函数的极值知识点及例题解析
函数单调性和求极值点、最值(知识点及相关练习)

函数单调性和求极值点、最值(知识点及相关练习)本文档将介绍函数的单调性以及如何求函数的极值点和最值。
这些概念是在研究高等数学中非常重要的一部分。
函数的单调性函数的单调性描述了函数图像在定义域内的变化趋势。
一个函数可以是递增的(单调递增),也可以是递减的(单调递减),或者在某个区间内既递增又递减。
判断函数的单调性需要观察函数的导数。
如果函数的导数恒大于零(导函数递增),则函数单调递增;如果导数恒小于零(导函数递减),则函数单调递减。
如果导数在某个区间内既大于零又小于零,则函数在该区间内既递增又递减。
下面是一些相关联系。
练题:1. 设函数 $f(x)=x^3-3x^2+2$,求 $f(x)$ 的单调区间。
- 解答:- 首先求导数:$f'(x)=3x^2-6x$- 然后求解 $f'(x)=0$ 的解,即 $3x^2-6x=0$ ,解得 $x=0, 2$- 将 $x=0$ 和 $x=2$ 代入 $f'(x)$ 的导数符号表,得到如下结果:| $x$ | $(-\infty,0)$ | $(0,2)$ | $(2,+\infty)$ |- 由上表可以看出,函数 $f(x)$ 在区间 $(-\infty, 0)$ 上递减,在区间 $(0,2)$ 上递增,而在区间 $(2,+\infty)$ 上递增,所以函数的单调区间分别为 $(-\infty, 0)$ 和 $(2,+\infty)$。
求函数的极值点和最值函数的极值点是函数某一段上的极大值或极小值点。
函数的最大值和最小值是函数在整个定义域上的最大值和最小值。
为了求函数的极值点和最值,我们需要找到函数的临界点和边界点。
- 临界点:函数定义域内导数为零或不存在的点。
- 边界点:函数定义域的端点。
对于一个函数,如果它有极值点,那么极值点一定在函数的临界点和边界点处。
下面是一些相关练。
练题:1. 设函数 $g(x)=x^3-6x^2+9x+2$,求 $g(x)$ 的极值点和最值。
导数在函数极值中的应用例题和知识点总结

导数在函数极值中的应用例题和知识点总结在数学的广袤领域中,导数作为研究函数性质的有力工具,在函数极值的求解中发挥着至关重要的作用。
理解导数与函数极值的关系,并通过实际例题进行深入剖析,有助于我们更好地掌握这一重要的数学概念和方法。
一、导数与函数极值的基本概念首先,让我们来明确一下什么是导数以及函数的极值。
导数,从几何意义上来说,它表示函数在某一点处的切线斜率。
而从代数角度看,导数反映了函数在某一点处的变化率。
函数的极值则分为极大值和极小值。
极大值是指在某个局部范围内,函数值比附近其他点的函数值都大;极小值则是在局部范围内函数值比附近其他点的函数值都小。
二、判断函数极值的必要条件若函数在某点处可导,且该点为极值点,那么在该点处的导数为零。
但需要注意的是,导数为零的点不一定是极值点,还需要进一步判断导数在该点两侧的符号。
三、通过导数判断函数极值的充分条件设函数在点处具有导数,且,那么:当在的左侧为正,右侧为负时,为极大值点;当在的左侧为负,右侧为正,为极小值点。
接下来,我们通过一些具体的例题来加深对导数在函数极值中应用的理解。
例题 1:求函数的极值。
首先,对函数求导:。
令,解得。
当时,,函数单调递增;当时,,函数单调递减。
所以为极大值点,极大值为。
例题 2:求函数在区间上的极值。
对函数求导:。
令,解得。
当时,,函数单调递减;当时,,函数单调递增。
所以为极小值点,极小值为。
通过以上两个例题,我们可以看到利用导数求函数极值的一般步骤:1、对函数求导。
2、令导数等于零,求出可能的极值点。
3、判断导数在极值点两侧的符号,确定是极大值还是极小值。
在实际应用中,我们还会遇到一些较为复杂的函数,需要综合运用各种数学方法和技巧来求解极值。
例如,对于含有参数的函数,需要对参数进行分类讨论;对于高次函数,可能需要多次求导来分析函数的单调性和极值情况。
总之,导数在函数极值的求解中是一种非常有效的方法。
通过不断的练习和总结,我们能够更加熟练地运用这一工具解决各种数学问题,提高我们的数学思维能力和解题能力。
函数的极值典例精讲

函数的极值典例精讲例1:求函数()xf x xe -=的极值.解:()()'1x x xf x e xe x e ---=-=-令()'0fx >解得:1x <()f x ∴的单调区间为:x (),1-∞1()1,+∞'()f x +-()f x 极大值()f x ∴的极大值为()11f e=,无极小值(1)求极值时由于要判定是否为极值点以及极大值或极小值,所以可考虑求函数的单调区间,进而在表格中加入一列极值点,根据单调性即可进行判断(2)在格式上有两点要求:第一推荐用表格的形式将单调区间与极值点清晰地表示出来,第二在求极值点时如果只有一个极大(或极小)值点,则需说明另一类极值点不存在例2:求函数1)1()(32+-=x x f 的极值。
解:()()2'2312fx x x =-⋅,令()'0f x >解得:0x >()f x ∴的单调区间为:x (),0-∞0()0,+∞'()f x -+()f x 极小值()f x ∴的极小值为()00f =,无极大值本题若使用()'0fx =解极值点,则1x =±也满足()'0f x =,但由于函数通过这两个点时单调性没有发生变化,故1x =±均不是极值点。
对比两个方法可以体会到求极值点归根结底还是要分析函数的单调区间例3:求函数()f x =在R 上的极值思路:利用()'f x 求出()f x 的单调区间,进而判断极值情况解:()'fx =令()'0fx >解得:()()2,02,x ∈-+∞ ()f x ∴的极小值为()()220f f -==,极大值为()0f ==例4:若函数()322f x x ax bx a =+++在1x =时有极值10,则a b +=_________思路:()'232f x x ax b =++,依题意可得:()()2'11101320f a b a f a b ⎧=+++=⎪⎨=++=⎪⎩,可解得:411a b =⎧⎨=-⎩或33a b =-⎧⎨=⎩,但是当33a b =-⎧⎨=⎩时,()()2'236331f x x x x =-+=-所以尽管()'10f =但1x =不是极值点,所以舍去。
高考数学中的函数极值问题详解

