +(-5)+(-3)+ (-1)+(+2)+(-4)=-11. 200×10+(-11)=2000+(-11)=1989(千克). 答:该产粮专业户出售的余粮总共有1989千克.

人教版七年级上册数学有理数的减法法则测试题

人教版七年级数学测试卷(考试题)第一章 有理数1.3 有理数的加减法1.3.2 有理数的减法第1课时 有理数的减法法则l .有理数的减法法则是:减去一个数等于加上这个数的___________,用字母表示成:_______________________________2.下列括号内应填什么数?(1)(-2)-(-5)=(-2)+(______); (2)0-(-4)=0+(______);(3)(-6)-3=(-6)+(______); (4)1-(+37)=1+(______).3.温度3℃比-7℃高_______;温度-8℃比-2℃低_______.4.海拔-200m 比300m 高________;从海拔250m 下降到100m ,下降了________.5.数轴上表示数-3的点与表示数-7的点的距离为________.6.85减去1的差的相反数等于________;352-的相反数为________. 7.3--比-(-3)小________;比-5小-7的数是________;比0小-3的数是________.8.下列结论中正确的是( )A .两个有理数的和一定大于其中任何一个加数B .零加上一个数仍得这个数C .两个有理数的差一定小于被减数D .零减去一个数仍得这个数8.下列说法中错误的是( )A .减去一个负数等于加上这个数的相反数B .两个负数相减,差仍是负数C .负数减去正数,差为负数D .正数减去负数,差为正数9.下列说法中正确的是( )A .减去一个数等于加上这个数B .两个相反数相减得OC .两个数相减,差一定小于被减数D .两个数相减,差不一定小于被减数10.下列说法正确的是( )A .绝对值相等的两数差为零B .零减去一个数得这个数的相反数C .两个有理数相减,就是把它们的绝对值相减D .零减去一个数仍得这个数11.差是-7.2,被减数是0.8,减数是( )A .-8B .8C .6.4D .-6.412.若0>a ,且b a >,则b a -是( )A .正数B .正数或负数C .负数D .013.计算:(1)(-5)-(-3); (2)0-(-7); (3)(+25)-(-13); (4)(-11)-(+5); (5)12-21;(6)(-1.7)-(-2.5); (7)⎪⎭⎫ ⎝⎛--2132; (8)⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-3161; (9)()8.1546--⎪⎭⎫ ⎝⎛-.附赠材料:怎样提高做题效率一读二画三抠怎样“快而不乱”做好阅读题阅读是一个获取信息的过程,阅读质量的高低取决于捕捉信息的多少。

七年级数学上册有理数题型分类练习

七年级数学上册有理数题型分类练习类型一:正数与负数应用1.在1,0,2,-3这四个数中,最大的数是( )A.1 B.0 C.2 D.-3分析:根据正数大于0,0大于负数,可得答案.解答:解:-3<0<1<2,故选:C.2.杨梅开始采摘啦! 每框杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4框杨梅的总质量是( )A.19.7千克B.19.9千克C.20.1千克D.20.3千克分析:根据有理数的加法,可得答案.解答:解:(-0.1-0.3+0.2+0.3)+5×4=20.1(千克),故选:C.类型二:科学记数法为了市民出行更加方便,天津市政府大力发展公共交通,2013年天津市公共交通客运量约为1 608 000 000人次,将:1 608 000 000用科学记数法表示为( )A.160.8×107B.16.08×108C.1.608×109D.0.1608×1010a分析:科学记数法的表示形式为a×10n的形式,其中1≤<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时n是负数.解答:解:将:1 608 000 000用科学记数法表示为:1.608×109.故选:C.类型三:数轴的应用某人从A地出发向东走10 m,然后返回向西走3 m,又返回向东走6 m,则此人在A 地的哪个方向? 距A地多少米?分析:本题可以借助数轴来求解.以原点为A地,2 m为单位长度,向东为正方向,在数轴上表示出此人所走的路线即可确定此人最后的位置.解答:设原点为A 地,2 m 为单位长度,向东为正方向,则此人所走的路线如图所示.观察数轴可知此人在A 地的东方,距A 地13 m .