高考数学中的函数极值问题详解函数极值是高考数学考试中必考的一个知识点,也是数学经典中的基础概念之一。
对于几乎所有的数学应用问题,都可以抽象出一个函数模型,因此函数极值的研究具有很高的实用性和理论意义。
本文将详细解析高考数学中的函数极值问题,包括一元函数和多元函数两种情况。
一、一元函数1. 什么是函数极值在一元函数的定义域内,若存在一点x0,使得它的函数值f(x0)不小于(或不大于)其它点的函数值,那么称f(x0)为函数的一个极大值(或极小值),x0称为极值点。
如下图所示,函数f(x)在x=a处达到极大值,x=b处达到极小值。
(图片来源于B站UP主@水良之家)2. 极值的判定方法(1)导数法对于一元函数f(x),其导数f'(x)能够反映函数的增减性和变化趋势,因此使用导数来判断函数的极值是一种比较常见的方法。
具体来说,求出函数的导数,并令导数为0,求解其值即可得到原函数的极值点。
若导数为0的点是可导的,则它一定是极值点。
若导数为0的点不可导,则需要用单侧极限来进行讨论。
下面是一个例题:已知函数f(x)=x³-3x在区间[-2,2]上的驻点和极值点,试求f(x)的极值。
解:首先求导,得到f'(x)=3x²-3,令其为0,则得到x=±1又由于f(x)在-2,1,2处是可导的,因此极值点分别为x=-1,x=1。
在x=-2处不是极值点,它是函数f(x)的最小值点。
(2)二阶导数法在一元函数的定义域内,若f'(x0)=0且f''(x0)>0,说明在x0处函数的单调性发生了变化,由单调减变为单调增,因此x0就是函数的一个极小值点。
反之若f'(x0)=0且f''(x0)<0,则x0为函数的一个极大值点。
在使用这种方法时需要注意,函数的二阶导数f''(x)在某些情况下可能不存在,此时不能使用该方法来判定函数的极值。
导数与函数的极值、最值问题(解析版)

【高考地位】导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】类型一利用导数研究函数的极值使用情景:一般函数类型解题模板:第一步计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ;第二步求方程'()0f x =的根;第三步判断'()f x 在方程的根的左、右两侧值的符号; 第四步利用结论写出极值.例1已知函数x xx f ln 1)(+=,求函数()f x 的极值. 【答案】极小值为1,无极大值.【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于() A .11或18B .11C .18D .17或18 【答案】C 【解析】试题分析:b ax x x f ++='23)(2,⎩⎨⎧=+++=++∴1010232a b a b a ⎩⎨⎧-==⇒⎩⎨⎧=----=⇒114012232b a a a a b 或⎩⎨⎧=-=33b a .?当⎩⎨⎧=-=33b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值.?当⎩⎨⎧-==114b a 时,)1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,311(<'-∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意.所以⎩⎨⎧-==114b a .181622168)2(=+-+=∴f .故选C .考点:函数的单调性与极值.【变式演练2】设函数()21ln 2f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为()A .()1,0-B .()1,-+∞C .()0,+∞D .()(),10,-∞-+∞【答案】B 【解析】考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2131)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】试题分析:因为x m x m x x f )1(2)1(2131)(23-++-=, 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为函数x m x m x x f )1(2)1(2131)(23-++-=在)4,0(上无极值,而()20,4∈,所以只有12m -=,3m =时,()f x 在R 上单调,才合题意,故答案为3.考点:1、利用导数研究函数的极值;2、利用导数研究函数的单调性.【变式演练4】已知等比数列{}n a 的前n 项和为12n n S k -=+,则32()21f x x kx x =--+的极大值为() A .2B .52C .3D .72【答案】B 【解析】考点:1、等比数列的性质;2、利用导数研究函数的单调性及极值.【变式演练5】设函数32()(1)f x x a x ax =+++有两个不同的极值点1x ,2x ,且对不等式12()()0f x f x +≤恒成立,则实数a 的取值范围是.【答案】1(,1],22⎡⎤-∞-⎢⎥⎣⎦【解析】试题分析:因为12()()0f x f x +≤,故得不等式()()()332212121210x x a x x a x x ++++++≤,即()()()()()221212121212123120x x x x x x a x x x x a x x ⎡⎤⎡⎤++-+++-++≤⎣⎦⎣⎦,由于()()2'321f x x a x a =+++,令()'0f x =得方程()23210x a x a +++=,因()2410a a ∆=-+>,故()12122133x x a a x x ⎧+=-+⎪⎪⎨⎪=⎪⎩,代入前面不等式,并化简得()1a +()22520a a -+≥,解不等式得1a ≤-或122a ≤≤,因此,当1a ≤-或122a ≤≤时,不等式()()120f x f x +≤成立,故答案为1(,1],22⎡⎤-∞-⎢⎥⎣⎦.考点:1、利用导数研究函数的极值点;2、韦达定理及高次不等式的解法.【变式演练6】已知函数()()3220f x x ax x a =+++>的极大值点和极小值点都在区间()1,1-内,则实数a 的取值范围是.2a << 【解析】考点:导数与极值.类型二求函数在闭区间上的最值使用情景:一般函数类型解题模板:第一步求出函数()f x 在开区间(,)a b 内所有极值点;第二步计算函数()f x 在极值点和端点的函数值;第三步比较其大小关系,其中最大的一个为最大值,最小的一个为最小值.例2若函数()2x f x e x mx =+-,在点()()1,1f 处的斜率为1e +. (1)求实数m 的值;(2)求函数()f x 在区间[]1,1-上的最大值. 【答案】(1)1m =;(2)()max f x e =. 【解析】试题分析:(1)由(1)1f e '=-解之即可;(2)()21x f x e x '=+-为递增函数且()()1110,130f e f e -''=+>-=-<,所以在区间(1,1)-上存在0x 使0()0f x '=,所以函数在区间0[1,]x -上单调递减,在区间0[,1]x 上单调递增,所以()()(){}max max 1,1f x f f =-,求之即可.试题解析:(1)()2x f x e x m '=+-,∴()12f e m '=+-,即21e m e +-=+,解得1m =; 实数m 的值为1;(2)()21x f x e x '=+-为递增函数,∴()()1110,130f e f e -''=+>-=-<,存在[]01,1x ∈-,使得()00f x '=,所以()()(){}max max 1,1f x f f =-,()()112,1f e f e --=+=,∴()()max 1f x f e ==考点:1.导数的几何意义;2.导数与函数的单调性、最值.【名师点睛】本题考查导数的几何意义、导数与函数的单调性、最值等问题,属中档题;导数的几何意义是拇年高考的必考内容,考查题型有选择题、填空题,也常出现在解答题的第(1)问中,难度偏小,属中低档题,常有以下几个命题角度:已知切点求切线方程、已知切线方程(或斜率)求切点或曲线方程、已知曲线求切线倾斜角的范围. 【变式演练7】已知xe x xf 1)(+=. (1)求函数)(x f y =最值;(2)若))(()(2121x x x f x f ≠=,求证:021>+x x .【答案】(1))(x f 取最大值1)0()(max -==f x f ,无最小值;(2)详见解析. 【解析】试题解析:(1)对)(x f 求导可得x x x x e xe e x e xf -=+-='2)1()(, 令0)(=-='x exx f 得x=0. 当)0,(-∞∈x 时,0)(>'x f ,函数)(x f 单调递增; 当),0(+∞∈x 时,0)(<'x f ,函数)(x f 单调递减, 当x=0时,)(x f 取最大值1)0()(max -==f x f ,无最小值. (2)不妨设21x x <,由(1)得当)0,(-∞∈x 时,0)(>'x f ,函数)(x f 单调递增;当),0(+∞∈x 时,0)(<'x f ,函数)(x f 单调递减, 若)()(21x f x f =,则210x x <<,考点:1.导数与函数的最值;2.导数与不等式的证明. 【变式演练7】已知函数()ln f x x x =,2()2g x x ax =-+-. (Ⅰ)求函数()f x 在[,2](0)t t t +>上的最小值;(Ⅱ)若函数()()y f x g x =+有两个不同的极值点1212,()x x x x <且21ln 2x x ->,求实数a 的取值范围.【答案】(Ⅰ)min110()1ln ,t e ef x t t t e ⎧-<<⎪⎪∴=⎨⎪≥⎪⎩,;(Ⅱ)2ln 2ln 2ln()133a >--. 【解析】试题分析:(Ⅰ)由'()ln 10f x x =+=,得极值点为1x e =,分情况讨论10t e <<及1t e≥时,函数)(x f 的最小值;(Ⅱ)当函数()()y f x g x =+有两个不同的极值点,即'ln 210y x x a =-++=有两个不同的实根1212,()x x x x <,问题等价于直线y a =与函数()ln 21G x x x =-+-的图象有两个不同的交点,由)(x G 单调性结合函数图象可知当min 1()()ln 22a G x G >==时,12,x x 存在,且21x x -的值随着a 的增大而增大,而当21ln 2x x -=时,由题意1122ln 210ln 210x x a x x a -++=⎧⎨-++=⎩,214x x ∴=代入上述方程可得2144ln 23x x ==,此时实数a 的取值范围为2ln 2ln 2ln()133a >--.试题解析:(Ⅰ)由'()ln 10f x x =+=,可得1x e=,∴①10t e <<时,函数()f x 在1(,)t e 上单调递减,在1(,2)t e+上单调递增,∴函数()f x 在[,2](0)t t t +>上的最小值为11()f e e=-,②当1t e≥时,()f x 在[,2]t t +上单调递增,min ()()ln f x f t t t ∴==,min110()1ln ,t e ef x t t t e ⎧-<<⎪⎪∴=⎨⎪≥⎪⎩,; 两式相减可得1122ln2()2ln 2x x x x =-=- 214x x ∴=代入上述方程可得2144ln 23x x ==,此时2ln 2ln 2ln()133a =--,所以,实数a 的取值范围为2ln 2ln 2ln()133a >--;考点:导数的应用.【变式演练8】设函数()ln 1f x x =+. (1)已知函数()()2131424F x f x x x =+-+,求()F x 的极值; (2)已知函数()()()()2210G x f x ax a x a a =+-++>,若存在实数()2,3m ∈,使得当(]0,x m ∈时,函数()G x 的最大值为()G m ,求实数a 的取值范围.【答案】(1)极大值为0,极小值为3ln 24-;(2)()1ln 2,-+∞.【解析】()(),'F x F x 随x 的变化如下表:当1x =时,函数()F x 取得极大值()10F =;当2x =时,函数()F x 取得极小值()32ln 24F =-.③当112a <,即12a <时,函数()f x 在10,2a ⎛⎫ ⎪⎝⎭和()1,+∞上单调递增,在1,12a ⎛⎫⎪⎝⎭上单调递减,要存在实数()2,3x ∈,使得当(]0,x m ∈时,函数()G x 的最大值为()G m ,则()122G G a ⎛⎫< ⎪⎝⎭,代入化简得()()1ln 2ln 2104a a ++->*.