类型四:绝对值与相反数应用若与互为相反数,则2a + b 的值是多少?3a -26b - 分析:因为两个数的绝对值互为相反数,所以每个数的绝对值均为0,而只有0的绝对值为0,所以a -3=0,2b -6=0,易求a ,b 的值,从而求出2a + b 的值.解答:因为≥0,≥0,且=-,3a -26b -3a -26b -所以=0,=0,3a -26b -所以a -3=0,2b -6=0,所以a =3,b =3, 所以2a +b =2×3+3=9.类型五:有理数加减法规律性问题1.观察下列等式:=1-,=-,=-,将以上三个等式两边分112⨯12123⨯1213134⨯1314别相加,得++=1-+-+-=1-=.112⨯123⨯134⨯12121313141434 由上面等式可得:(1) = ;1(1)n n + (2) 直接写出下列各式的结果: ①+++…+= ;112⨯123⨯134⨯120122013⨯ ②+++…+= ;112⨯123⨯134⨯1(1)n n + (3)计算+++…+= .124⨯146⨯168⨯120122014⨯分析:本题显然不能直接运算,注意到=1-,=-,…,可将式子拆112⨯12123⨯1213分,然后运用相应的运算律进行计算.解答:(1)-1n 11n + (2)① ② 2012201311n + (3)原式==×= .121111111124466820122014-+-+-++=⎛⎫ ⎪⎝⎭ 121122014-⎛⎫ ⎪⎝⎭50320142.有这样一组数据以a 1,a 2,a 3,…,a n ,满足以下规律:a 1=,a 2=,a 3=,…,a n =(n ≥2且n 为正整数),则a 2013的值为12111a -211a -111n a -- (结果用数字表示).分析:求出前几个数便不难发现,每三个数为一个循环组依次循环,用过2013除以3,根据商和余数的情况确定答案即可.解答:解:a 1=,a 2=,a 3==-1,a 4==,…121112-112-11(1)--12 以此类推,每三个数为一个循环组依次循环,∵2013÷3=671,∴a 2013为第671循环组的最后一个数,与a 3相同,为-1.故答案为.-1.。

人教新版初一上册数学有理数的加减法试题及答案(2)

人教新版初一上册数学有理数的加减法试题及答案(2)人教新版初一上册数学有理数的加减法试题参考答案一、选择题(共13小题)1.计算﹣10﹣8所得的结果是( )A.﹣2B.2C.18D.﹣18【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣10﹣8=﹣18.故选D.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.2.哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为( )A.5℃B.6℃C.7℃D.8℃【考点】有理数的减法.【专题】常规题型.【分析】根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案.【解答】解:28﹣21=28+(﹣21)=7,故选:C.【点评】本题考查了有理数的减法,减去一个数等于加上这个数的相反数.3.某地某天的最高气温是8℃,最低气温是﹣2℃,则该地这一天的温差是( )A.﹣10℃B.﹣6℃C.6℃D.10℃【考点】有理数的减法.【专题】计算题.【分析】用最高温度减去最低温度,然后根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:8﹣(﹣2)=8+2=10(℃).故选D.【点评】本题考查了有理数的减法运算法则,熟记减去一个数等于加上这个数的相反数是解题的关键.4.比1小2的数是( )A.3B.1C.﹣1D.﹣2【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:1﹣2=﹣1.故选C.【点评】本题考查了有理数的减法,是基础题.5.如果崇左市市区某中午的气温是37℃,到下午下降了3℃,那么下午的气温是( )A.40℃B.38℃C.36℃D.34℃【考点】有理数的减法.【专题】应用题.【分析】用中午的温度减去下降的温度,然后根据有理数的减法运算法则进行计算即可得解.【解答】解:37℃﹣3℃=34℃.故选:D.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.6.计算,正确的结果为( )A. B. C. D.【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣ =﹣ .故选D.