令()()11ln 2ln 2142g a a a a ⎛⎫=++-> ⎪⎝⎭,因()11'104g a a a ⎛⎫=-> ⎪⎝⎭恒成立,故恒有()111ln 20,222g a g a ⎛⎫>=->∴> ⎪⎝⎭时,()*式恒成立;综上,实数a 的取值范围是()1ln 2,-+∞.考点:函数导数与不等式. 【高考再现】1.【2016高考新课标1卷】(本小题满分12分)已知函数()()()221x f x x e a x =-+-有两个零点.(I)求a 的取值范围;(II)设x 1,x 2是()f x 的两个零点,证明:122x x +<. 【答案】(0,)+∞试题解析;(Ⅰ)'()(1)2(1)(1)(2)x x f x x e a x x e a =-+-=-+. (i )设0a =,则()(2)x f x x e =-,()f x 只有一个零点.(ii )设0a >,则当(,1)x ∈-∞时,'()0f x <;当(1,)x ∈+∞时,'()0f x >.所以()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增.又(1)f e =-,(2)f a =,取b 满足0b <且ln2ab <,则 223()(2)(1)()022a fb b a b a b b >-+-=->, 故()f x 存在两个零点.(iii )设0a <,由'()0f x =得1x =或ln(2)x a =-.若2ea ≥-,则ln(2)1a -≤,故当(1,)x ∈+∞时,'()0f x >,因此()f x 在(1,)+∞上单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点.若2ea <-,则ln(2)1a ->,故当(1,ln(2))x a ∈-时,'()0f x <;当(ln(2),)x a ∈-+∞时,'()0f x >.因此()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点.综上,a 的取值范围为(0,)+∞.(Ⅱ)不妨设12x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,()f x 在(,1)-∞上单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<.由于222222(2)(1)x f x x e a x --=-+-,而22222()(2)(1)0x f x x e a x =-+-=,所以222222(2)(2)x x f x x e x e --=---.设2()(2)x x g x xe x e -=---,则2'()(1)()x x g x x e e -=--. 所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <. 从而22()(2)0g x f x =-<,故122x x +<. 考点:导数及其应用2.【2016高考山东理数】(本小题满分13分) 已知()221()ln ,R x f x a x x a x -=-+∈. (I )讨论()f x 的单调性;(II )当1a =时,证明()3()'2f x f x +>对于任意的[]1,2x ∈成立.【答案】(Ⅰ)见解析;(Ⅱ)见解析 【解析】试题分析:(Ⅰ)求()f x 的导函数,对a 进行分类讨论,求()f x 的单调性;(Ⅱ)要证()3()'2f x f x +>对于任意的[]1,2x ∈成立,即证23)()(/>-x f x f ,根据单调性求解.(1)20<<a ,12>a, 当)1,0(∈x 或x ∈),2(+∞a时,0)(/>x f ,)(x f 单调递增; 当x ∈)2,1(a时,0)(/<x f ,)(x f 单调递减; (2)2=a 时,12=a,在x ∈),0(+∞内,0)(/≥x f ,)(x f 单调递增; (3)2>a 时,120<<a, 当)2,0(ax ∈或x ∈),1(+∞时,0)(/>x f ,)(x f 单调递增;当x ∈)1,2(a时,0)(/<x f ,)(x f 单调递减. 综上所述,(Ⅱ)由(Ⅰ)知,1=a 时,23312ln 1x x x x x=-++--,]2,1[∈x , 令1213)(,ln )(32--+=-=xx x x h x x x g ,]2,1[∈x . 则)()()()(/x h x g x f x f +=-, 由01)(/≥-=xx x g 可得1)1()(=≥g x g ,当且仅当1=x 时取得等号. 又24326'()x x h x x--+=, 设623)(2+--=x x x ϕ,则)(x ϕ在x ∈]2,1[单调递减,因为10)2(,1)1(-==ϕϕ,考点:1.应用导数研究函数的单调性、极值;2.分类讨论思想.【名师点睛】本题主要考查导数的计算、应用导数研究函数的单调性与极值、分类讨论思想.本题覆盖面广,对考生计算能力要求较高,是一道难题.解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当,或因复杂式子变形能力差,而错漏百出.本题能较好的考查考生的逻辑思维能力、基本计算能力、分类讨论思想等.3.【2016高考江苏卷】(本小题满分16分)已知函数()(0,0,1,1)x x f x a b a b a b =+>>≠≠.设12,2a b ==. (1)求方程()2f x =的根;(2)若对任意x R ∈,不等式(2)f()6f x m x ≥-恒成立,求实数m 的最大值;(3)若01,1a b <<>,函数()()2g x f x =-有且只有1个零点,求ab 的值。
极值点偏移四种题型的解法及例题

极值点偏移是高中数学中的一个重要概念,也是学生们比较头疼的一个知识点。
在解决数学问题时,我们经常会遇到一些与极值点有关的题型,比如函数的极值问题、优化问题等。
而在解决这些问题时,极值点偏移方法是一种非常实用的解题技巧。
本文将从四种题型出发,对极值点偏移方法进行详细解析,并结合具体例题进行说明。
1. 函数的极值问题函数的极值问题是高中数学中的一个重要内容。
在解决这类问题时,我们常常会用到导数的概念,来求函数的极值点。
但有些情况下,我们可以通过极值点偏移方法更快地得到函数的极值点。
比如对于一些简单的函数,通过极值点的平移和对称性,可以用更简洁的方法求得函数的极值点。
举例说明:已知函数 $f(x)=x^3-3x^2+2$,求 $f(x)$ 的极值点。
解:求导得 $f'(x)=3x^2-6x$。
令导数为零,得到 $x=0$ 或 $x=2$。
根据导数的符号,可知 $x=0$ 是极小值点,$x=2$ 是极大值点。
但通过极值点偏移方法,我们可以发现,当 $x=0$ 时,$f(x)=2$;而当$x=2$ 时,$f(x)=2$。
也就是说,极小值点 $x=0$ 对应的函数值和极大值点 $x=2$ 对应的函数值相等。
这就是极值点偏移的思想。
2. 优化问题优化问题是数学建模中常见的类型之一,也是考察学生综合运用数学知识解决实际问题的一种形式。
当我们遇到优化问题时,常常需要求解函数的极值点。
而极值点偏移方法可以帮助我们更快地找到函数的极值点,从而解决优化问题。
举例说明:一块长为20厘米的铁皮,可以做成一个底面积为 $x cm^2$ 的正方形盒子和一个底面积为 $y cm^2$ 的开口放平盒子,求怎样分割这块铁皮才能使总体积最大。
解:设正方形盒子的边长为 $a$,开口朝下的放平矩形盒子的底边长为 $b$,高为 $h$。
则根据题意可知,$b=a+2h$,且 $x=a^2$,$y=bh$。
问题转化为求 $x+y$ 的最大值。
《函数的极值与最值》课件
在经济学中,很多问题涉及到成本和收益的权衡 ,这些问题的解决往往需要利用极值的概念。
3
物理现象解释
在物理学中,很多现象可以用极值的概念来解释 ,如物体运动的轨迹、电流的分布等。
05
习题与解答
习题
判断题
如果函数在某点的导数大于0,则该点为函数的极小值点。()
选择题
函数f(x)在x=2处取得极大值,则f''(2)()
学习目标
01 掌握函数极值和最值的定义、性质和求解方法。 02 理解极值与最值在实际问题中的应用,提高解决
实际问题的能力。
03 通过案例分析和练习,加深对极值与最值概念的 理解和掌握。
02
函数的极值
极值的定义
极值
函数在某点的值比其邻域内的任 何点的值都大或都小,则称该点 为函数的极值点,函数在该点的 值为极值。
表格法
通过列表比较函数的一阶导数、二阶导数和函数值的 变化趋势,确定极值点。
极值的求法
求解一阶导数
首先求出函数的一阶导数。
判断单调性
根据一阶导数的符号变化,判断函数的单调性。
寻找极值点
在单调性变化的点处寻找极值点。
验证
通过比较极值点附近函数值的凹凸性,验证所找到的极值点是否正确。
03
函数的最值
最值的定义
《函数的极值与最 值》ppt课件
目 录
• 引言 • 函数的极值 • 函数的最值 • 极值与最值的比较与联系 • 习题与解答
01
引言
主题介绍
函数极值与最值的概念
介绍函数极值和最值的定义,以及它 们在数学和实际应用中的重要性。
极值与最值的区别
阐述极值和最值的不同之处,包括定 义、性质和求解方法等。
导数在函数极值中的应用例题和知识点总结
导数在函数极值中的应用例题和知识点总结在数学的广袤天地中,导数无疑是一座连接函数性质与实际应用的重要桥梁。
而在函数的研究中,极值问题又占据着关键地位。
通过导数来求解函数的极值,不仅能让我们更深入地理解函数的变化规律,还能为解决实际问题提供有力的工具。
接下来,我们将通过具体的例题和详细的知识点总结,来探讨导数在函数极值中的应用。
一、知识点回顾1、导数的定义函数\(y = f(x)\)在\(x = x_0\)处的导数\(f'(x_0)\)定义为:\(f'(x_0) =\lim_{\Delta x \to 0} \frac{f(x_0 +\Delta x) f(x_0)}{\Delta x}\)2、导数的几何意义导数\(f'(x_0)\)表示函数\(y = f(x)\)在\(x = x_0\)处的切线斜率。
3、函数的单调性与导数的关系若\(f'(x) > 0\),则函数\(f(x)\)在区间内单调递增;若\(f'(x) < 0\),则函数\(f(x)\)在区间内单调递减。
4、函数的极值设函数\(f(x)\)在\(x_0\)处可导,且在\(x_0\)处附近左增右减,则\(x_0\)为函数的极大值点,\(f(x_0)\)为极大值;若在\(x_0\)处附近左减右增,则\(x_0\)为函数的极小值点,\(f(x_0)\)为极小值。
5、求函数极值的步骤(1)求导数\(f'(x)\);(2)解方程\(f'(x) = 0\),求出函数的驻点;(3)分析驻点左右两侧导数的符号,确定极值点;(4)将极值点代入函数,求出极值。
二、例题讲解例 1:求函数\(f(x) = x^3 3x^2 + 1\)的极值。
解:首先,对函数求导:\(f'(x) = 3x^2 6x\)令\(f'(x) = 0\),即\(3x^2 6x = 0\),解得\(x = 0\)或\(x = 2\)当\(x < 0\)时,\(f'(x) > 0\),函数单调递增;当\(0 < x < 2\)时,\(f'(x) < 0\),函数单调递减;当\(x > 2\)时,\(f'(x) > 0\),函数单调递增。
高中数学必修二:函数极值与最值习题解析
高中数学必修二:函数极值与最值习题解析函数极值和最值是高中数学中一个重要的概念和知识点,在解析这一内容之前,我们首先要明确什么是函数极值和最值。
函数的极值包括两种情况,一种是函数在某一区间内取得最大值或最小值,另一种是函数在某一点处取得最大值或最小值。
函数的最值则是针对整个定义域内的最大值或者最小值。
在解析函数极值和最值的相关习题时,我们可以根据题目的要求,使用不同的方法来求解。
下面我们将通过一些常见的习题来进行解析。
【习题一】已知函数$f(x)=x^3-6x^2+9x+2$,求函数$f(x)$在区间[-2, 4]上的极值和最值。
解析:首先我们需要求 $f'(x)$ ,将函数$f(x)$对$x$求导得:$f'(x)=3x^2-12x+9$为了求得函数$f(x)$在区间[-2, 4]上的极值点,我们需要将导函数$f'(x)$等于零,并求解方程:$3x^2-12x+9=0$将方程进行因式分解,得到:$(x-3)(x-1)=0$解得$x=3$或$x=1$。
将$x=3$和$x=1$代入原函数$f(x)$中,可以得到两个函数值:$f(3)=20$ 和 $f(1)=6$因此,函数$f(x)$在区间[-2, 4]上的极小值为6,极大值为20。