【点评】本题考查了有理数的减法运算是基础题,熟记法则是解题的关键.7.计算:1﹣(﹣ )=( )A. B.﹣ C. D.﹣【考点】有理数的减法.【分析】根据有理数的减法法则,即可解答.【解答】解:1﹣(﹣ )=1+ = .故选:C.【点评】本题考查了有理数的减法,解决本题的关键是熟记有理数的减法法则.8.﹣2﹣1的结果是( )A.﹣1B.﹣3C.1D.3【考点】有理数的减法.【分析】根据有理数的减法法则:减去一个数等于加上这个数的相反数把原式化为加法,根据有理数的加法法则计算即可.【解答】解:﹣2﹣1=﹣2+(﹣1)=﹣3,故选:B.【点评】有本题考查的是有理数的减法法则:减去一个数等于加上这个数的相反数,掌握法则是解题的关键.9.计算2﹣3的结果是( )A.﹣5B.﹣1C.1D.5【考点】有理数的减法.【分析】减去一个数等于加上这个数的相反数,再运用加法法则求和.【解答】解:2﹣3=2+(﹣3)=﹣1.故选B.【点评】考查了有理数的减法,解决此类问题的关键是将减法转换成加法.10.桂林冬季里某一天最高气温是7℃,最低气温是﹣1℃,这一天桂林的温差是( )A.﹣8℃B.6℃C.7℃D.8℃【考点】有理数的减法.【专题】应用题.【分析】根据“温差”=最高气温﹣最低气温计算即可.【解答】解:7﹣(﹣1)=7+1=8℃.故选D.【点评】此题考查了有理数的减法,解题的关键是:明确“温差”=最高气温﹣最低气温.11.如图,这是某用户银行存折中2012年11月到2013年5月间代扣电费的相关数据,从中可以看出扣缴电费最多的一次达到( )A.147.40元B.143.17元C.144.23元D.136.83元【考点】有理数的加减混合运算;有理数大小比较.【专题】应用题.【分析】根据存折中的数据进行解答.【解答】解:根据存折中的数据得到:扣缴电费最多的一次是日期为121105,金额是147.40元.故选:A.【点评】本题考查了有理数大小比较的应用.解题的关键是学生具备一定的读图能力.12.五个城市的国际标准时间(单位:时)在数轴上表示如图所示,我市2013年初中毕业学业检测与高中阶段学校招生考试于2015年6月16日上午9时开始,此时应是(A.纽约时间2015年6月16日晚上22时B.多伦多时间2015年6月15日晚上21时C.伦敦时间2015年6月16日凌晨1时D.汉城时间2015年6月16日上午8时【考点】有理数的加减混合运算.【专题】应用题.【分析】求出两地的时差,根据北京时间求出每个地方的时间,再判断即可.【解答】解:A、∵纽约时间与北京差:8+5=13个小时,9﹣13=﹣4,∴当北京时间2015年6月16日9时,纽约时间是2015年6月15日21时,故本选项错误;B、∵多伦多时间与北京差:8+4=12个小时,9﹣12=﹣3,∴当北京时间2015年6月16日9时,纽约时间是2015年6月15日22时,故本选项错误;C、∵伦敦时间与北京差:8﹣0=8个小时,9﹣8=1,∴当北京时间2015年6月16日9时,伦敦时间是2015年6月16日1时,故本选项正确;D、∵汉城时间与北京差:9﹣8=1个小时,9+1=10,∴当北京时间2015年6月16日9时,首尔时间是2015年6月16日10时,故本选项错误;故选C.【点评】主要考查了数轴,要注意数轴上两点间的距离公式是|a ﹣b|.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.13.与﹣3的差为0的数是( )A.3B.﹣3C.D.【考点】有理数的减法.【分析】与﹣3的差为0的数就是﹣3+0,据此即可求解.【解答】解:﹣3+0=﹣3.故选B.【点评】本题考查了有理数的减法运算,正确列出式子是关键.二、填空题(共5小题)14.计算:0﹣7= ﹣7 .【考点】有理数的减法.【分析】根据有理数的减法法则进行计算即可,减去一个数等于加上这个数的相反数.【解答】解:0﹣7=﹣7;故答案为:﹣7.【点评】此题考查了有理数的减法运算,熟练掌握减法法则是本题的关键,是一道基础题,较简单.15.计算:3﹣(﹣1)= 4 .【考点】有理数的减法.【分析】先根据有理数减法法则,把减法变成加法,再根据加法法则求出结果.【解答】解:3﹣(﹣1)=3+1=4,故答案为4.【点评】本题主要考查了有理数加减法则,能理解熟记法则是解题的关键.16.计算:3﹣4= ﹣1 .【考点】有理数的减法.【分析】本题是对有理数减法的考查,减去一个数等于加上这个数的相反数.【解答】解:3﹣4=3+(﹣4)=﹣1.故答案为:﹣1.【点评】有理数的减法法则:减去一个数等于加上这个数的相反数.17.计算:2000﹣2015= ﹣15 .【考点】有理数的减法.【专题】计算题.【分析】根据有理数的减法运算进行计算即可得解.【解答】解:2000﹣2015=﹣15.故答案为:﹣15.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.18. |﹣7﹣3|= 10 .【考点】有理数的减法;绝对值.【专题】计算题.【分析】根据有理数的减法运算法则和绝对值的性质进行计算即可得解.【解答】解:|﹣7﹣3|=|﹣10|=10.故答案为:10.【点评】本题考查了有理数的减法运算法则和绝对值的性质,是基础题,熟记法则和性质是解题的关键初一数学复习指导一、多看主要是指认真阅读数学课本。