对于最值的求解,我们可以直接将区间[-2, 4]的端点分别代入函数$f(x)$中,求得函数值,并和极值进行比较。
$f(-2)=-12$, $f(4)=66$综上所述,函数$f(x)$在区间[-2, 4]上的最小值为-12,最大值为66。
【习题二】已知函数$g(x)=x^3-9x^2+24x$,求函数$g(x)$的最小值和最大值所对应的$x$的值。
解析:首先我们需要求函数$g(x)$的导函数$g'(x)$,将函数$g(x)$对$x$求导得:$g'(x)=3x^2-18x+24$为了求得函数$g(x)$的极值点,我们需要将导函数$g'(x)$等于零,并求解方程:$3x^2-18x+24=0$将方程进行因式分解,得到:$(x-4)(x-2)=0$解得$x=4$或$x=2$。
第十讲导数与函数的极值、最值解析版
第十讲:导数与函数的极值、最值【考点梳理】 1.极值点与极值 (1)极小值点与极小值若函数()y f x =在点x a =的函数值()f a 比它在点x a =附近其他点的函数值都小,()0f a '=,而且在点x a =附近的左侧()0f x '<,右侧()0f x '>,就把a 叫做函数()y f x =的极小值点,()f a 叫做函数()y f x =的极小值.(2)极大值点与极大值若函数()y f x =在点x b =的函数值()f b 比它在点x b =附近其他点的函数值都大,()0f b '=,而且在点x b =附近的左侧()0f x '>,右侧()0f x '<,就把b 叫做函数()y f x =的极大值点,()f b 叫做函数()y f x =的极大值.(3)极大值点、极小值点统称为极值点;极大值、极小值统称为极值 . 特别提醒: (1)0()0f x '=,x 不一定是极值点(2)只有0()0f x '=且x 两侧单调性不同 ,x 才是极值点.(3)求极值点,可以先求0()0f x '=的点,再列表判断单调性.2.求函数极值(极大值,极小值)的一般步骤: (1)确定函数的定义域 (2)求方程0()0f x '=的根(3)用方程0()0f x '=的根,顺次将函数的定义域分成若干个开区间,并列成表格(4)由()f x '在方程()0f x '=的根左右的符号,来判断()y f x =在这个根处取极值的情况若0()f x '左正右负,则0()f x 为极大值; 若 0()f x '左负右正,则0()f x 为极小值; 若 0()f x '左右同号,则0()f x 无极值。
3.最大值:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I∈,使得0()f x M=那么,称M 是函数()y f x =的最大值 4.最小值:一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足: (1)对于任意的x I ∈,都有()f x m ≥; (2)存在0x I∈,使得0()f x m=那么,称m 是函数()y f x =的最小值 【典型题型讲解】考点一:求函数的极值与极值点【典例例题】例1.(2021·广东汕头·高三期末)已知函数()ln f x x =,2()1g x x x =-+. (1)求函数()()()h x f x g x =-的极值;(2)证明:有且只有两条直线与函数()f x ,()g x 的图象都相切. 【详解】(1)2()()()ln 1h x f x g x x x x =-=-+-的定义域为(0,)+∞,且2121(1)(21)()21x x x x h x x x x x -++-+'=-+==-, 当01x <<时,()0h x '>;当1x >时,()0h x '<, 所以()h x 在(0,1)上单调递增,在(1,)+∞上单调递减, 所以1x =是()h x 的极大值点,故()h x 的极大值为(1)1h =-,没有极小值.(2)设直线l 分别切()f x ,()g x 的图象于点()11,ln x x ,()2222,1x x x -+,由()ln f x x =可得1()f x x'=,得l 的方程为()1111ln y x x x x -=-, 即l :111ln 1y x x x =⋅+-; 由2()1g x x x =-+可得()21g x x '=-,得l 的方程()()()22222121y x x x x x --+=--,即l :()222211y x x x =--+.比较l 的方程,得21212121ln 11x x x x ⎧=-⎪⎨⎪-=-+⎩,消去2x ,得()211211ln 204x x x++-=.令22(1)()ln 24x F x x x +=+-(0x >),则3311(21)(1)()22x x x F x x x x ++-'=-=. 当01x <<时,()0F x '<;当1x >时,()0F x '>, 所以()F x 在(0,1)上单调递减,在(1,)+∞上单调递增, 所以min ()(1)10F x F ==-<. 因为()()()222222441e 1e e ln e 204e4eF ++=+-=>,所以()F x 在(1,)+∞上有一个零点;由2117()ln 244F x x x x =++-,得()24242e e 7e 4e 7e 2024424F ---=-++-=+>, 所以()F x 在(0,1)上有一个零点,所以()F x 在(0,)+∞上有两个零点, 故有且只有两条直线与函数()f x ,()g x 的图象都相切.例2.