七年级数学上册有理数加减法的计算题

有理数加减法计算题_七年级数学上册有理数加减法的计算题一、选择题(共13小题)1.计算﹣10﹣8所得的结果是()A.﹣2B.2C.18D.﹣182.(2014•哈尔滨)哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为()A.5℃B.6℃C.7℃D.8℃3.某地某天的最高气温是8℃,最低气温是﹣2℃,则该地这一天的温差是()A.﹣10℃B.﹣6℃C.6℃D.10℃4.比1小2的数是()A.3B.1C.﹣1D.﹣25.如果崇左市市区某中午的气温是37℃,到下午下降了3℃,那么下午的气温是()A.40℃B.38℃C.36℃D.34℃6.计算,正确的结果为()A.B.C.D.7.计算:1﹣(﹣)=()A.B.﹣C.D.﹣8.﹣2﹣1的结果是()A.﹣1B.﹣3C.1D.39.计算2﹣3的结果是()A.﹣5B.﹣1C.1D.510.桂林冬季里某一天最高气温是7℃,最低气温是﹣1℃,这一天桂林的温差是()A.﹣8℃B.6℃C.7℃D.8℃11.如图,这是某用户银行存折中2012年11月到2013年5月间代扣电费的相关数据,从中可以看出扣缴电费最多的一次达到()A.147.40元B.143.17元C.144.23元D.136.83元12.五个城市的国际标准时间(单位:时)在数轴上表示如图所示,我市2013年初中毕业学业检测与高中阶段学校招生考试于2015年6月16日上午9时开始,此时应是A.纽约时间2015年6月16日晚上22时B.多伦多时间2015年6月15日晚上21时C.伦敦时间2015年6月16日凌晨1时D.汉城时间2015年6月16日上午8时13.与﹣3的差为0的数是()A.3B.﹣3C.D.二、填空题(共5小题)14.计算:0﹣7=.15.)计算:3﹣(﹣1)=.16.计算:3﹣4=.17.计算:2000﹣2015=.18.|﹣7﹣3|=.一、选择题(共13小题)1.计算﹣10﹣8所得的结果是()A.﹣2B.2C.18D.﹣18【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣10﹣8=﹣18.故选D.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.2.哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为()A.5℃B.6℃C.7℃D.8℃【考点】有理数的减法.【专题】常规题型.【分析】根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案.【解答】解:28﹣21=28+(﹣21)=7,故选:C.【点评】本题考查了有理数的减法,减去一个数等于加上这个数的相反数.3.某地某天的最高气温是8℃,最低气温是﹣2℃,则该地这一天的温差是()A.﹣10℃B.﹣6℃C.6℃D.10℃【考点】有理数的减法.【专题】计算题.【分析】用最高温度减去最低温度,然后根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:8﹣(﹣2)=8+2=10(℃).故选D.【点评】本题考查了有理数的减法运算法则,熟记减去一个数等于加上这个数的相反数是解题的关键.4.比1小2的数是()A.3B.1C.﹣1D.﹣2【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:1﹣2=﹣1.故选C.【点评】本题考查了有理数的减法,是基础题.5.如果崇左市市区某中午的气温是37℃,到下午下降了3℃,那么下午的气温是()A.40℃B.38℃C.36℃D.34℃【考点】有理数的减法.【专题】应用题.【分析】用中午的温度减去下降的温度,然后根据有理数的减法运算法则进行计算即可得解.【解答】解:37℃﹣3℃=34℃.故选:D.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.6.计算,正确的结果为()A.B.C.D.【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣=﹣.故选D.【点评】本题考查了有理数的减法运算是基础题,熟记法则是解题的关键.7.计算:1﹣(﹣)=()A.B.﹣C.D.﹣【考点】有理数的减法.【分析】根据有理数的减法法则,即可解答.【解答】解:1﹣(﹣)=1+=.故选:C.【点评】本题考查了有理数的减法,解决本题的关键是熟记有理数的减法法则.8.﹣2﹣1的结果是()A.﹣1B.﹣3C.1D.3【考点】有理数的减法.【分析】根据有理数的减法法则:减去一个数等于加上这个数的相反数把原式化为加法,根据有理数的加法法则计算即可.【解答】解:﹣2﹣1=﹣2+(﹣1)=﹣3,故选:B.【点评】有本题考查的是有理数的减法法则:减去一个数等于加上这个数的相反数,掌握法则是解题的关键.9.计算2﹣3的结果是()A.﹣5B.﹣1C.1D.5【考点】有理数的减法.【分析】减去一个数等于加上这个数的相反数,再运用加法法则求和.【解答】解:2﹣3=2+(﹣3)=﹣1.故选B.【点评】考查了有理数的减法,解决此类问题的关键是将减法转换成加法.10.桂林冬季里某一天最高气温是7℃,最低气温是﹣1℃,这一天桂林的温差是()A.﹣8℃B.6℃C.7℃D.8℃【考点】有理数的减法.【专题】应用题.【分析】根据“温差”=最高气温﹣最低气温计算即可.【解答】解:7﹣(﹣1)=7+1=8℃.故选D.【点评】此题考查了有理数的减法,解题的关键是:明确“温差”=最高气温﹣最低气温.11.如图,这是某用户银行存折中2012年11月到2013年5月间代扣电费的相关数据,从中可以看出扣缴电费最多的一次达到()A.147.40元B.143.17元C.144.23元D.136.83元【考点】有理数的加减混合运算;有理数大小比较.【专题】应用题.【分析】根据存折中的数据进行解答.【解答】解:根据存折中的数据得到:扣缴电费最多的一次是日期为121105,金额是147.40元.故选:A.【点评】本题考查了有理数大小比较的应用.解题的关键是学生具备一定的读图能力.12.五个城市的国际标准时间(单位:时)在数轴上表示如图所示,我市2013年初中毕业学业检测与高中阶段学校招生考试于2015年6月16日上午9时开始,此时应是(A.纽约时间2015年6月16日晚上22时B.多伦多时间2015年6月15日晚上21时C.伦敦时间2015年6月16日凌晨1时D.汉城时间2015年6月16日上午8时【考点】有理数的加减混合运算.【专题】应用题.【分析】求出两地的时差,根据北京时间求出每个地方的时间,再判断即可.【解答】解:A、∵纽约时间与北京差:8+5=13个小时,9﹣13=﹣4,∴当北京时间2015年6月16日9时,纽约时间是2015年6月15日21时,故本选项错误;B、∵多伦多时间与北京差:8+4=12个小时,9﹣12=﹣3,∴当北京时间2015年6月16日9时,纽约时间是2015年6月15日22时,故本选项错误;C、∵伦敦时间与北京差:8﹣0=8个小时,9﹣8=1,∴当北京时间2015年6月16日9时,伦敦时间是2015年6月16日1时,故本选项正确;D、∵汉城时间与北京差:9﹣8=1个小时,9+1=10,∴当北京时间2015年6月16日9时,首尔时间是2015年6月16日10时,故本选项错误;故选C.【点评】主要考查了数轴,要注意数轴上两点间的距离公式是|a ﹣b|.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.13.与﹣3的差为0的数是()A.3B.﹣3C.D.【考点】有理数的减法.【分析】与﹣3的差为0的数就是﹣3+0,据此即可求解.【解答】解:﹣3+0=﹣3.故选B.【点评】本题考查了有理数的减法运算,正确列出式子是关键.二、填空题(共5小题)14.计算:0﹣7=﹣7.【考点】有理数的减法.【分析】根据有理数的减法法则进行计算即可,减去一个数等于加上这个数的相反数.【解答】解:0﹣7=﹣7;故答案为:﹣7.【点评】此题考查了有理数的减法运算,熟练掌握减法法则是本题的关键,是一道基础题,较简单.15.计算:3﹣(﹣1)=4.【考点】有理数的减法.【分析】先根据有理数减法法则,把减法变成加法,再根据加法法则求出结果.【解答】解:3﹣(﹣1)=3+1=4,故答案为4.【点评】本题主要考查了有理数加减法则,能理解熟记法则是解题的关键.16.计算:3﹣4=﹣1.【考点】有理数的减法.【分析】本题是对有理数减法的考查,减去一个数等于加上这个数的相反数.【解答】解:3﹣4=3+(﹣4)=﹣1.故答案为:﹣1.【点评】有理数的减法法则:减去一个数等于加上这个数的相反数.17.计算:2000﹣2015=﹣15.【考点】有理数的减法.【专题】计算题.【分析】根据有理数的减法运算进行计算即可得解.【解答】解:2000﹣2015=﹣15.