已知函数ln()()eln (e 2.71828ax f x x x=-=……自然对数底数). (1)当e a =时,求函数f (x )的单调区间; (2)当e a >时,(i )证明:()f x 存在唯一的极值点: (ii )证明:()(1)e f x a <- 【答案】 (1)21ln()e ()ax xf x x --'=,构建()1ln()e x ax x ϕ=--当e a =时,则()1ln(e )e x x x ϕ=--在()0,∞+上单调递减,且1()0eϕ=当10,e ⎛⎫∈ ⎪⎝⎭x 时,()0x ϕ>,当1,e x ⎛⎫∈+∞ ⎪⎝⎭时,()0x ϕ<则函数()f x 的单调递增区间为10,e ⎛⎫ ⎪⎝⎭,单调递减区间为1,e ⎛⎫+∞ ⎪⎝⎭(2)(i )由(1)可知:当e a >时,()ϕx 在()0,∞+上单调递减11e ()1ln 0,()10e a a aϕϕ=-<=-> ∴()ϕx 在()0,∞+内存在唯一的零点011,e x a ⎛⎫∈ ⎪⎝⎭当()00,x x ∈时,()0x ϕ>,当()0,x x ∈+∞时,()0x ϕ< 则函数()f x 的单调递增区间为()00,x ,单调递减区间为()0,x +∞ ∴()f x 存在唯一的极值点0x (ii )由(i )可知:0000ln(())el (n )x f x f x x x a -≤=∴001ln()e 0ax x --=,即001e ln()x ax -=000000ln()e 1)e (ln eln x f x x x x x a ==---,且011,e x a ⎛⎫∈ ⎪⎝⎭ ∴()el e 1n g x x x --=在11,e a ⎛⎫⎪⎝⎭单调递减 则()1eln e g x g a a a ⎛⎫<=+- ⎪⎝⎭构建()()()e 1eln e x h x x x =-->,则()()e 1e 0x xh x -'-=>当e x >时恒成立则()h x 在()e,+∞上单调递增,则()()()e e 20e h x h ≥=-> 则()()e 1eln e e x x x x ->+->,即()1e eln e a a a ->+- ∴()(1)e f x a <-【方法技巧与总结】1.在求函数极值问题中,一定要检验方程()0f x '=根左右的符号,更要注意变号后极大值与极小值是否与已知有矛盾.2.原函数出现极值时,导函数正处于零点,归纳起来一句话:原极导零.这个零点必须穿越x 轴,否则不是极值点.判断口诀:从左往右找穿越(导函数与x 轴的交点);上坡低头找极小,下坡抬头找极大. 【变式训练】1.(2022·广东汕头·一模)已知函数()()1e x f x x ax =--(R a ∈且a 为常数).(1)讨论函数()f x 的极值点个数;(2)若()ln e 1xf x x ≥-+对任意的()0,x ∈+∞恒成立,求实数a 的取值范围.【答案】 (1)解:函数()f x 的定义域为R ,则()e xf x x a '=-.令()e xg x x a =-,则()()1e x g x x +'=,由()0g x '=,可得=1x -,列表如下:所以,()()min 11eg x g a =-=--.∴当10e a --≥时,即当1a e≤-时,对任意的R x ∈,()0f x '≥且()f x '不恒为零,此时函数()f x 在R 上单调递增,则函数()f x 无极值点;∴当1a >-时,令()e xh x x =,则()()1e x h x x '=+,由()0h x '=,可得=1x -,列表如下:且当0x <时,()e 0x h x x =<;当0x >时,()e 0xh x x =>.作出函数()h x 与函数y a =的图象如下图所示:(i )当10ea -<<时,直线y a =与函数()h x 的图象有两个交点,设这两个交点的横坐标分别为1x 、2x ,且12x x <,由图可知,当1x x <或2x x >时,()e 0x f x x a '=->;当12x x x <<时,()e 0xf x x a ='-<.此时,函数()f x 有2个极值点;(ii )当0a ≥时,由图可知,直线y a =与函数()h x 的图象有一个交点,设其横坐标为0x ,且00x ≥,当0x x <时,()e 0x f x x a ='-<;当0x x >时,()e 0xf x x a '=->.此时函数()f x 只有1个极值点.综上所述,当1a e ≤-时,函数()f x 无极值点;当10ea -<<时,函数()f x 有2个极值点;当0a ≥时,函数()f x 只有1个极值点. (2)解:不等式()ln e 1xf x x ≥-+对任意的()0,x ∈+∞恒成立,等价于e ln 1x x x ax --≥对任意的()0,x ∈+∞恒成立,所以,ln 1e xx a x+≤-对任意的()0,x ∈+∞恒成立, 令()ln 1e xx F x x +=-,其中()0,x ∈+∞,则()222ln e ln e x xx x x F x x x +'=+=,令()2e ln x x x x ϕ=+,其中()0,x ∈+∞,则()()212e 0xx x x xϕ'=++>对任意的()0,x ∈+∞恒成立, 所以,函数()x ϕ在()0,∞+上单调递增,因为12e 1e 10e ϕ-⎛⎫=-< ⎪⎝⎭,()1e 0ϕ=>,故存在1,1e t ⎛⎫∈ ⎪⎝⎭,使得()2e ln 0tt t t ϕ=+=,当0x t <<时,()0F x '<,此时函数()F x 单调递减,当x t >时,()0F x '>,此时函数()F x 单调递增,所以,()()min ln 1e tt F x F t t+==-, 因为2e ln t t t =-,则ln ln e ln e tt t t t t -=-=-⋅,因为1,1e t ⎛⎫∈ ⎪⎝⎭,则()ln 0,1t -∈, 因为函数()e xh x x =在()0,∞+上单调递增,由ln e ln e t t t t -=-⋅可得()()ln h t h t =-,故ln t t =-,可得1e tt=,所以,()()min ln 111e 1tt t F x F t t t t+-+==-=-=,故1a ≤. 2.函数()sin cos f x x x x =--.(1)求函数()f x 在(),2ππ-上的极值;(2)证明:()()ln F x f x x =-有两个零点. 