故答案为:﹣15.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.18.|﹣7﹣3|=10.【考点】有理数的减法;绝对值.【专题】计算题.【分析】根据有理数的减法运算法则和绝对值的性质进行计算即可得解.【解答】解:|﹣7﹣3|=|﹣10|=10.故答案为:10.【点评】本题考查了有理数的减法运算法则和绝对值的性质,是基础题,熟记法则和性质是解题的关键.看了“七年级数学上册有理数的加减法计算题”的人还看了:1.人教新版初一上册数学有理数的加减法试题及答案2.初一上册数学有理数的加减法试题及答案3.七年级数学上册2.5有理数的减法练习题4.2017七年级数学上册有理数的加减法试卷5.初一上学期有理数加减混合运算练习卷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2022-2023学年人教版七年级数学上册《1.3有理数的加减法》题型分类练习题(附答案)一.有理数的加法1.若|a|=﹣a,则a0;|x|=3.|y|=4,且x>y,则x+y=;b为正整数,且a,b满足|2a﹣4|+b=1,则a+2006b=.2.用“>”或“<”填空:(1)如果a>0,b>0,那么a+b0;(2)如果a<0,b<0,那么a+b0;(3)如果a>0,b<0,|a|>|b|,那么a+b0;(4)如果a>0,b<0,|a|<|b|,那么a+b0.3.计算(1)23+(﹣17)+6+(﹣22)(2)﹣6.35+(﹣1.4)+(﹣7.6)+5.35.4.计算题(1)﹣(﹣8)+(﹣32)+(﹣|﹣16|)+(+28)(2)0.36+(﹣7.4)+0.3+(﹣0.6)+0.64;(3)(﹣3.5)+(﹣)+(﹣)+(+)+0.75+(﹣)(4)(+17)+(﹣9)+(﹣2.25)+(﹣17.5)+(﹣10)(5)1+(﹣2)+3+(﹣4)…+2019+(﹣2020)+2021+(﹣2022)5.阅读下列第(1)题中的计算方法,再计算第(2)题中式子的值. (1)﹣+(﹣9)++(﹣3)解:原式=[(﹣5)+(﹣)]+[(﹣9)+(﹣)]+[(+17)+(+)]+[(﹣3)+(﹣)]=[(﹣5)+(﹣9)+(+17)+(﹣3)]+[(﹣)+(﹣)+(+)+(﹣)] =0+(﹣1)=﹣上面这种方法叫拆项法.仿照上述方法计算: (2)(﹣2021)+(﹣2020)+324043+(﹣)6.计算:(1)(﹣9)+15(2)(﹣18)+(+53)+(﹣53.6)+(+18)+(﹣100)7.请根据情景对话回答下面的问题:小明:这条数轴上的两个点A 、B 表示的数都是绝对值是4的数,点A 在点B 的左边; 小宇:点C 表示负整数,点D 表示正整数,且这两个数的差为3; 小智:点E 表示的数的相反数是它本身;(1)求A 、B 、C 、D 、E 五个不同的点对应的数. (2)求这五个点表示的数的和.8.如图,在数轴上,点A 向右移动1个单位得到点B ,点B 向右移动(n +1)个单位得到点C (n 为正整数),点A 、B 、C 分别表示有理数a 、b 、c(1)若a 、b 、c 这三个数的和与其中最大的数相等,则a =(2)若a、b、c这三个数中只有一个数为正数,且这三个数的和等于6,则正整数n的最小取值为多少?9.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是;(3)从下到上前35个台阶上数的和为.10.|a|=22,|b|=2022,|a+b|≠a+b,试计算a+b的值.11.若两个有理数A、B满足A+B=8,则称A、B互为“吉祥数”.如5和3就是一对“吉祥数”.回答下列问题:(1)求﹣5和2x的“吉祥数”;(2)若3x的“吉祥数”是﹣4,求x的值;(3)4|x|和9能否互为“吉祥数”?若能,请求出;若不能,请说明理由.12.王先生到市行政中心大楼办事,假定乘电梯向上一楼记作+1,向下一楼记作﹣1,王先生从1楼出发,电梯上下楼层依次记录如下(单位:层):+6,﹣3,+10,﹣8,+12,﹣7,﹣10.(1)请你通过计算说明王先生最后是否回到出发点1楼.(2)该中心大楼每层高3m,电梯每向上或下1m需要耗电0.2度,根据王先生现在所处位置,请你算算,他办事时电梯需要耗电多少度?13.某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减+5﹣2﹣4+13﹣10+16﹣9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?14.8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:1.5,﹣3,2,﹣0.5,1,﹣2,﹣2,﹣2.5,8筐白菜的总重量是多少?二.有理数的减法15.用p、m分别表示加法、减法,例如:5p6m4=5+6﹣4=7,按照以上规定,计算下列各题.(1)12m1p(﹣5)p6m3p(﹣4)(2)m1p(﹣)p|﹣2|m.16.列式计算:(1)已知甲、乙两数之和为﹣2030,其中甲数是﹣7,求乙数;(2)已知x是5的相反数,y比x小﹣7,求x与﹣y的差.17.已知x是绝对值最小的有理数,y是最大的负整数,z是最小的正整数,m的绝对值等于3,求:x﹣y﹣z+m的值.18.已知|a|=8,|b|=6.(1)若a,b同号,求a+b的值;(2)若|a﹣b|=b﹣a,求a+b的值.19.已知|a|=4,|b|=2,且|a+b|=|a|+|b|,求a﹣b的值.三.有理数的加减混合运算20.若|a|=2,|b|=3,|c|=6,|a+b|=﹣(a+b),|b+c|=b+c.计算a+b﹣c的值.21.计算:|﹣16.2|+|﹣2|+[﹣(﹣3)]﹣|10.7|22.计算题:(1)(﹣53)+(+21)﹣(﹣69)﹣(+37)(2)5.7﹣4.2﹣8.4﹣2.3+1(3)﹣(﹣12)+(+18)﹣(+37)+(﹣41)(4)(﹣1)﹣1+(﹣2)﹣(﹣3)﹣(﹣1)+4.参考答案一.有理数的加法1.解:若|a|=﹣a,则a≤0;|x|=3.|y|=4,且x>y,则x=3、y=﹣4或x=﹣3、y=﹣4,∴x+y=﹣1或﹣7;∵|2a﹣4|≥0,b为正整数,且a,b满足|2a﹣4|+b=1,所以b=1,2a﹣4=0,解得:a=2,b=1,把a=2,b=1代入a+2006b=2+2006=2008,故答案为:≤,﹣1或﹣7,2008.2.解:同号两数相加,取相同的符号,所以(1)中两数的和为正;(2)中两数的和为负;异号两数相加,取绝对值较大的加数的符号,所以(3)中两数的符号为正;(4)中两数的符号为负.故答案为:(1)>,(2)<,(3)>,(4)<.3.解:(1)23+(﹣17)+6+(﹣22)=23﹣17+6﹣22=29﹣39=﹣10;(2)﹣6.35+(﹣1.4)+(﹣7.6)+5.35=(﹣6.35+5.35)+(﹣1.4﹣7.6)=﹣1﹣9=﹣10.4.解:(1)﹣(﹣8)+(﹣32)+(﹣|﹣16|)+(+28)=8﹣32﹣16+28=36﹣48=﹣12;(2)0.36+(﹣7.4)+0.3+(﹣0.6)+0.64=(0.36+0.64)+(﹣7.4﹣0.6)+0.3=1﹣8+0.3=﹣6.7;(3)(﹣3.5)+(﹣)+(﹣)+(+)+0.75+(﹣)=(﹣3.5+)+(﹣﹣)+(﹣+0.75)=0﹣3+0=﹣3;(4)(+17)+(﹣9)+(﹣2.25)+(﹣17.5)+(﹣10)=(+17﹣2.25﹣17.5)+(﹣9﹣10)=﹣2﹣20=﹣22;(5)1+(﹣2)+3+(﹣4)…+2019+(﹣2020)+2021+(﹣2022)=(1﹣2)+(3﹣4)…+(2019﹣2020)+(2021﹣2022)=﹣1×1011=﹣1011.5.解:原式=(﹣2021)+(﹣)+(﹣2020)+(﹣)+4043++(﹣1)+(﹣),=(﹣2021﹣2020+4043﹣1)+(﹣﹣+﹣),=1﹣,=﹣.6.解:(1)(﹣9)+15=(﹣9﹣15)+[(15﹣3)﹣22.5]=﹣25+[12.5﹣22.5]=﹣25﹣10=﹣35;(2)(﹣18)+(+53)+(﹣53.6)+(+18)+(﹣100)=(﹣18+18)+(+53﹣53.6)+(﹣100)=0+0﹣100=﹣100.7.解:(1)∵点E表示的数的相反数是它本身,∴E表示0,∵A.B表示的数都是绝对值是4的数,且点A在点B左边,∴A表示﹣4,B表示4,∵点C表示负整数,点D表示正整数,且这两个数的差是3,∴若C表示﹣1,则D表示2:若C表示﹣2.则D表示1.即A、B、C、D、E五个不同的点对应的数是﹣4,4,﹣1,2,0或﹣4,4,﹣2,1,0;(2)当A、B、C、D、E五个不同的点对应的数是﹣4,4,﹣1,2,0时,这五个点表示的数的和是﹣4+4+(﹣1)+2+0=1;当A、B、C、D、E五个不同的点对应的数是﹣4,4,﹣2,1,0时,这五个点表示的数的和是﹣4+4+(﹣2)+1+0=﹣1.8.解:(1)依题意有a+(a+1)+(a+1+n+1)=a+1+n+1,解得a=﹣;(2)依题意有a+(a+1)+(a+1+n+1)=6,n=3﹣3a,∵a、b、c这三个数中只有一个数为正数,∴a+1≤0且a+1+n+1>0,则a≤﹣1且n>﹣a﹣2,即3﹣3a>﹣a﹣2,解得a≤﹣1,∴n≥6,∵n是正整数,∴正整数n的最小取值为6.故答案为:﹣.9.