【答案】(1)极大值,12π-;极小值,1-;(1)∴()sin cos f x x x x =--,∴()1cos sin 14f x x x x π⎛⎫=-+=+' ⎪⎝⎭,,2x ππ⎛⎫∈- ⎪⎝⎭,由()0f x '=,可得2x π=-,或0x =, ∴,2x ππ⎛⎫∈-- ⎪⎝⎭,()()0,f x f x '>单调递增,,02x π⎛⎫∈- ⎪⎝⎭,()()0,f x f x '<单调递减,0,2x π⎛⎫∈ ⎪⎝⎭,()()0,f x f x '>单调递增,∴2x π=-时,函数()f x 有极大值()122f ππ-=-,0x =时,函数()f x 有极小值(0)1f =-; (2)∴()()ln sin cos ln ,0F x f x x x x x x x =-=--->, ∴()1()1cos sin ,0h x F x x x x x'==-+->,∴()2211sin cos 4h x x x x x x π⎛⎫'=++=++ ⎪⎝⎭, 当30,4x π⎛⎫∈ ⎪⎝⎭时,()()0,h x h x '>单调递增,即()F x '单调递增, 又42()10,()2042F F ππππ''=-<=->,故存在0,42x ππ⎛⎫∈ ⎪⎝⎭,0()0F x '=,所以()()()00,,0,x x F x F x '∈<单调递减,()()()03,,0,4x x F x F xπ'∈<单调递增,∴30,4x π⎛⎫∈ ⎪⎝⎭时,函数()()()0min 11sin1cos10F x F x F =<=--<,2222(e )e sin e cos e 20F ----=--+>,333()ln 0444F πππ=->, 故30,4x π⎛⎫∈ ⎪⎝⎭时,()()ln F x f x x =-有两个零点,当37[,)44x ππ∈0,()sin cos ln ln ln 44x F x x x x x x x x x x ππ⎛⎫⎛⎫+≤=---=+-≥- ⎪ ⎪⎝⎭⎝⎭,对于函数()ln x x x ϕ=-,则()1110x x x xϕ-'=-=>,又()10ϕ=, ∴37[,)44x ππ∈,()()10x ϕϕ>=,即()0F x >,此时函数()()ln F x f x x =-没有零点,当7[,)4x π∈+∞时,()sin cos ln ln ln 4F x x x x x x x x x x π⎛⎫=---=+-≥ ⎪⎝⎭,由上可知77()ln 044F x ππ≥>,故当7[,)4x π∈+∞时,函数()()ln F x f x x =-没有零点,综上,函数()()ln F x f x x =-有两个零点.【典型题型讲解】考点二:根据极值、极值点求参数【典例例题】例1.(2022·广东广东·一模)已知函数()()2e x f x mx x =+,()2e ln 1x g x x ax a x =+++.(1)若函数()f x 在1x =处取得极大值,求实数m 的值;(2)当1m =时,若对0x ∀>,不等式()()f x g x ≥恒成立,求实数a 的值.【详解】(1)因为()()2e x f x mx x =+,所以2(21)()x f x e mx x mx +++'=,因为()f x 在1x =处取极大值,所以()10f '=,所以()11210e m m +++=,所以23m =-当2m =-时,()()2311()xf x e x x '+--=,所以()f x 在1x =处取极大值,符合题意;(2)当1m =时, ()()2e x f x x x =+,()2e ln 1x g x x ax a x =+++.又因为对0x ∀>,不等式()()f x g x ≥,所以0x >时,()2e xx x +2ln 1x e x ax a x ≥+++,所以0x >时,()ln ln 1x xea x x +≥++,令ln t x x =+,因为()ln h x x x =+为()0,∞+上的增函数,且()h x 的值域为R ,所以t R ∈,故问题转化为“,10t t R e at ∀∈--≥恒成立”,不妨设()1t F t e at =--,所以()tF t e a '=-,当0a ≤时,()0t F t e a '=->,所以()F t 在R 上单调递增,且()0010F e =-=,所以当(),0t ∈-∞时,()()00F t F <=,这与题意不符; 当0a >时,令()0F t '=,解得ln x a =,当(),ln t a ∈-∞时,()0F t '<,()F t 单调递减,当()ln ,t a ∈+∞时,()0F t '>,()F t 单调递增,所以()()ln min ln ln 1ln 10aF t F a e a a a a a ==--=--≥,所以11ln 0a a --≥,所以1ln 10a a+-≤, 记()()211ln 1,a a a a a aϕϕ-'=+-=, 当()0,1a ∈时,()0a ϕ'<,()a ϕ单调递减,当()1,a ∈+∞时,()0a ϕ'>,()a ϕ单调递增, 所以()()min 10a ϕϕ==,又因为1ln 10a a+-≤,即()0a ϕ≤,所以1a =. 【方法技巧与总结】极值点是一个函数导数的零点问题,转化零点问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的极值知识点及例题解析
1. 知识点
函数的极值是函数在定义域内所能达到的最大值和最小值。
在求函数的极值时,需要先找出函数的驻点和临界点,然后使用一定的方法进行判断和计算。
1.1 驻点
函数的驻点是指函数的导数等于零的点。
驻点可能是函数的极值点,也可能是函数的拐点。
可以通过计算函数的导数,然后将导数等于零的点带入函数进行判断。
1.2 临界点
函数的临界点是指函数的定义域内的奇点或导数不存在的点。
临界点可能是函数的极值点,也可能是函数的间断点。
可以通过计算函数的导数,然后将导数不存在或等于无穷大的点带入函数进行判断。
2. 例题解析
2.1 例题一
已知函数 f(x) = x^3 - 3x^2 + 2x + 1,求函数的极值点。
解析:首先需要求函数的导数 f'(x) = 3x^2 - 6x + 2。
然后找出导数等于零的点,即驻点。
令 f'(x) = 0,解得 x = 1 或 x = 2/3。
将驻点带入原函数,得到 f(1) = 2 和 f(2/3) = 8/27。
所以函数的极小值点为 (1, 2) 和 (2/3, 8/27)。
2.2 例题二
已知函数 g(x) = e^x - 2x,求函数的极值点。
解析:首先需要求函数的导数 g'(x) = e^x - 2。
然后找出导数等
于零的点,即驻点。
令 g'(x) = 0,解得 x = ln(2)。
将驻点带入原函数,得到 g(ln(2)) = 2 - 2ln(2)。
所以函数的极值点为 (ln(2), 2 - 2ln(2))。
以上是函数的极值知识点及例题解析的内容。
希望对你有帮助!。