解:(1)由题意得前4个台阶上数的和是:﹣5+(﹣2)+1+9=3;(2)由题意得﹣2+1+9+x=3,解得:x=﹣5,则第5个台阶上的数x是﹣5;(3)由题意知台阶上的数字是每4个一循环,35÷4=8……3,∵﹣5﹣2+1+9=3.∴3×8+(﹣5)+(﹣2)+1=24﹣6=18.即从下到上前35个台阶上数的和为18.故答案为:﹣5,18.10.解:∵|a|=22,|b|=2022∴a=±22,b=±2022.∵|a+b|≠a+b,∴|a+b|=﹣(a+b),∴a+b<0.当a=22,b=﹣2022时,a+b=22+(﹣2022)=﹣2000,当a=﹣22,b=﹣2022时,a+b=(﹣22)+(﹣2022)=﹣2044,当b=2022时,不合题意,∴a+b的值为﹣2000或﹣2044.11.解:(1)根据“吉祥数”的定义可得,﹣5的吉祥数为8﹣(﹣5)=13,2x的“吉祥数”为8﹣2x,答:﹣5的吉祥数为13,2x的“吉祥数“为8﹣2x;(2)由题意得,3x﹣4=8,解得x=4,答:x的值是4;(3)不能,由题意得,4|x|+9=8,则|x|=﹣,因为任何数的绝对值都是非负数,所以4|x|和9不能互为“吉祥数”.12.解:(1)(+6)+(﹣3)+(+10)+(﹣8)+(+12)+(﹣7)+(﹣10),=6﹣3+10﹣8+12﹣7﹣10,=28﹣28,=0,∴王先生最后能回到出发点1楼;(2)王先生走过的路程是3×(|+6|+|﹣3|+|+10|+|﹣8|+|+12|+|﹣7|+|﹣10|),=3×(6+3+10+8+12+7+10),=3×56,=168(m),∴他办事时电梯需要耗电168×0.2=33.6(度).13.解:(1)超产记为正、减产记为负,所以星期四生产自行车(200+13)辆,故该厂星期四生产自行车213辆;(2)根据题意5﹣2﹣4+13﹣10+16﹣9=9,200×7+9=1409(辆),故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26(辆),故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×60+9×75=84675(元),故该厂工人这一周的工资总额是84675元.14.解:1.5+(﹣3)+2+(﹣0.5)+1+(﹣2)+(﹣2)+(﹣2.5)=[1.5+1+(﹣2.5)]+[2+(﹣2)]+[(﹣3)+(﹣2)+(﹣0.5)]=0+0+(﹣5.5)=﹣5.525×8+(﹣5.5)=194.5(千克),答:8筐白菜的总重量是194.5千克.二.有理数的减法15.解:(1)原式=12﹣1+(﹣5)+6﹣3+(﹣4)=5;(2)原式=﹣1+(﹣)+2﹣=1.16.解:(1)根据题意知乙数为﹣2030﹣(﹣7)=﹣2030+7=﹣2023;(2)根据题意知x=﹣5,y=x﹣(﹣7)=﹣5+7=2,则x﹣(﹣y)=﹣5﹣(﹣2)=﹣3.17.解:∵x是绝对值最小的有理数,∴x=0,∵y是最大的负整数,∴y=﹣1,∵z是最小的正整数,∴z=1,∵m的绝对值等于3,∴m=±3,故x﹣y﹣z+m=0+1﹣1±3=±3.18.解:∵|a|=8,|b|=6,∴a=±8,b=±6.(1)因为a,b同号,所以a=8,b=6或者a=﹣8,b=﹣6.①当a=8,b=6时a+b=14.当a=﹣8,b=﹣6时a+b=﹣14.所以,当a,b同号时a+b等于14或﹣14;(2)由题意得b>a所以a=﹣8,b=6,或者a=﹣8,b=﹣6.①当a=﹣8,b=6时,a+b=﹣2;②当a=﹣8,b=﹣6时,a+b=﹣14.所以,当|a﹣b|=b﹣a时,a+b等于﹣2或者﹣14.19.解:∵|a+b|=|a|+|b|,∴a、b同号,∵|a|=4,|b|=2,∴a=±4,b=±2,当a=4,b=2时,a﹣b=2;当a=﹣4,b=﹣2时,a﹣b=﹣2.三.有理数的加减混合运算20.解:∵|a|=2,|b|=3,|c|=6,∴a=±2,b=±3,c=±6,∵|a+b|=﹣(a+b),|b+c|=b+c,∴a+b≤0,b+c≥0,∴a=±2,b=﹣3,c=6,∴当a=2,b=﹣3,c=6时,a+b﹣c=2+(﹣3)﹣6=﹣7,a=﹣2,b=﹣3,c=6时,a+b﹣c=﹣2+(﹣3)﹣6=﹣11.21.解:|﹣16.2|+|﹣2|+[﹣(﹣3)]﹣|10.7|=16.2+2+3﹣10.7=11.5.22.解:(1)原式=﹣53+21+69﹣37=(21+69)+(﹣53﹣37)=90﹣90=0;(2)原式=(5.7+1.2)+(﹣4.2﹣8.4﹣2.3)=6.9﹣14.9=﹣8;(3)原式=12+18﹣37﹣41=30﹣78=﹣48;(4)原式=(﹣1﹣2)+(﹣1+3+1)+4=﹣4+3+4=3.。

相关文档
最新文档